Dronacharya Group of Institutions, Gr.
Noida
Department of Applied Sciences (First Year)
Even Semester (2020-2021)
Subject Name & Code: Engineering Mathematics (KAS 203T)
-------------------------------------------------------------------------------------------------------
Unit : 01 , Differential Equations
------------------------------------------------------------------------------------------
1. The order of the differential equation 30 is
2. What are the order and degree of the differential equation =0
d2y
3. The type of differential equation sin x y sin x is
dx 2
a) Linear, homogenous
b) Non linear, homogenous
c) Linear, non- homogenous
d) Non-linear, non-homogenous
4. The differential equation reprents a family of
5. The number of arbitrary constants in the complete primitive of differential equation
is
6. The particular integral of , is
7. The solution of , satisfying the condition ) is
8. All real solution of the differential equation y 2ay by cos x (where a and b are
real constants are ……..if
a) a 1, b 0 b) a 0 & b 1 c) a 1, b 0 d) a 0, 1 1
9. The differential equation whose linearly independent solutions are cos 2 x, sin 2 x and e2 x is
a) D3 D 2 4 D 4 y 0
b) D3 D 2 4 D 4 y 0
c) D3 D 2 4 D 4 y 0
d) D3 D 2 4 D 4 y 0
10. Linear combination of solution of an ordinary differential equal are also solution if the
differential equation is
a) Linear non-homogenous
b) Linear homogenous
c) Non-linear homogenous
d) Non-linear non homogenous
is the general solution of
12. The solution of is
13. The particular integral of is
14. If is a solution of of ,then the second linearly
independent solution of this equation is
d. Constant
15. The number of linearly independent solution of - of
the form ( being a real number) is
1 1
16. The formula sin(ax b) sin(ax b) is applicable only if
2
f (D ) f (a 2 )
a. f (a 2 ) 0 b. f (a 2 ) 0 c. f (a 2 ) 0 d. f (a 2 ) 0
17. Suppose y p x x cos 2 x is a particular solution of y y 4 sin 2 x . Then the
constant equals.
a) 1 b) -2 c) 2 d) 4
18. Particular integral for (4D 4D 3) y e is
2 2x
1 2x 1 2 x
a. e b. e 2 x c. e d. e2 x
21 21
19. A particular solution of 4 is
d.
d2y dy
20. The solution yx of the differential equations 4 4 y 0 , satisfying the
dx 2 dx
condition y0 4, 0 8 is
dy
dx
a) 4e
2x b) 16 x 4e 2 x c) 4e
2 x d) 4e
2 x 16 xe 2 x
2 d2y dy
21. The general solution of x 5 x 9 y 0 is
dx 2 dx
c1 c2 x e3x b) c1 c2 ln x x3 c) c1 c2 x x3 d) c1 c2 ln x e x
3
a)
d2y
22. Consider the differential equation 12 x 2 24 x 20 with the condition
dx 2
x 0, y 5 and x 2, y 2. Then the value of y at x 1 is
a) 15 b) 17 c) 18 d) 0
23. Solution of y y 0, y0 1, y is
2
1
a) cos x 2 sin x b) cos x sin x c) cos x sin x d) cos x 2 sin x
2
x0 0, y0
dx dy
24. Solution of the simultaneous diff. equation y, x; are
dt dt
a) x 0, y 0
b) x k1, y k2
c) x cos t , y sin t
d) x cos t , y any value-
25. The particular integral of is
26. The solution of (here k is a non zero constant),which vanishes when x=0
and which tends to finite limit as x tends to infinity is
d.
27. Particular integral for ( D 2 4) y cos 2 x is
cos 2 x sin 2 x x sin 2 x x sin 2 x
a. b. c. d.
8 2 4 4
28. Particular integral for ( D 1) 3 y e x is
1 x 3e x x 2ex x3
a. e x b. c. d.
8 8 4 6 ex
29. The general solution of the linear differential equation D 4 81 y 0 is given by-
a) C1 C2 x e C3 C4 x sin 3x
3x
b) C1 C2 x e3x C3 C4 x e3x C5 C6 x cos3x C7 C8 x sin 3x
c) C1e3 x C2e3 x C3 cos3x C4 sin 3x
d) C1e3 x C2e3 x e3 x C3 cos x C4 sin x
Qx is equal to –
1
30.
D
a) e x Q x dx
b) e
x e x Q x dx
c) e x Q x dx
d) e x e xQ x dx
The general solution of the differential equation D2 D 1 y e x is
2
31.
