0% found this document useful (0 votes)
2K views17 pages

Anukalanaya - 2021 AL

- The document contains mathematical formulas and equations involving integrals and trigonometric functions. - Several properties of integrals are stated and proven, including properties related to integrals of even and odd functions, and integrals involving substitution. - Examples are given of calculating specific integrals, including integrals involving natural logarithm, trigonometric, and rational functions. - Solutions are provided to prior math examination questions involving integral calculus.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
2K views17 pages

Anukalanaya - 2021 AL

- The document contains mathematical formulas and equations involving integrals and trigonometric functions. - Several properties of integrals are stated and proven, including properties related to integrals of even and odd functions, and integrals involving substitution. - Examples are given of calculating specific integrals, including integrals involving natural logarithm, trigonometric, and rational functions. - Solutions are provided to prior math examination questions involving integral calculus.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 17

 wOHhk fmdÿ iy;sl m;% (Wiia fm<) úNd.

h 

ixhqla; .Ks;h

 wkql,kh 

Manoj Solangaarachchi
(B. Sc.)

(01) yn = sinn x hehs .ksuq' fuys n ´kEu mQ¾K ixLHdjls'


d2yn = n (n – 1) yn – 2 – n2yn nj fmkajkak'
dx2

In =
0
a –x
yn dx hehs ,shuq' (n  1)

In =
0
 a– x d2yn dx nj fmkajkak'
dx2

(01) ta khska" In = n (n – 1) In – 2 nj fmkajkak' I4 ys w.h wfmdaykh lrkak'


n2 + 1
(w'fmd'i'W'fm' – 1986)

---------------------------------------------------------------------------------

a a

  (x – a)2 dx hehs .ksuq'


2
(02) (i) I = x dx iy J =
x2 + (x – a)2 x2 + (x – a)2
0 0

(02) (i) I = J = a nj fmkajkak'


2
2


–x
(ii) y = e wdfoaYfhka" e – 2x dx wkql,h w.hkak'
1 + e –x
1
(w'fmd'i'W'fm' – 1986)

---------------------------------------------------------------------------------
p

(03)
0
 sin x sin (p – x) dx = 1 (sin p – p cos p) nj fmkajkak'
2
(03) fuys p hkq ksh;hla fõ'
p p

(03) I =
0
  (x) dx yd J =
0
  (p – x) dx hehs .ksuq'

- 1 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


(03) fuys  (x) hkq x ys wkql,H Ys%;hla o p hkq Ok ksh;hla o fõ' I = J nj
fmkajkak'

f (x) hkq x ys ish¨ ;d;a;aúl w.hka i|yd f (x) + f (p – x) = q jk whqßka jQ x


ys wkql,H Ys%;hls' fuys p (  0) iy q ksh;hka fõ'
p

(i)
0
 f(x) dx = 1 pq
2
p

(ii)
0
 sin x sin (p – x) f(x) dx = 1 q (sin p – p cos p) nj fmkajkak'
4
(w'fmd'i'W'fm' – 1987)

---------------------------------------------------------------------------------

(04) (i) f(x) hkak Nskak Nd. weiqfrka m%ldY lrkak'


fuys f(x) = 2 fõ'
(x + 1)2 (x2 + 1)
k

0
 f(x) dx, (k  0) w.hkak'
k

k
lim
 0
 f(x) dx mßñ; nj wfmdaykh lrkak'

/2

ta khska fyda wka l%uhlska fyda


0
 d
(1 + tan )2
w.hkak'

 

(ii) I =


sin (log x) dx iy J =


cos (log x) dx hhs .ksuq'

fuys 0     fõ'

(ii) I + J =  sin (log ) –  sin (log ) nj fmkajkak' fuh Wmfhda.S lr


.ksñka yd I iy J ys ;j;a f¾Çh ixfhdackhla i,lñka I yd J w.hkak'

(w'fmd'i'W'fm' – 1988)

---------------------------------------------------------------------------------

(05) fldgia jYfhka wkql,kh Wmfhda.S lr.ksuka"

 sin (log x) dx w.hkak'

- 2 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


r ksh;hla jk I =
 xr sin (log x) dx iy J =
 xr cos (log x) dx kï"

