Liposome-Quantum Dot
Liposome-Quantum Dot
pubs.acs.org/JACS
ABSTRACT: Sensitive detection of DNA usually relies shown distinct advantages of a high signal-to-noise ratio,
on target amplification approaches such as polymerase improved sensitivity, low sample consumption, and near-zero
chain reaction and rolling circle amplification. Here we background signal in comparison with the conventional
describe a new approach for sensitive detection of low- ensemble fluorescence measurements. Single-particle detection
abundance DNA using liposome−quantum dot (QD) enables the detection of biomolecules at single-particle
complexes and single-particle detection techniques. This level,13−16 and its sensitivity can reach femtomolar.13a With
assay allows for detection of single-stranded DNA at the involvement of target amplification, its sensitivity can be
attomolar concentrations without the involvement of further improved to attomolar.14 However, the detection of
target amplification. Importantly, this strategy can be biomolecules with attomolar sensitivity without the involve-
employed for simultaneous detection of multiple DNA ment of target amplification has never been reported.
targets. In the conventional QD-based nanosensors, signal enhance-
ment is usually achieved by the assembly of multiple target
molecules on the surface of a single QD,13−16 thus the
© 2013 American Chemical Society 2056 dx.doi.org/10.1021/ja3110329 | J. Am. Chem. Soc. 2013, 135, 2056−2059
Journal of the American Chemical Society Communication
a
This method involves three steps: (i) preparation of L/QD
complexes, L/QD complex-tagged reporter probes and magnetic
bead-modified capture probes; (ii) formation of sandwich hybrids in
the presence of target DNA and further purification through a magnet Figure 1. Characterization of two types of L/QD complexes with
separation; (iii) release of QDs from L/QD complex and subsequent different colors. Fluorescence imaging of (a) L/QD green complexes
measurement by single-particle detection. and (b) L/QD red complexes. Size distribution histogram of (c) L/
QD green complexes and (d) L/QD red complexes. (e) Normalized
fluorescence emission spectra of pristine green QDs (green line), L/
monodispersed and uniform in size. Measurement of QD green complexes (black line), pristine red QDs (red line) and L/
fluorescence spectra indicates that the emission peak is 537 QD red complexes (blue line).
nm for the green QDs and 612 nm for the red QDs. The
average size is estimated to be 2.8 ± 0.25 and 4.6 ± 0.34 nm for
the green and red QDs, respectively.19 complexes were characterized by TEM. The TEM images show
Two types of L/QD complexes with different colors were that the L/QD complexes are nearly spherical with the
prepared based on a reported procedure with some encapsulation of hundreds of QDs (see SI, Figure S3). On
midfications.20 Fluorescence images show that both L/QD the basis of the three-dimensional model with the encapsulation
green complexes and L/QD red complexes are spherical in of QDs in the lipid interior of a liposome bilayer and the
shape, remarkably bright, and uniform in size (a and b of Figure calculation using the data obtained experimentally, it was found
1). Size, polydispersity index, and surface charge of L/QD that each liposome can encapsulate either ∼1063 green QDs or
complexes were measured by a Zetasizer Nano-ZS. The L/QD ∼648 red QDs (see SI, Figure S4).
complexes are uniform with a polydispersity index of 0.274 ± For sensitive detection of target DNA, a typical sandwich
0.036 for L/QD green complexes and 0.236 ± 0.016 for L/QD format was constructed. The carboxyl-functionalized L/QD
red complexes (see SI, Figure S2 and Table S1). Analysis of size complexes and carboxyl-modified magnetic beads were
distributions reveals the average size of 82 ± 3.8 nm for the L/ covalently conjugated with the amino-terminated olignucleo-
QD green complexes (Figure 1c) and 90 ± 3.5 nm for the L/ tides,22 producing the reporter probes and the capture probes,
QD red complexes (Figure 1d), much larger than that of 2.8 ± respectively (see details in SI). As a proof of concept, one target
0.25 nm for pristine green QDs and 4.6 ± 0.34 nm for pristine olignucleotide of HIV-1 was sandwich hybridized with a L/QD
red QDs (see SI, Figure S1), suggesting the successful green complex-tagged reporter probe 1 and a magnetic bead-
encapsulation of QDs inside the liposomes. Zeta potential is modified capture probe 1 on the basis of Watson−Crick base
measured to be −32.7 mV for L/QD green complexes and pairing. Another target olignucleotide of HIV-2 was sandwich
−37.2 mV for L/QD red complexes, indicating that the L/QD hybridized with a L/QD red complex-tagged reporter probe 2
complexes are highly dispersible in aqueous solution. The and magnetic bead-modified capture probe 2. The use of two
narrow and symmetrical fluorescence spectra (Figure 1e) types of L/QD complexes with different colors made it possible
further confirm the excellent optical behavior of two types of L/ for simultaneous detection of HIV-1 and HIV-2. Finally, the
QD complexes with different colors, with a red-shift of 5−7 nm separation and purification of sandwich hybrids from the free
in the emission peak as compared with the pristine QDs due to reporter probes was realized using the magnetic beads and an
the interaction of QDs with the lipid layer.21 In addition, L/QD external magnetic field.