a) y C1 C2 x C3 C4 x e x
b) y C1 C2 x C3 C4 x e x e x
1
4
c) y C1 C2e x C3 C4 e x e x
1
4
d) None of these
d2y
32. The general solution of the d.e. y e x is –
dx 2
a) y A cos x B e x
1 x
b) y A cosh x B xe
2
c) y A cosh x B xe x
d) y A cos x B xe x
33. The general solution of the differential equations D2 D 2 y e x is given by –
1
a) y C1e x C2e2 x xe x
3
b) y C1e x C2e2 x
1
c) y C1e x C2e2 x x 2e x
6
1
d) y xe x C1 C2 x e2 x
3
34. The P.I. of the differential equation D2 4 y x is –
a) xe
2 x b) x cos 2 x c) x sin 2 x d) x / 4
d2y
35. The solution on the d.e. 2 y 10 2 is –
dx 2
a) y A cos x B 10
b) y A sinx B 10 2
c) y Ax Bx cos x 10 2
d) y A cosx B 10
d2y
36. The general solution of the differential equation a 2 y sec ax is –
dx 2
a) y C1 cos ax C2 sin ax x sin ax logcos ax
b) y C1 cos ax C2 sin ax
1
x sin ax logcos ax
1
x sin ax logcos ax
1
c) y C1 cos ax C2 sin ax
a a
1
x sin ax logcos ax cos ax
1
d) y C1 cos ax C2 sin ax
a a
2
37. The general solution of the differential equation D3 1 y e x 1 is –
x x 1 1 1
a) y C1e e 2 C2 cos 3x C3 sin 3x e 2 x e x 1
2 2 9
b) y C1 e
x
2 C2 cos 3x C2 sin 3x 1 2x
9
e ex 1
x
x 1 1 1
c) y C1e e C2 cos 3x C3 sin
2
3x e 2 x e x
2 2 3
d) None of these
1
38. The value of cos ax is………….
D2 a2
x x x
a) cos ax b) sin ax c) sin ax d) None of these
2a 2a 2a
d 1
39. If D , then sin x equals –
dx 2
D D 1
a) cos x b) cos x c) cos x sin x d) sin x
2
d y
40. The general solution of the d.e. 2
4 y sin 2 x is given by-
dx
a) y C1e2 x C2e2 x 2sin x cos x
1 x
b) y C1 cos 2 x C2 sin 2 x sin 2 x
8 8
x
c) y C1 C2 cos 2 x e2 x cos 2 x
8
d) y C1 cos2 x C2
1
8
d2y
41. The general solution of the differential equation a bx cx 2 given that dy 0
dx 2 dx
when x 0 and y d when x 0 is –
1 2
ax 2bx cx d
a) 3 4
12
1
6ax 2bx cx 12d
b) 2 3 4
12
1 2 1
c) ax bx3 cx 4 d
12 6
d) None of these
42. The general solution of the differential equation D3 3D2 2D y x 2 is-
x 2 x 2 9 x 21
1
a) C1 C2e x C3e2 x
12
b) C1 C2e x C3e2 x x 2 x 2 9 x 21
1
12
x 2 x 2 9 x 21
1
c) C1 C2 C3 x e
x
12
d) C1 C2e x C3e2 x 1 2 x 2 9 x 21
12
43. P.I. of the differential equation D2 2 y x 2e3 x e x cos 2 x is –
e x 11x 2 12 x 50 e x 4sin 2 x cos 2 x
1 3 1
a)
121 17
1 3x 2 50 1
b) e 11x 12 x e x 4sin 2 x cos 2 x
121 11 17
1 3x 2
e x 12 x 50 e x sin 2 x cos 2 x
1
c)
121 17
d) None of these
44. P.I. of the differential equation D2 4 y sin 2 x e x is –
1 1
a) x cos x e x
4 5
1 1
b) x cos 2 x e x
4 5
x 1
c) cos 2 x e x
2 5
x 1 x
d) cos 2 x e
2 3
1
45. ea x is equal to –
D D a
n
x n e ax
a)
a
x ne ax
b)
n ! a
x n e ax
c) , a 0
a
x ne ax
d) , a 0
n ! a
46. The P.I. of D2 1 y e x sin x is –
ex
a) 2 cos x sin x
5
ex
b) 2 cos x sin x
4
ex
c) 2 sin x cos x
4
ex
d) 2 sin x cos x
5
47. P.I. of the differential equation D4 2D2 1 y x 2 cos x is
x3
sin x 9 x 2 x 4 cos x
1
a)
12 48
b)
1 3
12
x cos x
1
48
9 x 2 x 4 sin x
x cos x 9 x 2 x 4 sin x
1 3 1
c)
12 16
x cos x 9 x 2 x 4 sin x
1 3 1
d)
6 16
1
If V be any function of x, then xV is equal to
f D
48.
f D
a) x f D .V
f D
f ' D
b) x f D .V
f D
f ' D
c) x 2 f D f D .V
f ' D
d) x 2 f D f D .V
49. Particular integral for is
50. Solution of the simultaneous differential
dx dy
equations 3 x 8 y, x 3y is obtained. Then solution
dt dt
is
51. The points x & y lie on ………………..,where x & y are solution for
dx dy
y, x .
dt dt
dx dy
52. Solution of the simultaneous differential equations 5x 2 y t, 2x y 0 .
dt dt
Given that x y 0 when t 0 , then
53. Particular solution for the
d2y dy
54. The differential equation 2
(3 sin x cot x) 2 y sin 2 x sin 2 xe cos x is solved
dx dx
by changing the independent variable into independent variable then we must have
a. z 2 sin x b. z 2 cot x c. z cos ecx d. z cos x
55. The differential equation is solved by changing
the Independent variable into independent variable then
a. b. c. d.
