Answers: 1 Problem Solving
Answers: 1 Problem Solving
from its past question papers which are contained in this publication.
Answers
1 Problem solving From the table we see that the greatest number of
questions answered correctly is 12.
1 The basket was half full at 10 : 59. 9 Let the even number be 2k, where k is an integer.
2 $3.50 ( 2k ) 2 = 4 k 2
Work backwards, use guess and check or algebra. Since any multiple of 4 is even, the square of any
3 Let x be the number of consecutive shots. even number is even.
3 + x > 16 + x 10 Let the odd number be 2k + 1, where k is an integer.
7 + x 25 + x
(3 + x )(25 + x ) > (16 + x )(7 + x ) ( 2k + 1) 2 = 4k 2 + 4k + 1
75 + 28 x + x 2 > 112 + 23x + x 2 = 4(k 2 + k ) + 1
5 x > 37 This is an even number + 1, which is odd.
x > 7.4 Further practice (Page 4)
1 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
2 Algebra
3 There is no reason to add the $270 and $20 here. You 8 Let the distance be d.
can do the calculations this way:
33
Actual cost of suite: $250 d =d+ 4
4 6 60
Money returned: $30 to men
15d = 10d + 3 3
$20 to lift attendant 4
Total $300 5d = 3 3
4
3
4 Speed = distance d = km
4
time
For the ‘against the wind’ journey:
9 After the first refilling there is 9 litres of water and
Distance = 300 × 2.5 = 750 km 36 litres of juice.
For the ‘with the wind’ journey: The fraction that is juice is 36 = 4 .
45 5
Time = 750 = 1.875 hours = 112.5 minutes When 9 litres are removed, the amount of juice
400
5 Sanil’s watch is moving at 5 of the speed of a normal
removed is 4 × 9 = 36 = 7.2 litres
5 5
6
watch. Volume of juice in the final mix is
Hence a normal watch is going 6 times faster than 45 − 9 − 7.2 = 28.8 litres
5
Sunil’s watch.
Volume of water in the final mix is
Sunil’s watch moves through 8 hours between 9 a.m. 45 − 28.8 = 16.2 litres
and 5 p.m. Ratio is 16.2 : 28.8 = 9 :16
Hence a normal watch will move through 10 Let a = 2k + 1 and b = 2m + 1 where k and m are
6 × 8 = 9 3 hours = 9 hours 36 minutes integers.
5 5
Hence the actual time is 6.36 p.m. a 2 − b 2 = (a + b)(a − b)
= (2k + 1 + 2m + 1)(2k + 1 − (2m + 1))
6 If Kyle, Leon or Ryan committed the crime then
more than one suspect would be telling the truth. = (2k + 2m + 2)(2k − 2m)
= 2(k + m + 1)2( k − m)
If Dave committed the crime then Dave is lying, Kyle
is lying, Ryan is telling the truth and Leon is lying. = 4(k + m + 1)(k − m)
If k and m are either both even or both odd, k − m
Answer: Dave
is even and if one of these numbers is odd and the
7 Let the total volume of the bath be b. other is even, then k + m + 1 is even. In both cases,
Hot tap fills b of the bath per minute. the number (k + m + 1)(k − m) is even.
12
So (k + m + 1)(k − m) = 2p, where p is an integer.
Cold tap fills b of the bath per minute.
6 So 4(k + m + 1)(k − m) = 4 × 2p = 8p,
Together they fill b + b = b per minute. which is a multiple of 8.
12 6 4
Together they fill 1 of the bath in one minute so it
4 2 Algebra
takes 4 minutes to fill the bath.
2.1 Background algebra (Page 5)
OR
1 (i) 2(a − 3b) − 3(b − 3a)
The hot tap will fill 1 bath in 12 minutes.
= 2a − 6b − 3b + 9a
The cold tap will fill 2 baths in 12 minutes. = 11a − 9b
Together they will fill 3 baths in 12 minutes. (ii) 7cd(d2 − 2) − 3cd2(8d + 5c3)
= 7cd3 − 14cd − 24cd3 − 15c4d2
So 1 bath in 4 minutes.
= −17cd3 − 14cd − 15c4d2
2 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
2 Algebra
8 f 4 9g 3 7 (i) 2 = 2 ×
5=2 5
(iii) × 5 5 5 5
3 g 12 fg
3 3 × 7 +1
3
= 2 f g (ii) =
7 −1 7 −1 7 +1
(iv) x − 1 + 5 − x
4 5
5( x − 1) 4(5 − x ) = 3 7 +3
= + 7 −1
20 20
= 3 7 +3
= 5 x − 5 + 20 − 4 x 6
20
= 7 +1
= x + 15 2
20
(iii) 1 + 3 = 1 + 3 × 1 + 3
2 (i) 12mn2 + 9mn3 = 3mn2(4 + 3n) 1− 3 1− 3 1+ 3
(ii) p2 − p − 12 = (p − 4)(p + 3) = 1+ 2 3 + 3
1− 3
3 (i) 2(x + 5) = x − 7
= 4+2 3
2x + 10 = x − 7 −2
x = −17 = −2 − 3
(ii) 1 ( 6 x + 8 ) − 3 = 9 − 3 ( 4 − 10 x ) 8 (i) ( 2 + 1)( 2 − 1) = 2 − 1 = 1
2 2
3x + 4 − 3 = 9 − 6 + 15 x (ii) (1 − b )( 2 + b ) = 2 − b − b
3x + 1 = 3 + 15 x
− 12 x = 2 2.2 Quadratic equations (Page 7)
x = 2 = −1 2
1 (i) x + 5 x = 0
−12 6
x ( x + 5) = 0
4 Let the distance from Auckland to Hamilton be x. x = 0 or − 5
Hakim’s speed is x km/h
2 (ii) x 2 − 2 x − 8 = 0
2 ( )
Ravi’s speed is x − 4 km/h
( x − 4)( x + 2) = 0
x = 4 or − 2
Distance = speed × time so
( )
x ×2= x −4 ×2 1 (iii) 2x 2 − x − 3 = 0
2 2 10 (2 x − 3)( x + 1) = 0
x = 1.05 x − 8.4
x = 3 or − 1
8.4 = 0.05 x 2
x = 168 km (iv) 3x 2 − 6 x = 0
v −c = d 3x ( x − 2) = 0
5 (i)
b e x = 0 or 2
v − bc = d
b e (v) x 2 − 3x − 40 = 0
b =e ( x + 5)( x − 8) = 0
v − bc d
x = −5 or 8
e = bd
v − bc
(vi) 6x 2 + 7 x − 3 = 0
(ii) km 2 + n = p − wk
(3x − 1)(2 x + 3) = 0
km 2 + wk = p − n
x = 1 or − 3
k(m 2 + w ) = p − n 3 2
p−n
2
2 (i) Let t = xLet. t = x2
k= 2
m +w t 2 + 3t − 4 = 0
6 (i) 18 = 9 × 2 = 9 × 2 = 3 2 (t + 4)(t − 1) = 0
75 = 25 × 3 = 25 × 3 = 5 3 t = −4 or 1
(ii)
x 2 = −4 or x 2 = 1
(iii) 1 7 = 16 = 4
9 9 3 x = ±1
3 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
2 Algebra
( 3 )
(t − 1)(t − 8) = 0 2
= 9 x − 1 −1
t = 1 or 8
x 3 = 1 or x 3 = 8 4 3 − 8 x − x 2
x = 1 or x = 2 = −( x 2 + 8 x − 3)
= −[( x + 4) 2 − 19]
2.3 Completing the square (Page 8)
= −( x + 4) 2 + 19
2
1 (i) ( x − 3) − 8 = 19 − ( x + 4) 2
2
(ii) ( x + 2) − 4
a = 19, b = 4
2
2 (i) x − 6 x + 1 = 0
2.4 The graphs of quadratic functions (Page 9)
( x − 3) 2 − 8 = 0 y
1 (i)
( x − 3) 2 = 8 5
4
x −3= ± 8
3
x = 3± 8
2
2
(ii) x + 4x = 0 1
2
( x + 2) − 4 = 0
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 x
( x + 2) 2 = 4 –1
x +2=± 2 –2
x = 0 or − 4 –3
–4
3 (i) 2 x 2 − 4 x + 7
–5
= 2( x 2 − 2 x ) + 7
Vertex (−1, 0)
= 2 ( x − 1) 2 − 1 + 7
= 2( x − 1) 2 − 2 + 7
= 2( x − 1) 2 + 5
4 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
2 Algebra
y
(ii) (ii) 2x 2 − 5x = 6
5
4
2x 2 − 5x − 6 = 0
2
3 x = 5 ± 5 − 4 × 2 × −6
2
2× 2
1 = 5 ± 73
4
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 x
= −0.886 or 3.39 (3 s.f.)
–1
–2 2 (i) Discriminant = (−2) 2 − 4 × 1 × 4 = −12
–3
No solutions
–4
(ii) Discriminant = 4 2 − 4 × 4 × 1 = 0
–5
Vertex (−4, −2) One solution
5 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
2 Algebra
x = −4 or 3 –2
y = 3 or −4 –3
(−4, 3) or (3, − 4) –4
–5
(iv) x (7 − 2 x ) = 3 0 x 1
(iii) y
7 x − 2x 2 = 3 5
0 = 2x 2 − 7 x + 3 4
0 = (2 x − 1)( x − 3) 3
x = 1 or 3 2
2
y = 6 or 1 1
( )
1 , 6 or (3, 1)
2
–5 –4 –3 –2 –1 0
–1
1 2 3 4 5 x
–2
2.7 Inequalities (Page 13) –3
–4
1 (i) 3( x + 4) −15
–5
x + 4 −5
x −9 x < −1 or x > 1
6 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
2 Algebra
(iv) y
(iii) 3x 2 − 5 x − 2 = 0
5
4
(3x + 1)( x − 2) = 0
3 x = − 1 or 2
3
2
1
(iv) 5 x 2 + 13x − 6 = 0
(5 x − 2)( x + 3) = 0
–5 –4 –3 –2 –1 0 1 2 3 4 5 x
–1 x = 2 or − 3
5
–2
4
–3
(v) Multiply by x :
–4 3 − 11x 2 = 4 x 4
–5 0 = 4 x 4 + 11x 2 − 3
–6
0 = (4 x 2 − 1)( x 2 + 3)
–7
–8 x 2 = 1 or x 2 = −3
4
–9
x = ±1
–10 2
x2 < 9 (vi) Multiply by x:
2
x −9<0 2 − x = 4x − 9 x
−3 < x < 3
0 = 5x − 9 x − 2
Further practice (Page 14) Let t = x .
1 (i) (3q − 1)(q + 2) 0 = 5t 2 − 9t − 2
(ii) t (s + p ) − 2u(s + p ) 0 = (5t + 1)(t − 2)
= (t − 2u)(s + p) t = − 1 or t = 2
5
2 (i) 1 =1+1
f u v x = − 1 or x = 2
5
1 = v +u
f uv x = 4
uv = f ( v + u ) 4 (i) 2 x 2 + 12 x + 11
uv = fv + fu = 2( x 2 + 6 x ) + 11
uv − fv = fu = 2 ( x + 3) 2 − 9 + 11
v (u − f ) = fu
= 2( x + 3) 2 − 18 + 11
fu
v= = 2( x + 3) 2 − 7
u− f
p (ii) 5 x 2 − 40 x + 72
(ii) d − 3e = 1
2π w = 5( x 2 − 8 x ) + 72
p
d − 3e = 1 2 = 5 ( x − 4) 2 − 16 + 72
4π w
= 5( x − 4) 2 − 80 + 72
p
d − 1 2 = 3e 2
4π w = 5( x − 4) − 8
p
e=d− 5 7 + 8x − 2x 2
3 12 π 2 w
= −2 x 2 + 8 x + 7
3 (i) x 2 − 25 = 0
= −2( x 2 − 4 x ) + 7
x 2 = 25
= −2[( x − 2) 2 − 4] + 7
x = ± 25
x = 5 or − 5 = −2( x − 2) 2 + 8 + 7
2
(ii) x + 5 x − 14 = 0 = −2( x − 2) 2 + 15
( x + 7)( x − 2) = 0 = 15 − 2( x − 2) 2
x = −7 or 2 a = 15, b = 2, c = 2
7 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
2 Algebra
k 2 = 16 x 2 − 4 x + 4 + (81 − 36 x + 4 x 2 ) = 5
k = 4 or − 4 5 x 2 − 40 x + 80 = 0
(b) kx 2 − kx − 1 = 0 x 2 − 8 x + 16 = 0
(− k ) 2 − 4 × k × −1 = 0 ( x − 4) 2 = 0
k 2 + 4k = 0 x = 4, y = 1
k(k + 4) = 0 (4, 1)
k = 0 or − 4 (iii) x 2 + 2(1 − x ) 2 = 9
2
(ii) (a) (− k ) − 4 × 3 × 3 > 0 x 2 + 2(1 − 2 x + x 2 ) = 9
k 2 − 36 > 0 x 2 + 2 − 4 x + 2x 2 = 9
k 2 > 36 3x 2 − 4 x − 7 = 0
k < −6 or k > 6 (3x − 7)( x + 1) = 0
x = 7 or − 1
3
y = − 4 or 2
3
(73 , − 43 ) or ( −1, 2)
8 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
2 Algebra
y
(iv) 2x + 3 y = 7 ⇒ y = 7 − 2x (iii)
3 10
3x 2 = 4 + 4 x 7 − 2 x
3 ( ) 9
8
2
3x = 4 + 28 x − 8 x
2 7
3 3
6
9 x = 12 + 28 x − 8 x 2
2
5
2
17 x − 28 x − 12 = 0 4
(17 x + 6)( x − 2) = 0 3
2
x = − 6 or 2
17 1
y = 131 or 1 –4 –3 –2 –1 0 1 2 3 4 5 6 x
51
–1
(−176 , 131
51 )
or (2, 1) –2
–3
13 (i) y –4
16 –5
15 –6
14 –7
13 –8
12 –9
11 –10
10 −2 x 4
9 (iv) y
8 14
7 12
6 10
5 8
4 6
3 4
2 2
1
–10 –8 –6 –4 –2 0 2 4 6 8 x
–2
–5 –4 –3 –2 –1 0 1 2 3 4 5 x
–1 –4
–2 –6
–3 –8
–4 –10
–5 –12
−4 x 4 –14
(ii) y –16
3 –18
2 –20
1 –22
–24
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 x
–1
x < −7 or x > 2
–2
–3
–4
–5
–6
x < −5 or x > 0
9 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
2 Algebra
y
(v) (viii) 3x 2 > 6 x ⇒ 3x 2 − 6 x > 0
y
20
4
15
3
10
2
5
1
–6 –5 –4 –3 –2 –1 0 1 2 3x
–5 –2 –1 0 1 2 3 x
–1
–10
–2
–15
–3
x < −5 or x > 3 –4
2
x < 0 or x > 2
(vi) y
30 14 (i) 4 x 2 + 32 x + 70
25 = 4( x 2 + 8 x ) + 70
20
= 4 ( x + 4 ) 2 − 16 + 70
15
10 = 4 ( x + 4 ) 2 − 64 + 70
5
= 4 ( x + 4)2 + 6
–4 –3 –2 –1 0 1 2 3 4 5 6 x Vertex is (−4, 6)
–5
–10 (ii) 4 ( x + 4 ) 2 + 6 < 22
4 ( x + 4 ) 2 < 16
−1 < x <3
2 ( x + 4)2 < 4
(vii) y x 2 + 8 x + 12 < 0
10 ( x + 6)( x + 2) < 0
8 −6 < x < −2
6
Past exam questions (Page 15)
4
2 1 ( x − 2)( x + 1) > 0
x < −1 or x > 2
–6 –5 –4 –3 –2 –1 0 1 2 3 x
2 (i) x + 6 x + 2 = ( x + 3) − 7
2 2
–2
–4
(ii) ( x + 3) − 7 > 9
2
–6
–8
( x + 3) 2 > 16
–10 x + 3 > 4 or x + 3 < −4
x > 1 or x < −7
−3 x 1 3 (i) 2 x 2 − 10 x + 8 = 2( x 2 − 5 x ) + 8
3
( ) − 254 + 8
2
= 2 x − 5
2
= 2 ( x − 5 ) − 25 + 8
2
2 2
= 2( x − 5 ) − 9
2
2 2
10 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
3 Coordinate geometry
k 2 + 20k + 36 < 0 2 9 x − 3 x +1 − 54 = 0
(k + 18)(k + 2) < 0 (3 x ) 2 − 3 × 3 x − 54 = 0
−18 < k < −2 Let t = 3 x .
