0% found this document useful (0 votes)
96 views7 pages

Ial Maths p3 Ex2d

Uploaded by

No
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
96 views7 pages

Ial Maths p3 Ex2d

Uploaded by

No
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

Exercise 2D

1 a i y ℝ c i y ℝ

ii Let y = f(x) ii Let y = f(x)


y = 2x + 3 y = 4 − 3x
y 3 4 y
x x
2 3
x3 4 x
f−1(x) = f−1(x) =
2 3

iii The domain of f−1(x) is x  ℝ iii The domain of f−1(x) is x  ℝ


The range of f−1(x) is y  ℝ The range of f−1(x) is y  ℝ

iv iv

d i y ℝ
b i y ℝ
ii Let y = f(x)
ii Let y = f(x) y = x3 − 7
x5 x  3 y 7
y
2 f−1(x) = 3
x7
x  2y  5
f−1(x) = 2x − 5 iii The domain of f−1(x) is x  ℝ
The range of f−1(x) is y  ℝ
iii The domain of f−1(x) is x  ℝ
The range of f−1(x) is y  ℝ iv
iv

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 1
2 a Range of f is f ( x )  ℝ 3
Let y = f(x)
y = 10 − x
x = 10 − y
−1
f (x) = 10 − x, {x ∈ ℝ}

b Range of f is f ( x )  ℝ
Let y = g(x)
x
y
5
x  5y
−1
g (x) = 5x, {x ∈ ℝ}
g : x| → 4 − x, {x ∈ ℝ, x > 0}
c Range of f is f ( x )  0 g has range {g(x) ∈ ℝ, g(x) < 4}
Let y = h(x)
3 The inverse function is g 1 ( x )  4  x
y
x Now {Range g}  {Domain g 1}
3
x and {Domain g}  {Range g}
y
Hence, g−1(x) = 4 − x, {x ∈ ℝ, x < 4}
3
h−1(x) = , {x  0}
x Although g( x) and g 1 ( x) have identical
d Range of f is f ( x )  ℝ equations, their domains and hence ranges
Let y = k(x) are different, and so are not identical.
y=x−8
x=y+8 4 a i Maximum value of g when x  3
k−1(x) = y + 8, {x ∈ ℝ} 1
Hence {g(x) ∈ ℝ, 0 < g(x) ≤ }
3

1
ii g 1 ( x ) 
x

iii Domain g–1 = Range g


1
 Domain g−1 :{x ∈ ℝ, 0 < x ≤ }
3
–1
Range g = Domain g
 Range g−1(x):{g−1(x)∈ℝ, g−1(x) ≥ 3}

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 2
4 a iv 4 c i g  x    as x  2
Hence {g(x) ∈ ℝ, g(x) > 0}

3 2y 3
ii Letting y  x
x2 y
2x  3
Hence g 1 ( x ) 
x

iii Domain g–1 = Range g


 Domain g−1 :{x ∈ ℝ, x > 0}
Range g–1 = Domain g
 Range g−1(x):{g−1(x)∈ℝ, g−1(x) > 2}

b i Minimum value of g  x   1 iv
when x  0
Hence {g(x) ∈ ℝ, g(x) ≥ −1}

y 1
ii Letting y  2 x  1  x 
2
x 1
Hence g 1 ( x) 
2

iii Domain g–1 = Range g


 Domain g−1 :{x ∈ ℝ, x ≥ −1}
Range g–1 = Domain g
g ( x)  ,
1

 Range g 1 ( x) :  
 g 1 ( x)  0 d i Minimum value of g  x   2
when x  7
iv Hence {g(x) ∈ ℝ, g(x) ≥ 2}

ii Letting y  x  3  x  y 2  3
Hence g 1 ( x )  x 2  3

iii Domain g–1 = Range g


 Domain g−1 :{x ∈ ℝ, x ≥ 2}
Range g–1 = Domain g
 Range g−1(x):{g−1(x)∈ℝ, g−1(x) ≥ 7}

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 3
4 d iv 4 f iii Domain g–1 = Range g
 Domain g−1 :{x ∈ ℝ, x ≥ 0}

Range g–1 = Domain g


g 1 ( x)  , 
 Range g 1 ( x) :  
 g 1 ( x)  2 
iv

e i 22  2  6
Hence {g(x) ∈ ℝ, g(x) > 6}

ii Letting y = x2 + 2
y − 2 = x2
x = y2
Hence g−1(x) = x2

5 t(x) = x2 − 6x + 5, {x ∈ ℝ, x ≥ 5}
iii Domain g–1 = Range g
 Domain g−1 :{x ∈ ℝ, x > 6}
Range g–1 = Domain g Let y  x 2  6 x  5
g 1 ( x)  , y  ( x  3)2  9  5 (completing the square)
1 
 Range g ( x) :  
g 1 ( x)  2 y  ( x  3)2  4

iv This has a minimum point at (3,  4)

For the domain x  5, t( x) is a


one-to-one function so we can find
an inverse function.

