0% found this document useful (0 votes)
85 views9 pages

Limits

Limits questions

Uploaded by

Rebel King
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
85 views9 pages

Limits

Limits questions

Uploaded by

Rebel King
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 9
R. K. MALIK’S JEE (MAIN & ADV.), MEDICAL + BOARD, NDA, IX & X Enjoys unparalleled reputation for best results NEWTON CLASSES in terms of percentage selection www.newtonclasses.net LIMITS |JEE ADVANCED PREVIOUS YEAR SOLVED PAPER] JEE ADVANCED Single Correct Answer Type Be Gand ope 5 = 4d. does not exist because the left-hand limit is not equal = J2SSBS them tim #2) is L to the right-hand limit (IIT-JEE 1998) \ oo , NERD ctor sin nd 3,6, forerery 4. none ofthese value of 0 then wi aoe a y= 1,5,=3 y ce & b=-lb=n @. b= 0, b=? -3n43 {5= en in S2I= 0) 5g (IIT-JEE 1998) “7 > tig 2MB22— ZEUS is gua 0 "40 (1=c0s 2a) » a2 b -2 © Wa 4-12 CIT-FEE 1999) 4. none of these ; (ITER ISS) 9, Forse Rin (2=3) tesquto ae he see a. (IEEE 2000) = (cos? x) ann be © r/2 @1 — arrsee200 Teter frye wg ODA) isequal 10 for[s]20 Iyay=} GI «where [x] denotés the ilar nora deabocke ©, feelel=0 states integer les than or equal to, then lim (3) is METER A, al b.0 . TL + 0, where mis nonzero 4. none ofthese (IT-JEE 1985) a0 5. The value of tim ¥2—_—__~ bt - 2 tie |. The value of lim(sin x)" +(14+-2)"*) = 0, where (UT-JEE 1991) eee ee ED ao bel el 4.2 (IFJEE 2006) a. exis and it equals 2 Office.: 606 , 6” Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0661-2682623, 9635608812, 8507613968 NEWTONCLASSES.NET AST37 YEARS] APTERWISE SOLV JOUS YEAR C R. K. MALIK’S NEWTON CLASSES Let gtx) = 0 0 and let p be the left hand derivative of le Hate If lim go) =, (IIT-JEE 2008) A Lim + xIn +b)!" =26 sin? 0, 5>0, smf 8 (~, n), then the value of is, (HT. JEE 2011), GIPIEE 2012) Let a(@) and Bla) be the roots of the equation QfiFa DP + (lira -Nr+Tra—H=0 where a>-L.Then lim, afa) and tim fla) are L b-Land=1 2 4. none ofthese (UEJEE 2012) Multiple Correct Answers Type ae -2 = 1. LetL= tim" —* 4 a>0.IfLis finite, then 1 |. areyee 2009 > ars » Integer Answer Type 1. The largest value ofthe non-negative integer a for which (IEE Advanced 2014) 2 Let m and n be two positive integers greater than 1. If then the value of ” is, (IEE Advanced 2015) Fill in the Blanks Type (IT-JEE 1984) 1 im (5) tn tre «fe xennnel otherwise P+, x40, and g@)= 4, x sx then lim g{f(x)} is = w(t) . Ts) (IE-JEE 1986) . ABCiran esting nerd in scifi TIHIAB™= AC an hte side oC en (r= +) triangle ABC has perimeter P = and also (IT-JEE 1987) (IIT-JEE 1989) (HIT-JEE 1990) (UT-JEE 1996) (IEE 1997) ‘True/False Type L 1 lim [fo g()] exists, then both lim f(x) and lim g(x) exist (OT.JEE 1981) Subjective Type av ie - Vix 4. Brute fin FESS (a0) (UE IEE 1978) 2x 2 F(2) isthe imegral of FSO? 0. Find lins'eo [vier = 22], rr gee 1979 Office.: 606 , 6" Floor, Hariom Tower, Circular Road, Ranchi, Ph. 0861-2662628, 9696608612, 8607619968, PREVIOUS YEAR C1 LIMITS [JEE ADVANCED PREVIOUS YEAR SOLVED PAPER] + AY sin(a +h} . 4. Usetheformuta tim OE-JEE 1980) (HIE-JEE 1982) $5. Find tim (tan(r7 +2)" (UEJEE 1993) Answer Key JEE Advanced Fill in the Blanks Type Single Correct Answer Type a #Y 1 . ® & °. 1B. 4 1. Sa Multiple Correct Answers Type “ee 1. False Lae, Subjective Type Integer Answer Type ° 1 @ 2@ Lak 3. asina +2asina 4.2102 cad Waa Ran ron) E d - Coe nna aa 606 , 6” Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2662623, 9836608812, 8507613968 NEWTONCLASSES.NET OLVED PAPERS [LAST 37 YEARS] ADVANCED PREVIOUS YEAR CHAPTERWI R. K. MALIK'S NEWTON CLASSES JEE Advanced Single Correct Answer Type Bs ai+ 35-2 Viens iad sH 2 + p5— 27 in "ak Alternative Method: Gay 4.4. The given function is sins) tl" if xeC=,0utL.