t 2 − 3t − 54 = 0
Stretch and challenge (Page 16)
(t + 6)(t − 9) = 0
1 (i) ax 2 + bx + c = 0 ⇒ x 2 + b x + c = 0
a a t = −6 or 9
Given the roots, you can write the equation as x
3 = −6 or 9
( x − α )( x − β ) = 0
2
3 x = −6 has no solutions so 3 x = 9 ⇒ x = 2
x − α x − β x + αβ = 0
3 k 2 x + 2 − x = 8
x 2 − (α + β ) x + αβ = 0
Let t = 2 x ; the equation can then be written as
Equating, you get
kt + 1 = 8
− (α + β ) = b ⇒ α + β = − b t
a a 2
kt + 1 = 8t
αβ = c
a kt 2 − 8t + 1 = 0
(ii) 4 x + ( k + 2 ) x + 72 = 0
2
For a single solution, b 2 − 4ac = 0
The roots are α and 2α . (−8) 2 − 4 × k × 1 = 0 ⇒ k = 16
α + 2α = − k + 2 and α × 2α = 72 16t 2 − 8t + 1 = 0
4 4
Solving the second equation, ( 4t − 1) 2 = 0 ⇒ t = 14
2α 2 = 18
2 x = 1 ⇒ x = −2
α2 =9 4
α = ±3
Substituting into the first equation you get 3 Coordinate geometry
3 + 2 × 3 = − k + 2 ⇒ k = −38 3.1 The length, gradient and midpoint of a line
4
or (−3) + 2 × (−3) = − k + 2 ⇒ k = 34 (Page 17)
4
1 (i) m = 3
(iii) α + β = 4 and αβ = 7
3 3 (ii) m = 0
4 1
1 + 1 = α + β = 3 = 4 and 1 = 3 (iii) m = −
4
α β αβ 7 7 αβ 7
3 2 (i) Length = AB = 4 2 + 2 2 = 20 ≈ 4.47
So the equation is Midpoint = (1, 0)
x 2 − 4 x + 3 = 0 or 7 x 2 − 4 x + 3 = 0 Gradient = 1
7 7 2
(iv) α + β = 2 and αβ = 3 (ii) Length = CD = 4 2 + 10 2 = 116 ≈ 10.8
3
(α + β ) = α + 3α 3 2 2
β + 3αβ + β 3
Midpoint = (10, 2)
= α + β + 3αβ (α + β )
3 3
Gradient = − 10 = − 5 = −2.5
4 2
3 −1 + m = 2 ⇒ m = 5
2
5+n = 5 ⇒ n = 5
2
11 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
3 Coordinate geometry
4 (i) x = 0 3 (i) 3 y = − x − 6
(ii) x = −4 x + 3y + 6 = 0
(iii) x = 1 (ii) 15 y = 12 x + 5
12 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
3 Coordinate geometry
13 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
3 Coordinate geometry
2
(iv) ( x − 3) 2 + ( y + 3) 2 = 9 or (ii) x + 4 x − 2 = −2 x − 2
x 2 + y 2 − 6x + 6 y + 9 = 0
x 2 + 6x = 0
x ( x + 6) = 0
3 A: ( x + 1) 2 + y 2 = 9 or x 2 + y 2 + 2 x − 8 = 0
x = 0 or − 6
( − 2) 2 + ( y − 4) 2 = 16 or
B: x y = −2 or 10
x 2 + y 2 − 4x − 8 y + 4 = 0
(0, −2) or (−6, 10)
4 (i) x 2 + y 2 − 2 x + 4 y − 20 = 0
(iii) x (7 − 2 x ) = 3
( x − 1) 2 + ( y + 2) 2 = 25 7 x − 2x 2 = 3
Centre C is (1, −2) 0 = 2x 2 − 7 x + 3
4.5 = 3
(ii) Gradient of DC is 0 = (2 x − 1)( x − 3)
1.5
Gradient of AB is − 1 x = 1 or 3
2
3
Equation of AB is y = 6 or 1
2.5 = − 1 × 2.5 + c ⇒ c = 10
3 3
(
2
) ( )
1 , 6 or 3, 1
So y = − 1 x + 10 (iv) ( x − 2) 2 + (9 − 2 x ) 2 = 5
3 3
x + 3 y − 10 = 0 x 2 − 4 x + 4 + (81 − 36 x + 4 x 2 ) = 5
5 x 2 − 40 x + 80 = 0
2 2
(iii) (10 − 3 y ) + y − 2(10 − 3 y ) + 4 y − 20 = 0 x 2 − 8 x + 16 = 0
100 − 60 y + 9 y 2 + y 2 − 20 + 6 y + 4 y − 20 = 0 ( x − 4) 2 = 0
10 y 2 − 50 y + 60 = 0 x = 4, y = 1
(4, 1)
y 2 −5y +6 = 0
( y − 2)( y − 3) = 0 2 x 2 + 3x + 9 = x + k
2
y = 2 or 3 x + 2x + 9 − k = 0
x = 4 or 1 For one solution, discriminant = 0
2 2 − 4 × 1 × (9 − k ) = 0
A(1, 3), B(4, 2)
y 4 − 36 + 4 k = 0
8 −32 + 4 k = 0
6 4 k = 32
4 A k=8
2 B
x + 3y – 10 = 0
3 2 − x 2 = 3 − kx
–8 –6 –4 –2 0 2 4 6 8 x 0 = x 2 − kx + 1
–2
–4 For two points of intersection, discriminant > 0
–6
x2 + y2 – 2x + 4y – 20 = 0
(− k ) 2 − 4 × 1 × 1 > 0
–8
k2 − 4 > 0
3.5 The intersection of a line and a curve (Page 26) k2 > 4
1 (i) x 2 + 4x = x − 2 k > 2 or k < −2
x 2 + 3x + 2 = 0 4 (i) Centre of circle is (−1, 0)
( x + 2)( x + 1) = 0 Gradient of radius = − 4
3
x = −1 or −2
Gradient of tangent = 3
y = −3 or −4 4
(−1, −3) or (−2, −4)
14 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
3 Coordinate geometry
4 = 3 × −4 + c ⇒ c = 7 2 + 4x 2 = 4x + 1
4
4x 2 − 4x + 1 = 0
So y = 3 x + 7
4 ( 2x − 1)( 2x − 1) = 0
3
m= , c=7 x=1
4 2
y y = 4 × 1 +1 = 3
2
( )
8
B 1
Point is , 3
6
y= 3 x+7 2
4 4
2 Further practice (Page 28)
A
–10 –8 –6 –4 –2 0 2 4 6 8 10 x 1 (i) Length = EF = 8 2 + 4 2 = 80 ≈ 8.94
–2
Midpoint = (−1, 1)
–4
–6 (x + 1)2 + y2 = 25 Gradient = −4 = − 1
8 2
–8
(ii) Length = GH = 6 2 + 12 2 = 180 ≈ 13.4
(ii) A is −
3 (
28 , 0 , B is 0, 7
( ) ) Midpoint = ( −7, − 3)
15 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
3 Coordinate geometry
3
Substituting (-2, 0) gives
2
4 × −2 + 3 × 0 = k 1
k = −8
4 x + 3 y = −8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 x
–1
4x + 3y + 8 = 0
–2
(ii) Rearranging the equation gives –3
–4
4x + 3y = 1
3 y = −4 x + 1 –5
–6
y = −4x+1
3 3 –7
The gradient of the line is − 4 so the gradient of –8
3
–9
the perpendicular line is .3
4 –10
3
The equation is y = x + c
–11
4 –12
Substituting the point (3, −1) gives
8 (i) x − 3 y = 6 ⇒ 3 y = x − 6 ⇒ y = 1 x − 2
3
−1 = 3 × 3 + c 1
4 The gradient is so the gradient of the
3
c = −13 perpendicular line is −3.
4
Equation of the perpendicular line is
3
y = x − 13
4 4 y = −3 x + c ⇒ 2 = −3 × −3 + c ⇒ c = −7
4 y = 3 x − 13
y = −3 x − 7
3 x − 4 y − 13 = 0
y (ii) Solving simultaneously,
5
y = −3 x − 7
4
3 x − 3 y = 6
2 Substitution gives
4x + 3y = – 8 3x – 4y = 13
1 x − 3(−3 x − 7) = 6
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 x x + 9 x + 21 = 6
–1
10 x = −15
–2
–3 x =−3
4x + 3y = 1 2
–4
y = −3 × − 3 − 7 = − 5
–5 2 2
(
7 (i) Midpoint is 4 + −1 , 1 + −9 = 3 , −4
2 2 ) (2 ) (
The distance between − 3 , − 5 and (−3, 2) is
2 2 )
(ii) m(AC) = 2 so m(⊥ ) = − 1
(−3 − − 32 ) + (2 − − 52 )
2 2
2 d = = 4.74 (3 s.f.)
y = mx + c ⇒ −2 = − 1 × 6 + c ⇒ c = 1
2
Equation is y = − 1 x + 1
2
16 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
3 Coordinate geometry
y
(−3) 2 − 4 × 2 × k < 0
5
9 − 8k < 0
4
9 < 8k
3
P (–3, 2) 9<k
2 8
1
k>9
8
–7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 x
–1 14 x 2 − x (kx − 8) = k
–2
x 2 − kx 2 + 8x − k = 0
–3
(1 − k )x 2 + 8x − k = 0
–4
–5
( 8 ) 2 − 4 × (1 − k ) × − k = 0
8 + 4k − 4k 2 = 0
9 (i) Centre (0, −5), radius 8
2 + k − k2 = 0
(ii) Centre (−2, 1), radius 3 (2 − k )(1 + k ) = 0
10 (i) ( x − 5) 2 + ( y + 1) 2 = 49
k = 2 or − 1
x = 7 or − 1 MultiplyMultiply
① by 3, ② 1 byby3,2:2 by 2
3
9 x − 6 y = −15
y = − 4 or 2
3 4 x + 6 y = 28
7
3 3
4
(
, − or (−1, 2) ) 13x = 13
x = 1, y = 4
12 2 − x 2 = 3 − kx
Midpoint is (1, 4)
0 = x 2 − kx + 1 By symmetry, B is (4, 2)
For two points of intersection, discriminant > 0 y
(− k ) 2 − 4 × 1 × 1 > 0
10
k2 − 4 > 0
A(–2, 6)
k2 > 4
5
k > 2 or k < −2
B(4, 2)
13 2x + k = 3 –10 –5 0 5 10 x
x
2
2 x + k = 3x 2y = 3x + 5
–5
2
2 x − 3x + k = 0
–10
No points of intersection ⇒ discriminant < 0
17 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
3 Coordinate geometry
(
2 (i) Midpoint is 5 + 9 , 7 + −1 = ( 7, 3)
22 ) (ii) Gradient of 2x + 3y = 9 is − 2
3
Gradient of AB is (−1) − 7 = −2 Gradient of AB is 3
9−5 2
3p 3
=
Gradient of perpendicular line is 1 9− p 2
2
Equation is 6 p = 27 − 3 p
9 p = 27
3= 1 ×7+c ⇒c = −1
2 2 p=3
1
So y = x − 1
2 2 4 x 2 − 4 x + c = 2x − 7
(ii) Equation of CX is x 2 − 6 x + (c + 7) = 0
2 = −2 × 1 + c ⇒ c = 4 b 2 − 4ac = 0
So y = −2 x + 4 (−6) 2 − 4 × 1 × (c + 7) = 0
36 − 4c − 28 = 0
Solving simultaneously,
4c = 8
−2 x + 4 = 1 x − 1 c=2
2 2
−4 x + 8 = x − 1 5 Solving simultaneously,
9 = 5x y = 3x y = 3x
x = 9, y = 2 4 y = x + 11 ⇒4 y = x1 x+ 11 ⇒ y = 1 x + 11
+ 11
5 5 4 4 4 4
1 11 1 11
5 5 ( )
So X is 9 , 2 or (1.8, 0.4 ) 3x = x + 3x = x +
4 4 4
12 x = x + 11 12 x = x + 11
4
2 2
BX = (9 − 1.8) + (−1 − 0.4 )
2
11x = 11 11x = 11
BX = 7.33
y x = 1, y = 3 x = 1, y = 3
10 A is (1, 3)
9
By symmetry, C is (12, 14).
8
A(5, 7) Equation of BC is
7
6 44 yy =
5
= xx +
+ cc
44 × 14 =
× 14 12 +
= 12 + cc ⇒
⇒ cc =
= 44
44
4
y = 0.5x – 0.5 44 yy = x + 44
3 = x + 44
C(1, 2)
2
SolvingSolving simultaneously
simultaneously
Solving to findto
simultaneously B,find
to find B
B
1 ( )
X 9,2
2 5 4(3xx )) =
4(3 = xx +
+ 44
44
–10 –9 –8 –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 x
–1 11xx =
11 = 44
44
B(9, −1) xx =
–2
= 4, yy =
4, = 12
12
–3 B is (4, 12)
–4 B is (4, 12) 12)
B is (4,
–5
By symmetry, D is (9, 5).
–6
–7 6 3x 2 − 4 x + 7 = mx + 4
–8 3x 2 + (−4 − m)x + 3 = 0
–9
–10 For two distinct points of intersection, b 2 − 4ac > 0
(−4 − m) 2 − 4 × 3 × 3 > 0
3 (i) (9 − p ) 2 + (3 p ) 2 = 13 2
2 2
16 + 8m + m 2 − 36 > 0
(81 − 18 p + p ) + 9 p = 169
2
m 2 + 8m − 20 > 0
10 p − 18 p − 88 = 0 (m + 10)(m − 2) > 0
5 p 2 − 9 p − 44 = 0 m < −10 or m > 2
(5 p + 11)( p − 4) = 0
p = − 11 or 4
5
18 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
3 Coordinate geometry
y bx − ay = 4ab
5 bx − 4ab = ay
4
y = bx − 4ab
a
3 B
b
y = x − 4b
A 2 a
1 From this form the gradient of the line is b ,
a
b 1
so = ⇒ 2b = a
–4 –3 –2 –1 0 1 2 3 4 x a 2
The x-intercept is when y = 0 so
You need to find the coordinates of both A and
B. To find where the line meets the curve, solve x − 0 = 4 ⇒ x = 4 ⇒ x = 4a , so M is ( 4a, 0 )
a b a
simultaneously: The y-intercept is when x = 0 so
4 x + y + 24= y + 2y =
x +0 ⇒ x −y2= −4 x − 2
= 0−4⇒
0 − y = 4 ⇒ − y = 4 ⇒ y = −4b, so N is 0, − 4b
2 x 2 = −42xx−2 2= −4 x − 2 a b b
( )
2 x 2 + 4 x 2+x22 =+04 x + 2 = 0 By Pythagoras’ theorem,
x 2 + 2 x +x12=+02 x + 1 = 0
MN = (4a) 2 + (4b) 2 = 16a 2 + 16b 2
( x + 1)( x +
( x1)+=1)(0x + 1) = 0
x = −1 x = −1 16a 2 + 16b 2 = 720
y = 2(−1)y2 == 2(
2 −1) 2 = 2 16a 2 + 16b 2 = 720
So A is (−1, 2) 16(2b) 2 + 16b 2 = 720
()
2
y=2 9 = 2 × 81 = 81
–4
8 64 32 –6
( )
So B is 9 , 81
8 32
–8
–10
Finally, use Pythagoras’ theorem to find the length of –12
N
AB: –14
–16
( ) ( )
2 2
AB = −1 − 9 + 2 − 81 = 2.19 (3 s.f.) –18
8 32
19 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
4 Sequences and series
3 Midpoint of the line joining A ( −6, 1) and B ( k , − 3) is (iii) The x-intercepts are x = a and b.
So the line must pass through ( a, 0 ) or (b, 0 ).
