Carnegie Mellon
Floating Point
15-213: Introduction to Computer Systems
4th Lecture, Sep. 10, 2015
Instructors:
Randal E. Bryant and David R. O’Hallaron
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition
Carnegie Mellon
Today: Floating Point
Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties
Rounding, addition, multiplication
Floating point in C
Summary
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 2
Carnegie Mellon
Fractional binary numbers
What is 1011.1012?
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 3
Carnegie Mellon
Fractional Binary Numbers
2i
2i-1
4
••• 2
1
bi bi-1 ••• b2 b1 b0 b-1 b-2 b-3 ••• b-j
1/2
1/4 •••
1/8
Representation 2-j
▪ Bits to right of “binary point” represent fractional powers of 2
▪ Represents rational number:
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 4
Carnegie Mellon
Fractional Binary Numbers: Examples
Value Representation
5 3/4 101.112
2 7/8 010.1112
1 7/16 001.01112
Observations
▪ Divide by 2 by shifting right (unsigned)
▪ Multiply by 2 by shifting left
▪ Numbers of form 0.111111…2 are just below 1.0
▪ 1/2 + 1/4 + 1/8 + … + 1/2i + … ➙ 1.0
▪ Use notation 1.0 – ε
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 5
Carnegie Mellon
Representable Numbers
Limitation #1
▪ Can only exactly represent numbers of the form x/2k
▪ Other rational numbers have repeating bit representations
▪ Value Representation
▪ 1/3 0.0101010101[01]…2
▪ 1/5 0.001100110011[0011]…2
▪ 1/10 0.0001100110011[0011]…2
Limitation #2
▪ Just one setting of binary point within the w bits
▪ Limited range of numbers (very small values? very large?)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 6
Carnegie Mellon
Today: Floating Point
Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties
Rounding, addition, multiplication
Floating point in C
Summary
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 7
Carnegie Mellon
IEEE Floating Point
IEEE Standard 754
▪ Established in 1985 as uniform standard for floating point arithmetic
Before that, many idiosyncratic formats
▪
▪ Supported by all major CPUs
Driven by numerical concerns
▪ Nice standards for rounding, overflow, underflow
▪ Hard to make fast in hardware
▪ Numerical analysts predominated over hardware designers in defining
standard
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 8
Carnegie Mellon
Floating Point Representation
Numerical Form:
(–1)s M 2E
▪ Sign bit s determines whether number is negative or positive
▪ Significand M normally a fractional value in range [1.0,2.0).
▪ Exponent E weights value by power of two
Encoding
▪ MSB s is sign bit s
▪ exp field encodes E (but is not equal to E)
▪ frac field encodes M (but is not equal to M)
s exp frac
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 9
Carnegie Mellon
Precision options
Single precision: 32 bits
s exp frac
1 8-bits 23-bits
Double precision: 64 bits
s exp frac
1 11-bits 52-bits
Extended precision: 80 bits (Intel only)
s exp frac
1 15-bits 63 or 64-bits
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 10
Carnegie Mellon
“Normalized” Values v = (–1)s M 2E
When: exp ≠ 000…0 and exp ≠ 111…1
Exponent coded as a biased value: E = Exp – Bias
▪ Exp: unsigned value of exp field
▪ Bias = 2k-1 - 1, where k is number of exponent bits
▪ Single precision: 127 (Exp: 1…254, E: -126…127)
▪ Double precision: 1023 (Exp: 1…2046, E: -1022…1023)
Significand coded with implied leading 1: M = 1.xxx…x2
▪ xxx…x: bits of frac field
▪ Minimum when frac=000…0 (M = 1.0)
▪ Maximum when frac=111…1 (M = 2.0 – ε)
▪ Get extra leading bit for “free”
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 11
Carnegie Mellon
Normalized Encoding Example v = (–1)s M 2E
E = Exp – Bias
Value: float F = 15213.0;
▪ 1521310 = 111011011011012
= 1.11011011011012 x 213
Significand
M = 1.11011011011012
frac = 110110110110100000000002
Exponent
E = 13
Bias = 127
Exp = 140 = 100011002
Result:
0 10001100 11011011011010000000000
s exp frac
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 12
Carnegie Mellon
Denormalized Values v = (–1)s M 2E
E = 1 – Bias
Condition: exp = 000…0
Exponent value: E = 1 – Bias (instead of E = 0 – Bias)
Significand coded with implied leading 0: M = 0.xxx…x2
▪ xxx…x: bits of frac
Cases
▪ exp = 000…0, frac = 000…0
Represents zero value
▪
▪ Note distinct values: +0 and –0 (why?)
