0% found this document useful (0 votes)
133 views7 pages

The Atomic Emission Spectra of Hydrogen, Deuterium and Sodium

This document provides background information and instructions for an experiment on atomic emission spectroscopy. Students will observe the emission spectra of hydrogen, deuterium, and sodium using spectroscopes and a spectrophotometer. Key points covered include: - Electronic transitions in atoms produce light in the UV-visible region when atoms are subjected to high voltage in a discharge tube. - The hydrogen spectrum is simple due to it having only one electron, while other atoms have more complex spectra. Students will analyze the Balmer series lines of hydrogen and isotopic shifts in hydrogen/deuterium lines. - Equations are provided to calculate the energies of quantized electronic states and wavelengths of emitted photons during transitions between states.

Uploaded by

Sue frost
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
133 views7 pages

The Atomic Emission Spectra of Hydrogen, Deuterium and Sodium

This document provides background information and instructions for an experiment on atomic emission spectroscopy. Students will observe the emission spectra of hydrogen, deuterium, and sodium using spectroscopes and a spectrophotometer. Key points covered include: - Electronic transitions in atoms produce light in the UV-visible region when atoms are subjected to high voltage in a discharge tube. - The hydrogen spectrum is simple due to it having only one electron, while other atoms have more complex spectra. Students will analyze the Balmer series lines of hydrogen and isotopic shifts in hydrogen/deuterium lines. - Equations are provided to calculate the energies of quantized electronic states and wavelengths of emitted photons during transitions between states.

Uploaded by

Sue frost
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 7

Chemistry

 2302   Atomic  Emission   Winter  2012  

The  Atomic  Emission  Spectra  of  


Hydrogen,  Deuterium  and  Sodium  
Recommended  Preparatory  Reading  
• Experiment  30  in  Sime  (2)  entitled  “Visible  Spectrum  of  the  Hydrogen  Atom”  
• Experiment  40  in  Shoemaker  (1)  entitled  “Spectrum  of  the  Hydrogen  Atom”  

Introduction  
  If  you  have  completed  the  Vibrational-­‐Rotational  Spectrum  of  HCl/DCl  experiment  you  might  
have  noticed  that  the  spacing  of  rotational  and  vibrational  energy  levels  is  quite  small,  consequently,  the  
electron  transitions  are  observed  in  the  infrared  region  of  the  electromagnetic  spectrum.    In  
comparison,  the  spacing  of  electronic  energy  levels  is  quite  large.  
 
  To  produce  electronic  transitions  between  energy  levels  in  gaseous  atoms,  the  gas  is  placed  in  a  
Geissler  discharge  tube  in  which  it  is  subjected  to  a  very  high  voltage.    The  light  produced  falls  within  the  
UV-­‐visible  region  of  the  spectrum  and  can  separated  into  its  spectral  components  using  a  diffraction  
grating  or  a  prism.  
 
The  hydrogen  atom,  having  only  one  electron,  has  a  very  simple  spectrum.    This  spectrum  was  
first  studied  by  Balmer  in  1885.    Spectra  for  other  atoms  are  more  complex  since  they  have  more  
electrons.    In  this  experiment,  the  electron  emission  spectra  of  hydrogen,  deuterium  and  sodium  will  be  
observed  using  two  handheld  spectroscopes  and  a  UV-­‐visible  spectrophotometer.  
 
  For  the  hydrogen  atom  and  one-­‐electron  ions,  the  Schrödinger  equation  can  be  solved  to  give  
the  energies,  𝐸 ,  of  the  quantized  electronic  states  having  principal  quantum  number,  𝑛:  
 
𝜇𝑒 !
𝐸! = ! ! !            with        𝑛 = 1, 2, 3, …  
8ℎ 𝜀! 𝑛
Equation  1  

Here  𝑒  is  the  charge  on  an  electron,  h  is  Planck’s  constant,  and  ε0  is  the  permittivity  of  vacuum.    𝜇 ,  the  
reduced  mass,  in  this  case  is  given  by:  
𝑚! 𝑚!
𝜇 =    
𝑚! + 𝑚!
Equation  2  

where  𝑚!  is  the  mass  of  an  electron  and  𝑚!  is  the  mass  of  a  proton.    In  your  report,  simply  give  the  
relationship,  carefully  defining  all  terms  and  presenting  any  assumptions  that  allow  application  of  this  
particular  relationship  to  your  systems.  
 
