Binomial Theorem
Binomial Theorem
INTRODUCTION
	 Binomial is made of “Bi” which means “two”
   and “nomial” which means an expression with
   numbers or variables.
Binomial Theorem
	   (x + y)2 = x2 + y2 + 2xy                           Definition
	   (x + y)3 = x3 + 3x2y + 3xy2 + y3
	   (x + y)4 = x4 + 4x3y + 6x2y2 + 4xy3 + y4           The formula by which any
                                                       positive integral power of a
	 When index is very high then use binomial            binomial expression can be
  theorem as below                                     expanded in the form of a series
	  (x + y)n = nC0xny0 + nC1xn–1y1 + nC2xn–2y2 + … +    is known as Binomial Theorem.
				 nCrxn–ryr+ … + nCnxn–nyn
	 Where n∈N, x and y ∈ set of complex
  numbers and nC0, nC1, nC2… are called binomial
  coefficients normally written as C0, C1, C2…
  (n hidden)
                                                       Point to Remember!!!
Proof of Binomial Expansion
   (x + y)n = (x + y) (x + y)…(x + y) {n brackets}     (i)	The number of terms in the
	 Each term in the expansion is formed by taking            expansion is (n + 1)
   one letter from each bracket and multiplying        	 i.e. one more than the index
   them together. For example, choose x from                (n)
   all the bracket and multiplying them, xn is         (ii)	Tr+1 = nCrxn–ryr is called the
   obtained. This can be done in 1 (= nC0) way.             general term of the binomial
                                                            expansion.
                                                                                                  Binomial Theorem
                                   (      )           (          )
                                              n                   n
                                                                          ∑  C y
                                                                                 n          n−r r
                      	Also, x + y                = y+x               =               r
                                                                                               x
                                                                          r= 0
                       Sol.	
                         (a)	 n = 2, 	r = 3
                       		     n+r–1
                                   Cr–1 = 3+2–1C3–1 = 4C2 = 6
                       	 (b)	 n = 8 	 r = 3
                       		     n+r–1
                                   Cr–1 = 8+3–1C3–1 = 10C2 = 45
                      	      Proof :
                      	      Put x = y = 1	 in expansion of (x + y)n
                      	      (x + y)n = nC0xny0 + nC1xn–1y1 + nC2xn–2y2+…+ nCnxn–nyn
                      	      (1 + 1)n = nC0 1n10 + nC1 1n-1 11 +…+ nCn 10 1n
                      	2n = nC0 + nC1 +…+ nCn.
                      Note :
                      	      (x + 2y)2 = 2C0x2–0(2y)0 + 2C1x2–1(2y)1 + 2C2x2–2(2y)2
                      			                      = 1x2            +    4xy     + 4y2	
                   y	 Here, 2C0, 2C1, 2C2 are binomial coefficients and 1, 4, 4
Binomial Theorem
                      are coefficients.
                   y	 To find sum of binomial coefficients in expansion
                      of (x + 2y)2, use formula (1) and to find sum of all
                      coefficients in the expansion of (x+2y)2 put x = y = 1,
                      i.e. [1 + 2(1)]2 = 9
                                                                                                                                         2.
  Q.	      Find the sum of all coefficients in the expansion of
  	        (a) (x – y + z)2					(b) (2x2 – 3x + 3)2021
  	        (c) (x + 3)2020					(d) (x – 1 )99
Sol.	
  (a)	 put x = y = z = 1
		     (1 – 1 + 1)2 = 1 	
	 (b)	 put x = 1, 	     [2(1)2 – 3(1) + 3]2021 = 22021
	 (c)	 put x = 1, 	     (1 + 3)2020 = 42020
	 (d)	 put x = 1, 	     (1 – 1)99 = 0
                   ∑  C x
                          n       n−r r
		             =              r
                                        y
                   r= 0                                  (1) Coefficient of xr in expansion
                                                             of (1 + x)n = nCr
(b)	 (x – y)n = nC0xny0 – nC1xn–1y1 + nC2xn–2y2 –
				 nC3xn–3y3+…+ (–1)n nCnx0yn                          (2) Coefficient of xr in expansion
                    n                                        of (1 – x)n = (–1)r nCr
                   ∑ ( −1)
                                  r n
		             =                      Cr xn−r yr
                   r= 0
                   ∑  C x
                                                                                                   Binomial Theorem
                          n       r
		             =              r
                   r= 0
                   ∑ ( −1)
                                  r n
		             =                      Cr xr
                   r =0
                                                                                              3.
                       Q.	   Find coefficient of x6 in (1 + 3x + 3x2 + x3)15
                   Sol.	     (5C0 + 5C1x2 + 5C2x4 + 5C3x6 + 5C4x8 + 5C5x10) × (4C0 + 4C1x + 4C2x2 + 4C3x3 + 4C4x4)
                   	         Required coefficient is
                   	         5
                              C1 4C3 + 5C2 4C1 = 20 + 40 = 60.
Q. n+ 4
                                    (            ) . (1 + x) = ∑a x . If a , a
                                                     2              n
                             Let 1 + x2                                             k
                                                                                        k
                                                                                                      1   2
                                                                                                              and a3 are in A.P. find n.
                                                                             k =0
                   Sol.	
                     (1 + 2x2 + x4) (1 + nC1x + nC2x2+…) =
                   	 a0x0 + a1x1 + a2x2 +…
                   	 comparing coefficients of like powers of x both side
                   	a1 = nC1, a2 = 2 + nC2, a3 = nC3 + 2(nC1)
                   	2a2 = a1 + a3
                   	