1 + r I – r J = xr + 1 {sin (log x) – cos (log x)} + ksh;hla nj idOkh


2 2 2
lrkak'

xr + 1 sin (log x) wjl,kh lsÍfuka fyda wka l%uhlska I iy J w;r ;j;a


iïnkaOhla ,ndf.k I = xr + 1 {(r + 1) sin (log x) – cos (log x)} + ksh;hla
r2 + 2r + 2
nj wfmdaykh lrkak'

e
ax
ta khska" a yd b ksh; jk sin bx dx w.hkak'
(w'fmd'i'W'fm' – 1989)

---------------------------------------------------------------------------------

(06) (i) x (1 – x)2 = (1 + x2)(x – 2) + 2 iy


x4 (1 – x)4 = (1 + x2)(x6 – 4x5 + 5x4 – 4x2 + 4) – 4 nj i;Hdmkh lrkak'

by; oelafjk m%;sM,h Ndú;d lsÍfuka"


1 1

 x (1 – x) dx iy
 x4 (1 – x)4 w.hkak'
2

1 + x2 1 + x2
0 0

3    22 nj wfmdaykh lrkak'
7

(ii) n Ok ksÅ,hla jk úg"

 sin3  cosn  d = 2
3+n  sin  cosn  d – sin2  cosn + 1  nj
3+n
idOkh lrkak'
/2

ta khska"
0
 sin3  cos3  d w.hkak'

0
 x3 (1 – x2) dx wkql,kh i,ld ne,Sfuka" Tfí m%;sM,h ksjerÈ ±hs

fidhd n,kak'
(w'fmd'i'W'fm' – 1990)

- 3 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


a a

(07) (i)
0
 f(x) dx =
0
 f(a – x) dx nj fmkajkak'

 

ta khska"
0
 x sinn x dx = 
2 0
 sinn x dx nj fmkajkak'

fuys n hkq Ok ksÅ,hls'

 
;jo" n  2 úg" n  sin x dx = (n – 1)
n
 sinn – 2 x dx njo fmkajkak'
0 0
 
ta khska"  x sin4 x dx iy  x sin5 x dx w.hkak'
0 0

(ii) d loge (sec  + tan ) = sec  nj fmkajd"


d

 dy
 y2 – 1
fiùug th Ndú;d lrkak'

-1
 dx
(x + 2) 2x2 + 6x + 5
we.ehSu i|yd y = 2x2 + 6x + 5 wdfoaYh
x+2

Ndú; lrkak'
(w'fmd'i'W'fm' – 1991)

---------------------------------------------------------------------------------
c

(08) (a) a  0 kï" d (ax) ,nd f.k" c ksh;hla úg"


dx 0
 ax dx w.hkak'
ax + 1
c c

0  c   úg" I =
2 -c
 cos x dx iy J =
1 + ax -c
 ax cos x dx kï"
1 + ax

(i) t = – x wdfoaYh fh§fuka fyda wka l%uhlska fyda I = J nj


fmkajkak'

(ii) I = J ,nd .kak' tkhska" c = /6 úg J ys w.h ,shkak'

1
(06) (b)
0
 dx
(2 + x)1/2 (2 – x)3/2
w.hkak'

(w'fmd'i'W'fm' – 1992)

- 4 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


(09) (a) u = 1 – x wdfoaYfhka fyda wka l%uhlska fyda"
x

 (1 + x2) dx wkql,kh w.hkak'


1 + x4

(06) (b) n Ok ksÅ,hla hehs is;uq'


/2 /2

 
sin (2n + 1) x dx – sin (2n – 1) x dx = 0 nj fmkajd"
sin x sin x
0 0

/2

0
 sin (2n + 1) x dx =  nj wfmdaykh lrkak'
sin x 2

/2 /2

;jo"
0
 sin2 (n + 1) x dx –
sin2 x 0
 sin2 nx dx =  nj fmkajd"
sin2 x 2

/2

0
 sin2 (n + 1) x dx ys w.h wfmdaykh lrkak'
sin2 x
(w'fmd'i'W'fm' – 1994)

---------------------------------------------------------------------------------

(10) (i)
 5x + 3
(x – 1)(x + 1)2
dx fidhkak'

(ii) x + 1 = 1 wdfoaYfhka"
t
3 1/2


1
dx
(x + 1)(4x – 3 – x )
2 1/2
=
1/4
 dt
{(4t – 1)(1 – 2t)} 1/2
nj fmkajkak'