▪ exp = 000…0, frac ≠ 000…0
▪ Numbers closest to 0.0
▪ Equispaced
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 13
Carnegie Mellon
Special Values
Condition: exp = 111…1
Case: exp = 111…1, frac = 000…0
▪ Represents value (infinity)
▪ Operation that overflows
▪ Both positive and negative
▪ E.g., 1.0/0.0 = −1.0/−0.0 = +, 1.0/−0.0 = −
Case: exp = 111…1, frac ≠ 000…0
▪ Not-a-Number (NaN)
▪ Represents case when no numeric value can be determined
▪ E.g., sqrt(–1), − , 0
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 14
Carnegie Mellon
Visualization: Floating Point Encodings
− +
−Normalized −Denorm +Denorm +Normalized
NaN NaN
−0 +0
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 15
Carnegie Mellon
Today: Floating Point
Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties
Rounding, addition, multiplication
Floating point in C
Summary
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 16
Carnegie Mellon
Tiny Floating Point Example
s exp frac
1 4-bits 3-bits
8-bit Floating Point Representation
▪ the sign bit is in the most significant bit
▪ the next four bits are the exponent, with a bias of 7
▪ the last three bits are the frac
Same general form as IEEE Format
▪ normalized, denormalized
▪ representation of 0, NaN, infinity
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 17
Carnegie Mellon
Dynamic Range (Positive Only) v = (–1)s M 2E
s exp frac E Value n: E = Exp – Bias
0 0000 000 -6 0 d: E = 1 – Bias
0 0000 001 -6 1/8*1/64 = 1/512 closest to zero
Denormalized 0 0000 010 -6 2/8*1/64 = 2/512
numbers …
0 0000 110 -6 6/8*1/64 = 6/512
0 0000 111 -6 7/8*1/64 = 7/512 largest denorm
0 0001 000 -6 8/8*1/64 = 8/512
smallest norm
0 0001 001 -6 9/8*1/64 = 9/512
…
0 0110 110 -1 14/8*1/2 = 14/16
0 0110 111 -1 15/8*1/2 = 15/16 closest to 1 below
Normalized 0 0111 000 0 8/8*1 = 1
numbers 0 0111 001 0 9/8*1 = 9/8
closest to 1 above
0 0111 010 0 10/8*1 = 10/8
…
0 1110 110 7 14/8*128 = 224
0 1110 111 7 15/8*128 = 240 largest norm
0 1111 000 n/a inf
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 18
Carnegie Mellon
Distribution of Values
6-bit IEEE-like format
▪ e = 3 exponent bits
▪ f = 2 fraction bits s exp frac
▪ Bias is 23-1-1 = 3 1 3-bits 2-bits
Notice how the distribution gets denser toward zero.
8 values
-15 -10 -5 0 5 10 15
Denormalized Normalized Infinity
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 19
Carnegie Mellon
Distribution of Values (close-up view)
6-bit IEEE-like format
▪ e = 3 exponent bits
▪ f = 2 fraction bits s exp frac
▪ Bias is 3 1 3-bits 2-bits
-1 -0.5 0 0.5 1
Denormalized Normalized Infinity
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 20
Carnegie Mellon
Special Properties of the IEEE Encoding
FP Zero Same as Integer Zero
▪ All bits = 0
Can (Almost) Use Unsigned Integer Comparison
▪ Must first compare sign bits
▪ Must consider −0 = 0
▪ NaNs problematic
Will be greater than any other values
▪
▪ What should comparison yield?
