0% found this document useful (0 votes)
52 views4 pages

hw1 Sol

The document provides solutions to homework problems involving power series. It rewrites power series as sums of other power series with terms of specific indices. It also finds partial sums, radii of convergence, and limit functions for various power series.

Uploaded by

Arjay Plata
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
52 views4 pages

hw1 Sol

The document provides solutions to homework problems involving power series. It rewrites power series as sums of other power series with terms of specific indices. It also finds partial sums, radii of convergence, and limit functions for various power series.

Uploaded by

Arjay Plata
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 4

Math 335 - Homework Assignment 1- Solutions

Turn in the problems with *.


. Ÿx  1  m1
1. Rewrite the power series ! m0 as a sum of 2 power series, one consists of all terms with even
2 m m!
indices and the other consists of all terms with odd indices. Rewrite it also as a sum of 3 power series which
consist of terms with indices as m  3n, 3n  1, and 3n  2, respectively.
. . .
Ÿx  1  m1 Ÿx  1  2n1 Ÿx  1  2n2
! 2 m m!
let m2n and m2n1

n0,1,...
! 2 2n Ÿ2n !
 ! 2 2n1 Ÿ2n  1 !
m0 n0 n0
. . . .
Ÿx  1  m1 Ÿx  1  3n1 Ÿx  1  3n2 Ÿx  1  3n3
! 2 m m!
let m2n and m2n1

n0,1,...
! 2 3n Ÿ3n !
 !  !
2 3n1 Ÿ3n  1 ! n0 2 3n2 Ÿ3n  2 !
m0 n0 n0

2. *Page 245: 2, 3, 4 - for each power series,


a. give the partial sum with the first 4 non-zero terms;
b. find the radius and interval of convergence;
c. (extra points) find the limits of the power series if possible.

. Ÿ100  n
#2. ! n0 Ÿx  7  n
n!
a.
2 3
S 3  1  100Ÿx  7   100 Ÿx  7  2  100 Ÿx  7  3
2 6
2
 1  100Ÿx  7   5000Ÿx  7   500000 Ÿx  7  3
3
b.
cn Ÿ100  n Ÿn  1 ! n1  .
R  lim
nv. c n1
 lim  lim
nv. n! 100 n1 nv. 100

So, the radius of convergence is R  ., and the interval of convergence I  "., . .


c.
. . .
Ÿ100  n Ÿ100  n Ÿ100Ÿx  7   n
! n!
Ÿx  7  n  ! n!
Ÿx  7  n  ! n!
 e 100Ÿx7 
n0 n0 n0
100Ÿx7 
fŸx   e is the limit function of this power series.

. Ÿ"1  k
#3. ! k1 Ÿx " 5  k
10 k
a.
S 4  " 1 Ÿx " 5   1 Ÿx " 5  2 " 1 Ÿx " 5  3  1 Ÿx " 5  4
10 100 1000 10000
b.

1
R  lim cck1
k1
k
 lim 1 k 10  10
kv. kv. 10 1
. . .
Ÿ"1  k Ÿ"1  k
When x " 5  10, ! 10 k
Ÿx " 5  k
 ! 10 k
Ÿ10  k  !Ÿ"1  k diverges
k1 k1 k1
. k . k .
Ÿ"1  Ÿ"1 
When x " 5  "10, ! 10 k
Ÿx " 5  k  ! 10 k
Ÿ"10  k  ! 1 diverges
k1 k1 k1

|x " 5|  10 « " 10  x " 5  10, " 10  5  x  10  5 « " 5  x  15


So, the radius of convergence is R  10, and the interval of convergence I  "5, 15 .
c. Recognize the series is of the form
.
Ÿ"1 
! r k  r  r 2  r 3 . . .  r n . . . where r 
10
Ÿx " 5 .
k1
.
The sum for ! k1 r k is:
.
! r k  r  r 2  r 3 . . .  r n . . .  rŸ1  r  r 2 . . .    r 1 1" r  r
1"r
k1
. . .
Ÿ"1  k "Ÿx " 5  k
"Ÿx " 5  k
! Ÿx " 5  k  !  "x"5 !
10 k 10 10 10
k1 k1 k0

 "x"5 1 " x"5  "x"5  5"x


10 1 x"5 10  x " 5 x5 x5
10
fŸx   5 " x is the limit function of this power series.
x5

.
4. ! k0 k!Ÿx " 1  k
a.
S 3  1  Ÿx " 1   2Ÿx " 1  2  6Ÿx " 1  3
b.
R  lim cck1
k
 lim k!  lim 1  0
kv. kv. Ÿk  1 ! kv. k  1

So, the radius of convergence is R  0, and the interval of convergence I  £1¤.