(ii) t = 1 cos2  + 1 sin2  fh§fuka fyda wka l%uhlska fyda wkql,fha w.h
4 2
(ii)  nj fmkajkak'
22

/2
(iii)
0
 sin5  cos4  d = 8 nj fmkajkak'
315

(w'fmd'i'W'fm' – 1995)

- 5 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


(11) (i) wfoaY lsÍfï l%uh Ndú;fhka fyda wkal%uhlska fyda


𝑑𝑥
fidhkak'
(𝑥 + 1)√𝑥 2 + 3𝑥 + 1

(06) (ii) fldgia jYfhka wkql,kh Ndú;fhka fyda wkal%uhlska fyda

 x3 tan-1 x dx ,nd .kak'


4
(06) (iii)  cos 2x tan3 x dx w.hkak'
0
(w'fmd'i'W'fm' – 1996)

---------------------------------------------------------------------------------

(12) (a) f iy g hkq [– a, a] m%dka;rh u; wkql,H Ys%; folla hehs is;uq'


[– a, a] ys ish¨ u x i|yd f(– x) = f(x) iy g(– x) = – g(x) hehs is;uq'
a a a

(28) (c)
-a
 f(x) dx = 2,
-a
 f(x) dx iy 
-a
g(x) dx = 0 nj fmkajkak'


𝑥2 + 𝑥3
3 dx w.hkak'
(4 − 𝑥 2 )2
-1

(28) (b) fldgia jYfhka wkql,kh fh§fuka"


a

 x2 h (x) dx = a2 h (a) – 2ah (a) + 2h (a) – 2h(0) nj fmkajkak;


0
𝑑ℎ 𝑑2 ℎ 𝑑3ℎ
fuys h = , h (x) = iy h (x) = .
𝑑𝑥 𝑑𝑥 2 𝑑𝑥 3


𝑥2
5 dx w.hkak'
(𝑥 − 1)2
0
(w'fmd'i'W'fm' – 1997)

---------------------------------------------------------------------------------

1
(13) (a) (𝑥 2 − 1)(𝑥 2 − 3𝑥 + 2)
Nskak Nd. f,i m%ldY lrkak'

(13) (a) ta khska  𝑑𝑥


(𝑥 2 − 1)(𝑥 2 − 3𝑥 + 2)
fidhkak'

a a
(28) (b)  f(x) dx =  f(a – x) dx nj fmkajd"
0 0

- 6 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


 
2 2

 
𝑥 𝑑𝑥 𝜋 𝑑𝑥
ta khska" = nj fmkajkak'
sin 𝑥 + cos 𝑥 4 sin 𝑥 + cos 𝑥
0 0

2


𝑥 𝑑𝑥 𝜋
= ln (√2 + 1) nj wfmdaykh lrkak'
sin 𝑥 + cos 𝑥 2√2
0

(w'fmd'i'W'fm' – 1998)

---------------------------------------------------------------------------------

(14)  1
2 + sin 𝑥
dx fidhkak' bÕsh t = tan
𝑥
2
fhdod n,kak'

cos2 𝑥 𝐶
= A + B sin x + jk mßÈ A, B, C ksh; ks¾Khlr"
2 + sin 𝑥 1 + sin 𝑥


2


cos2 𝑥
ta khska" dx w.hkak'
2 + sin 𝑥
0

2


1
sin x ln (2 + sin x) dx = ln 2 +  [ 1 − ] – 1 nj wfmdaykh lrkak'
√3
0

(w'fmd'i'W'fm' – 1999)

---------------------------------------------------------------------------------


1
(15) (a) iqÿiq wdfoaYhla Wmfhda.S lr.ksñka" 4 2 dx w.hkak'
(𝑥 3 + 𝑥 3 )
1

 
(15) (b) I=  e –2x
cos x dx yd J =  e–2x sin x dx hehs .ksuq'
0 0

(15) (b) fldgia jYfhka wkql,k l%uh Wmfhda.S lr.ksñka" I = 2J yd


J = 1 + e–2 – 2I nj fmkajkak'

(15) (b) ta khska" I yd J ys w.hka fidhkak'

(15) (c)  𝑥 2 − 5𝑥
(𝑥 − 1)(𝑥 + 1)2
dx fidhkak'

