DPP No.
39
TARGET : JEE-2021
Maximum Time : 40 Min.
DPP No. : 39 (JEE–ADVANCED)
SCQ (Single Correct Type) :
1. P, Q have position vectors a & b relative to the origin 'O' & X, Y divide
PQ internally and externally respectively in the ratio 2 : 1 . Vector XY =
3 4 5 4
(A) (b a) (B) (a b) l (C) (b a) (D) (b a)
2 3 6 3
2. The solution of differential equation (ex + 1) y dy = (y + 1) ex dx is
(A) (ex + 1) (y + 1) = cey (B) (ex + 1) (y + 1) = ce–y
(C) (ex + 1) (y + 1) = ce2y (D) none of the above
2
5 2/3 9 x 2
e
(x 5)2
3. dx 3 e 3 dx is equal to
4 1/3
(A) 1 (B) – 1 (C) 0 (D) – 2
4. The area bounded by the curves x y 1 and x + y = 1 is
1 1 1
(A) (B) (C) (D) None of these
3 6 2
5. If | a | 3,| b | 4, then a value for which a b is perpendicular to a b , is :-
9 3 3 4
(A) (B) (C) (D)
16 4 2 3
6. If | a | 3,| b | 5,| c | 7 and a b c O .The angle between a and b is
3
(A) (B) (C) (D) 0
3 4 6
x y 1
7. If gradient of a curve at any point P(x, y) is 2y 2x 1 and it passes through origin, then curve is
3x 3y 2 3x 3y 2
(A) 2(x 3 y) n (B) x 3 y n
2 2
3x 3y 2
(C) 3y + x = n (3x + 2y + 1) (D) 6y 3 y n
2
PAGE # 1
Numerical based Questions :
( /4)1/ 3
x2
8. Evaluate : 1/ 3
7
(1 sin2 x3 )(1 e x )
dx
( /4)
9. Evaluate the following
1 sin2x
e
2x
(i) 1 cos 2x dx
x sin1 x
(ii) (1 x 2 3/2
)
dx
Matrix Match Type :
10. Match the following. Normals are drawn at point P, Q and R lying on the parabola y2 = 4x which
intersect at (3, 0). Then
Column - I Column - II
(A) Area of PQR (p) 2
(B) Radius of circumcircle of PQR (q) 5/2
(C) Centroid of PQR (r) (5/2, 0)
(D) Circumcentre of PQR (s) (2/3, 0)
Answer Key of DPP No. 38
1. (A) 2. (B) 3. (ACD) 4. (BD) 5. (ACD)
32
6. (AB) 7. 8. (5/2) 9. (0) 10. (215)
9
PAGE # 2