2057 dx.doi.org/10.1021/ja3110329 | J. Am. Chem. Soc. 2013, 135, 2056−2059
Journal of the American Chemical Society Communication
HIV-2 were detected simultaneously by single-particle (4) (a) Nycz, C. M.; Dean, C. H.; Haaland, P. D.; Spargo, C. A.;
detection (see SI, Figure S6). As shown in Figure 3e, only Walker, G. T. Anal. Biochem. 1998, 259, 226−234. (b) Guo, Q. P.;
green-QD signals can be detected in the presence of HIV-1, Yang, X. H.; Wang, K.; Tan, W. H.; Li, W.; Tang, H. X.; Li, H. M.
and only red-QDs signals can be observed in the presence of Nucleic Acids Res. 2009, 37, e20.
(5) (a) Notomi, T.; Okayama, H.; Masubuchi, H.; Yonekawa, T.;
HIV-2. While in the presence of both HIV-1 and HIV-2, both Watanabe, K.; Amino, N.; Hase, T. Nucleic Acids Res. 2000, 28, e63.
green-QD and red-QD signals can be detected simultaneously. (b) Tomita, N.; Mori, Y.; Kanda, H.; Notomi, T. Nat. Protoc. 2008, 3,
These results clearly demonstrate that this method can be used 877−882.
for multiple DNA detection. (6) (a) Xue, Q. F.; Yeung, E. S. Science 1997, 275, 1106−1109.
In conclusion, we have developed a new approach for (b) Weiss, S. Science 1999, 283, 1676−1683.
sensitive detection of DNA using L/QD complexes and single- (7) (a) Stoffel, C. L.; Rowlen, K. L. Anal. Chem. 2005, 77, 2243−
particle detection techniques. The release of hundreds of single 2246. (b) Xue, Q. W.; Jiang, D. F.; Wang, L.; Jiang, W. Bioconjugate
QDs from the L/QD complexes and the subsequent counting Chem. 2010, 21, 1987−1993. (c) Knemeyer, J. P.; Herten, D. P.; Sauer,
at single-particle level are crucial to the improvement of M. Anal. Chem. 2003, 75, 2147−2153.
detection sensitivity. Without the involvement of target (8) Yildiz, A.; Forkey, J. N.; McKinney, S. A.; T. Ha, Y.; Goldman, E.;
Selvin, P. R. Science 2003, 300, 2061−2065.
amplification, the detection limit of the proposed method can
(9) Chiu, R. W. K.; Cantor, C. R.; Dennis, Lo, Y. M. Trends Genet.
reach attomolar, which has improved by as much as 5 orders of 2009, 25, 324−331.
magnitude as compared with that of fluorescence-tagged (10) Zhuang, X. W.; Bartley, L. E.; Babcock, H. P.; Russell, R.; Ha,
microbead-based nanosensors,24 and 3 orders of magnitude as T.; Herchlag, D.; Chu, S. Science 2000, 288, 2048−2051.
compared with that of single QD-based nanosensors.13a (11) (a) Alivisatos, A. P. Science 1996, 27, 933−937. (b) Chan, W. C.
Moreover, taking advantage of two types of L/QD complexes W.; Nie, S. M. Science 1998, 281, 2016−2018. (c) Peng, X. G.; Manna,
with different colors, simultaneous detection of two DNA L.; Yang, W. D.; Wickham, J.; Scher, E.; Kadavanich, A.; Alivisatos, A.
targets can be achieved. This method has significant advantages P. Nature 2000, 404, 59−61. (d) Genger, U. R.; Grabolle, Ml; Jaricot,
of high sensitivity, multiplex analysis, and low sample S. C.; Nitschke, R.; Nann, T. Nat. Methods 2008, 5, 763−775.
consumption and might be further extended to sensitive (e) Delehanty, J. B.; Bradburne, C. E.; Susumu, K.; Boeneman, K.;
Mei, B. C.; Farrell, D.; Blanco-Canosa, J. B.; Dawson, P. E.; Mattoussi,
detection of miRNAs and proteins in high-throughput H.; Medintz, I. L. J. Am. Chem. Soc. 2011, 133, 10482−10489.
screening and early clinical diagnosis.
■
(f) Algar, W. R.; Wegner, D.; Huston, A. L.; Blanco-Canosa, J. B.;
Stewart, M. H.; Armstrong, A.; Dawson, P. E.; Hildebrandt, N.;
ASSOCIATED CONTENT Medintz, I. L. J. Am. Chem. Soc. 2012, 134, 1876−1891.
*
S Supporting Information (12) (a) Somers, R. C.; Bawendi, M. G.; Nocera, D. G. Chem. Soc.
Rev. 2007, 36, 579−591. (b) Medintz, I. L.; Uyeda, H. T.; Goldman, E.
Experimental details and supplementary figures. This material is R.; Mattoussi, H. Nat. Mater. 2005, 4, 435−446. (c) Alivisatos, A. P.
available free of charge via the Internet at http://pubs.acs.org.