(−62+ k , 1+2−3) = ( k −2 6 , −1) y = mx + c ⇒ 0 = k × a + c ⇒ k = − c
a
Gradient of AB is 1 − (−3) = 4 y = mx + c ⇒ 0 = k × b + c ⇒ k = − c
−6 − k −6 − k b
Gradient of perpendicular is − −6 − k = 6 + k 5 2 y = kx + 1 ⇒ y = k x + 1
4 4 2 2
Equation of perpendicular bisector is 2x 2 + x +1 = k x + 1
2 2
y = mx + c ⇒ −1 = 6 + k × k − 6 + c
4 2 2
4 x + 2 x + 2 = kx + 1
2
−1 = k − 36 + c 4 x 2 + (2 − k )x + 1 = 0
8
2
c = − k − 36 − 1 For two points of intersection, b 2 − 4ac > 0
8
(2 − k ) 2 − 4 × 4 × 1 > 0
Since the y-intercept is −9,
4 − 4 k + k 2 − 16 > 0
2
− k − 36 − 1 = −9 k 2 − 4 k − 12 > 0
8
2 ( k + 2)( k − 6) > 0
− k − 36 = −8
8 k < −2 or k > 6
2
k − 36 = 8
8
2
k − 36 = 64
4 Sequences and series
k 2 = 100 4.1 Arithmetic progressions (Page 31)
k = ±10 1 (i) 5, 11, 17, 23, …
y
6 a = 5, d = 6, n = 12
4 u12 = 5 + (12 − 1) × 6 = 71
2 (ii) −3, −8, −13, …
20 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
4 Sequences and series
( )
8−1
9 9 u8 = −16 × − 1 = 0.125 = 1
d = d ==1.8= 1.8 2 8
5 5
a = 34 a =−344 ×−1.8
4 ×=1.8
26.8
= 26.8 (iii) 0.1, 0.01, 0.001, …
20 20 a = 0.1, r = 0.1, n = 9
S20 =S20 =[ 2 × [26.8 + (20+−(20
2 × 26.8 1) ×] 1.8
1) ×−1.8 ] = 878
= 878 9−1
2 2 u9 = 0.1 × (0.1) = 0.000 000 001 = 1 × 10−9
4 d = (2m + n) − m = m + n (iv) 6, 9, 13.5, …
u10 = m + (10 − 1) × (m + n) a = 6, r = 1.5, n = 12
= m + 9(m + n) u12 = 6 × (1.5 )
12−1
= 519 (3 s.f.)
= 10m + 9n
2 (i) 3, 6, 12, 24, …
5 a = 40, S30 = 3375, n = 30, d = ?
a = 3, r = 2, n = 8
S30 = 3375 ⇒ 30 [ 2 × 40 + (30 − 1)d ] = 3375
2
15(80 + 29d ) = 3375 S8 =
(
3 1 − 28 ) = 765
1− 2
1200 + 435d = 3375
(ii) 81, 27, 9, 3, …
435d = 2175
d =5 a = 81, r = 1 , n = 20
3
()
u5 = 40 + (5 − 1) × 5 = $60 20
81 1 − 1
6 (i) u7 = 32 ⇒ a + 6d = 32 3
S 20 = = 121.5
5 1− 1
S5 = 130 ⇒ [ 2a + 4d ] = 130 3
2
5a + 10d = 130 (iii) 2, −5, 12.5, −31.25, …
a + 2d = 26 a = 2, r = −2.5, n = 14
Solving simultaneously, d = 1.5, a = 23
(ii) un = 56 ⇒ 23 + (n − 1) × 1.5 = 56 S 14 =
(
2 1 − (−2.5)
14
) = −212 874.3028
1 − (−2.5)
23 + 1.5n − 1.5 = 56
= −213 000 (3 s.f.)
1.5n + 21.5 = 56
(iv) −240, 48, −9.6, 1.92, …
1.5n = 34.5
a = −240, r = −0.2, n = 10
n = 23
S10 =
(
−240 1 − ( −0.2 )
10
) = −200
1 − (−0.2)
21 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
4 Sequences and series
3 The sequences in parts (ii) and (iv) have a sum to (ii) Plan B: a = 1, d = t, n = 20
infinity: 20
81
S20 = [2 × 1 + (20 − 1) × t ]
(ii) S∞ = = 121.5 2
1− 1 = 10(2 + 19t )
3
−240 = −200 = 20 + 190t
(iv) S ∞ = So to be the same,
1 − (−0.2)
20 + 190t = 1260
4 x =2
32 x t = 6.53 minutes (3 s.f.)
x 2 = 64
9 (i) For the A.P., a = 18
x = ±8
u 4 = a + (4 − 1)d = 18 + 3d
5 a = 8, S ∞ = 12 ⇒ 8 = 12 u6 = a + (6 − 1)d = 18 + 5d
1− r
8 = 12(1 − r ) 8 = 12(1 − r ) First three terms of G.P. are 18, 18 + 3d, 18 + 5d
8 8 18 + 3d 18 + 5d
=1− r =1− r so r = =
12 12 18 18 + 3d
8 1 r =1− =
8 1 (18 + 3d ) = 18 (18 + 5d )
2
r = 1 − 12 = 3 12 3
5 −1
324 + 108d + 9d 2 = 324 + 90d
5 −1
1 8 1 8
u5 = 8 × = u5 = 8 × 3 =
81 9d 2 + 18d = 0
3 81
9d(d + 2) = 0
2
6 3, 6x, 12x , … d = 0 or − 2
6 x 12 x 2 Since d ≠ 0, d = −2
r= = = 2x
3 6x
When d = −2, r = 18 + 3d = 18 + 3 × −2 = 12 = 2
For the sequence to have a sum to infinity, 18 18 18 3
−1 < r < 1 so −1 < 2x < 1 (ii) S∞ = 18 = 54
1 1 1− 2
− <x< 3
2 2 (iii) You want Sn = 0 with a = 18, d = –2
5x + 1 2 x + 2 2x + 4 n 2 × 18 + (n − 1) × −2 = 0
×r = x + 2 ⇒ r2 = = 2[ ]
7 (i)
2 5x + 1 5x + 1
2 n 36 − 2n + 2 = 0
x 2
[ ]
x x
( x + 2) × r 2 = ⇒ r 2 = 2 = n 38 − 2n = 0
[ ]
2 x + 2 2x + 4 2
2x + 4 x n = 0 or 19
so = So n = 19
5x + 1 2x + 4
( 2x + 4 )2 = x (5x + 1) 4.3 Binomial expansions (Page 36)
2 2
4 x + 16 x + 16 = 5 x + x 1 (i) ( x + 2 )
4
0 = x 2 − 15 x − 16 4 4 4
= x 4 + x 3 × 2 + x 2 × 22 + x 1 × 23 + 24
0 = ( x − 16)( x + 1) 1 2 3
x = −1 or 16 4 3 2
= x + 8 x + 24 x + 32 x + 16
(ii) r 2 = x = 16 = 4 ⇒ r = 4 = 2 (ii) (1 − 3x )
3
2 x + 4 36 9 9 3
3 3
5 x + 1 5 × 16 + 1 = 13 + 12 × (−3x ) + 1 × (−3x ) 2 + (−3x )3
a= = = 40.5 1 2
2 2
2 3
40.5 = 1 − 9 x + 27 x − 27 x
S∞ = = 121.5
1− 2 2 (i) (2 x − 3)8
3
8 8
8 (i) Plan A: G.P. with a = 2, r = 1.3, n = 20 = (2 x )8 + (2 x )7 × (−3)1 + (2 x )6 × (−3) 2 +
1 2
S 20 =
(
2 1 − (1.3)
20
) = 1260 minutes (3 s.f.)
= 256 x 8 − 3072 x 7 + 16 128 x 6 −
1 − (1.3)
22 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
4 Sequences and series
()
10 4 = 729 + 1458( x − x 2 ) + 1215( x − x 2 ) 2 +
So the x2 term is ( 2 x ) 1
6 2
= 13 440 x
4 x = 729 + 1458 x − 1458 x 2 + 1215( x 2 − 2 x 3 + x 4 ) +
So the coefficient is 13 440 The x2 term is −1458 x 2 + 1215 x 2 = −243x 2
r
15 2
4 General term is
r
( )
x 15 − r 5
3
x
The coefficient is −243
7
8 The general term is 4
7−r
( −ax )r
x terms are
(x )
2 15 − r
= x 30− 2r − 3r = x 30−5r
r
(x ) 3 r
For the x3 term you need r = 3 so
You want 30 − 5r = 0 7 4
3 4 ( −ax ) = -8960a x
3 3 3
r=6
So the term independent of x is −8960a 3 = −1120 ⇒ a 3 = 1 ⇒ a = 1
8 2
15 2
6 The x2 term is when r = 2
6 x( ) 9 5
3 = 78 203125 7
( )
4 5 − 1 x = 5376 x 2
2
x
2 2
6
5 (i) General term is 2 6− r (−3x )r The coefficient of the x2 term is 5376
r
You need r = 2, 9 (i) First three terms of 3 − 2 x 2 ( ) are
7
6 4 7 7
2
2 2 (−3x ) = 2160 x
2
(
37 + 36 −2 x 2
1
) + 2 3 ( −2x )
1 5 2 2
23 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
4 Sequences and series
( )
6 r Now using the term formula,
10 The general term is k 6− r − 1 x
r 2 u 21 = 15 + (21 − 1) × −1.5 = −15
3
The x term is when r = 3 Alternatively, you can form two equations from the
6 3 1 3
3 ( ) 3
k − 2 x = 20 × k × − 8 x
1 3
information and solve them simultaneously:
3rd term = 12 ⇒ 12 = a + 2d
= − 5 k 3x 3 7th term = 6 ⇒ 6 = a + 6d
2
5 3 Subtracting the equations gives 4d = -6
− k = 160
2 ⇒ d = −1.5
k 3 = −64 The rest of the answer follows from there.
k = −4 8
5 r = 2 = = 2
2 2
Further practice (Page 39)
u6 = 2 × ( 2 )
6 −1
=8
u3 = 12 ⇒ a + 2d = 12
1
6 , , , , -40, , , , , -20, …
S8 = 168 ⇒ 8 [ 2a + (8 − 1)d ] = 168 +d +d +d +d +d
2
⇒ 8a + 28d = 168 −40 + 5d = −20
Solving simultaneously, 5d = 20
d=4
8a + 16d = 96 ×8 =
Subtracting 4 from −40 four times gives
12d = 72 −
a = −56
d=6
You want Sn = 0.
a=0
n 2 × −56 + (n − 1) × 4 = 0
u14 = 0 + (14 − 1) × 6 = 78 2
[ ]
n −112 + 4n − 4 = 0
2 a = 25, d = ?, u9 = 5, un = l = − 45
2
[ ]
25 + 8d = 5 n 4n − 116 = 0
2
[ ]
8d = −20
d = −2.5 2n 2 − 58n = 0
un = l = −45 ⇒ −45 = 25 + (n − 1) × −2.5 2n(n − 29) = 0
−45 = 25 − 2.5n + 2.5 n = 0 or 29
2.5n = 72.5 Since n = 0 is not a possible answer, the answer is n = 29
n = 29 7 , 9, , , 11 , …
8
S 29 = 29 [ 25 + −45 ] = −290 ×r ×r ×r ×r ×r
2
4
3 128r = 40.5 From this, write 9r 3 = 1 1 ⇒ r 3 = 1 ⇒ r = 1
8 8 2
So the first term, a = 18
r 4 = 40.5
128 Alternatively, write ar = 9 and ar 4 = 1 1
8
r = 4 40.5 = 0.75 Dividing the equations gives
128
11
u5 = 128 × 0.75 2 = 72 ar 4 = 8 so r 3 = 1
ar 9 8
a = 1282 = 227.5
0.75 and the answer is the same.
S ∞ = a = 18 = 36
S ∞ = 227.5 = 910.2 1 − r 1 − 0.5
1 − 0.75
4 , , 12, , , , 6, … 8 r = 0.95
+d +d +d +d
u6 = 45 000 × ( 0.95 )8 = $29 853.92
From the above, you can write 12 + 4d = 6 ⇒ d = −1.5
= $29 900 (3 s.f.)
Subtracting d from 12 twice gives the first term, a = 15
24 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
4 Sequences and series
( x1 + 2x )
6
4 2 2 5 3
2 3 ( − x ) + 2 2 ( ax )
2
9
= ( 1 ) + ( 1 ) × (2 x ) + ( 1 ) × (2 x )
6
6 6
5 4
1 2
= 54 x 2 + 80a 2 x 2
x 1 x 2 x
= 16 + 124 + 602 +
(
= 54 + 80a 2 x 2 )
x x x 54 + 80a = 554 2
8 x
() ( ) 80a 2 = 500
8− r r
10 General term is −3
r 2 x
a 2 = 6.25
(x ) 8− r
a = 2.5
x terms are = x 8− r − r = x 8− 2r
xr
8 − 2r = 4 Past exam questions (Page 39)
r=2
( x)
5
1 (i) 2 x − 1
8
( )( )
6 2
So the x4 term is x − 3 = 63 x 4
2 2 x 16 5
( )
r
General term is ( 2 x )5− r − 1
11 General term is ( )
12 2 12 − r r x
r x
(x ) 2 r
( x )5−r
To find the value of r that gives us the term x terms are = x 5− r − r = x 5− 2r
xr
independent of x, it is possible to guess and check 5 − 2r = 1
until one that works is found OR use an algebraic r = 2
5
( ) = 80x
2
approach.