(w'fmd'i'W'fm' – 2000)

---------------------------------------------------------------------------------

- 7 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


√2

(16) (a) iqÿiq wdfoaYhla fh§fuka" 


1
1
𝑥 2 √4 − 𝑥 2
dx wkql,h w.hkak'

(28) (b) fldgia jYfhka wkql,k l%u Ndú;fhka"


4

 x ln x dx = a ln b + c nj fmkajkak'
2
fuys a, b iy c hkq ks¾Kh l< hq;= ksÅ, fõ'
1

28) (c)  (7𝑥 − 𝑥 2 )


(2 − 𝑥)(𝑥 2 + 1)
dx fidhkak'
0 (w'fmd'i'W'fm' – 2001)

---------------------------------------------------------------------------------

(17) (a) iqÿiq wdfoaYhla fh§fuka" 


1
𝑥3
√𝑥 2 − 1
dx wkql,h w.hkak'

(28) (b) fldgia jYfhka wkql,k l%uh Ndú;fhka"


1

 x tan-1 x dx wkql,h w.hkak'


0


5𝑥 − 4
28) (c) (1 – 𝑥 + 𝑥 2 )(2 + 𝑥)
dx fidhkak'
1 (w'fmd'i'W'fm' – 2002)

---------------------------------------------------------------------------------


𝑑𝑥
(18) (a) iqÿiq wdfoaYhla fh§fuka" 3 wkql,h w.hkak'
1 + √𝑥
1

(28) (b) fldgia jYfhka wkql,kh Ndú;fhka"


1

 x2 e2x + 3 dx wkql,h w.hkak'


0


𝑑𝑥
28) (c) dx fidhkak'
𝑥 (𝑥 2 + 3)
(w'fmd'i'W'fm' – 2003)

- 8 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


---------------------------------------------------------------------------------

23


𝑑𝑥
(19) (a) iqÿiq wdfoaYhla fhdod .ksñka" w.hkak'
(𝑥 + 1)√2𝑥 + 3
11

(28) (b) fldgia jYfhka wkql,kh Ndú;fhka"  e3x cos 4x dx fidhkak'

28) (c)  sin4 2x dx fidhkak'


(w'fmd'i'W'fm' – 2004)

---------------------------------------------------------------------------------

2


𝑥 𝑑𝑥
(20) (a) tan = t wdfoaYh fhdod .ksñka" wkql,h w.hkak'
2 5 + 4 sin 𝑥
0

(28) (b) fldgia jYfhka wkql,kh fhdod .ksñka"  15x3 √1 + 𝑥 2 dx wkql,h

w.hkak'

28) (c)  𝑥 2 − 10𝑥 + 13


(𝑥 − 2)(𝑥 2 − 5𝑥 + 6)
dx fidhkak'
(w'fmd'i'W'fm' – 2005)

---------------------------------------------------------------------------------

2


𝑑𝑥
(21) (a) iqÿiq wdfoaYhla fhdod .ksñka" w.hkak'
3 + 2 cos 𝑥 + sin 𝑥
0

(28) (b) fldgia jYfhka wkql,kh Ndú;fhka"  e4x sin 3x dx fidhkak'


𝑑𝑥
28) (c) Nskak Nd. Ndú;fhka" fidhkak'
𝑥3 + 1
(w'fmd'i'W'fm' – 2006)

---------------------------------------------------------------------------------


𝑥3 + 1
(22) (a) Nskak Nd. Wmfhda.S lr.ñka" dx fidhkak'
𝑥 (𝑥 − 1)3

(28) (b) 25 cos x + 15  A (3 cos x + 4 sin x + 5) + B (– 3 sin x + 4 cos x) + C jk


wdldrhg A, B yd C fidhkak'


- 9 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -
25 cos 𝑥 + 15
ta khska" dx fidhkak'
3 cos 𝑥 + 4 sin 𝑥 + 5

28) (c) fldgia jYfhka wkql,kh Wmfhda.S lr.ksñka"


  
2 2 2

 sin x dx =  
6 5 5.3 5𝜋
sin4 x dx = sin2 x dx = nj fmkajkak'
6 6.4 32
0 0 0

6

ta khska"  sin6 3x dx w.hkak'


0
(w'fmd'i'W'fm' – 2007)

---------------------------------------------------------------------------------


