Math 335 - Homework Assignment 1- Solutions
Turn in the problems with *.
. x 1 m1
1. Rewrite the power series ! m0 as a sum of 2 power series, one consists of all terms with even
2 m m!
indices and the other consists of all terms with odd indices. Rewrite it also as a sum of 3 power series which
consist of terms with indices as m 3n, 3n 1, and 3n 2, respectively.
. . .
x 1 m1 x 1 2n1 x 1 2n2
! 2 m m!
let m2n and m2n1
n0,1,...
! 2 2n 2n !
! 2 2n1 2n 1 !
m0 n0 n0
. . . .
x 1 m1 x 1 3n1 x 1 3n2 x 1 3n3
! 2 m m!
let m2n and m2n1
n0,1,...
! 2 3n 3n !
! !
2 3n1 3n 1 ! n0 2 3n2 3n 2 !
m0 n0 n0
2. *Page 245: 2, 3, 4 - for each power series,
a. give the partial sum with the first 4 non-zero terms;
b. find the radius and interval of convergence;
c. (extra points) find the limits of the power series if possible.
. 100 n
#2. ! n0 x 7 n
n!
a.
2 3
S 3 1 100x 7 100 x 7 2 100 x 7 3
2 6
2
1 100x 7 5000x 7 500000 x 7 3
3
b.
cn 100 n n 1 ! n1 .
R lim
nv. c n1
lim lim
nv. n! 100 n1 nv. 100
So, the radius of convergence is R ., and the interval of convergence I "., . .
c.
. . .
100 n 100 n 100x 7 n
! n!
x 7 n ! n!
x 7 n ! n!
e 100x7
n0 n0 n0
100x7
fx e is the limit function of this power series.
. "1 k
#3. ! k1 x " 5 k
10 k
a.
S 4 " 1 x " 5 1 x " 5 2 " 1 x " 5 3 1 x " 5 4
10 100 1000 10000
b.
1
R lim cck1
k1
k
lim 1 k 10 10
kv. kv. 10 1
. . .
"1 k "1 k
When x " 5 10, ! 10 k
x " 5 k
! 10 k
10 k !"1 k diverges
k1 k1 k1
. k . k .
"1 "1
When x " 5 "10, ! 10 k
x " 5 k ! 10 k
"10 k ! 1 diverges
k1 k1 k1
|x " 5| 10 « " 10 x " 5 10, " 10 5 x 10 5 « " 5 x 15
So, the radius of convergence is R 10, and the interval of convergence I "5, 15 .
c. Recognize the series is of the form
.
"1
! r k r r 2 r 3 . . . r n . . . where r
10
x " 5 .
k1
.
The sum for ! k1 r k is:
.
! r k r r 2 r 3 . . . r n . . . r1 r r 2 . . . r 1 1" r r
1"r
k1
. . .
"1 k "x " 5 k
"x " 5 k
! x " 5 k ! "x"5 !
10 k 10 10 10
k1 k1 k0
"x"5 1 " x"5 "x"5 5"x
10 1 x"5 10 x " 5 x5 x5
10
fx 5 " x is the limit function of this power series.
x5
.
4. ! k0 k!x " 1 k
a.
S 3 1 x " 1 2x " 1 2 6x " 1 3
b.
R lim cck1
k
lim k! lim 1 0
kv. kv. k 1 ! kv. k 1
So, the radius of convergence is R 0, and the interval of convergence I £1¤.
.
c. When x 1, ! k0 k!x " 1 k 1
m
3. *Consider the power series ! m1 2m x 2m .
.
a. Give the partial sum with the first 4 non-zero terms.
b. Find the radius and interval of convergence.
c. (extra points) Find the limits of the power series if possible.
a. Give the partial sum with the first 4 non-zero terms.
.
! 2 m x 2m X S 8 2x 2 2x 4 8 x 6 4x 8
m 3
m1
b. Find the radius and interval of convergence.
2
lim b m1 mv.
m1
L mv. lim 2 x 2m2 m mv.
lim 2m x 2 2|x| 2 1
bm m 1 2 m x 2m m1
|x| 1 , R 1
2 2
When x o 1 ,
2
. 2m . .
m
! 2m o 1 ! 2m 1 ! 1
m 2 m 2 m diverges since it is a harmonic series.
m1 m1 m1
So the interval of convergence is: I 1 , 1 " .
2 2
c. (extra points) Find the limits of the power series.
Since
. .
ln1 x !"1 1 x m1
m
!"1 m1 m1 x m , for " 1 x t 1
m1
m0 m1
. . .
"1 m m
ln1 " x !"1 m1 m1 "x m !"1 m1 m x " ! m x , " 1 "x t 1
1 m
m1 m1 m1
.
! 1 m
m x " ln1 " x , " 1 t x 1
m1
So,
. . m
2 m x 2m 2x 2
! m ! m " ln1 " 2x 2 for " 1 t x 1
m1 m1
4. Page 245: 5 - Find also S 1 , S 2 , S 3 and sketch the graphs of sinx cosx , S 1 , S 2 , and S 3 for x in ¡"1, 1¢.
It is know that
3 5 7 2 4 6
sinx x " x x " x . . . and cosx 1 " x x " x . . .
3! 5! 7! 2! 4! 6!
3 5 7 2 4 6
sinx cosx x " x x " x . . . 1 " x x " x . . .
3! 5! 7! 2! 4! 6!
x " 1 " 1 3
x 1 1 1 1 x5 " 1 " 1 1 " 1 1 " 1 x7. . .
3! 2! 5! 3! 2! 4! 7! 5! 2! 3! 4! 6!
2
x" x 3 2 5
x " 4 7
x . . .
3 15 315
The first 4 terms of sinx cosx are
x, " 2 x 3 , 2 x5, " 4 x7.
3 15 315
S 1 x, S 2 x, S 3 x " 2 x 3
3
3
y 1
0.5
0
-1 -0.5 0 0.5 1
x
-0.5
-1
– y sinx cosx , - - y S 1 , S 2 .-.- y S 3
5. *Use the known power series for functions e x , sin x, cos x, 1 , and ln1 x to find the power series
1"x
representation of each function including the interval of convergence I.
a. fx x cos2x 2
. 2m . .
2x 2 2m 4m1 m 4m1
fx x cos2x 2 x !"1 m !"1 m 2 2m !
x !"1 m 42m !
x
m0
2m ! m0 m0
I "., . .
b. gx e "x/3
m
. " x . m
gx e "x/3
! 3
m!
!"1 m 3 mxm!
m0 m0
I "., .
c. (extra points) hx 1
4x
. .
m
hx 1 1 1 ! "x 1 !"1 m xm
4x 4 1" " x 4 4 4 4m
m0 m0
4
" 1 " x 1 « 4 x "4
4
I "4, 4