So the x term is ( 2 x ) − 1
3
2 x
(x ) 2 r
2r
= x12− r = x 2r −(12− r ) = x 3r −12 Coefficient of x is 80
12− r
x x
)( x)
(
5
2
(ii) 1 + 3x 2 x −
1
To get the term independent of x, the power of x
must be 0, so 3r − 12 = 0 ⇒ r = 4
( )
5
x −1 term in 2 x − 1 :
Substituting into the general term, x
()
12 2 12− 4 2 4
( ) 5 − 2r = −1
8
4 x x = 495 × 2 8 × x 8 = 126 720
x r=3
( )
5 3
5
() So the x-1 term is ( 2 x ) − 1
2
12 General term is ( kx )
5− r 2
r
= −40 x −1
x 3
x
r
( )( )
5
5− r
x terms in 1 + 3x 2 2 x − 1 are
x terms are x r = x 5− 2r x
x
( ) + 3x ( )
5 5
To get the x-1 term: 1 × x term in 2 x − 1 2
× x −1 term in 2 x − 1
x x
5 − 2r = −1
= 1 × 80 x + 3x 2 × −40 x −1
r = 3
= 80 x − 120 x
5
( ) = 80k x
3
2 2
3 ( kx ) x
2 −1
= −40 x
Coefficient of x is −40
80k 2 = 720
k2 = 9 2 a + ar = 50 ⇒ a(1 + r ) = 50
k = ±3 ar + ar 2 = 30 ⇒ ar (1 + r ) = 30
4 Dividing the equations,
13 The general term for ( 3 − x ) is 3 ( − x )
4−r 4 r
r ar (1 + r ) 30
=
a(1 + r ) 50
5
The general term for ( 2 + ax )5 is 2 5− r ( ax )r r = 3 = 0.6
r 5
In both cases, r = 2 is the value needed to get the x2 term. a = 31.25
S ∞ = 31.25 = 78.125
1 − 0.6
25 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
4 Sequences and series
S30 =
(
10 1 − (1.1)30 ) = 1644.94 L 1 u7 = 400 ⇒ a + 6d = 400
1 − (1.1) S30 = 1800 ⇒ 30 [ 2a + (30 − 1) × d ] = 1800
2
Percentage left = 2000 − 1644.94 × 100% = 17.8% 15[ 2a + 29d ] = 1800 ⇒ 30a + 435d = 1800
2000
2a + 29d = 120
4 (i) (a − x ) 5 Solving simultaneously,
5 5 5
= a 5 + a 4 (−x )1 + a 3 (−x ) 2 + a 2 (−x )3 + d = -40 and a = 640
1 2 3
2 General term for the first expansion is
= a 5 − 5a 4 x + 10a 3 x 2 − 10a 2 x 3 + r
6
( ) 3 6− r 7
(ii) (1 − ax )( a − x )
5
r kx − 3
x
(
= (1 − ax ) a 5 − 5a 4 x + 10a 3 x 2 − 10a 2 x 3 + ) Term independent of x is when r = 3
3
3
6
( )
Terms in x : 3 6− 3 7 3 9 −343
3 kx − 3 = 20k x × 9
−10a 2 x 3 + ( −ax ) 10a 3 x 2 ( ) x x
= −6860k 3
= −10a 2 x 3 − 10a 4 x=3−10a 2 x 3 − 10a 4 x 3
General term for the second expansion is
( ) (
= −10a 2 − 10a 4 x=3 −10a 2 − 10a 4 x 3 ) 8 r
( )
4 8− r m
−10a − 10a 4 = −200
2
−10a 2 − 10a 4 = −200 r kx 4
x
10a 4 + 10a 2 − 200 10
= 0a 4 + 10a 2 − 200 = 0 Term independent of x is when r = 4
4 2
a + a − 20 = 0 a 4 + a 2 − 20 = 0 8 4 8− 4 4
( )
4
m4 = 70k x × m16 = 70k m
4 16 4 4
kx
(a 2
)( ) (
− 4 a 2 + 5 = 0a 2 − 4 a 2 + 5 = 0 )( ) 4 x x
2
a = −5 (ignore) a = −5 (ignore) 2 So 70k 4m 4 = −6860k 3
2 2 k = − 984
a = 4 ⇒ a = ±2 a = 4 ⇒ a = ±2 m
5 (i) (a) a = −15, n = 25 3 a + ar = −3 ⇒ a(1 + r ) = −3
S 25 = 525 ar 5 + ar 6 = 729 ⇒ ar 5 (1 + r ) = 729
⇒ 25 [ 2 × −15 + (25 − 1) × d ] = 525 ar 5 (1 + r ) 729
2 =
25 −30 + 24d = 525 a(1 + r ) −3
2
[ ]
r 5 = −243
−375 + 300d = 525
r = 5 −243 = −3
d=3
a (1 + (−3)) = −3 ⇒ −2a = −3 ⇒ a = 1.5
26 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
5 Functions and transformations
5 Stamp 1: 2 All are functions. (ii) is not one—one; the rest are
one—one.
55 000, 52 600, …
A.P. with a = 55 000, d = −2400 3
So 57 < a < 58
44 43
7 Domain: 0x4
Range: 0 f (x ) 2
27 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
5 Functions and transformations
8 y 2 ff ( x ) = f (ax + b )
2 = a(ax + b) + b
= a 2 x + ab + b
–4 –2 0 1 2 3 4 5 6 x
–2 so a 2 x + ab + b = 9 x − 4
–4
∴ a 2 = 9 ⇒ a = ± 3
–6
When a = 3 3b + b = −4
–8
4b = −4
–10
b = −1
= 3( 4 + 2 ) + 2
7
6 x
5
= 12 + 6 + 2
4 x
3 = 14 + 6
x
2
(ii) gf ( x ) = g(3x + 2)
1
= 4+ 2
–6 –5 –4 –3 –2 –1 0 1 2 x 3x + 2
–1 4(3x + 2) + 2
=
–2 3x + 2
–3 = 12 x + 8 + 2
–4
3x + 2
–5 = 12 x + 10
3x + 2
–6
(iii) ff ( x ) = f (3x + 2)
5.2 Composite functions (Page 43)
= 3(3x + 2) + 2
1 (i) f (−2) = 1 − (−2) = 3 = 9x + 6 + 2
(ii) g(−2) = 1 − (−2) 2 = −3 = 9x + 8
(iii) fg(−2) = f (−3) = 1 − (−3) = 4 9 x + 8 = −3
(iv) gf (−2) = g(3) = 1 − (3) 2 = −8 9 x = −11
(v) fg( x ) = f (1 − x 2 ) = 1 − (1 − x 2 ) = x 2 x = − 11
9
(vi) gf ( x ) = g(1 − x )
(iv) 4 + 2 = kx
= 1 − (1 − x ) 2 x
= 1 − (1 − 2 x + x 2 ) 4 x + 2 = kx 2
= 2x − x 2 0 = kx 2 − 4 x − 2
(vii) ff ( x ) = f (1 − x ) = 1 − (1 − x ) = x For two solutions, b 2 − 4ac > 0
2
(viii) gg( x ) = g(1 − x )
(−4) 2 − 4 × k × −2 > 0
= 1 − (1 − x 2 ) 2
16 + 8k > 0
= 1 − (1 − 2 x 2 + x 4 )
8k > −16
= 2x 2 − x 4
k > −2
28 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
5 Functions and transformations
4 g(1) = −1 ⇒ b − a = −1 (ii) f −1 ( x ) = 5 − x
gg(1) = 5 ⇒ g(−1) = 5 ⇒ b + a = 5 y
6
Solving simultaneously gives
a = 3, b = 2 5
4
5 (i) fg( x ) = f ( x 2 + 4 x ) 3
( 2
= 3 (x + 4x ) + 2 ) 2
1
= 3x 2 + 12 x + 6
3x 2 + 12 x + 6 x 2 + 4 x –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 x
–1
2x 2 + 8x + 6 0 –2
2
x + 4x + 3 0 –3
–4
( x + 3)( x + 1) 0
–5
x −3 or x −1
–6
(ii) gf ( x ) = g ( 3( x + 2))
(iii) f ( x ) = 1 − 5 x = −5 x + 1
= g ( 3x + 6 )
f −1 ( x ) = x − 1 = 1 − x
= ( 3x + 6 ) + 4 ( 3x + 6 )
2 −5 5
y
= 9 x 2 + 36 x + 36 + 12 x + 24
6
= 9 x 2 + 48 x + 60 5
4
gf ( x ) 45
3
9 x 2 + 48 x + 60 45 2
2
9 x + 48 x + 15 0 1
2
3x + 16 x + 5 0 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 x
–1
(3x + 1)( x + 5) 0
–2
−5 x − 1 –3
3
–4
5.3 Inverse functions (Page 45) –5
–6
1 (i) f −1 ( x ) = x − 1
2 −1
(iv) f ( x ) = 2( x + 1) = 2 x + 2
y y
6 6
5 5
4
4
3
3
2
2
1
1
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 x
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 x –1
–1 –2
–2 –3
–3 –4
–4 –5
–5 –6
–6
29 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
5 Functions and transformations
2 (i) k = 0 Domain f −1 ( x ): x −4
y
6
Range f −1 ( x ): f −1 ( x ) 2
5 (iii) k = −1
4
3 y = x 2 + 2 x − 4 = ( x + 1) 2 − 5
2 y
1 6
5
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 x
–1 4
–2 3
–3 2
–4 1
–5
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 x
–6 –1
Inverse is x = y 2 − 4 –2
–3
x + 4 = y2
–4
x+4 = y –5
−1 –6
f (x ) = x + 4
Domain f ( x ): x0 Inverse is x = ( y + 1) 2 − 5
Range f ( x ): f ( x ) −4 x + 5 = ( y + 1) 2
−1
Domain f ( x ): x −4 x + 5 = y +1
−1 −1
Range f ( x ) : f (x ) 0 x + 5 −1 = y
(ii) k = 2 f −1 ( x ) = x + 5 − 1
y = x 2 − 4 x = ( x − 2) 2 − 4 Domain f ( x ): x −1
y Range f ( x ): f ( x ) −5
6
−1
5 Domain f ( x ): x −5
4 Range f −1 ( x ): f −1 ( x ) −1
3
(iv) k = −2
2
1 y = 2 x 2 + 8 x + 7 = 2( x + 2) 2 − 1
–6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 x y
–1 8
–2 7
–3 6
–4 5
–5 4
–6 3
2
Inverse is x = ( y − 2) 2 − 4 1
2
x + 4 = ( y − 2) –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 x
–1
x+4 = y−2
–2
x+4+2= y –3
f −1 ( x ) = x + 4 + 2 –4
Domain f ( x ): x2
Range f ( x ): f ( x ) −4
30 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
5 Functions and transformations
Inverse is x = 2( y + 2) 2 − 1 5 k = π
x + 1 = 2( y + 2) 2 y
x + 1 = ( y + 2) 2 1
2
x +1 = y + 2
2
x +1 − 2 = y
2
f −1 ( x ) = x + 1 − 2 0 p p 3p 2p x
2 2 2
Domain f ( x ): x −2
Range f ( x ): f ( x ) −1
−1
Domain f ( x ): x −1
–1
Range f −1 ( x ): f −1 ( x ) −2
( 2 ) − 54
2
3 g( x ) = x 2 + 3x + 1 = x + 3 5.4 Transformations (Page 48)
so x − 3 means g will be one–to–one 1
Transformation Detail
2
The largest possible value of k is − 3 For y = f(x) + b, the effect • If b > 0 it moves
2 of b is to translate the
y upwards.
6 graph of y = f(x) vertically • If b < 0 it moves
31 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
5 Functions and transformations
–5 –4 –3 –2 –1 0 1 2 3 4 x x
–1 –5 –4 –3 –2 –1 0 1 2 3 4 5
–1
–2
y
5 –3
3 (i)
4 –4
3 –5
y = f(–x) y = f(x)
2 (iv) f(x)
1 5
4
–4 –3 –2 –1 0 1 2 3 4 x
–1 3
–2 2
y = –f(–x) y = –f(x)
–3 1
–4 x
–5 –4 –3 –2 –1 0 1 2 3 4 5
–5 –1
–2
0
(ii) Translating by is the same as y = f(x) + 2 –3
2
–4
Equation is y = ( x − 1) 2 + 2 –5
2
y = x − 2x + 1 + 2
(v) f(x)
y = x 2 − 2x + 3 5
4
4 (i) f(x)
3
5
2
4
1
3
x
2 –5 –4 –3 –2 –1 0 1 2 3 4 5
–1
1
–2
x
–5 –4 –3 –2 –1 0 1 2 3 4 5 –3
–1
–4
–2
–5
–3
–4 (vi)
f(x)
–5 5
(ii) f(x) 4
5
3
4
2
3
1
2
x
1 –5 –4 –3 –2 –1 0 1 2 3 4 5
–1
x
–5 –4 –3 –2 –1 0 1 2 3 4 5 –2
–1
–3
–2
–4
–3
–5
–4
–5
32 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
5 Functions and transformations
) (( ))
x+2 +2
(
f(x)
x + 2 4x − 1
2 (i) ff ( x ) = f = 2
4x − 1
4 x + 2 −1
4x − 1 1
x + 2 + 2(4 xx−+1)2 + 2(4 x − 1) 0 x
–7 –6 –5 –4 –3 –2 –1 1
= 4x − 1 4x −1 –1
4( x + 2) −=(44(
x x− +
1)2) − (4 x − 1) –2
4x − 1 4x −1 –3
9x x + 2 + 8x − 2
= –4
= 4x − 1 4x + 8 − 4x +1
9 –5
4 x − 1 = 9x –6
9
= 9x × 4 x − 1
4 x − 1 =9x –7
=x
33 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
5 Functions and transformations
(ii) f −1 ( x ) is x = 2 − 3 y ⇒ 3 y = 2 − x ⇒ y = 2 − x
f(x)
3 8
6
so f −1 ( x ) = 2 − x
3 4
y+2 2
g −1 ( x ) is x =
2y + 7
x
–8 –6 –4 –2 0 2 4 6 8
x (2 y + 7) = y + 2 –2
2 xy + 7 x = y + 2 –4
2 xy − y = 2 − 7 x –6
–8
y (2 x − 1) = 2 − 7 x
−1
y = 2 − 7x 7 Translation by is the equivalent of
2x − 1 2
g (x ) = − 7x
−1 2
2x − 1 (
f ( x + 1) + 2 = ( x + 1) + 1 + 2
3
)
−1 2 − 7x
(iii) g ( x ) = x − 4 ⇒ 2 x − 1 = x − 4
( 3
= x + 3x + 3x + 1 + 1 + 2 2
)
3 2
2 − 7 x = ( x − 4)(2 x − 1) = x + 3x + 3x + 4
34 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
5 Functions and transformations
Past exam questions (Page 51) 3 (i) Since g is defined for x −1, the domain of f
35 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
5 Functions and transformations
2 3 x +1 + 3 x −1 = a3 x
x +1 x −1
a = 3 + 3 x −1 = 3 (3 + 3 ) = 3 + 3 −1 = 10
3 x
3 x 3
0 2 4 6 x
36 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
6 Differentiation
6 Differentiation 5 f ( x ) = x 3 + x 2 + 2 x − 1 ⇒ f ′( x ) = 3x 2 + 2 x + 2
3x 2 + 2 x + 2 = 3
6.1 Basic differentiation (Page 53)
dy 3x 2 + 2 x − 1 = 0
1 (i) y = 10 x 2 − 3x + 1 ⇒ = 20 x − 3
dx
(3x − 1)( x + 1) = 0
dy
(ii) y = 4 + x − 5 x 4 ⇒ = 1 − 20 x 3
dx x = 1 or − 1
3
() () ()
dy
(iii) y = 52 = 5 x −2 ⇒ = −10 x −3 = − 103
3 2
x dx x y = 1 + 1 + 2 × 1 −1 = − 5
3 3 3 27
3 dy 6 x 2
(iv) y = 2 x ⇒ = = 2x 2 y = (−1)3 + (−1) 2 + 2 × (−1) − 1 = −3
3 dx 3
4 x
(v) y = − = 4 x − x
x 4
−1 1
4
1
( 5
)
Points are 3 , − 27 and (−1, − 3)
dy f(x)
⇒ = −4 x −2 − 1 = − 42 − 1 7
dx 4 x 4 6
−3
x dy −3x −4 5
(vi) y = 1 3 = ⇒ = = − 34 4
4x 4 dx 4 4x 3
1
2
(vii) y = 2 x − 3x = 2 x 2 − 3x 1
dy −1
⇒ = x 2 −3= 1 −3 –2 –1 0
–1 1 2 3 x
dx x –2
−1 1 –3
(viii) y = 3 x + 2 = x 3 + 2 x –4
3x 3 –5
dy 1 − 23 −2 x −2 –6
⇒ = x + = 31 2 − 2 2 –7
dx 3 3 3 x 3x –8
2 (i) f ( x ) = 2 x + 1 2x 1
2 = 2 + 2 = 2x
−1
+ x −2 6 (i) Chord AE BE CE DE
x x x
Gradient of chord 6 7 7.4 7.9
f ′( x ) = −2 x −2 − 2 x −3 = − 22 − 23
x x (ii) f ′(2) = 8
5
3 5
(ii) f ( x ) = 6 x = 6x 3 6.2 Tangents and normals (Page 55)
2
f ′( x ) = 6 × 5 x 3 = 10 3 x 2 1
dy
= 8x 3 + 2x
3 dx
1 dy
3 f ( x ) = 6 + 5 x = 6 x 2 + 5 x
−
At x = −1, = 8 × (−1)3 + 2 × (−1) = −10
x dx
−3 Equation of the tangent:
f ′( x ) = −3x 2 +5 = − 3 +5
x y = mx + c ⇒ 2 = −10 × −1 + c ⇒ c = −8
f ′(9)= − 3 + 5 = 4 y = −10 x − 8
9
1
2 g( x ) = 4 − 3 = 4 x 2 − 3
−
dy
4 y = 3 − 8 x − x 2 ⇒ = −8 − 2 x x
dx
−8 − 2 x = 2 g(4) = 4 − 3 = −1
4
−2 x = 10
−3
x = −5 g ′( x ) = −2 x=− 23
2
x
y = 3 − 8 × −5 − (−5) 2 = 18
Point is ( −5, 18 ) g ′(4) = − 2 3 = − 1
4 4
So the gradient of the normal is 4.