■
Nat. Biotechnol. 2004, 22, 47−52. (d) Wang, S.; Han, M. Y.; Huang, D.
J. Am. Chem. Soc. 2009, 131, 11692−11694. (d) Medintz, I. L.; Clapp,
AUTHOR INFORMATION A. R.; Mattoussi, H. Nat. Mater. 2003, 2, 630−638. (e) Medintz, I. L.;
Corresponding Author Mattoussi, H. Phys. Chem. Chem. Phys. 2009, 11, 17−45. (f) Mattoussi,
H.; Palui, G.; Na, H. B. Adv. Drug Delivery Rev. 2012, 64, 138−166.
zhangcy@siat.ac.cn
(13) (a) Zhang, C. Y.; Yeh, H. C.; Kuroki, M. T.; Wang, T. H. Nat.
Author Contributions Mater. 2005, 4, 826−831. (b) Zhang, C. Y.; Hu, J. Anal. Chem. 2010,
†
J.Z. and Q.-x.W. contributed equally. 82, 1921−1927.
(14) Zhang, Y.; Zhang, C. Y. Anal. Chem. 2012, 84, 224−231.
Notes
(15) (a) Scholl, B.; Liu, H. Y.; Long, B. R.; McCarty, O. J. T.;
The authors declare no competing financial interest.
■
O’Hare, T.; Druker, B. J.; Vu, T. Q. ACS Nano 2009, 3, 1318−1628.
(b) Long, Y.; Zhang, L. F.; Zhang, Y.; Zhang, C. Y. Anal. Chem. 2012,
ACKNOWLEDGMENTS 84, 8846−8852.
This work was supported by the National Basic Research (16) Zhang, C. Y.; Johnson, L. W. Anal. Chem. 2009, 81, 3051−3055.
(17) (a) Al-Jamal, W. T.; Kostarelos, K. Acc. Chem. Res. 2011, 44,
Program 973 (Grants 2011CB933600 and 2010CB732600),
1094−1104. (b) Mukthavaram, R.; Wrasidlo, W.; Hall, D.; Kesari, S.;
the National Natural Science Foundation of China (Grant Makale, M. Bioconjugate Chem. 2011, 22, 1638−1644.
21075129), the Award for the Hundred Talent Program of the (18) Qu, L. H.; Peng, X. G. J. Am. Chem. Soc. 2002, 124, 2049−2055.
Chinese Academy of Science, and the Fund for Shenzhen (19) Yu, W. W.; Qu, L. H.; Guo, W. Z.; Peng, X. G. Chem. Mater.
Engineering Laboratory of Single-molecule Detection and 2003, 15, 2854−2860.
Instrument Development (Grant No. (2012) 433). (20) Tian, B.; Al-Jamal, W. T.; Al-Jammal, K. T.; Kostarelos, K. Int. J.
■
Pharm. 2011, 416, 443−447.
REFERENCES (21) Pan, J.; Wan, D.; Gong, J. L. Chem. Commun. 2011, 47, 3442−
3444.
(1) (a) Kim, M. S.; Stybayeva, G.; Lee, J. Y.; Revzin, A.; Segal, D. J. (22) Hermanson, G. T. Bioconjugate Techniques; Acdemic Press: San
Nucleic Acids Res. 2011, 39, e29. (b) Zou, B. J.; Ma, Y. J.; Wu, H. P.; Diego, 1996; pp 173−176.
Zhou, G. H. Angew. Chem., Int. Ed. 2011, 50, 7395−7398. (23) (a) Egashira, N.; Morita, S.; Hifumi, E.; Mitoma, Y.; Uda, T.
(2) (a) Heid, C. A.; Stevens, J.; Livak, K. J.; Williams, P. M. Genome Anal. Chem. 2008, 80, 4020−4025. (b) Wang, H. Y.; Sun, D. Y.; Tan,
Res. 1996, 6, 986−994. (b) Heim, A.; Ebnet, C.; Harste, G.; Åkerblom, Z. A.; Gong, W.; Wang, L. Colloids Surf., B 2011, 84, 515−519.
P. P. J. Med. Virol. 2003, 70, 228−239. (c) Gill, P.; Ghaemi, A. (24) (a) Han, M. Y.; Gao, X. H.; Su, J. Z.; Nie, S. M. Nat. Biotechnol.
Nucleosides, Nucleotides Nucleic Acids 2008, 27, 224−243. 2001, 19, 631−635. (b) Ferguson, J. A.; Steemers, F. J.; Walt, D. R.
(3) (a) Lizardi, P. M.; Huang, X. H.; Zhu, Z. R.; Bray-Ward, P.; Anal. Chem. 2000, 72, 5518−5524.
Thomas, D. C.; Ward, D. C. Nat. Genet. 1998, 19, 225−232. (b) Zhao,
W. A.; Ali, M. M.; Brook, M. A.; Li, Y. F. Angew. Chem., Int. Ed. 2008,
47, 6330−6337. (c) Hu, J.; Zhang, C. Y. Anal. Chem. 2010, 82, 8991−
8997.