                               
                             2 2 +
                                    n n−1   (            )  = nC       +
                                                                               (
                                                                             n n−1 n−2      )(            ) + 2n
                                                                     1
                                     2                                                    6
                                                            
                   	         6[4 + n(n – 1)] = 18n + n3 – 3n2 + 2n
                   	         24 + 6n2 – 6n = 18n + n3 – 3n2 + 2n
                   	
                             n3 – 9n2 + 26n – 24 = 0
                   	         (n – 2) (n – 3) (n – 4) = 0 ⇒ n = 2, 3, 4
                             (1 − 2 x )
                                                50
                                                     is
                       	     (A)
                                    1 50
                                    2
                                        (
                                      2 + 1 	(B)
                                                 1 50
                                                 2
                                                         )
                                                   3 +1 		                      (                )               (C)
                                                                                                                           2
                                                                                                                            ( )
                                                                                                                           1 50
                                                                                                                             3 	             (D)
                                                                                                                                                   2
                                                                                                                                                    (
                                                                                                                                                   1 50
                                                                                                                                                        )
                                                                                                                                                     3 −1
                   Ans.	     (B)
Binomial Theorem
                             (1 − 2 x ) =                                   ( ) + C (2 x ) − C (2 x )
                                                50                                          1                         2                  3
                   Sol.	
                                                         50
                                                                 C0 − 50C1 2 x                       50
                                                                                                          2
                                                                                                                           50
                                                                                                                                3
                             + C (2 x )                                  (2 x ) + … + (−1) C (2 x ) 			…(i)
                                                         4                          5                                               50
                               50                                                                             50 50
                   	                    4
                                                             − 50C5                                                   50
                                                                                                                                                            4.
	         Required sum =             C0 +
                                    50
                                                      C2 22 +
                                                     50
                                                                    C424 +…+
                                                                   50
                                                                                C50250
                                                                               50
          (            ) (       
                                             )                               ( )             ( )   ( )
              50          50                      2          4                                       50 
	   1−2 x        + 1+ 2 x    = 2  50C0 + 50C2 2 x + 50C4 2 x + ... + 50C50 2 x                          
                                                                                                        
	 put x = 1 both side
          ( 1 − 2)         (    )
                  50            50
                       + 1+ 2
	                                        =   50
                                                 C0 +     50
                                                              C222 +     C424 +…+
                                                                        50
                                                                                     C50250	
                                                                                    50
                       2
	         On solving L.H.S. is
                                             1 50
                                             2
                                                 (
                                               3 +1 .          )
    Q.	   Sum of all coefficients in (1 + x – 3x2)2163
Sol.	     Put x = 1
	         (1 + 1 – 3)2163 = – 1
Ans. (A)
Sol.	     Put a = b = c = 1
	         (1 + 2(1) + 1)10 = 410
    Q.	                                                  y
                                                                                         7
                                                          3
                                     y
Sol.	     T4 = T3+ 1 = 7C3 (2x)7 −3  − 
                                     2
              7×6×5              y3
	         =         × 16x4 ( −1)
                6                8
	          = – 70x4y3
                                                                                                                  Binomial Theorem
                                                                                                             5.
                                                                                                           6
                                                                               1                    
                       Q.	                                                     1+log 10x      1
                                                                                                       
                             If the fourth term in the binomial expansion of  x                 + x  is equal to
                                                                                                    12
                                                                                                      
                                                                                                      
                             200, and x > 1, then the value of x is 	
                       	     (A) 103		          (B) 100		             (C) 104			(D) 10	
                   Ans.	     (D)
                                                                    3
                                                        1
                                      1   2                      1 
                                                                                     3
                                        1+log 10x   
                   Sol.	
                             6
                               C3   x                
                                                                         x 12  = 200
                                                                             
                                                     
                                                                             