Equation is
y = mx + c ⇒ −1 = 4 × 4 + c ⇒ c = −17
y = 4 x − 17
37 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
6 Differentiation
g(x)
9 4 y = x + k = x + kx −1
x
8
7 dy
6 = 1 − kx −2 = 1 − k2
dx x
5
4 Gradient of the tangent at x = −1 is
3
2 1− k 2 = 1− k
1 (−1)
–4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 11 12 x Gradient of the normal is − 1
–1 1− k
–2
–3 − 1 1
= ⇒ −4 = 1 − k ⇒ k = 5
–4 1− k 4
–5
–6 6.3 Maximum and minimum points and
increasing and decreasing functions (Page 56)
3 (i) h( x ) = 6 x − x 2
1 (i) y = 2 x 3 − 3x 2
h ′( x ) = 6 − 2 x
dy
h ′(2) = 6 − 2 × 2 = 2 = 6x 2 − 6x
dx
y = mx + c ⇒ 8 = 2 × 2 + c ⇒ c = 4 Stationary points when
y = 2x + 4 ⇒ 2x − y + 4 = 0
6x 2 − 6x = 0
(ii) Gradient of normal is − 1 6 x ( x − 1) = 0
2
Equation of normal is x = 0 or 1
y = 0 or − 1
y = mx + c ⇒ 8 = − 1 × 2 + c ⇒ c = 9
2 (0, 0) or (1, − 1)
1
y = − x +9 y
2
− 1 x + 9 = 6x − x 2
2
1
− x + 18 = 12 x − 2 x 2
2 x 2 − 13x + 18 = 0
(2 x − 9)( x − 2) = 0 –2 –1 0 1 2 3 x
x = 9 or 2
2
–1
So the y-coordinate of Q is
−1 × 9 +9= 63
2 2 4
( )
–2
1
Q is 4 , 6 3
2 4
d2y
= 12 x − 6
y dx 2
12 d2y
11 When x = 0, < 0 so ( 0, 0 ) is a local maximum
10 dx 2
9 P d2y
8 When x = 1, > 0 so (1, − 1) is a local minimum
7 Q dx 2
6
5 (ii) f ( x ) = 4 x + 1 = 4 x + x −1
4
x
3
2 f ′( x ) = 4 − x −2 = 4 − 12
1
x
For stationary points,
–5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 x
–1
–2 4 − 12 = 0 ⇒ 4 = 12 ⇒ x 2 = 1
x x 4
–3
x = 1 or − 1
2 2
38 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
6 Differentiation
2 ()
f 1 = 4×1 + 1 = 4
2 1
d2 y
dx 2
= −
4
3
4
5
1 x −2 + 3 x −2 = − 1 + 3
4 x3 4 x5
2
( )
f − = 4 × − + 1 = −4
1
2
1
2 −1 When x = 1,
d2 y 1
= > 0 so x = 1 is a local min.
dx 2 2
2
1
( ) (
Points are , 4 and − 1 , − 4
2 2 ) 2 g( x ) = 3x 2 − 2 x 3
y g ′( x ) = 6 x − 6 x 2 = 6 x (1 − x )
x
f ′′ 1
2() ( ) 1
> 0 ⇒ , 4 is a local minimum
2
–1
( ) ( )
f ′′ − 1 < 0 ⇒ − 1 , − 4 is a local maximum
2 2
dy
1 1
1 = x 2 + x − 2 (note that x ≠ 0) 3 y = − x + x 2 − x 3 ⇒ = −1 + 2 x − 3x 2
(iii) y = x + dx
x
dy 1 − 12 1 − 32 Decreasing when −1 + 2 x − 3x 2 < 0
= x − x = 1 − 1 3
dx 2 2 2 x 2 x For this quadratic,
1 − 1 3 = 0 ⇒ 1 = 1 3 b 2 − 4ac = 2 2 − 4 × −3 × −1 = −8
2 x 2 x 2 x 2 x
Since the discriminant is < 0, there are no solutions
⇒ 2 x3 =⇒ 2 2x x 3 = 2 x when −1 + 2 x − 3x 2 = 0 so −1 + 2 x − 3x 2 is always < 0,
⇒ x3 − ⇒ x = 0x 3 − x = 0 as shown in the diagram.
x = 1 (x ≠ x0)= 1 (x ≠ 0) y
2
y = 1 + 1 y == 2 1 + 1 = 2
1 1
Point is (1, Point
2 ) is (1, 2 )
1
y
7
6 x
–1 0 1 2
5
4 –1
3
2
–3 –2 –1 0 1 2 3 4 5 6 7 8 x
39 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
6 Differentiation
4 (i) y = 2 x 3 − 3x 2 1
(iii) y = 3 + 4 x = (3 + 4 x ) 2
y
dy 1 1
⇒ = ( 3 + 4 x )− 2 × 4
5 dx 2
4 2
=
3 3 + 4x
2 2 = 2( x + 3)−1
(iv) y =
1 x +3
dy
–1 0 1 2 x ⇒ = −2( x + 3)−2 = − 2 2
–1 dx ( x + 3)
–2 4
2 = 4 (1 − 2 x )
−2
(v) y =
–3 (1 − 2x )
–4 dy
–5 ⇒ = −8(1 − 2 x )−3 × −2 = 16 3
dx (1 − 2x )
(ii) g( x ) = 3x 2 − 2 x 3
( 6)
4
2 f ( x ) = 3 1 − x
y
f (12) = 3(1 − 12 ) = 3
4
4
6
f ′( x ) = 12(1 − x ) × − 1 = −2(1 − x )
3 3
6 6 6
2
f ′(12) = −2(1 − 12 ) = 2
3
6
–2 –1 0 1 2 x
Equation of the tangent is
–2 y = mx + c ⇒ 3 = 2 × 12 + c ⇒ c = −21
y = 2 x − 21
–4
3 y =
8 = 8( x 2 − 4 x ) −1
5 (i) Stationary point at x = 1 means that f ′(1) = 0 x 2 − 4x
3 × 12 + k × 1 − 8 = 0 dy
= −8( x 2 − 4 x ) −2 × ( 2 x − 4 )
dx
3+ k − 8 = 0
−8 ( 2 x − 4 )
k −5 = 0 = 2
( x − 4 x )2
k=5 −8 ( 2 x − 4 )
(ii) Stationary points when 3x 2 + 5 x − 8 = 0 Stationary point when 2 =0
( x − 4 x )2
(3x + 8)( x − 1) = 0 (3x + 8)( x − 1) = 0
−8( 2 x − 4 ) = 0
x = − 8 or 1 x = − 8 or 1
3 3 x=2
The other stationary point is when x = − 8 = −2 2 y= 8 = −2
3 3 (2) 2 − 4 × 2
(iii) f ′( x ) = 3x 2 + 5 x − 8 ⇒ f ′′( x ) = 6 x + 5
Point is ( 2, − 2 )
f ′′(1) = 6 × 1 + 5 = 11 > 0
y
⇒ x = 1 is a minimum
( ) ( )
f ′′ − 8 = 6 × − 8 + 5 = −11 < 0
3 3
10
⇒ x = − 8 is a maximum 5
3
40 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
6 Differentiation
4 g ′( x ) = 9( x + 2 )
2
So maximum point A is ( 0, − 2 ), minimum point
B is ( 2, 6 ).
Since g ′( x ) > 0 for all values of x, the curve is always
increasing so there are no stationary points. Hence y
the function is one–to–one so it has an inverse. 9
8
7
The graphs of y = g( x ) for x > −2 and its inverse are
6
shown below. 5 B
4
y 3
3 2
1
2
–2 –1 0 1 2 3 x
1 –1
–2 A
–3
–6 –5 –4 –3 –2 –1 0 1 2 3 x
–4
–1 –5
–6
–2
–3
6.5 Applications (Page 59)
–4
1 Let the two numbers be x and y.
–5
x + y = 18 ⇒ y = 18 – x
P = xy = x (18 − x ) = 18 x − x 2
dy
5 (i) = −2( x − 1)−2 + 2 = − 2 2 + 2 dP = 18 − 2 x
dx ( x − 1) dx
d2y Maximum when dP = 0
= 4( x − 1)−3 = 4 3 dx
dx 2 ( x − 1) 18 − 2 x = 0
dy x =9
(ii) Stationary points when
=0
dx y = 18 − 9 = 9
− 2 2 +2=0⇒ 2= 2 2 Maximum value of P is 9 × 9 = 81
( x − 1) ( x − 1) 36 − 6 x = 9 − 1.5 x
2 6 x + 4 y = 36 ⇒ y =
2
2 ( x − 1) = 2 4
A = xy = x (9 − 1.5 x ) = 9 x − 1.5 x 2
( x − 1) 2 = 1
dA = 9 − 3x
x − 1 = ±1 dx
x = 0 or 2
Maximum when dA = 0
2 + 2 × 0 = −2 dx
When x = 0, y =
0 −1 9 − 3x = 0 ⇒ x = 3 m
When x = 2, y = 2 + 2 × 2 = 6 y = 9 − 1.5 × 3 = 4.5 m
2 −1
Dimensions are 3 m by 4.5 m
When x = 0,
2
3 (i) V = πr 2h = 5000 ⇒ h = 5000
d y = 4 < 0 ⇒ x = 0 is a maximum 2
πr
dx 2 ( 0 − 1) 3
S = 2πr 2 + 2πrh
When x = 2,
= 2πr 2 + 2πr 5000
d2y
= 4 > 0 ⇒ x = 2 is a minimum πr 2
dx 2 ( 2 − 1)3 10 000
= 2πr 2 +
r
41 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
6 Differentiation
3
4πr = 10 000 dC = 96 x − 625 x −2 = 96 x − 625
10 000 dx x2
r=3 = 9.27 cm
4π Minimum when dC = 0
(iii)
d 2 S = 4π + 20 000r −3 = 4π + 20 000 dx
dr 2 r3
96 x − 625 =0
2 20 000 x2
When r = 9.27, d S2 = 4π + >0
dr 9.27 3 96 x 3 − 625 = 0
So r = 9.27 is a minimum value 96 x 3 = 625
4 Let the length of the square end be x. x 3 = 625
96
Let the length be y.
4x + y = 120 so y = 120 – 4x x = 3 625 = 1.87 m (3 s.f.)
96
V = x2y 2
When x = 1.87, d C2 = 96 + 1250 >0
= x 2 (120 − 4 x ) dx x3
= 120 x 2 − 4 x 3 So x = 1.87 is a minimum.
Dimensions are
dV = 240 x − 12 x 2
dx length = 1.87 m, width = 7.47 m, height = 3.56 m
Maximum volume when dV = 0
dx
6.6 Rates of change (Page 61)
240 x − 12 x 2 = 0
1 Let the length of the side of the square be x.
12 x (20 − x ) = 0
Let the area of the square be A.
x = 0 cm or 20 cm
Since x ≠ 0, x = 20 cm A = x 2 ⇒ dA = 2 x ⇒ dx = 1
dx dA 2 x
y = 120 − 4 × 20 = 40 cm
dx = dA × dx
Volume is 16 000 cm3 dt dt dA
5 = 8× 1
2x
y
= 8× 1
2 × 20
= 0.2 cm/s
2 V = πr 2h = π × 1.2 2 × h = 1.44πh
4x dV = 1.44π ⇒ dh = 1
dh dV 1.44π
x dh = dV × dh
dt dt dV
V = 4x 2 y
= 0.5 × 1
1.44π
4 x 2 y = 50 ⇒ y = 502 = 0.111 m/min (3 s.f.)
4x
= 11.1 cm/min (3 s.f.)
42 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
1 6 Differentiation
= 4000 ×
45h + 3600
dy = 4000 × 1
3 = 10(0.2 x − 1)9 × 0.2 = 2(0.2 x − 1)9 45 × 10.4... + 3600
dx
= 0.983 cm/min
dy dx dy
= ×
dt dt dx
Further practice (Page 62)
= 0.08 × 2(0.2 x − 1)9
dy
= 0.08 × 2(0.2 × 10 − 1)9 1 You want to find the points where = −1.
dx
= 0.16 units/s dy
= x2 + x −3
dx
4 x = 200θ ⇒ dx = 200 ⇒ dθ = 1 so x 2 + x − 3 = −1
dθ dx 200
dθ = dx × dθ x2 + x −2= 0
dt dt dx ( x − 1)( x + 2) = 0
= 10 × 1 x = 1 or x = −2
200
= 0.05 rad/s Substitute into the original equation to find the
y values:
5 (i) Using similar triangles:
y = 1 × 13 + 1 × 12 − 3 × 1 = − 13
3 2 6
y = 1 × (−2)3 + 1 × (−2) 2 − 3 × (−2) = 16
3 2 3
60 cm
120 cm
(
The points are 1, − 13 and −2,
6 ) ( 16
3 )
80 cm
xx 2 (i) y = 12 + x = x −2 + x
h
x
30 cm dy
y = −2 x −3 + 1 = − 23 + 1
dx x
dy
When x = 1, = − 23 + 1 = −1
y + 80 y dx 1
= ⇒ y = 80 cm
60 30 Equation of tangent is
h + 80 = 80 ⇒ 3h + 240 = 8 x ⇒ x = 3 h + 30
y = mx + c ⇒ 2 = −1 × 1 + c ⇒ c = 3
x 30 8
y = −x + 3
Area of trapezium cross section
x-intercept is 0 = -x + 3 ⇒ x = 3
=
( 8 )
3 h + 30 + 30
×h=
3 h 2 + 60h
8 = 3 h 2 + 30h
So Q is (3, 0)
2 2 16 y-intercept is y = 0 + 3 ⇒ y = 3
Volume = 120 × 3 h 2 + 30h
16 ( )
So R is (0, 3)
RQ = 3 2 + 3 2 = 18 = 4.24 (3 s.f.)
45
= h + 3600h cm3
2
2 (ii) m(tangent) = −1 so m(normal) = 1
45 h 2 + 3600h = 40 000 Equation of normal:
(ii)
2 2 = 1 × 1 + c ⇒ c = 1 so equation is y = x + 1
45h 2 + 7200h − 80 000 = 0 1 + x = x +1
Using the quadratic formula, x2
h = 10.4 cm or − 170.4 cm 1 =1
Since h cannot be negative, h = 10.4 cm. x2
(iii) 4 litres/min = 4000 cm3/min
x2 =1
x = ±1
V = 45 h 2 + 3600h ⇒ dV = 45h + 3600
2 dh x = 1 ⇒ y = 2, x = −1 ⇒ y = 0
⇒ dh = 1 So S is (−1, 0)
dV 45h + 3600
dh = dV × dh
dt dt dV
1
= 4000 ×
45h + 3600
= 4000 × 1
43 Cambridge International AS & A Level 45 × 10.4...
Mathematics + 3600
– Pure Mathematics 1 Question & Workbook © Greg Port 2018
= 0.983 cm/min
6 Differentiation
y y
4 4
2
3
0
2 –3 –2 –1 –2 1 2 3 x
–4
1 –6
–8
–10
x –12
–4 –3 –2 –1 0 1 2 3 4 –14
–1
–2
5 f ′( x ) = 12 x − 3x 2 so the function is increasing when
–3
–4 12 x − 3x 2 > 0
3x (4 − x ) > 0
3 f ( x ) = x + 4 x −1 so f ′( x ) = 1 − 4 x −2 = 1 − 42
x From the graph, the solutions to 3x (4 − x ) > 0 are
4
f ′(1) = 1 − 2 = −3 so the gradient of the tangent is −3 the values of x where the graph is above the x-axis.