▪ Otherwise OK
▪ Denorm vs. normalized
▪ Normalized vs. infinity
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 21
Carnegie Mellon
Today: Floating Point
Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties
Rounding, addition, multiplication
Floating point in C
Summary
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 22
Carnegie Mellon
Floating Point Operations: Basic Idea
x +f y = Round(x + y)
x f y = Round(x y)
Basic idea
▪ First compute exact result
▪ Make it fit into desired precision
▪ Possibly overflow if exponent too large
▪ Possibly round to fit into frac
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 23
Carnegie Mellon
Rounding
Rounding Modes (illustrate with $ rounding)
$1.40 $1.60 $1.50 $2.50 –$1.50
▪ Towards zero $1 $1 $1 $2 –$1
▪ Round down (−) $1 $1 $1 $2 –$2
▪ Round up (+) $2 $2 $2 $3 –$1
▪ Nearest Even (default) $1 $2 $2 $2 –$2
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 24
Carnegie Mellon
Closer Look at Round-To-Even
Default Rounding Mode
▪ Hard to get any other kind without dropping into assembly
▪ All others are statistically biased
▪ Sum of set of positive numbers will consistently be over- or under-
estimated
Applying to Other Decimal Places / Bit Positions
▪ When exactly halfway between two possible values
Round so that least significant digit is even
▪
▪ E.g., round to nearest hundredth
7.8949999 7.89 (Less than half way)
7.8950001 7.90 (Greater than half way)
7.8950000 7.90 (Half way—round up)
7.8850000 7.88 (Half way—round down)
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 25
Carnegie Mellon
Rounding Binary Numbers
Binary Fractional Numbers
▪ “Even” when least significant bit is 0
▪ “Half way” when bits to right of rounding position = 100…2
Examples
▪ Round to nearest 1/4 (2 bits right of binary point)
Value Binary Rounded Action Rounded Value
2 3/32 10.000112 10.002 (<1/2—down) 2
2 3/16 10.001102 10.012 (>1/2—up) 2 1/4
2 7/8 10.111002 11.002 ( 1/2—up) 3
2 5/8 10.101002 10.102 ( 1/2—down) 2 1/2
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 26
Carnegie Mellon
FP Multiplication
(–1)s1 M1 2E1 x (–1)s2 M2 2E2
s
Exact Result: (–1) M 2
E
▪ Sign s: s1 ^ s2
▪ Significand M: M1 x M2
▪ Exponent E: E1 + E2
Fixing
▪ If M ≥ 2, shift M right, increment E
▪ If E out of range, overflow
▪ Round M to fit frac precision
Implementation
▪ Biggest chore is multiplying significands
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 27
Carnegie Mellon
Floating Point Addition
(–1)s1 M1 2E1 + (-1)s2 M2 2E2 Get binary points lined up
▪Assume E1 > E2
E1–E2
(–1)s1 M1
Exact Result: (–1)s M 2E
▪Sign s, significand M: + (–1)s2 M2
Result of signed align & add
▪
▪Exponent E: E1 (–1)s M
Fixing
▪If M ≥ 2, shift M right, increment E
▪if M < 1, shift M left k positions, decrement E by k
▪Overflow if E out of range
▪Round M to fit frac precision
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 28
Carnegie Mellon
Mathematical Properties of FP Add
Compare to those of Abelian Group
▪ Closed under addition? Yes
But may generate infinity or NaN
▪
▪ Commutative? Yes
▪ Associative? No
▪ Overflow and inexactness of rounding
▪ (3.14+1e10)-1e10 = 0, 3.14+(1e10-1e10) = 3.14
▪ 0 is additive identity?