                                                        
                                 3       1       
                                                        1
                                                 
                                 2  1+log 10 x 
                   	         x                        . x 4 = 10
                             3        1                  1
                   	                         log 10 x + log 10 x = 1 		 (Taking log both side)
                             2  1 + log 10 x             4
                             3   1     α
                   	                α + = 1 	⇒	                                          α2 + 3α – 4 = 0
                                  (
                             2 1+ α    4       )
                   					α = 1, – 4
                   	 ∴	log10x = α = 1, – 4
                   		  x = 10, 10–4
                       Q.	                                    1 
                                                                                                   6
 3x 
                                                   ( )              1 
                                                            6 −r
                   Sol.	
                                         6              2
                             Tr + 1 = Cr 2x                        −   
                                                                    3x 
                                                                                         r
                                                               x 12−2r  1 
                   	         	         = 6Cr 26−r     ( )              − 
                                                                  xr  3 
                   	         Equating power of x to 3
Binomial Theorem
                   	         12 – 3r = 3 ⇒ r = 3
                                                                                         3
                                                            ( )              1      −160 3
                                                                        3
                                                                                                                     6.
    Q.	
     The coefficient of (3r)th term and coefficient of (r + 2)th term in the expansion
     of (1 + x)2n are equal (r > 1, n > 2 and positive integer) then
             n                    n                     n+ 1                 n−1
    	(A) r = 		          (B) r = 		 (C) r =                  		      (D) r =
             2                    3                       2                   2
Ans. (A)
Sol.	       C3r–1 =
           2n              2n
                               Cr+1
           3r − 1 = r + 1 or 2n = 3r − 1 + r + 1           n C = nC      
                                                                x     y
                                                                         
	             2r = 2      or      2n = 4r                 ⇒ x + y = n or 
                                                                         
               r=1        or      n = 2r                      x=y        
                                                                         
    Q.	    If in the expansion of (1 + y)n, then coefficient of 5th, 6th and 7th terms are in
           A.P., then ‘n’ is equal to
    	      (A) 7, 11		         (B) 7, 14		           (C) 8, 16		             (D) None 	
Ans. (B)
	
                2 n!( )         =
                                              n!
                                                         +
                                                                   n!
                (
           5! n − 5 !      )              (
                                    4! n − 4 !       )         (
                                                             6! n − 6 !   )
	 12(n – 4) = 30 + (n – 5) (n – 4)
	n2 – 21n + 98 = 0 ⇒ n = 7, 14
Q. 2n 2n
                ∑a ( x − 2) = ∑b ( x − 3)
                                      r                            r
           If          r                             r
                                                                       and ak = 1 ∀ k ≥ n, then show that bn = 2n+1Cn+1
                r= 0                          r= 0
Sol.	
  a0(x – 2)0 + a1(x – 2)1 + a2(x – 2)2 +…+ an–1(x – 2)n–1 + an(x – 2)n + an+1(x –2)n+ 1+…+
  a2n(x – 2)2n =
	 b0(x – 3)0 + b1(x – 3)1 + b2(x – 3)2 +…+ b2n(x – 3)2n
	
  a0 + a1(x – 2)1 + a2(x – 2)2 +…+ an–1(x – 2)n–1 + (x –2)n + (x – 2)n+1 +…+ (x – 2)2n
		     = b0 + b1(x – 3)1 + b2(x–3)2 +…+ bn(x – 3)n + bn+1(x – 3)n+1 +…+ b2n(x – 3)2n
	 (M 1)
	 Comparing coefficient of xn from both sides-
                                                                                                                               Binomial Theorem
	 n
   C0 + n+1C1 + n+2C2 +…+ 2nCn = bn
	bn = (n+1Cn+1 + n+1Cn) + n+2Cn +…+ 2nCn
	    = (n+2Cn+1 + n+2Cn)+…+ 2nCn
                                                                                                                          7.
                   	[nCr + nCr+1 = n+1Cr+1]
                   	 = ((n+3)Cn+1 + n+3Cn) +…+                              2n
                                                                                Cn
                   	
                               = 2n+1Cn+1
                   	           (M 2)
                   	           (x + 1)n + (x + 1)n+1 + (x + 1)n+2 +…+ (x + 1)2n = S(say)
                   	            To find coefficient of xn from above series.
                   	           A = (x + 1)n	R = (x + 1)
                                                                         