  When  an  electron  in  an  atom  changes  from  a  higher  energy  state,  E1,  to  one  of  lower  energy,  E2,  
a  photon  is  emitted.    The  change  in  energy  is:  
 
𝐸! − 𝐸! = ℎ𝑐𝜈  
Equation  3  
Chemistry  2302   Atomic  Emission   Winter  2012  

 
where  𝑐  is  the  speed  of  light  and  𝜈  is  the  energy  of  the  photon  in  wavenumbers  (cm-­‐1).    When  equations  
1  and  3  are  combined,  the  following  equation  is  obtained  allowing  the  calculation  of  the  energy  of  the  
emitted  photon:  
1 1
𝜈 = 𝑅 ! − !  
𝑛! 𝑛!
Equation  4  

!!! !! !
where  𝑅  is  the  Rydberg  constant  given  by      𝑅 = .    It  equals  109677.8  cm-­‐1  for  
!.!!!"#×!"!!" !! !!! !! ! !! !
the  hydrogen  atom.    𝑛!  is  the  principal  quantum  number  of  the  lower  energy  state  and  𝑛!  that  of  the  
higher  energy  state.    The  theoretical  wavelength  of  the  photon  may  be  easily  obtained  by  calculating  the  
reciprocal  of  𝜈 .  
 
  Sime’s  (2)  figure  30-­‐1  shows  some  of  the  electron  transitions  that  can  occur  for  the  hydrogen  
atom.    This  experiment  will  concentrate  on  the  ones  that  terminate  at  the  𝑛! = 2  energy  level,  called  
the  Balmer  series.    The  energy  of  four  lines  in  the  Balmer  series,  the  isotopic  separation  of  
hydrogen/deuterium  emission  lines,  and  the  spacing  of  sodium  doublets  will  be  determined.  
 
Explain  how  attributing  an  intrinsic  (spin)  angular  momentum,  S,  to  the  electron  in  addition  to  
the  orbital  component,  L,  produces  a  total  angular  momentum,  J,  which  can  account  for  the  fine  
structure  (doublets)  present  in  the  sodium  atomic  emission  spectrum.    Section  13.2  of  your  textbook  
(Laidler)  will  help  you  with  this  explanation.  
 
   A  Russell-­‐Saunders  term  symbol  can  be  written  for  each  electronic  energy  level  of  an  atom.    It  
has  the  form  n(2S  +1)LJ  where  n  is  the  principle  quantum  number.    Define  the  other  elements  (S,  2S+1,  L  
and  J)  of  the  term  symbol  and  explain  how  values  for  each  are  assigned.    Again  Section  13.2  of  your  
textbook  will  be  of  assistance  to  you.    Also,  section  13.9  of  Physical  Chemistry  by  Atkins  &  de  Paula  is  
quite  good  and  available  in  C-­‐3041.  
 

Experimental  
Preliminary  Observations:  
  Observe,  using  the  handheld  spectroscope,  the  emission  from  a  hydrogen  discharge  tube.    
Sketch  the  emission  spectra,  indicating  the  color  and  approximate  wavelengths  of  the  4  strongest  lines.    
Now  observe  using  a  Bleeker  prism  spectroscope  and  again  note  the  wavelengths  of  the  same  four  lines.    
Note  the  precision  of  each  spectroscope.      
 
  Also  available  for  observation  are  neon,  argon,  and  chlorine  discharge  tubes,  and,  of  course,  
overhead  lights,  sunlight,  etc.  for  the  curious.    Follow  instructions  provided  in  the  lab  carefully.    The  
power  supply  operates  at  a  high  voltage...use  care!  

Measurement:  
  Measure  the  spectra  in  the  visible  region  of  hydrogen,  deuterium  and  sodium  using  the  Ocean  
Optics  S2000  fibre  optic  spectrometer.    Note  its  precision.    This  small  grating  spectrometer  comprises  
miniaturized  optical  components,  a  CCD  detector,  and  accesses  light  via  a  fibre  optic  cable!  
 