1 y
4
f (1) = 1 + = 5 so the point is (1, 5) 15
1
y = mx + c ⇒ 5 = −3 × 1 + c ⇒ c = 8 10
The equation of the tangent is
5
y = −3x + 8 or 3x + y − 8 = 0
The gradient of the normal is 1 –2 0 2 4 x
3
y = mx + c ⇒ 5 = × 1 + c ⇒ c = 14
1
–5
3 3
The equation of the normal is –10
y = 1 x + 14 or x − 3 y + 14 = 0
3 3 –15
dy
4 The stationary points are when =0 So the function is increasing for 0 < x < 4
dx
The graph above is the graph of the derivative.
dy
= 4 x 3 − 16 x so solve 4 x 3 − 16 x = 0 The graph of f ( x ) is
dx
y
4 x ( x 2 − 4) = 0 ⇒ 4 x = 0 or x 2 − 4 = 0
10
x = 0 or 2 or − 2
9
Finding the y-values, 8
4
y = 0 −8×0 +2= 2 2 7
6
y = 2 4 − 8 × 2 2 + 2 = −14 5
4 2
y = (−2) − 8 × (−2) + 2 = −14 4
3
The stationary points are (0, 2), (2, −14) and (−2, −14)
2
d2y 1
= 12 x 2 − 16
dx 2
d2y –7 –6 –5 –4 –3 –2 –1 0 1 2 3 4 5 6 7 8 9 10 x
At x = 0, 2 = −16 so (0, 2) is a maximum
dx
d2y dy
At x = 2, = 12 × (2) 2 − 16 = 32 6 (i) y = (3x + 2)8 ⇒ = 8(3x + 2)7 × 3
dx 2 dx
= 24(3x + 2)7
so (2, −14) is a minimum
1
d2y (ii) y = 3 1 − 9 x = (1 − 9 x ) 3
At x = −2, 2 = 12 × (−2) 2 − 16 = 32
dx dy 1 2
⇒ = (1 − 9 x ) − 3 × −9
so (−2, −14) is a minimum dx 3
=− 3
3 (1 − 9 x ) 2
44 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
6 Differentiation
dA = 400 − 4πr
dr
45 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
6 Differentiation
2 3 ( )
12 (i) Volume = πr 2h + 1 4 πr 3 = πr 2h + 2 πr 3
3
dy
dx
= −12(2 − x )−2 × −1
πr 2h + 2 πr 3 = 100 = 12 2
3 (2 − x )
πr 2h = 100 − 2 πr 3 dy
3
When x = 6, = 12 = 3
dx (2 − 6) 2 4
100 − 2 πr 3 2 πr 3
h= 3 = 100 − 3 Equation of the tangent is
πr 2 πr 2 πr 2
y = mx + c
= 1002 − 2r 0 = 3 ×6+c ⇒ c = −9
πr 3 4 2
3 9
(
(ii) S = 2πrh + πr 2 + 1 4πr 2
2 ) y = x − or 3x − 4 y − 18 = 0
4 2
( )
12 = 3 units/s (0.12 units/s)
= 0.04 ×
= 200 + 3π − 4π r 2 (2 − 4) 2 25
r 3
= 200 5π
+ r 2 2 (i) y = 1 − 9
r 3 x −1 x − 5
6
Past exam questions (Page 64)
4
1 (i) y = 3 + 12
2− x
2
Curve crosses x-axis when
3 + 12 = 0 0
2− x 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 x
3(2 − x ) + 12 = 0 –2
6 − 3 x + 12 = 0
x=6 –4
y = 3 + 12(2 − x ) −1
46 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
6 Differentiation
(ii)
dy
=− 1 2 + 9 2 =0 (ii) dS = 12 x − 768 = 0
dx ( x − 1) ( x − 5) dx x2
9 12 x 3 − 768 = 0
= 1
( x − 5) 2 ( x − 1) 2
x 3 = 768 = 64
9( x − 1) 2 = ( x − 5) 2 12
x = 4 cm
9 x 2 − 18 x + 9 = x 2 − 10x + 25
d 2 S = 12 + 1536
2
8 x − 8 x − 16 = 0 dx 2 x3
2
When x = 4, d S2 = 12 + 1536
2
x −x−2=0 >0
dx 43
( x + 1)( x − 2) = 0
So x = 4 is a minimum
x = −1 or 2
−1
2
d y 5 (i) y = 12(3 − 2 x )
= −2( x − 1) −3 − 18( x − 5) −3
dx 2 dy
= −12(3 − 2 x ) −2 × −2
2 − 18 dx
=
( x − 1)3 ( x − 5)3 = 24
d2 y (3 − 2 x ) 2
When x = −1, = − 1 < 0 ⇒ maximum
dx 2 6 dx dy
(ii) At A, = 0.15, = 0.4
d2 y 8 dt dt
When x = 2, = > 0 ⇒ minimum
dx 2 3 dy dy dt
= ×
dx dt dx
3 f ( x ) = 2 x + ( x + 1)−2 24 = 0.4 × 1
2 (3 − 2 x ) 2 0.15
f ′ ( x ) = 2 − 2( x + 1) −3 = 2 −
( x + 1)3 24
=8
f ″ ( x ) = 6( x + 1) −4 = 6 (3 − 2 x ) 2 3
( x + 1) 4 72 = 8(3 − 2 x ) 2
f ′ (0) = 2 − 2(0 + 1) −3 = 2 − 2 =0
9 = (3 − 2 x ) 2
(0 + 1)3
⇒ x = 0 is a stationary point ± 3 = 3 − 2x
x = 0 or 3
f ″ (0) = 6(0 + 1) −4 = 6 >0
(0 + 1) 4 6 y + 3 x = 9 ⇒ y = 9 − 3 x
⇒ x = 0 is a minimum u = x 2 y = x 2 ( 9 − 3x ) = 9 x 2 − 3x 3
du = 18 x − 9 x 2
4 (i) Let the height of the cuboid be h cm.
dx
V = 3x 2h = 288 18 x − 9 x 2 = 0
⇒ h = 2882 9 x (2 − x ) = 0
3x x = 0 or 2
S = 2(3x 2 ) + 2 xh + 2(3xh) Since x ≠ 0, x = 2
2
= 6 x + 8 xh
u = 9 × 2 2 − 3 × 2 3 = 12
= 6 x 2 + 8 x 2882 d 2u = 18 − 18 x
3x
dx 2
= 6 x 2 + 768 2
x When x = 2, d u2 = 18 − 18 × 2 < 0
dx
So u = 12 is a maximum
47 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
6 Differentiation
2 −1
7 yy =
= kk 2 (( xx + 2)−1 +
+ 2) + xx 2 SP = x 2 + 10 2 so cos α = x
dyy = − kk 2 + 1
d 2 x 2 + 10 2
= − 2 +1
dxx
d (( xx +
+ 2)
2) 2 PW = (30 − x ) 2 + 5 2
22
− kk 2 +
− + 11 =
= 00 = (900 − 60 x + x 2 ) + 25
(( xx +
+ 2)
2) 2
2 2
= 925 − 60 x + x 2
−
−kk 2 +
+ (( xx + 2) 2 =
+ 2) = 00
22 cos β = 30 − x
+ 2)
(( xx + 2) = = kk 22
925 − 60 x + x 2
xx +
+ 22 ==± ±kk 2 2 2
xx ==− −22 ±± kk Time = x + 10 + 925 − 60 x + x
10 5
2
d 2 yy = 22kk 2
d 2
x 2 + 10 2 + 2 925 − 60 x + x 2
2 = 3 =
+ 2)
dxx 2 (( xx +
d 2)3 10
2
d 2 yy = 22kk 2 = 22 > 0 ⇒ minimum
d 2
1 2 −1
When x = −2 + k
When x = −2 + k , , 2 = 3 = k > 0 ⇒ minimum
dxx 2 kk 3 k
d 1 2 ( )
x + 100 2 × 2 x +
T′ =
d 22 y 2k 22 2 10 1
=−
When xx =
When − kk ,, d y2 =
−22 −
d x
= 2k 3 =
− k
= −2k <
< 00 ⇒ maximum
⇒ maximum 2 ( )
2 × 1 925 − 60 x + x 2 − 2 × ( 2 x − 60 )
dx 2
−k −k
3
2( x − 30)
Stretch and challenge (page 65) = 1 2x + 2
10 x + 100 925 − 60 x + x
1 (i) g ′( x ) = k − 2 x so if the gradient of the normal is
30 − x
1 , the gradient of the tangent is −2 = 1 2x −2
2 10 x + 100 2
925 − 60 x + x
k − 2 x = −2 = 1 [ cosα − 2cos β ]
10
k − 2 × 2 = −2
k − 4 = −2 T′ = 0 when 1 [ cosα − 2cos β ] = 0
10
k=2 cosα = 2cos β
(ii) The y-value when x = 2 is g(2) = 2 × 2 − 2 2 = 0
3 (i) V = πr 2h
Equation of the normal is
( ) ⇒r
2 2
2 2 h 2
= R2 − h
y = mx + c ⇒ 0 = 1 × 2 + c ⇒ c = −1 so y = 1 x − 1 R = r + 2 4
2 2
2
To find the other point, solve simultaneously. V = π R2 − h h
1 x − 1 = 2x − x 2 4
2 3
= πR 2 h − πh
x − 2 = 4 x − 2x 2 4
2
2 x − 3x − 2 = 0 dV = πR 2 − 3πh 2
dh 4
(2 x + 1)( x − 2) = 0
dV = 0 when πR 2 − 3πh 2 = 0
x = − 1 or 2 dh 4
2 2
So the other point is x = − 1 πR 2 = 3πh
2 4
( ) ( )
2
2 4πR = h 2
g − 1 = 2 × − 1 − − 1 = −1 1 3π
2 2 2 4
The coordinates of the point P are − 1 , − 1 1
y
2 4 ( )
h = 2R
3
( ) =R −R
3 2
2R
2 2 2 2
2 h 3
1
2
r =R − =R −2 2
= 2R
4 4 3 3
–2 –1 0 1 2 3 4 5 6x r = 2R
–1 3
–2
–3
–4
–5
48 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
7 Integration
( )( ) L = ( 40 − x ) + 2 x 2 + 900
2
3 2 R 2R
(ii) Vcylinder 2 2 3 3
= πr h = 3r h3 = = ( 40 − 17.3...) + 2 (17.3...) 2 + 900
Vsphere 4 πR 3 4 R 4R 3
3 = 91.9615... km
=
2
3 2R 2R
3 3 ( ) = 92 km (3 s.f.)
4R 3
4R 3 7 Integration
= 33 7.1 Reversing differentiation (Page 66)
4R
= 1 2x 4 + x 2 + c = x 4 + x 2 + c
∫
3
3 1 (i) (2 x + x ) d x =
4 2 2 2
The ratio is 1: 3 or 3:3 2
(ii) ∫ (1 + 3x ) dx = x + 3x + c
2 2
4 AE + 30 = 50 ⇒ AE = 40 km 2 2
−2
B (iii) ∫ x43 d x = 4 ∫ x −3 d x = 4 x−2 + c = − x22 + c
4
1 9 3 x4
∫6 ∫
3
50 km (iv) 3 x dx = 6 x 3 dx =6x +c = +c
30 km 4 2
3
1
∫( )
1
2 dx = 2 x − 2 dx = 2 x 2 + c = 4 x + c
A
40 − x D x E
2 (i)
x ∫ 1
2
3
30 km
∫3
(ii) 10 x dx = 10 ∫ x 2 dx
50 km 5
= 10 x + c
2
5
C
2
= 4 x5 + c
2 2 2 2
In BDE, BD = x + 30 ⇒ BD = x + 900
2 2
Total length of roads, L, is 3 ∫ 5xx 4−1 dx = ∫ 5xx4 − x14 dx
L = AD + BD + CD
= ∫ (5 x −2 − x −4 ) dx
= ( 40 − x ) + x 2 + 900 + x 2 + 900
−1 −3
= ( 40 − x ) + 2 x 2 + 900 = 5x − x + c
−1 −3
= − 5 + 13 +c
1
(
= ( 40 − x ) + 2 x 2 + 900 ) 2
x 3x
∫ ( x 4 + 1)d x
−1
dx 2 (
dL = −1 + 2 × 1 x 2 + 900
) 2
× 2x 4
dy 3
=
dx x 4
+1⇒ y = 3
2x
∫ ( 3x + 1) d x
= −1 + = −4
x 2 + 900
−3
Minimum length is when = 3x + x + c
−3
−1 + 2x =0
x 2 + 900 = − 13 + x + c
x
2x =1 Substitute (−1, 2) into the equation:
x 2 + 900
2 x = x 2 + 900 2 = − 1 3 + (−1) + c ⇒ c = 2
(−1)
4 x 2 = x 2 + 900
So y = − 13 + x + 2
3x 2 = 900 x
x 2 = 300
x = 300 ≈ 17.3 km
49 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
7 Integration
1 4
5 f′ ( x ) = 3 x − 2 x = 3x 2 − 2 x 3 4
2 x3
= 2x = 2
2
3
3 0
∫ ( 3x 2 − 2 x ) d x
1
f (x ) = 2 0
3
3 2 03
= 2 2 4 −
2
= 3x − 2 x + c
2
3 2
3 3
2
= 2 x3 − x 2 +c = 2 × 16 = 10 2
3 3
f (4) = 30 ⇒ 30 = 2 4 3 − 4 2 + c ⇒ c = 30 Area between the curve and the y-axis
So f ( x ) = 2 x 3 − x 2 + 30 = 4 × 4 − 10 2 = 5 1
3 3
∫( ) ∫−1 (3x )
2
6 dy = 1 − k ⇒ y = 3 A = 2
1 − k2 dx + 1 dx
dx 2
x x 2
= x 3 + x
∫ (1 − kx )dx
−2
= −1
−1 ( ) (
= 2 + 2 − (−1)3 + (−1)
3
)
= x − kx + c = 10 − (−2) = 12
−1
k
= x + +c 4 Points of intersection:
x
Substitute the two points into the equation: x 2 − 2x −1 = x −1
2 = 1+ k + c ⇒ k + c = 1 x 2 − 3x = 0
1
x ( x − 3) = 0
−6 = −3 + k + c ⇒ − k + c = −3 x = 0 or 3
−3 3
∫0 (( x − 1) − ( x − 2x − 1))dx
3
Subtract the equations: A= 2
4k = 4 ⇒ k = 3 3
= ∫ ( − x 2 + 3x ) dx
3
3 + c = 1 ⇒ c = −2 0
The equation is y = x + 3 − 2
3
3 2
x = − x + 3x
3 2 0
7.2 Finding areas (Page 67) 3 3 × 32 03 3 × 02
= −3 + − − 3 + 2
1 Finding the x-intercepts first, 3 2
x 2 − 4 x + 3 = 0 ⇒ ( x − 1)( x − 3) = 0 = 4.5
−2
3 4 −3
4
3
= 2 x = 2 2 x
2 −4
3 −5
3 0
2 0
2 4 3 International
50 = 2Cambridge 3 AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
− 2 0
3 3
16 2
7 Integration
= 71 − 12 = 5 2
3 3 3 ( ) =
(1 − x ) 2
3
3
× 1 +c
−1
Area between curve and the y-axis 2
3
2 (1 − x ) 2
= 9 × 2 − 5 2 − 3 = 91 =− +c
3 3 3
k 2 (1 − x ) 3
7 ∫1 3 x dx = 14 =−
3
+c
k 1
∫1 3x 2 dx = 14 (ii) 2 2
∫ 3(x − 4)5 d x = 3 ∫ (x − 4)
−5
dx
k
3
( x − 4) −4 1
3x 2 = 14 =2 × +c
3 3 −4 1
2 1 1
=− +c
2 x 3 k = 14 6( x − 4) 4
1
3 1
3
2 k − 2 1 = 14 3 (iii) ∫ 5 − 2x ∫
dx = 3 (5 − 2 x ) − 2 dx
3 1
2 k − 2 = 14 (5 − 2 x ) 2
=3 × 1 +c
2 k 3 = 16 1 −2
2
k3 = 8 = −3 5 − 2 x + c
k 3 = 64
−1
k=4 (iv) ∫ 12 dx = 12
3 1+ x
∫( 1+ x
2 ) 3
dx
2 2
= 12
( )
1+ x
2
3
× 1 +c
2 1
3 2
( )
2
= 36 3 1 + x +c
2
51 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
7 Integration
( )
7.4 Improper integrals (Page 70) 1 2 1
3
∫−2 ∫−2( 2 − x )
−2
2 V = π dx = 9π dx
1
1 1 2− x
∫ ∫0
−3
1 dx = (2 x + 1) dx 1
0 (2 x + 1)3 ( 2 − x ) −1 1
1 1 = 9π ×
(2 x + 1) −2 1 −1 −1
= × = − 1 −2
−2 2 4(2 x + 1)
2
1
= 9π 1
0 0
1 1 2 − x −2
= − − −
( )
2 2
4(2 × 1 + 1) 4(2 × 0 + 1)
= 9π 1 − 1
= − 1 − −1 = 2
36 4 9 ( ) 2 − 1 2 − (−2)
= 9π 3
4
2 2
2 dx = 2 −1
2 ∫1 x −1 ∫1 ( x − 1) 2 dx 27
= π
4
2
1 6
( x − 1) 2
∫0 πx
2
3 V (solid) = V (cylinder) −
= 2[ 2 x − 1 ]1 dy
2
=2
1
2 1 V(cylinder) = π × 2 2 × 6 = 24π
= 2 ( 2 2 − 1 ) − ( 2 1 − 1 )
y y
y = 2( x 2 − 1) ⇒ = x 2 − 1 ⇒ x 2 = + 1
2 2
=4
6 6 y
∫0 πx dy = π ∫0 2 + 1 dy
2
∞ ∞
3 dx = 3
∫0 ∫0 (1 + x ) dx
−2
3
(1 + x ) 2 6
y2
−1 ∞ ∞
= π + y
(1 + x ) 1 4
= 3 = 3 − 0
−1 0 1 + x 0
2 2
1 + ∞ (
= 3 − 1 − − 1
1 + 0 )( )
= π 6 + 6 − 0 + 0
4 4
=3 = 15π
V(solid) = 24π − 15π = 9π = 28.3 (3 s.f.)
