1. Determine the force in members GM and MN.
2. Determine the forces in members BC and FG.
Zero‐Force Members:
EK, EF
Cut (Upper Side)
1200 N
FCJ FFJ
Cut
FBC FFG
800 N C
FCJ FFJ
FBC FFG
+
M C 0 FFG 4 12002 0 FFG 600 N C
Fy 0 FBC FFG 0 FBC 600 N T
600
3. If it is known that the center pin A supports one-half of the vertical
loading shown, determine the force in member BF.
Gy Hy
Ax
Ay
Reactions at the supports
From equilibrium of whole truss; Fx 0 Ax 0
48 210
Center pin A supports one-half of the vertical loading. Ay 26 kN
2
Because of symmetry, G y H y 13 kN
I. Cut
DE
DF
BF
AF
Gy
Hy=13 kN
Ay
DE I. Cut (Right side)
DF There are four unknowns.
BF
AF
Hy=13 kN
Joint A
AB AF
45o 45o
Ay=26 kN
Fx 0 AB cos 45 AF cos 45 0 AB AF
Fy 0 AB sin 45 AF sin 45 26 0 AB AF 18.38 kN C
DE
DF
I. Cut (Right side)
BF
45o
AF
+ Hy=13 kN
M D 0
10(12) 8(24) 8(36) 13(48) BF (16)
AF cos 45(16)
AF sin 45(12) 0
18.38 18.38
BF 24.24 kN T
4. Determine the forces in members FG, CG, BC, and EF for the loaded crane truss.
25 kN 25 kN D
25 kN
E
25 kN
50 kN
F C
25 kN
25 kN
G
B
25 kN
Zero‐Force Members: BG
25 kN 25 kN
D 1st Cut 25 kN 25 kN
25 kN
E (Upper part) 25 kN D
E
25 kN 50 kN
50 kN 25 kN
F C F C
25 kN
25 kN
1st Cut CG
25 kN
G FG BC
B
25 kN
G
Fx 0 CG 0
+
M F 0 50(8) BC (4) 0 BC 100 kN C
Fy 0 25 FG
BC 50 0 FG 25 kN T
100
Joint F: EF
Fy 0
25 kN
FC 25 25 cos 45 EF cos 45
FG 0
F 25
25 kN EF 45.7 kN T
FG
5. Determine the forces in members DE, EI, FI, and HI of the arched roof truss.
Zero‐Force Members:
BK, HF
Reactions at the supports
From equilibrium of whole truss;
Fx 0 Gx 0
Because of symmetry of the truss:
Ay G y 150 kN
Gx
Ay Gy
+
M A 0 G y (40) 25(4) 75(10) 100(20) 75(30) 25(36) 0 G y 150 kN
Fy 0 G y Ay 225 275 100 0 Ay 150 kN
1st Cut (Right side)
EF 25 kN
I FI F
HI
H
G 1st Cut
Gy=150 kN
Ay=150 kN Gy=150 kN
+
4
M I 0 EF 12 2512 15016 0 EF 315.48 kN C
4 6
2 2
4 14
Fy 0 EF
HI 150 25 0 HI 75.93 kN T
315.48 4 6
2 2
14 16
2 2
6 16
Fx 0
EF FI
HI 0 FI 205.356 kN T
315.48 4 62 2
75.93 14 16
2 2
2nd Cut (Right side)
75 kN
DE
E 25 kN
EI
IF
I F
IH
25 kN 2nd Cut
G
+ Gy=150 kN
Ay=150 kN Gy=150 kN
M I 0
3 10
DE 6 DE 4 2512 756 15016 0 DE 297.008 kN C
3 10
2 2
3 10
2 2
4 3 14
Fy 0 EI
DE
HI 75 25 150 0
4 62 2
297.008 3 10
2 2
75.93 14 16
2 2
EI 26.4 kN T
6. Determine the forces acting in members DE, DI, KJ, AJ.
4m 4m 4m
B C D E F
3m
M I G
3m
L 37o
K J H
20 kN
6m
A
4m 4m 4m
Zero‐Force Members:
EF, FG B T C D E F
3m
M I
G
3m
L
K J H 37o
20 kN
6m
Ax A
Ay
Reactions at the supports
From equilibrium of whole truss; Fy 0 Ay 20 sin 37 0 Ay 12 kN
+
M A 0 T (12) 20 cos 37(6) 20 sin 37(12) 0 T 20 kN
Fx 0 T Ax 20 cos 37 0 Ax 4 kN
4m 4m 4m
Joint A:
BT C D E F
AL AJ 3m
Ax=4 kN M I
G
3m
L
Ay=12 kN K J H 37o
Fx 0
20 kN
8
Ax AJ 0 1st Cut 6m
6 2 82
Ax
AJ 5 kN C
A
Ay
E 1st Cut (Right side)
DE +
EI M J 0
DE 6 20 sin 374 0 DE 8 kN T
IJ
KJ
J 37o
AJ 20 kN
4m 4m 4m
2nd Cut (Right side)
T C D E F
DE E
3m
DI M I
G
I 3m
KI
L
K J 37o
KJ H
K J 37o 20 kN
J 6m
20 kN
AJ 2nd Cut
Ax A
+ Ay
M I 0
DE 3 KJ 3
AJ cos 373 20 cos 373 20 sin 374 0 KJ 12 kN T
8 5
+
M K 0
DE 6
AJ sin 374 20 sin 378 DI cos 373 DI sin 374 0 DI 7.5 kN T
8 5
7. The hinged frames ACE and DFB are connected by two hinged bars, AB and CD,
which cross without being connected. Compute the force in AB.
I. Cut (Left Side) I. Cut (Right Side)
A
AB
2 m
B CD
CD 3.5 m AB
2
tan
3.5
29.74 o
Ex
Ey
I. Cut (Left Side)
+
M E 0 AB cos 6 AB sin 1.5 CD cos 4 CD sin 3 0
CD 3 AB
I. Cut (Right Side)
+
M F 0 106 AB cos 4 AB sin 3 CD cos 6 CD sin 1.5 0
60 5.95CD 1.98 AB 0 AB 3.78 kN C