To  perform  a  measurement,  open  the  OOIBase32  software  used  to  control  the  spectrophotometer.  
Point  the  fibre  optic  cable  toward  the  middle  of  the  discharge  tube.    The  spectrum  is  constantly  updated  
Chemistry  2302   Atomic  Emission   Winter  2012  

 
on  the  screen  in  real  time.    You  may  need  to  move  the  fibre  optic  cable  around  slightly  until  the  
intensities  of  the  peaks  are  reasonable  (i.e.  you  should  be  able  to  see  the  4  peaks  but  the  highest  one  
must  not  go  off  scale).    Once  the  intensities  are  to  your  liking,  hold  the  cable  very  still  and  click  the  
camera  button.    This  will  freeze  the  spectrum.    If  your  hand  is  unsteady  you  may  choose  to  mount  the  
fibre  optic  cable  in  a  clamp  attached  to  a  ring  stand.    Save  each  spectrum  by  clicking  on  File  à  Save  As  
à  Sample.    Repeat  for  the  deuterium  discharge  tube  and  the  large  (bright!)  sodium  source  lamp.  
 
Before  leaving,  transfer  the  saved  data  files  to  a  flash  drive  (or  e-­‐mail  them  to  yourself)  as  you  
will  need  them  to  complete  the  lab  report.    The  files  contain  two  columns  of  data  –  a  column  of  
wavelengths  (nm)  and  a  column  of  intensity  values.  
   

Results  
  The  spectra  that  you  saved  during  the  experiment  will  have  the  extension  .wav.    Open  these  files  
in  Notepad  (or  other  simple  text  editing  software).    Copy  the  columns  of  data  (wavelengths  and  
intensities)  and  paste  them  into  a  spreadsheet.    For  all  species,  recreate  the  spectrum  you  observed  
during  the  experiment  by  plotting  a  graph  of  intensity  versus  wavelength.    Choose  a  graph  type  that  will  
draw  a  smooth  line  through  the  data  points  without  displaying  the  actual  points.  
 
Enlarge  (zoom  in  on)  the  four  strongest  emission  lines  in  only  the  hydrogen  spectrum  and  
submit  these  as  individual  plots.  
 
  Identify  the  upper  and  lower  states  of  each  strong  spectral  line  measured  by  its  atomic  term  
symbol  n(2S  +  1)LJ  .    You  will  need  to  consult  the  literature  for  these  assignments.    An  energy  level  diagram  
for  hydrogen  can  be  found  in  Sime.    The  diagram  for  sodium  (taken  from  Noggle)  is  given  later  in  this  
outline.    On  your  printed  spectra,  next  to  each  intense  peak,  identify  the  electronic  transition  
responsible  for  its  presence  with  the  term  symbols.    The  notation  representing  an  electron  transition  is  
written  follows:  
 
Upper  state  term  symbol    à    Lower  state  term  symbol  
 
For  hydrogen  and  deuterium,  only  consider  the  4  strongest  emission  peaks.    For  sodium  you  need  only  
consider  the  first  line  in  the  principle  series  (see  the  diagrams  on  the  next  two  pages,  from  Noggle).  

Hydrogen  
  Correct  the  wavelengths  observed  in  air,  of  the  hydrogen  emission  lines,  to  vacuum  then  
convert  the  wavelengths  to  wavenumbers  (cm-­‐1).    The  correction  involves  the  refractive  index  of  air  and  
can  be  found  in  Shoemaker.  
 
Now  use  equation  4  to  calculate  the  four  theoretical  energies  of  the  emitted  photons  for  the  
first  four  lines  in  the  Balmer  series.  

Deuterium  
  As  for  hydrogen,  correct  the  observed  wavelengths  of  the  four  emission  lines  to  vacuum  then  
convert  to  wavenumbers.    Calculate  the  Rydberg  constant  for  deuterium  (Hint:  what  is  added  to  a  
hydrogen  atom  to  make  deuterium?)  and  use  equation  4  to  calculate  the  theoretical  energies  of  the  
emitted  photons  for  the  four  lines.  
 
Chemistry  2302   Atomic  Emission   Winter  2012  

 
As  you  have  probably  noticed,  the  spectrum  for  hydrogen  and  deuterium  are  almost  the  same,  except  
that  each  line  is  shifted  to  a  slightly  higher  energy  in  the  deuterium  spectrum.    Using  your  calculated  
theoretical  wavenumbers,  calculate  the  isotopic  shift  (difference  in  energy)  for  each  corresponding  pair  
of  lines.  
 