.
c. When x  1, ! k0 k!Ÿx " 1  k  1

m
3. *Consider the power series ! m1 2m x 2m .
.

a. Give the partial sum with the first 4 non-zero terms.


b. Find the radius and interval of convergence.
c. (extra points) Find the limits of the power series if possible.

a. Give the partial sum with the first 4 non-zero terms.


.
! 2 m x 2m X S 8  2x 2  2x 4  8 x 6  4x 8
m 3
m1

b. Find the radius and interval of convergence.


2
lim b m1  mv.
m1
L  mv. lim 2 x 2m2 m  mv.
lim 2m x 2  2|x| 2  1
bm m 1 2 m x 2m m1
|x|  1 , R  1
2 2
When x  o 1 ,
2
. 2m . .
m
! 2m o 1  ! 2m 1  ! 1
m 2 m 2 m diverges since it is a harmonic series.
m1 m1 m1

So the interval of convergence is: I  1 , 1 " .


2 2
c. (extra points) Find the limits of the power series.
Since
. .
lnŸ1  x   !Ÿ"1  1 x m1 
m
!Ÿ"1  m1 m1 x m , for " 1  x t 1
m1
m0 m1
. . .
Ÿ"1  m m
lnŸ1 " x   !Ÿ"1  m1 m1 Ÿ"x  m  !Ÿ"1  m1 m x  " ! m x , " 1  "x t 1
1 m
m1 m1 m1
.
! 1 m
m x  " lnŸ1 " x , " 1 t x  1
m1

So,
. . m
2 m x 2m  Ÿ2x 2  
! m ! m  " lnŸ1 " 2x 2   for " 1 t x  1
m1 m1

4. Page 245: 5 - Find also S 1 , S 2 , S 3 and sketch the graphs of sinŸx  cosŸx , S 1 , S 2 , and S 3 for x in ¡"1, 1¢.
It is know that
3 5 7 2 4 6
sinŸx   x " x  x " x . . . and cosŸx   1 " x  x " x . . .
3! 5! 7! 2! 4! 6!
3 5 7 2 4 6
sinŸx  cosŸx   x " x  x " x . . . 1 " x  x " x . . .
3! 5! 7! 2! 4! 6!
 x " 1 " 1 3
x  1  1 1  1 x5  " 1 " 1 1 " 1 1 " 1 x7. . .
3! 2! 5! 3! 2! 4! 7! 5! 2! 3! 4! 6!
2
 x" x  3 2 5
x " 4 7
x . . .
3 15 315
The first 4 terms of sinŸx  cosŸx  are
x, " 2 x 3 , 2 x5, " 4 x7.
3 15 315
S 1  x, S 2  x, S 3  x " 2 x 3
3

3
y 1

0.5

0
-1 -0.5 0 0.5 1

x
-0.5

-1

– y  sinŸx  cosŸx , - - y  S 1 , S 2 .-.- y  S 3

5. *Use the known power series for functions e x , sin x, cos x, 1 , and lnŸ1  x  to find the power series
1"x
representation of each function including the interval of convergence I.
a. fŸx   x cosŸ2x 2  
. 2m . .
Ÿ2x 2   2m 4m1 m 4m1
fŸx   x cosŸ2x 2    x !Ÿ"1  m  !Ÿ"1  m 2 Ÿ2m !
x  !Ÿ"1  m 4Ÿ2m !
x
m0
Ÿ2m ! m0 m0
I "., . .

b. gŸx   e "x/3
m
. " x . m
gŸx   e "x/3
 ! 3
m!
 !Ÿ"1  m 3 mxm!
m0 m0
I "., .
c. (extra points) hŸx   1
4x
. .
m
hŸx   1  1  1 ! "x  1 !Ÿ"1  m xm
4x 4 1" " x 4 4 4 4m
m0 m0
4
" 1  " x  1 « 4  x  "4
4
I "4, 4

You might also like