𝑑𝑥
(23) (a) Nskak Nd. Wmfhda.S lr.ñka" fidhkak' fuys a  0 fõ'
(𝑥 2 − 𝑎2 )2

𝑑 2𝑥
(28) (b) (i) [ ] = 2x nj fmkajkak'
𝑑𝑥 ln 2

(ii)  2x dx nj fmkajkak'
1

(iii) fldgia jYfhka wkql,kh Ndú;fhka"  2√𝑥 + 1 dx w.hkak'


-1

(w'fmd'i'W'fm' – 2008)

---------------------------------------------------------------------------------


𝑒𝑡
(24) (a) Ik = dt hehs .ksuq' fuys t  0 jk w;r k Ok mQ¾K ixLHdjls'
𝑡𝑘

𝑒𝑡
(k – 1) Ik – Ik – 1 + = C nj fmkajkak' fuys C wNsu; ksh;hls'
𝑡𝑘 − 1


1−𝑥 2
ex [ ] dx fidhkak' fuys x  – 1 fõ'
1+𝑥

(28) (b) f hkq ;d;a;aúl ixLHd l=,lh u; w¾: olajd we;s ;d;a;aúl w.hka
a

.kakd Ys%;hla jk w;r" J =


0
 f(x) dx fõ' fuys a  0 fõ'
a


0
f(a – x) dx = J nj fmkajkak'


2


- 10 - |Combined Maths | Manoj Solangaarachchi - B.Sc.
0
– wkql,kh -
sin2𝑘 𝑥
dx w.hkak' fuys k Ok mQ¾K ixLHdjls'
cos2𝑘 𝑥 + sin2𝑘 𝑥

(w'fmd'i'W'fm' – 2009)

---------------------------------------------------------------------------------


2𝑥
(25) (a) Nskak Nd. Wmfhda.S lr.ñka" (1 + 𝑥 2 )(1 + 𝑥)2
dx fidhkak'

(28) (b) I =  eax cos bx dx yd J =  eax sin bx dx hehs .ksuq; fuys a yd b hkq

Y=kH fkdjk ;d;a;aúl ixLHd fõ'


(i) bI + aJ = eax sin bx,
(ii) aI – bJ = eax cos bx nj fmkajkak'
ta khska" I yd J fidhkak'

28) (c) x3t + 1 = 0 wdfoaYh Wmfhda.S lr.ksñka fyda fjk;a wdldrhlska fyda"
1

2


𝑑𝑥 1 9
= ln [ ] nj fmkajkak'
𝑥 (𝑥 3 − 1) 3 2
-1
(w'fmd'i'W'fm' – 2010)

---------------------------------------------------------------------------------
e
3
(26) (a) fldgia jYfhka wkql,kh fh§fuka"  𝑥 2 ln x dx w.hkak'
1

(28) (b) t = tan x hehs .ksuq'


1 − 𝑡2 2𝑡 𝑑𝑥 𝑡
cos 2x = , sin 2x = yd = nj fmkajkak'
1 + 𝑡2 1 + 𝑡2 𝑑𝑡 1 + 𝑡2


2


1 1
ta khska" dx = nj fmkajkak'
4 cos 2𝑥 + 3 sin 2𝑥 + 5 12
0

28) (c) a yd b hkq m%Nskak ;d;a;aúl ixLHd hehs .ksuq'


1 𝐴 𝐵
28) (c) x   – {a, b} i|yd (𝑥 − 𝑎)(𝑥 − 𝑏)
= + jk whqßka A yd B ksh;
𝑥−𝑎 𝑥−𝑏
fidhkak'
1
by; iólrKfha x, a yd b iqÿiq f,i m%;sia:dmkh lrñka" (𝑥 2 + 𝑎2 )(𝑥 2 + 𝑏2 )

- 11 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


hkak Nskak Nd. weiqfrka ,shd olajd"


1
ta khska" (𝑥 2 + 𝑎2 )(𝑥 2 + 𝑏2 )
dx fidhkak'

(w'fmd'i'W'fm' – 2011)

---------------------------------------------------------------------------------

4
(27) (a)  (sin3 x – cos3 x) dx =
3
nj fmkajkak' (fuu W;a;rh fodaI iys;h')
0

(28) (b) fldgia jYfhka wkql,kh fhdod .ksñka fyda fjk;a wdldrhlska fyda

 x3 tan-1 x dx fidhkak'