7.5 Finding volumes by integration (Page 71)
4 (i) 4 x + 4 = 10
()
∞ 2 ∞ x
1 (i) V = ∫2 π 4 dx = 16π ∫2 x −2 dx
x 4 x 2 + 4 = 10 x
−1 ∞ 4 x 2 − 10 x + 4 = 0
= 16π x
−1 2 2x 2 − 5x + 2 = 0
∞
= 16π − 1 (2 x − 1)( x − 2) = 0
x 2
x = 1 or x = 2
∞ ( )( )
= 16π − 1 − − 1
2
2
= 16π 1
2 ( )
A is 1 , 10 , B is ( 2, 10 )
2
= 8π = 25.1 (3 s.f.) To find M, find where dy = 0
dx
() y = 4 x + 4 = 4 x + 4 x −1
4 2
(ii) V = ∫3 π 4 dx x
x
dy
4
= 4 − 4 x −2 = 4 − 42
= 16π − 1 dx x
x 3
4 − 42 = 0
4 ( )( )
= 16π − 1 − − 1
3
2
x
4x − 4 = 0
= 16π 1
12 4x 2 = 4
4
= π = 4.19 (3 s.f.)
3 x2 =1
x = 1 (since x > 0)
52 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
7 Integration
4
(ii) Volume of cylinder = π × 10 2 × 1.5 = 150π
∫ (2x + 1)3 d x = 4 ∫ (2x + 1)
(vi) −3
dx
Volume under curve
(2 x + 1) −2 1
( ) dx
2
2 =4 × +c
= ∫ π 4x + 4 −2 2
0.5 x
=− 1 +c
2
+ 32 + 162 d x (2 x + 1) 2
∫0.5 π 16x
2
=
x
dy
= ∫0.5 (
2
π 16 x 2 + 32 + 16 x −2 d x ) 2 If
dx
= 2 x + 1 then y = ( 2 x + 1)dx ∫
y = x2 + x +c
2
3
= π 16 x + 32 x − 16 x −1 Substitute (1, −2) into the equation to find c:
3 0.5
2 −2 = 12 + 1 + c
3
= π 16 x + 32 x − 16 c = –4
3 x 0.5
The curve is y = x 2 + x − 4
16 × 2 3
16
3 + 32 × 2 + 2 − y
= π
12
16 × 0.5 3 16
+ 32 × 0.5 + 10
3 0.5
8
3 ( )( )
= π 344 − 146
3
6
4
2
= 66π
−6 −4 −2 0 2 4 x
Final volume = 150π − 66π = 84π ≈ 264 units 3 −2
−4 A(1, −2)
Further practice (Page 73) −6
2 5 3 Points of intersection:
1 (i) (2 x − 5 x 4 )dx = 2 x − 5 x + c = x 2 − x 5 + c
∫ 2 5
2 = 6 − x 2 ⇒ x 2 = 4 ⇒ x = ±2
∫ ( 2 + 2x )dx = 12 × x2 + 2x6
2 6
x 5
53 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
7 Integration
1
Shaded area = ∫0 ( 4 x − x ) dx
= 3 x − 2 x
3 2
16 1
∫0
0
= 4 x − x d x
2
( ) (
= 3 3 12 − 2 × 1 − 3 3 0 2 − 2 × 0 ) 16
=1 3 2
= 4 x 2 x
−
So total area = 5 + 1 = 6 3 2
2 0
5 To find this area, find the area ABGF between the
16
curve and the x-axis between x = 1 and x = 4, find 8 x 3 x 2
= −
the area of the rectangle OAFD and subtract these 3 2
0
areas from the area of the rectangle OBGE.
8 16 3 16 2 8 0 3 0 2
y = − − −
y = 2 x +1 3 2 3 2
E(0, 5)
= 42 2 − 0
G(4, 5)
3
= 42 2
D(0, 3) F(1, 3) 3
1
1 −1
1
dx = x = [ 2 x ]0 = 2 1 − 2 0 = 2
2
∫
1
7 (i) x 2
C(0, 1) 0 1
2 0
r
O A(1, 0) B(4, 0) x r −1 r
(ii) ∫ x −2 dx = x = − 1
1 −1 1 x 1
∫1
4
Area of ABGF = (2 x + 1) dx
4 1
= − 1 − −=1−
r ( ) ( )
1 1
1 r − −1
= ∫ 2x 2
1
+ 1 d x
= −1 +1 = −1 +1
r r
4
32 As r → ∞As 1
, − r→ 0 1
= 2x + x r → ∞, − r → 0
3
∫1 x −2Sod x∫→
∞ ∞
2 1 So x1−2 d x → 1
1
4
3
= 4 x + x 2 2
∫0 π (3x ) dx = π ∫0 9x dx
2 2
3 8 V =
1
2
3 3 = 9π ∫ x 2 dx
= 4 4 + 4 − 4 1 + 1
3 3 0
2
3
= 12 1 = 9π x
3 3 0
Area of DFGE = area of OBGE − area of ABGF − 3 3
= 9π 2 − 0
area of OAFD 3 3
= ( 4 × 5 ) − 12 1 − ( 3 × 1) = 9π 8
3 3
= 42 72
3 = π = 75.4 (3 s.f.)
3
6 First, find the points of intersection of the curves.
V (solid) = 1 π × 6 2 × 2 = 24π
2 2 3
x = 16 x ⇒ x − 16 x = 0 ⇒ x ( x − 16) = 0
⇒ x = 0 or x = 16
54 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
7 Integration
9 Volume = ∫ πy dx
2
Volume of the cone = 1 π × 12 × 1 = 1 π
3 3
= ∫ π( 3 ) dx
2
Final volume = 1 π − 1 π = 1 π
2
0 2x + 1 2 3 6
1
∫0 π ( 1 − x ) − (1 − x ) 2 d x
2
2
9 OR V =
=π ∫
0 (2 x + 1)
2 dx
1
∫0 (1 − x ) − (1 − 2x + x ) d x
2
2 =π
∫0
−2
= 9π (2 x + 1) dx
1
∫0 (x − x
2
(2 x + 1) −1 1 =π 2
) d x
= 9π ×
−1 2 1
0 2 3
2 = πx − x
= 9π − 1 2 3 0
2(2 x + 1) 0
2 3
= π 1 − 1 − 0
= 9π − 1 − −1 2 3
2(2 × 2 + 1) 2(2 × 0 + 1)
= 1π
6
= 9π − 1 + 1
10 2 (b) y = 1 − x ⇒ y 2 = 1 − x
∫ 0 πx 2 dy
1
0
V =
1
3
= −
(1 − x ) 2
∫ 0 π (1 − 2y 2 + y 4 ) dy
1
3 =
2 0
1
2 1 − x 3 1 2y3 y5
( ) = πy − +
= − 3 5
3 0
0
3 5
= π 1 − 2 × 1 + 1 − 0
2 (1 − 1) 2 (1 − 0)
3 3
3 5
=− − −
3 3
= 8π
15
( )
= 0 − − 2 = 2
3 3 Volume of the cone = 1 π × 12 × 1 = 1 π
3 3
Area under line = 1 × 1 × 1 = 1
2 2 Final volume = 8 π − 1 π = 1 π
Shaded area = area under curve − area of triangle 15 3 5
= 2 − 1 = 1 OR y = 1− x ⇒ x = 1− y ⇒ x 2 = 1− 2y + y 2
3 2 6
∫ 0 (1 − 2 y 2 + y 4 ) − (1 − 2y + y 2 )dy
1
V =π
(ii) (a) Volume of curve rotated around the x-axis:
∫0 ( 2 y − 3 y )
1 1
∫0 πy d x
2 2
V= =π + y 4 dy
1
= π ∫ ( 1 − x ) dx
1 2
y5
0 = πy2 − y3 +
5
= π ∫ (1 − x ) dx
1 0
0 = 1π
2 1
5
= π x − x
2 0
2
= π 1 − 1 − 0 = 1 π
2 2
55 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
7 Integration
( )( )
(ii) If y = x 3 then x = 3 y ⇒ x2 = 3 y2 = y3
− π − 16 − − 16
If y = x then x = y ⇒ x 2 = y 2 4 1
= 9π (or 28.3)
2
1
Volume =
∫π y 3 − y 2 dy
0 8
1
2 Equation: y= ∫ (5 − 2 x ) 2 d x
53
y y3
=π
5
−
3 ∫
= 8 (5 − 2 x ) −2 d x
3 0 (5 − 2 x ) −1 1
= 8 × +c
3 3 y5 y 3
1 −1 −2
= π −
5 3 = 4 +c
0 5 − 2x
3 3 15 13 3 3 0 5 0 3 7= 4 +c⇒c =3
= π − − − 5−2×2
5 3 5 3
So y = 4 + 3
5 − 2x
5 3 ( )
= π 3 − 1 − 0
3 (i) A is where 1 − 2 x = 0 or ( 2 x − 1) = 0
2
56 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
7 Integration
1 1
dy
∫0 ∫0 ( 2x − 1) d x = −12 x −2 − 4 x + 11
2 2 2
(ii) Area = 1 − 2x d x − (iii)
dx
1
∫ ( −12x −2 − 4 x + 11)dx
1
3 2 y= −2
(1 − 2 x ) 2 1 ( 2 x − 1) 3
1 2
= × − ×
3 −2 3 2
2 0 0 y = 12 − 2 x 2 + 11x + c
x
1 1 13 = 12 − 2 + 11 + c
(1 − 2 x ) 32 2 ( 2 x − 1)3 2
= − − c = −8
3 6
0 0 When x = 2,
( )
= 0 − − 1 − 0 − − 1
3 6 ( )
y = 12 − 2(2) 2 + 11(2) − 8 = 12
2
P is (2, 12)
=1
6
6 (i) Intersection is where
8 = 9− x3
4 (i) Gradient of normal = − 1 so gradient of tangent at x3
3
P is 3. 8 = 9x 3 − x 6
dy 12 x 6 − 9x 3 + 8 = 0
So = =3
dx 4×2+a
12 = 3 Let t = x 3. Then the equation becomes
8+a
12 = 3 8 + a t 2 − 9t +t82 =− 09t + 8 = 0
= 12 × +c 4
2
1 4 = 9 x − x + 42
2 4 x 1
= 6 4x + 8 + c 4
4
= 9 × 2 − 2 + 42 − 9 × 1 − 1 + 42
14 = 6 4 × 2 + 8 + c ⇒ c = −10 4 2 4 1
So y = 6 4 x + 8 − 10 = 15 − 12.75 = 2.25
d 2 y 24 dy
(iii) = −3x 2
2 = 3 − 4 = −1 < 0 ⇒ maximum
5 (i) dx
dx 2 dy
y = 83 = 8 x −3 ⇒ = −24 x −4 = − 244
∫( )
dy dx
= 24 x −3 − 4 dx x x
dx
= −12 x −2 − 4 x + c If the tangents are parallel, the gradients are the
same so
= − 122 − 4 x + c
x −3x 2 = − 244
dy x
When x = 2, =0 x6 = 8
dx
0 = − 122 − 4(2) + c x = 6 8 = 2 ≈ 1.41
2
c = 11 So c = 6 8 = 2 ≈ 1.41
dy
So = − 122 − 4 x + 11
dx x
57 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
7 Integration
− 8 + 4 + 2k − 8 = 10 6k 2 + 6k + 2 109
3 3 3 = 6
20
− + 2k = 10
3 3 2(6k 2 + 6k + 2) = 109
2k = 10 12k 2 + 12k + 4 = 109
k=5
12k 2 + 12k − 105 = 0
h
2 Gradient of the sloping line is m =
R−r k = 5 or − 7
2 2
Since x > 0, k = 5
Equation is y = mx + c ⇒ 0 = h × r + c ⇒ c = − hr 2
R−r R−r
y= h x− hr 4 x 2 + y 2 = R 2 ⇒ x 2 = R 2 − y 2
R−r R−r
( ) +r
2 2
hr h
y+ = x Also w 2
= R2 ⇒ r 2 = R2 − w
R−r R−r 2 4
x = R−r y+r w /2
∫−w /2 πx dy − V (cylinder)
2
h V=
( )
2
2r ( R − r )
x2 = R − r y2 + y +r2
= 2 ∫ πx 2 dy − πr 2w
w /2
h h
0
= 2 ∫ π R 2 − y 2 d y − πr 2w
h w /2
∫0 πx
2
V= dy
0
w /2
y3
( )
h
2
2r ( R − r )
= π R−r
∫
2
y + y + r 2 dy = 2π R 2 y − − πr 2w
3
0 h h 0
h
= π ( R − r )
w
( )
2 3
y 2r ( R − r ) y 2 3
2
+ +r y
h 3 h 2 0
2 ( )
= 2π R 2 w − 2 − πr 2w
3
( ) h3 + 2r(Rh− r ) h2 + r h − 0
2 3 2
= π R − r 2
h 2 3
= 2π R w − w − πr 2w
2 24
h( R − r ) 2 3
= π + hr ( R − r ) + r 2h = πR 2w − πw − πr 2w
3 12
3 2
h( R 2 − 2 Rr + r 2 ) = πR 2w − πw − π R 2 − w w
= π + hr ( R − r ) + r 2h 12 4
3 3 3
= πR 2w − πw − πR 2w + πw
12 4
= πh R 2 − 2 Rr + r 2 + 3rR − 3r 2 + 3r 2
3 = 1 πw 3
6
= πh R 2 + Rr + r 2 Since the volume does not depend on R, the claim is
3
true.