▪ Every element has additive inverse? Yes
▪ Yes, except for infinities & NaNs Almost
Monotonicity
▪ a ≥ b ⇒ a+c ≥ b+c? Almost
▪ Except for infinities & NaNs
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 29
Carnegie Mellon
Mathematical Properties of FP Mult
Compare to Commutative Ring
▪ Closed under multiplication? Yes
▪ But may generate infinity or NaN
▪ Multiplication Commutative? Yes
▪ Multiplication is Associative? No
▪ Possibility of overflow, inexactness of rounding
▪ Ex: (1e20*1e20)*1e-20= inf, 1e20*(1e20*1e-20)= 1e20
▪ 1 is multiplicative identity? Yes
▪ Multiplication distributes over addition? No
▪ Possibility of overflow, inexactness of rounding
▪ 1e20*(1e20-1e20)= 0.0, 1e20*1e20 – 1e20*1e20 = NaN
Monotonicity
▪ a ≥ b & c ≥ 0 ⇒ a * c ≥ b *c? Almost
▪ Except for infinities & NaNs
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 30
Carnegie Mellon
Today: Floating Point
Background: Fractional binary numbers
IEEE floating point standard: Definition
Example and properties
Rounding, addition, multiplication
Floating point in C
Summary
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 31
Carnegie Mellon
Floating Point in C
C Guarantees Two Levels
▪float single precision
▪double double precision
Conversions/Casting
▪ Casting between int, float, and double changes bit representation
▪ double/float → int
Truncates fractional part
▪
▪ Like rounding toward zero
▪ Not defined when out of range or NaN: Generally sets to TMin
▪ int → double
▪ Exact conversion, as long as int has ≤ 53 bit word size
▪ int → float
▪ Will round according to rounding mode
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 32
Carnegie Mellon
Floating Point Puzzles
For each of the following C expressions, either:
▪ Argue that it is true for all argument values
▪ Explain why not true
• x == (int)(float) x
• x == (int)(double) x
• f == (float)(double) f
int x = …;
float f = …; • d == (double)(float) d
double d = …; • f == -(-f);
• 2/3 == 2/3.0
Assume neither • d < 0.0 ⇒ ((d*2) < 0.0)
d nor f is NaN • d > f ⇒ -f > -d
• d * d >= 0.0
• (d+f)-d == f
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 33
Carnegie Mellon
Summary
IEEE Floating Point has clear mathematical properties
Represents numbers of form M x 2
E
One can reason about operations independent of
implementation
▪ As if computed with perfect precision and then rounded
Not the same as real arithmetic
▪ Violates associativity/distributivity
▪ Makes life difficult for compilers & serious numerical applications
programmers
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 34
Carnegie Mellon
Additional Slides
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 35
Carnegie Mellon
Creating Floating Point Number
Steps s exp frac
▪ Normalize to have leading 1
1 4-bits 3-bits
▪ Round to fit within fraction
▪ Postnormalize to deal with effects of rounding
Case Study
▪ Convert 8-bit unsigned numbers to tiny floating point format
Example Numbers
128 10000000
15 00001101
33 00010001
35 00010011
138 10001010
63 00111111
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 36
Carnegie Mellon
Normalize s exp frac
1 4-bits 3-bits
Requirement
▪ Set binary point so that numbers of form 1.xxxxx
▪ Adjust all to have leading one
Decrement exponent as shift left
▪
Value Binary Fraction Exponent
128 10000000 1.0000000 7
15 00001101 1.1010000 3
17 00010001 1.0001000 4
19 00010011 1.0011000 4
138 10001010 1.0001010 7
63 00111111 1.1111100 5
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 37
Carnegie Mellon
Rounding 1.BBGRXXX
Guard bit: LSB of result
Sticky bit: OR of remaining bits
Round bit: 1st bit removed
Round up conditions
▪ Round = 1, Sticky = 1 ➙ > 0.5
▪ Guard = 1, Round = 1, Sticky = 0 ➙ Round to even
Value Fraction GRS Incr? Rounded
128 1.0000000 000 N 1.000
15 1.1010000 100 N 1.101
17 1.0001000 010 N 1.000
19 1.0011000 110 Y 1.010
138 1.0001010 011 Y 1.001
63 1.1111100 111 Y 10.000
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 38
Carnegie Mellon
Postnormalize
Issue
▪ Rounding may have caused overflow
▪ Handle by shifting right once & incrementing exponent
Value Rounded Exp Adjusted Result
128 1.000 7 128
15 1.101 3 15
17 1.000 4 16
19 1.010 4 20
138 1.001 7 134
63 10.000 5 1.000/6 64
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 39
Carnegie Mellon
Interesting Numbers {single,double}
Description exp frac Numeric Value
Zero 00…00 00…00 0.0
Smallest Pos. Denorm. 00…00 00…01 2– {23,52} x 2– {126,1022}
▪ Single ≈ 1.4 x 10–45
▪ Double ≈ 4.9 x 10–324
Largest Denormalized 00…00 11…11 (1.0 – ε) x 2– {126,1022}
▪ Single ≈ 1.18 x 10–38
▪ Double ≈ 2.2 x 10–308
Smallest Pos. Normalized 00…01 00…00 1.0 x 2– {126,1022}
▪ Just larger than largest denormalized
One 01…11 00…00 1.0
Largest Normalized 11…10 11…11 (2.0 – ε) x 2{127,1023}
▪ Single ≈ 3.4 x 1038
▪ Double ≈ 1.8 x 10308
Bryant and O’Hallaron, Computer Systems: A Programmer’s Perspective, Third Edition 40