d 2v
56. If Iv S is the normal form of
dx 2
d2y dy 1 1 6
x 1 / 3 2 / 3 4 / 3 2 y 0 obtained by solving change of dependent
dx 2
dx 4 x 6x x
variable , then the value of I is
a.1 b. 0 c. 6 x 2 d. - 6 x 2
d 2v
57. If Iv S is the normal form of -4 then
dx 2
the value of I is
a. 1 b. 0 c. x 2 d. - 6 x 2
58. A part of C.F for y cot x y 1 cot x y e x sin x is
a. cot x b. sin x c. e x d. e x
59. The basis for the equation given that y = cotx is a solution of it, is
d2y
P x Q x y R, 1
dy P Q
60. For a differential equation 0, then one part of
dx 2 dx a a2
complementary function is
a) e
ax b) x
m c) sin x d) cos x
d2y
Px Qx y R, P Qx 0, then one part of
dy
61. For differential equation
dx 2 dx
complementary function is
a) e
ax b) x
m c)
1
d) x
2
x
d2y dy
62. Solution of x 2
3 x 3 y 0 is
dx dx
a) y c1 x3 3x 2 bx 6 c2e x
b) y c1 c2 x e x 3x 2 4 x
1
c) y c1 x c2 x x9
2
x4
d) y c1 c2 x e x
1
4
Solution of y 4 xy 4 x 2 2 y 0, given that y e x is a solution.
2
63.
a) y x x 1 e c1 x c2 x
2
x ex
2
b) y e x c1x c2
A 1
c) y c2 x
x x
d) None
2 d2y dy
64. The solution of diff. equation x x y 0, given that x 1 is an integral.
dx 2 dx x
2 A 1
a) y e x c1x c2 c) y c2 x
x x
c
b) y c1x 2 x 2 d) None
x
d2y dy
65. cos x sin x 2 y cos 3 x 2 cos 5 x is being solved by changing of independent
dx 2 dx
variable from x into z. Here
a) z cos x b) z e
x c) z sin x d) z cos x
66. Solving by variation of parameter y 2 y y e x log x then the value of wornskion is
a) e
2x b) e
2 x c) 2 d) x
2
67. Complementary function for ( D 2 2) 3 y 0 is………….
d2y dy
68. The general solution of the equation x 2 2
x 2 y 0 is ……………
dx dx
69 . Particular integral for the equation is …………..
70. The general solution for ( D 1) 3 sin hx is
71. By changing the independent variable, we get the solution y = ………… of
1
y y 4 x 2 y x 4 .
x
72. The reduced normal form of the differential equation
is given by ………..
73.. You are going to solve the given differential
equation ,by changing the independent
variable. The reduced equation with constant coefficients is …………
3/2 2/3
d3y d3y
74. The order and degree of the differential equations 3 3 0 are
dx dx
(A) 3, 3 (B) 3,9 (C) 3, 6 (D) 9, 6
75. The solution of the differential equation D 1 D 2 y 0 is
2
(A) y c1 c2 x c3e2 x (B) y c1e x c2 x c3e2 x
(C) y c1e2 x c2 x c3 (D) Both (A) and (C)
76. The P.I. of D2 a 2 y cos ax, where a 0, is
x sin ax x sin ax x cos ax x cos ax
(A) (B) (C) (D)
2a 2a 2a 2a
d3y d2y
77. Solution of the differential equation 3 4 y 0 is
dt 3 dt 2
(A) y c1et c2 tc3 e2t (B) y c1e x c2 xc3 e2 x
(C) y c1et c2 tc3 e2t (D) y c1et c2 tc3 e2t
78. The P.I. of D2 1 y x 2 is
(A) x 2 2 (B) x 2 2
(C) x 2 2 (D) x 2 1
D 2 y 17e2 x is
3
79. The P.I. of
17 3 x 17 2 2 x
(A) xe (B) xe
6 6
17 3 2 x 17 4 2 x
(C) xe (D) xe
6 6
d2y dy
80. The P.I. of differential equation 2
4 12 y x 1 e2 x is
dx dx
e2 x x 2 9 x e2 x x 2 9 x
(A) (B)
8 2 7 8 2 8
e2 x x3 9 x e2 x x 2 9
(C) (D) 9
8 2 8 8 2 8
dx dy
81. The solution of the simultaneous differential equations y , x lies on
dt dt
(A) An ellipse (B) Parabola (C) Hyperbola (D) Circle
Ans. (D)
d2y dy
82. The P.I. of the differential equation 2
2 y xe x cos x
dx dx
(A) e x x cos x 2sin x (B) e x x cos x sin x
(C) e x x cos x 2sin x (D) e x 2 x cos x sin x
83. Order of the differential equations is the
(A) highest order derivative involving equation (B) lowest order derivative involving equation
(C) Two derivatives (D) None of these.
84. The degree of the differential equation is the power of highest order derivative involving in
the equation provided the
(A) the differential equation is free from radical signs
(B) the differential equation is free from fractional powers
(C) Both A &B (D) None of these.