58 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
d = 8.5
1 (i)
sin 95° sin 50°
8.5 × sin 95° = 11.1cm
d = 4
sin 50°
√15
sin β sin 53°
(ii) =
35 32
sin β = sin 53° × 35 x
32
1
β = 60.9°
15
θ = 180 − 60.9 − 53 = 66.1° (i) sin x =
4
2 2 2
(iii) x = 15 + 12 − 2 × 15 × 12 × cos 82° (ii) tan x = 15
2
x = 318.897... ⇒ tan 2 x = 15
x = 17.9 cm
3 Using symmetry from the unit circle,
(iv) cosθ =
4.12 + 2.8 2 − 5.6 2 = −0.2922...
y
2 × 4.1 × 2.8
1
θ = cos −1 (−0.2922...) = 107 o
2 (Using rounded answers from Q1)
1 2
sin 30° sin 150° 2
1
59 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
(ii) 1 + cos x ≡
sin x
2 A = 4, B = 1, C = −2 1 − cos x
sin x
3 A = 5, B = 2, C = −1 RHS = sin x × 1 + cos x
1 − cos x 1 + cos x
4 A = 2, B = 3, C = −2 sin x (1 + cos x )
=
1 − cos 2 x
5 A = 2, B = −1
sin x (1 + cos x )
=
6 (i) Period = 2π = 2 sin 2 x
3π 3
(ii) T = 1 + cos x
5
sin x
4 = LHS
3
2 (iii) tan 2 x − sin 2x ≡ tan 2x sin 2x
1 2
0
t LHS = sin 2x − sin 2 x
−1 1 2 3 4 cos x
−2 2 2 2
−3 = sin x − sin2 x cos x
cos x
−4
−5 sin x (1 − cos 2 x)
2
=
cos 2 x
2 2
(iii) From the graph, the highest points occur at = sin x ×2 sin x
cos x
t = 0.7, 1.3, 2, 2.7, 3.3 and 4 (1 d.p.) 2
= sin 2 x × sin 2 x
t = 12.40 a.m., 1.20 a.m., 2 a.m., 2.40 a.m.,
cos x
3.20 a.m., 4 a.m. = tan 2 x sin 2 x
= RHS
60 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
=
( sin x + 1) cos x
1 − sin 2 x
2 ()
2 x = cos −1 1 = 60° or 300° or 420° or 660°
x = 30° or 150° or 210° or 330°
( sin x + 1) cos x
=
(1 − sin x )(1 + sin x ) 2 2cos3x − sin3x =0
= cos x 2cos3x − sin3x = 0
1 − sin x cos3x cos3x cos3x
= RHS 2 − tan3x =0
1 1 tan3x =2
2 (i) + ≡ 2
1 − cos x 1 + cos x sin 2 x
3x = tan −1(2) = 63.4° or 243.4 ° or 423.4°
(1 + cos x ) + (1 − cos x ) x = 21.1° or 81.1° or 141.1 ° (1 d.p.)
LHS =
(1 − cos x )(1 + cos x )
= 2 3 (i) y
1 − cos 2 x 1
= 22
sin x
= RHS 0.25
–1
x = 134.4° or 225.6°
61 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
LHS = ( 1 + sinθ )
0.7
2
cos θ cosθ
= (1 + sinθ )
2
( cos1 θ + tanθ )
2
(ii) = 3 ⇒ 1 + sinθ = 3
7 1 − sinθ 7
–1 1 x
1 + sinθ =13+ sinθ = 3
1 − sinθ 17− sinθ 7
−2
5 7 (1 + sinθ 7) (=1 +
3(sin ) =θ 3) (1 − sinθ )
1 −θsin
7 + 7sinθ 7=+3 7sin θ θ= 3 − 3sinθ
− 3sin
–1
10sinθ = −10sin4 θ = −4
x = 203.6° or 336.4°
sinθ = − 4sin=θ−=2 − 4 = − 2
4 (i) 2sin x = − 3 10 5 10 5
sin x = − 3
2
( ) ( )
θ = sin −1 θ− 2= sin
5
− 2° = −23.6°
= −−123.6
5
θ = 203.6°θ or = 336.4
203.6° or 336.4°
x = sin −1 − 3 = − π
2 3 2
7 (i) 2cos x = cos x
x = 4π or 5π 2cos 2x − cos x = 0
3 3
cos x ( 2cos x − 1) = 0
(ii) cos3x = −1
cos x = 0 or cos x = 1
3x = cos −1 ( −1) = π or 3π or 5π 2
x = 90°, 270°, 60°, 300°
x = π or π or 5π
3 3 2
2π (ii) 2tan x = tan x
5 (i) Period = = 40 seconds 0 = tan 2x − 2tan x
π
20 0 = tan x ( tan x − 2 )
(ii) Maximum height is when sin π t = 1 ( 20 ) tan x = 0 or tan x = 2
x = 0, π, 2π,1.11, 4.25
i.e. 54 + 53 = 107 m
( )
(iii) h = 54 + 53sin π t = 30
20
(iii) cos x = −3tan x
cos x = −3 sin x
cos x
20(
53sin π t = −24 ) cos 2x = −3sin x
1 − sin 2x = −3sin x
20(
sin π t = −24)
53 0 = sin 2x − 3sin x − 1
( ) ( )
2
π t = sin −1 −24
sin x = 3 ± 3 − 4 × 1 × −1
20 53 2 ×1
20( )
π t = −0.47 or 3.61 =
3 ± 13
2
= 3.30 or − 0.303
t = 3.61 × 20 = 23 seconds x = −0.308 or − 2.83
π
62 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
(
4 + 5cos x = 2 1 − cos x 2
) A = 1 × 7 2 × 1.2 = 29.4 cm 2
2
4 + 5cos x = 2 − 2cos 2x
(ii) Angle of sector is θ = 360° − 130° = 230°
2cos 2 x + 5cos x + 2 = 0
Converting to radians,
( 2cos x + 1)(cos x + 2) = 0
cos x = − 1 or cos x = −2 230 × π = 23π = 4.014...
2 180 18
x = 120° or − 120° P = 12.5 + 12.5 + (12.5 × 4.014 )
= 75.2 cm (3 s.f.)
8 (i) 4cos 2 x + 7 sin x − 2 = 0
A = 1 × 12.5 2 × 4.014... = 314 cm 2 (3 s.f.)
( )
4 1 − sin 2 x + 7 sin x − 2 = 0 2
2 4 12 = 7θ
4 − 4 sin x + 7 sin x − 2 = 0
− 4 sin 2x + 7 sin x + 2 = 0 θ = 12 = 1.71 = 98.2°
7
4 sin 2x − 7 sin x − 2 = 0 5 Perimeter:
( 4 sin x + 1)(sin x − 2) = 0
Length of arc AB = 5 × 2π = 10π ≈ 10.47...
sin x = − 1 or sin x = 2 3 3
4
By joining OC create two right-angled triangles AOC
Since sin x is never greater than 1, sin x = − 1 and BOC.
4
(ii) sin (θ − 20° ) = − 1 tan π = AC ⇒ AC = 5 × tan π
4 3 5 3
θ − 20° = sin −1 − 1
4 ( ) = 5 3 ≈ 8.66...
63 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
sin θ (1 + sin θ )
Perimeter = 8π + 8 + 8 3 ≈ 30.2 cm (3 s.f.)
3 (1 − sin θ )(1 + sin θ )
=
10 (i) Since OCD is equilateral, ∠OCD = π .
sin θ (1 + sin θ )
3
π 2 = 1 − sin θ
So ∠ACD = π − = π sin θ
3 3
(ii) Perimeter = AD + BD + AB = 1 − sin θ
sin θ sin θ
= 8 × 2 π + 8 + 16 × 1 π = 1 −1
3 3 sin θ
32 = RHS
= π + 8 cm
3
64 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
( )
2 1 − cos 2 x = 3 − 3cos x –1
– k 1 x
2 − 2cos 2 x = 3 − 3cos x
0 = 2cos 2 x − 3cos x + 1
0 = ( 2cos x − 1)(cos x − 1) –1
–
65 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
6 Pythagoras’ theorem gives the length of the other Clearly there are four solutions.
side as 53.
cos2 x = 3
2
√53
2 2 x = cos −1 3
2
x
7 2 x = 30° or 330° or 390° or 690°
(i) From the triangle, cos x = 7 , but if x = 15° or 165° or 195° or 345°
53
90° x 180°, then the value of cos x is (ii) Whenever there is an equation with a mixture
negative, so cos x = − 7 of sin and cos terms, you need to use either
53 cos 2 x = 1 − sin 2 x or sin 2 x = 1 − cos 2 x so that the
equation can be written as a quadratic with
( 253 ) = 534
2
(ii) sin 2 x = only sin x or cos x terms.
cos 2 x − 1 = sin x
7 LHS = 1 + tan 2 θ
(1 − sin 2 x ) − 1 = sin x
2
= 1 + sin 2 θ 0 = sin 2 x + sin x
cos θ
2 2 0 = sin x (sin x + 1)
= cos θ +2 sin θ
cos θ sin x = 0 or sin x = −1
1
= x = 0 or − π
cos 2 θ 2
= RHS If the domain for the solutions was − π x π,
sin x + 1 then you would have included x = π or − π .
8 LHS =
cos x sin x 2sin x tan x = 3
(iii)
cos x
= sin x + cos x 2sin x sin x = 3
cos x sin x cos x
sin 2 x + cos 2 x 2sin 2 x = 3
= cos x
sin x cos x
1 2sin 2 x = 3cos x
=
sin x cos x 2(1 − cos 2 x ) = 3cos x
= RHS
2 − 2cos 2 x = 3cos x
9 1 − cos x + sin x ≡ 2 0 = 2cos 2 x + 3cos x − 2
sin x 1 − cos x sin x
0 = (2cos x − 1)(cos x + 2)
(1 − cos x )(1 − cos x ) + sin 2 x
LHS =
sin x (1 − cos x ) cos x = 1 or − 2
2
(1 − 2cos x + cos 2 x ) + sin 2 x
=
sin x (1 − cos x ) x = π,− π
3 3
= 2 − 2cos x y
sin x (1 − cos x ) 1
= 2(1 − cos x )
sin x (1 − cos x )
= 2 0.5
sin x x
−1 −1
= RHS
10 (i) From the graphs of y = 2cos2 x and y = 3:
y −1
2
−2
66 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
(
2 2 )
= 2 × 1 × 6.60 × 6 – 1 × 6 2 × 5
3
AM 2 = AC 2 + MC 2
= (2 3x ) 2 + x 2
2
= 9.63 cm (3 s.f.)
= 12 x 2 + x 2
Past exam questions (Page 90)
= 13x 2
1 (i) Length DC = length AB
AM = 13x
θ θ
r cm
A M B
67 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
x = 1 (ii) At C, y = 0 so
(ii) tan MAC =
2 3x 2 3 a cos x − b = 0
∠MAC = tan −1 1 cos x = b
2 3 a
∠BAC = 1 π
6
x = cos −1 b
a ()
θ = 1 π − tan −1 1 Since x = cos −1 c , c = cos x = b
6 2 3 a
At D, x = 0 so
4 (i) OC = r cos α , AC = r sin α d = a cos0 − b = a − b
Area OAC = 1 × r cosα × r sin α
2 6 (i) tan(BAO) = 5 ⇒ BAO = 0.3948
( )
1 1 r 2α = 1 × r cosα × r sin α 12
2 2 2 π
(ii) Angle ABO = − 0.3948 ≈ 1.176
1 r 2α = r 2 cosα sinα 2
2 Shaded area = a rea sector APQ + area sector
1 α = cosα sinα BOQ − area triangle ABO
2
= 1 × 12 2 × 0.3948 + 1 × 5 2 × 1.176 − 1 × 12 × 5
sinα cosα = 1 α 2 2 2
2
= 13.1cm 2
(ii) Perimeter OAC = r + r cosα + r sin α
LHS = ( 1 − 1 )
Perimeter ACB 2
= (1 − cosθ )
2
Ratio is 2.396r : 2.176r
2.396 : 2.176 sinθ
2.396 :1 (1 − cosθ ) 2
=
2.176 sin 2 θ
1.1:1 (1 − cosθ ) 2
=
(iii) ∠AOB = 0.9477 × 180 = 54.3 ° (1 − cos 2 θ )
π
(1 − cosθ )(1 − cosθ )
=
5 (i)
1 + 3sinθ tanθ + 4 = 0 (1 − cosθ )(1 + cosθ )
cosθ
1 + 3sinθ sinθ + 4 = 0 = 1 − cosθ
1 + cosθ
cosθ cosθ
= RHS
1 + 3sin 2 θ + 4 = 0
cosθ cosθ 1 − cosθ = 2
(ii)
1 + 3sin 2 θ + 4cosθ = 0 1 + cosθ 5
( )
θ = cos −1 − 2 = 131.8 or 228.2
3
68 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
π = 6× 3 = 3 3 (ii) Period = 2 π =
2π = 4 hours
8 (i) Distance from D to AB is 6sin
3 2 B π
2
Distance from E to AB is 10sinθ (iii) 1 a.m.
(8 )
Equating these distances gives
3 10.5 = 9 − 3cos π t
10sinθθ ==33 33
10sin
sinθ = 33 33
sinθ =
10
10
8 ( )
3cos π t = −1.5
θθ ==sin
3 3
sin−−11 3 3
10
10
π
cos t = − 1
8 2( )
(ii) θ = 31.3° (1 d.p.) or 0.546 radians
AB = 6 + 10 = 16 cm
π t = cos −1 − 1
8 2 ( )
π t = 2π , 4 π
π
DE = 16 − 6cos − 10cosθ 8 3 3
3
1
= 16 − 6 × − 10cos(31.3°,)
t = 16 , 32
2 3 3
= 4.46 cm t = 5 1 ,10 2
3 3
P = arc DX + arc EX + DE
Since t is hours after 9.30 a.m., refloating can occur
= 6 × 1 π + 10 × 0.546 + 4.46 between 5 1 and 10 2 after 9.30 a.m., so between
3 3 3
= 16.20 cm (4 s.f.) 2.50 p.m. and 8.10 p.m.
4 Sun Moon
2 (i) H (m)
8
( (
px + 3
y = 2 sin
2
7 Amplitude = 2
6 Period = 2p/(p/2) = 4
r
5
4
3
2
1 θ
0
t (hours) r
−1 1 2 3 5 6 7 8
−2 2
−3
−4 r
cosθ = 2 ⇒ cosθ = 1 ⇒ θ = 60° = π
r 2 3
69 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018
8 Trigonometry
(2
(iii) A = 2 1 r 2 2θ − 1 r 2 sin2θ
2 )
= 2r 2θ − r 2 sin2θ
= 2r 2 π − r 2 sin 2 π
3 3
2 π 2
= r − 3r2
3 2
2π
= − 3 r 2
3 2
% covered =
(
2π − 3 r 2
3 2
2
× 100%
)
πr
=
2π − 3
3 (
2
× 100%
)
π
= 39.1%
70 Cambridge International AS & A Level Mathematics – Pure Mathematics 1 Question & Workbook © Greg Port 2018