Organize  the  data  for  hydrogen  and  deuterium  into  a  table  with  the  following  four  headings:  
 
  Isotope,  Transition  (term  symbol  notation),  𝜈!"# ,  𝜈!!!"#$  
 

Sodium    
Write  term  symbols  denoting  electron  transitions  for  the  first  four  lines  in  the  principal  series  
(see  the  term  diagram  below).    Note  that  each  line  in  this  series  is  a  doublet  (called  the  “fine  structure”),  
although  the  fibre  optic  spectrometer  that  we  used  does  not  have  a  high  enough  resolution  to  see  them.    
Print  your  spectrum  and  try  to  find  peaks  corresponding  the  principal  series  transitions  (see  the  diagram  
below  for  wavelengths  of  the  first  five  lines  in  the  principle  series).    If  you  can  find  the  peaks,  label  them  
with  the  term  symbols  you  have  written.  
 
Measure  the  separation  of  the  doublet  for  the  first  lines  in  the  principal  and  sharp  series.    Since  
you  cannot  see  the  doublets  on  your  experimental  spectrum  you  must  use  the  spectra  provided  on  the  
page  after  next,  which  were  measured  on  the  Coderg  Raman  spectrometer  with  a  precision  of  ~  1  cm-­‐1.    
The  spectrum  on  the  top  is  for  the  first  line  in  the  sharp  series  and  on  the  bottom  is  for  the  first  line  in  
the  principal  series.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Chemistry  2302   Atomic  Emission   Winter  2012  

 
 
 
 

 
Chemistry  2302   Atomic  Emission   Winter  2012  

 
   
Chemistry  2302   Atomic  Emission   Winter  2012  

 
 

Discussion  
  Contrast  the  construction,  optics,  range,  resolution,  sensitivity,  method  of  detection,  and  
applicability  of  the  two  relatively  simple  spectroscopes  and  fibre  optic  spectrometer.    A  cracked-­‐open  
spectroscope  is  on  display.  
 
Compare  your  experimental  energies  of  the  strong  emission  lines  of  hydrogen,  deuterium  and  
sodium  with  the  literature  values.      Remember,  you  have  already  calculated  the  “literature”  values  for  
hydrogen  and  deuterium  in  the  results  section.    The  literature  values  for  the  sodium  principal  series  lines  
are  given  in  the  diagram  on  page  3.  

Hydrogen  and  Deuterium    


  Compare  the  experimental  isotopic  shift  with  the  theoretical  isotopic  shift.    Address  the  
applicability  to  your  systems,  any  assumptions  made  in  the  development  of  the  theory.    If  the  hydrogen  
and  deuterium  emission  spectra  had  been  measured  simultaneously,  instead  of  individually,  would  the  
isotopic  separation  have  been  observed?    What  resolution  would  be  required  to  see  the  isotopic  shift  of  
a  hydrogen  /  deuterium  mixture?  

Sodium  
  Compare  the  experimental  splitting  observed  in  each  doublet  with  the  splitting  reported  in  the  
literature  (see  the  term  diagram  on  page  3  for  literature  values  for  the  first  line  in  the  principle  series)  
 
 
 
 
 
 
 
 
 
 
 

References  
 
Available  in  the  lab:  
1.   Shoemaker  et  al.,  "Experiments  in  Physical  Chemistry",  5th  ed.,  McGraw  Hill,  Toronto  (1962).  
2.   Rodney  J.  Sime,  "Physical  Chemistry",  Holt,  Rinehart,  and  Winston.    Orlando,  1990.  
3.   Frank  L.  Pilar.    Elementary  Quantum  Chemistry.    McGraw-­‐Hill  Publishing  Company,  Toronto.    
1990.  
4.   Ira  N.  Levine,  Quantum  Mechanics,  5th  Edition,  Prentice  Hall,  New  Jersey,  2000.  
 
Available  on  reserve  in  library:  
5.   G.  Herzberg,  "Atomic  Spectra  and  Atomic  Structure",  Dover  Publications,  New  York  (1944).  
6.   H.G.  Kuhn,  "Atomic  Spectra".  
 
Available  in  lab  and  in  periodicals  section  of  library:  
7.   Fred  Stafford  and  James  H.  Wortman,  J.Chem.  Ed.  39  (1962),  630.  

You might also like