MATHS
• Quadratic Equation (Common roots, Sum and product of roots)
• Sequences and Series (∑n, ∑n2, ∑n3, AGP, Vn method)
• Trigonometric Ratios, Multiple and Sub-Multiple angles, Compound
angles
__________________________________________________________________
1. The sum of n terms of the series 1 2 3
5. 2 2 2 2 .... up to n terms equals to
12 22 32 42 ...... is, where n is even 2 2
13 35 57
number n 1 nn 1
nn 1 (A) (B)
(A) 2n 1 22n 1
2
2
nn 1
n
(C) (D) None of these
(B) 2n 1
2
5 7
(C) nn 1 6. The numerical value of sin . sin . sin
(D) none of these
18 18 18
is equal to
3 5 7
2. 2 2 ...... to is 1
1 1 2 1 23 33
2 3 (A) 1 (B)
(A) 3 (B) 4
8
(C) 5 (D) 6 1
(C) (D) None of these
4
The value of r n 2 is equal to
n
3
3.
r 2
7. If tan . tan . tan 1 ,
n n 1 3 3
2 2
9
(A)
4 0 / 2 , then value of 3
n 2 2n 1n 1 sin 4 cos 3
(B) 9 (A) 1 (B) -1
6
n 1nn 12 9 (C) 1 / 2 (D) 1 / 2
(C) 8. The maximum value of
4
(D) none of these 4 sin 2 x 3 cos 2x sin x / 2 cos x / 2 is
4. If n 55 then n 2 is equal to (A) 4 2 (B) 3 2
(A) 385 (B) 506 (C) 9 (D) 4
(C) 1185 (D) 3025
1 1 20. If 3x 2 2mx 4 0 and x 2 4m 2 0 have
9. If tan , tan , then =
2 3 a common roots, then m is
(A) 0 (B) / 2 1 1
(A) (B)
(C) / 4 (D) 2 3
10. The value of tan 15 = 1 1
3 (C) (D)
11. If 2 , then 2 2 2 cos 4 3 2
2
21. If the equations ax bx c 0 and
2
equal to
(A) 2 cos (B) -2 sin cx 2 bx a 0a c have negative common
(C) 2 cos (D) 2 sin root then the value of a b c is
12. If lies in fourth quadrant, then (A) 0 (B) 2
(C) 1 (D) none of these
4 cos 4 sin 2 2 4 cos 2 is equal 22. If ax bx c 0 and bx 2 cx a 0 have a
2
2 2
a 3 b3 c 3
to common root and a 0 , then is
(A) 1 (B) 2 abc
(C) -2 (D) 0 equal to ………
tan 70 tan 20 23. The equation x 2 ax b 0 and
13.
4 tan 50 x 2 bx a 0 will have a common root. The
(A) 1 (B) ½ common root is
(C) -1 (D)-1/2 (A) -2 (B) 1
14. If sin x sin x 1, then
2 (C) 2 (D) none of these
cos8 x 2 cos 6 x cos 4 x 24. The equation ax bx a 0 ,
2
(A) 0 (B) -1 x3 2 x 2 2 x 1 0 have two roots in
(C) 2 (D) 1 common. Then a + b must be equal to
If tan 2 tan 1 , then cos 2 sin 2 (A) 1 (B) -1
2 2
15.
(C) 0 (D) none of these
(A) 1 (B) 2
25. Find the sum to infinity of the series
(C) 0 (D) -1
3 5 7 9
If , roots of x p x 1 c 0 then
1 .....
2
16.
2 4 8 16
1 1 is equal to
Find the value of 1 2 3 4 ........ 9 .
3 3 3 3 3
(A) C (B) c-1 26.
(C) 1-c (D) none of these 27. Prove that the next term of the sequence 1, 5, 14,
30, 55, … is 91.
For a b , if the equation x ax b 0 and
2
17. 28. Find the sum to n terms of each of the following
x 2 bx a 0 have a common root, then the series
value of a b is 1. 1 2 2 3 3 4 4 5 ..........
2. 3 1 5 2 7 3 .........
2 2 2
(A) -1 (B) 0
(C) 1 (D) 2 2
2 2
3. 1 1 2 1 2 3 ........
2 2 2
x 2 bx 1
18. If the roots of the equation are 29. Show that
ax c 1 1 22 2 32 .... n n 1
2
3n 5
equal and opposite then the value of is
1 2 2 3 .... n n 1 3n 1
2 2 2
a b
(A) (B) C 30. Find the nth term and sum to n term of the
ab following series
(C)
1
(D)
ab 1 1 2 1 2 3 1 2 3 4 ........
c a b
19. If P and q are roots of the quadratic equation
x 2 mx m2 a 0 , then the value of
p 2 q 2 pq is
(A) 0 (B) a
(C) –a (D) m 2