2𝑥 2 − 3
28) (c) Nskak Nd. fhdod.ksñka" dx fidhkak'
(𝑥 − 2)2 (𝑥 2 + 1)

(w'fmd'i'W'fm' – 2012)

---------------------------------------------------------------------------------

(28) (a) fldgia jYfhka wkql,kh Ndú;fhka"  x2 sin–1 x dx fidhkak'

(28) (b) Nskak Nd. Ndú;fhka"


 x2 + 3x + 4 dx fidhkak'
(x2 – 1)(x + 1)2

(28) (c) a2 + b2  1 jk mßÈ a, b   hehs o"

/2

(ii) I =
0
 2
a + cos x
2
a + b + a cos x + b sin x
dx yd

/2

(ii) J =
0
 b + sin x
a2 + b2 + a cos x + b sin x
dx hehs o .ksuq.

(ii) aI + bJ = π nj fmkajkak.
2

(ii) bI – aJ ie,lSfuka I yd J ys w.hka fidhkak.

(w'fmd'i'W'fm' – 2013)

---------------------------------------------------------------------------------

- 12 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


(29) (a)  3𝑥 + 2
𝑥 2 + 2𝑥 + 5
𝑑𝑥 fidhkak'

e


1
(28) (b) fldgia jYfhka wkql,kh Ndú;fhka" cos (In x) dx = − (𝑒  + 1) nj
2
1
fmkajkak'

a a
(28) (c)  f(x) dx =  f(a – x) dx iQ;%h msysgqjkak; fuys a hkq ksh;hls'
0 0

2

(28) p(x) = (x – )(2x + ) hehs o I =


0
 𝑠𝑖𝑛2 𝑥
𝑝(𝑥)
𝑑𝑥 hehs o .ksuq'


2


𝑐𝑜𝑠 2 𝑥
by; m%;sM,h Ndú;fhka I = 𝑑𝑥 nj fmkajkak'
𝑝(𝑥)
0

2


1 1
I i|yd jQ by; wkql, fol Ndú;fhka I = 𝑑𝑥 nj wfmdaykh
2 𝑝(𝑥)
0
lrkak'

1 1
ta khska" I = In ( ) nj fmkajkak'
6 4
(w'fmd'i'W'fm' – 2014)

---------------------------------------------------------------------------------
 
(30) (a)  f(x) dx =  f( – x) dx nj fmkajkak'
0 0

2



sin2 x dx = nj;a fmkajkak'
4
0


2
ta khska" x sin2 x dx = nj fmkajkak'
4
0


2
(28) (b) iqÿiq wdfoaYhla yd fldgia jYfhka wkql,k l%uh Ndú;fhka" 𝑥 3 𝑒 𝑥 𝑑𝑥
fidhkak'

1 𝐴 𝐵𝑥 + 𝐶
(28) (c) = + jk mßÈ A, B yd C ksh;j, w.hka fidhkak'
𝑥3 − 1 𝑥−1 𝑥2 + 𝑥 + 1

- 13 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


1
ta khska" hkak x úIhfhka wkql,kh lrkak'
𝑥3 − 1

2


𝑥 𝑑𝑥 1
(28) (d) t = tan wdfoaYh Ndú;fhka" = nj fmkajkak'
2 5 + 4 cos 𝑥 + 3 sin 𝑥 6
0

(w'fmd'i'W'fm' – 2015)

---------------------------------------------------------------------------------

(31) (a) (i)  𝑑𝑥


√3 + 2𝑥 − 𝑥 2
fidhkak'

𝑑 𝑥−1
(ii) (√3 + 2𝑥 − 𝑥 2 ) fidhd" ta khska" 𝑑𝑥 fidhkak'
𝑑𝑥 √3 + 2𝑥 − 𝑥 2


𝑥+1
by; wkql, Ndú;fhka √3 + 2𝑥 − 𝑥 2
𝑑𝑥 fidhkak'


2𝑥 − 1 (2𝑥 – 1)
(28) (b) (𝑥 + 1)(𝑥 2 + 1)
Nskak Nd. weiqfrka m%ldY lr" ta khska" (𝑥 + 1)(𝑥 2 + 1)
𝑑𝑥
fidhkak'