Make y the subject:


y  ( x  3)2  4
y  4  ( x  3)2
f i Minimum value of g  x   0 y  4  x 3
when x  2
y 4 3  x
Hence {g(x) ∈ ℝ, g(x) ≥ 0}

ii Letting y  x3  8  x  3 y  8
Hence g−1(x) = 3
x 8

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 4
5 (continued) 6 c Domain of m−1(x): {x ∈ ℝ, x > 5}

Domain t–1 = Range t 5


7 a As x  2,
 Domain g−1 :{x ∈ ℝ, x ≥ 0} x20
Hence, t−1(x) = x  4  3, {x ∈ ℝ, x ≥ 0} and hence h( x )  

b To find h1 (3) we can find what element


of the domain gets mapped to 3

6 a m(x) = x2 + 4x + 9, {x ∈ ℝ, x > a} Suppose h (a )  3 for some a such that


Let y  x 2  4 x  9 a2
2a  1
y  ( x  2) 2  4  9 Then 3
a2
y  ( x  2) 2  5 2a  1  3a  6
This has a minimum value of (2, 5) 7a
1
So h (3)  7

2x 1
c Let y  and find x as a
x2
function of y
y ( x  2)  2 x  1
yx  2 y  2 x  1
yx  2 x  2 y  1
x( y  2)  2 y  1
For m( x) to have an inverse it must 2 y 1
x
be one-to-one. Hence the least value y2
of a is  2 2x  1
So h 1 ( x)  , x  , x  2
x2
b Changing the subject of the formula:
y  ( x  2) 2  5
y  5  ( x  2) 2
y 5  x  2
y 5  2  x
Hence m 1 ( x )  x  5  2

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 5
7 d If an element b is mapped to itself,  3 x 
then h(b )  b 9 st(x) = s  
 x 
2b  1 3
b  3 x
b2  x  1
2b  1  b (b  2) 
3
2b  1  b 2  2b  3 x  x
x 
x
0  b 2  4b  1
 3 
4  16  4 4  20 st(x) = t  
b   x 1 
2 2

 3  x31 
42 5
  2 5 3
 x 1 
2

 3 x  3 3
x 1 
The elements 2  5 and 2  5 get
 3
x 1
mapped to themselves by the function. x

8 a nm(x) = n  2 x  3 The functions s(x) and t(x) are the


2x  3  3 inverse of each other as st(x) = ts(x) = x

2
x 10 a Let y  2x 2  3

 x 3 The domain of f 1 ( x ) is the range of f ( x).


b mn(x) = m  
 2  f(x) = 2x2 −3, {x ∈ ℝ, x < 0}
 x 3 has range f(x) > −3
 2 3
 2  x 3
Letting y  2 x 2  3  x  
x 2
The functions m(x) and n(x) are the We need to consider the domain of
inverse of each other as f ( x) to determine if either
mn(x) = nm(x) = x.
x3 x3
f 1  x    or f 1  x   
2 2
2
f(x) = 2x − 3 has domain {x ∈ ℝ, x < 0}
Hence f 1 ( x ) must be the negative square root
x3
f 1 ( x )   , {x ∈ ℝ, x > −3}
2

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 6
10 b If f( a )  f 1 ( a) then a is negative 11 d Let y = g(x)
(see graph). y = ln(x − 4)
ey = x − 4
Solve f(a)  a x = ey + 4
2a 2  3  a g−1(x) = ex + 4
2a 2  a  3  0 Range of g(x) is g(x) ∈ℝ,
so domain of g−1(x) is { x  ℝ}
(2a  3)(a  1)  0
3 e g−1(x) = 11
a  , 1 ex + 4 = 11
2
Therefore a  1 ex = 7
x = ln7
x = 1.95

3( x  2) 2
12 a f(x) = 
x  x  20 x  4
2

3( x  2) 2
= 
( x  5)( x  4) x  4
3( x  2) 2( x  5)
= 
( x  5)( x  4) ( x  5)( x  4)
3 x  6  2 x  10
=
( x  5)( x  4)
11 a Range of f(x) is f(x) > −5 x4
=
( x  5)( x  4)
b Let y = f(x) 1
y = ex − 5 = , x4
x5
ex = y + 5
x = ln(y + 5) b The range of f is
−1
f (x) = ln(x + 5) 1
Range of f(x) is f(x) > −5, {f(x) ∈ ℝ, f(x) < }
9
so domain of f−1(x) is {x ∈ ℝ, x > −5}
c Let y = f(x)
c
1
y=
x5
yx + 5y = 1
yx = 1 − 5y
1 5y
x=
y
1
x = 5
y
1
f−1(x) =  5
x
The domain of f−1(x) is
1
{x ∈ ℝ, x > and x ≠ 0}
9

© Pearson Education Ltd 2019. Copying permitted for purchasing institution only. This material is not copyright free. 7

You might also like