=) if x6(0) Hints and Solutions Jim, f(3)= im 0=0 lim f00)# tim #0) a fin Fd Lat.» jim EON LAL. = Slim ig! LHL #REL, Therefor, lim f(x) doesnot exis. - Putting 8 0, we set by Mi Shae sin. 2078 § 9 cin" = by +B, sin 8b sin? B+. + sin“ Taking limit as 9» 0, we obtain sinnd Yim ne 5, bon im BEZA—281S hg stas2e—2uta = [205 ane a asinte ain Office.: 606 , 6” Floor, Hariom Tower, Circular Road, Ranchi, Ph.; 0861-2662628, 9696608612, 8607619968, NEWTONCLASSES.NET LAST 37 YEARS] APTERWISE SOLVE PREVIOUS YEAR CI LIMITS [JEE ADVANCED PREVIOUS YEAR SOLVED PAPER] Wee betel axel p= left hand derivative of te~ at > lim ge=-1 1 ate (i— a) lim g(t A)=—1 tim | MBL tog cor" w) oy telecon)" tim 2h (Applying L’Hosptal’s Rule) ost tn S23) “ec Hn = >(*)ia(*) ih ds itm sin(esins) (xia + lin a 5 ml + xl +52)!" 2 in? IMeose—e") iene oss)(l+c0sxy(cosxe*) Lis finite nonzero, Then n = 3 (38 for n= 1,2, L= 0, and for n=4,L=o9) APTERWISE SOLVE (an) mx tani] sinne 12.4. Given tim '=0, where a is non-rer0 awe ornl(a—nn— 1) =0 PREVIOUS YEAR CI 16 in| (eins)! +(e = lim ina)" 1 (Using Hospital’ rue des. [Using Hosp 1 jad = 2wsaetI=0 606 , 6” Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2662623, 9836608812, 8507613968 EWTONCLASSES.NET R. K. MALIK'S NEWTON CLASSES Multiple Correct Answers Type Numerator if = and then ‘Alternative Method: Integer Answer Type 1.0) tim [raetsine— Dalle BY Ca inte 4 (sinx=1) site eoxie)-)) 2°" st egal 2n-m Fill in the Blanks Type mx (es) 1 tim (1=s) an = tim Alternative Method: Tim (1—sytan sins, cemmne! om A laere e+ x20 and 600=44, 5. 2 (0°) = sind) = 60") = Him et FG) = a((0) = esd) = (0) = (0) #1 = 1 Hence, im g(/(4)} = 1 Office.: 606 , 6” Floor, Hariom Tower, Circular Road, Ranchi, Ph.; 0861-2662628, 9696608612, 8607619968, NEWTONCLASSES.NET LAST 37 YEARS] APTERWISE SOLVE PREVIOUS YEAR C! LIMITS [JEE ADVANCED PREVIOUS YEAR SOLVED PAPER] eh) af fee -20) tin | = (Gray 1 Alternative Method: 7 |. In AABC, AB = AC, AD 1 BC (Dis the midpoint of BC), Let r= radius of cicumeircle nf! +se)" 2c=2-F samaota ace bx 8c 4D = hark 2 nf (+20) 42h [vse (2) = Office.: 606 , 6" Floor, Hariom Tower, Circular Road, Ranchi-1, Ph. 0861-2662623, 9636608612, 8507613968, EWTONCLASSES.NET 5 z & IOUS YEAR C R. K. MALIK'S NEWTON CLASSES True/False Type 1, Fae, Conse fx) = ESI gs) = 5 A=© Then, lim 0) (0) exits, bt tim f(x) and lim g(x) do nt eis im 28 x~sin2 (a) ‘Therefore, satomen is false. (Applying Hospital's Rae) Subjective Type rae jm— RATAN Et (Applying L’Hospital’s Rule) fae = (Applying L Hospital's Rule) wanenanat: = lim SATE (Applying L’Hospital’s Rule) (Sera ~ Sa) (Varas + Ja) (fSaT +25) ) (ars 2h) (ave +25) (ante + Ds) sina hyena (fomo) t @, tim @[sin(a + h)—sina] + 2ahsin(a +h) +H? sin(a +h) * RS [LAST 37 YEARS] faces +2 2221 + ti 2asin(a + 2 3 favan + Vix) erate 1 We (jar2a-vlia) 3 Mia dina ne + limhsin(a+) Alternative Method: Alternative Method: tim Met 2s VBE sim (2 AY sina + h)— a? sin Faeroe \ * a+ Wana +h) 1 (Applying L’Hospiat's Rua) =2asinabcooa 1) Set Jira tim 2 TD My Tee-1 PREVIOUS YEAR C! = tim =" tim F +1) 20412202 Office.: 606 , 6” Floor, Hariom Tower, Circular Road, Ranchi, Ph.; 0861-2662628, 9696608612, 8607619968, NEWTONCLASSES.NET LIMITS [JEE ADVANCED PREVIOUS YEAR SOLVED PAPER] Alternative Method: ssl) 606 , 6” Floor, Hariom Tower, Circular Road, Ranchi-1, Ph.: 0651-2662623, 9836608812, 8507613968 NEWTONCLASSES.NET

You might also like