(31) (c) (i) n  – 1 hehs .ksuq' fldgia jYfhka wkql,kh Ndú;fhka"  𝑥 𝑛 (In x) dx
fidhkak'
3

(ii)
1
 𝐼𝑛 𝑥
𝑥
𝑑𝑥 w.hkak'
(w'fmd'i'W'fm' – 2016)

---------------------------------------------------------------------------------

(32) (a) (i)


𝑥 (𝑥 + 1)2
1
Nskak Nd. weiqfrka m%ldYlr" ta khska"
 1
𝑥 (𝑥 + 1)2
dx fidhkak'

(ii) fldgia jYfhka wkql,kh Ndú;fhka"  xe –x dx fidhd"

ta khska" y = xe –x jl%fhka o x = 1" x = 2 yd y = 0 ir, f¾Ldj,ska o


wdjD; fmfofiys j¾.M,h fidhkak'
c

 ln (𝑐 + 𝑥)
(28) (b) c  0 yd I = dx hehs .ksuq' x = c tan  wdfoaYh Ndú;fhka"
𝑐 2 + 𝑥2
0

4


𝜋 1
I= ln c + J nj fmkajkak; fuys J = ln (1 + tan ) d fõ'
4𝑐 𝑐
0

- 14 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


a a

 
𝜋
a ksh;hla jk f(x) dx = f(a – x) dx iQ;%h Ndú;fhka" J = ln 2 nj
8
0 0

fmkajkak'
𝜋
I= ln (2c2) nj wfmdaykh lrkak'
8𝑐

(w'fmd'i'W'fm' – 2017)

---------------------------------------------------------------------------------

(33) (a) (i) x2, x1 yd x0 ys ix.=Kl iei£fuka"


ish¨ x   i|yd Ax2 (x – 1) + Bx (x – 1) + C (x – 1) – Ax3 = 1 jk mßÈ"
A, B yd C ksh;j, w.hka fidhkak'


1 1
ta khska" hkak Nskak Nd. j,ska ,shd olajd dx
𝑥 3 (𝑥 − 1) 𝑥 3 (𝑥 − 1)

fidhkak'

(ii) fldgia jYfhka wkql,kh Ndú;fhka"  x2 cos 2x dx fidhkak'


sin 𝑥
(28) (b)  = tan-1 (cos x) wdfoaYh Ndú;fhka" √1 + cos2 𝑥
dx = 2 ln (1 + √2) nj
0
fmkajkak'
a a
a ksh;hla jk  f(x) dx =  f(a – x) dx iQ;%h Ndú;fhka"
0 0


0
𝑥 sin 𝑥
√1 + cos2 𝑥
dx fidhkak'

(w'fmd'i'W'fm' – 2018)

---------------------------------------------------------------------------------

- 15 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


4

√
𝜋 𝑥−3
(34) (a) 0 i|yd x = 2 sin2  + 3 wdfoaYh Ndú;fhka dx w.hkak'
4 5−𝑥
3


1
(28) (b) Nskak Nd. Ndú;fhka" (𝑥 − 1)(𝑥 − 2)
dx fidhkak'


1
t  2 i|yd f(t) = (𝑥 − 1)(𝑥 − 2)
dx hehs .ksuq'
3

t  2 i|yd f(t) = In (t – 2) – In (t – 1) + In 2 nj wfmdaykh lrkak'

(28) (b) fldgia jYfhka wkql,kh Ndú;fhka"  In (x – k) dx fidhkak'

(28) (b) fuys k hkq ;d;a;aúl ksh;hls'

(28) (b) ta khska"  f(t) dt fidhkak'

b b

(28) (c) c yd b ksh; jk


a
 f(x) dx = 
a
f(a + b – x) dx iQ;%h Ndú;fhka"

 

 
cos2 𝑥 𝑒 𝑥 cos2 𝑥
(28) (c) 1 + 𝑒𝑥
dx =
1 + 𝑒𝑥
dx nj fmkajkak'
– –


cos2 𝑥
(28) (b) ta khska" dx ys w.h fidhkak'
1 + 𝑒𝑥
–

(w'fmd'i'W'fm' – 2019)



Manoj Solangaarachchi

- 16 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -


(B. Sc.)

- 17 - |Combined Maths | Manoj Solangaarachchi - B.Sc. – wkql,kh -

You might also like