                                                                            (          )
                                                                  n+ 1
                                       Rn − 1         n  x + 1      − 1
                   	           S=A             = x+1 (           )
                                      R − 1           
                                                             x+1 −1 
                                                                               (          )
                                  ( x + 1)                  (           )     ( x + 1)                    ( x + 1)
                                          2n+ 1                         n                       2n+ 1             n
                                                    − x+1
                   	           S=                                           =                           −
                                                x                                           x                 x
                   	           ∴ coefficient of xn in S =                            2n+1
                                                                                           Cn+1 (coefficient of xn+1 in (1 + x)2n+1)
                   	           ∴ bn = 2n+1Cn+1
                   Term Independent of x
                   Step-I:	    Write general term of the expansion.
                   Step-II:	   Equate the exponent of x to zero
                       Q.	                                               1
                                                                                                                      6
                                             ( )                 1 
                                                        6 −r
                                    3
                   	 For term independent of x, 12 – 3r = 0
                   				                         r=4
                   	 Hence T4+1 = T5 or 5 term is independent of x
                                         th
                                                                4
                                              1
Binomial Theorem
                   	           T5 = 6C4 26−4  −  x0
                                              3
                                                     1   20
                   	               = 15 × 4 ×          =
                                                    81 27
                                                                                                                                       8.
Middle Term
	 The middle term in the expansion of (x + y)n
   depends upon the value of n
(i) If n is even
	 Total number of terms in the expansion
  = n + 1 (odd)
	   There is only one middle term
              th
     n   
	     + 1        term is the middle term
     2   
(ii) If n is odd
	 Total number of terms in the expansion
  = n + 1 (even)
	   There is two middle term
            th                             th
    n + 1           n + 1  
	         term and  2 + 1                 term are two
     2 
    middle term.
    Q.	                                                   1 
                                                                            11
                             n+ 1                              n+ 1
Sol.	      n = 11		
                               2
                                   = 6 		
                                                                2
                                                                    +1=7
                          ( )      1 
                                                               ( )         1 
                              6                                       5
	           T6 = − 11C5 2x2            	 ;	         T7 = 11C6 2x2       −   
                                   3x                                    3x 
                        9856 7                                4928 4
	                  =−       x 		                ;	        =        x
                         81                                    243
Note :	
(i)	Middle term has greatest binomial coefficient and if there are two
     middle terms their binomial coefficients will be equal
                                                      n
                                           When r =     if n ∈ even
                                                                                          Binomial Theorem
                                                      2
(ii)	 nCr will be maximum
                                                      n−1    n+ 1
                                           When r =       or      if n ∈ odd
                                                       2      2
                                                                                     9.
                       Q.	    Find the coefficient of x15 in the expansion of (x – x2)10.
                   Sol.	
                     [x(1 – x)]10 = x10 (1 – x)10
                   	 ∴ coeff. of x15 in x10(1 – x)10 =
                   	 coeff. of x5 in (1 – x)10 = (-1)5 10C5
                   				                         = – 252
                                                                                  3200 
                       Q.	
                        If {P} denotes the fractional part of the number P, then 
                                                                                   8 
                                                                                           , is equal to
                             5                        1                    7                         3
                       	(A) 			(B) 			(C) 			(D)
                             8                        8                    8                         8
Ans. (B)
                                             (           ) + (1 − 2 )
                                                         7               7
Q. Value of 1 + 2
Ans. (C)
                              (1 + 2 )                ( 2 ) + 7C ( 2 )                          ( 2)
                                         7                         1                2              3
                   Sol.	                     = 1 + 7C1                    2
                                                                                        + 7C3          +…+
                              (1 − 2 )       = 1 − 7C ( 2 ) + 7C ( 2 )                          ( 2)
                                         7                         1                2              3
                   	                                     1               2
                                                                                        − 7C3          + ... 
                              (          ) (                 )
                                         7                   7
                   	              1+ 2       + 1− 2
                                                                             ( )
                                                                 = 2  1 + 7C2 2 + 7C4 22 + 7C6 23 
                                                                                                   
                   	                                             = 2[1 + 42 + 140 + 56]
                   				                                          = 478
                                                     (            ) −(          )
                                                                   5            5
                                     (           ) (               )
                                   5            5         5
                   Sol.	          3  1+ 3
                                     
                                                     − 1− 3 
                                                            
                                                                                                                             10.
                       ( )                      ( 3) + C ( 3)                      ( 3 ) 
                                5    5              1
                                                              5
                                                                       3                  5   
		
 = 3                                2  C 1                      3
                                                                           + 5C5
                                     
		                 = 54[5 + 30 + 9]
		                 = 54 × 44 = 2376
Sol.	
   C4r + 4 = 10C2r
          10
	 4r + 4 = 2r 	      or 	   10 = (4r + 4) + 2r ⇒ r = 1
	 2r = – 4	 (not possible)
	[nCx = nCy ⇒ x + y = n or x = y]	
    Q.	   Let α > 0, β > 0 be such that α3 + β2 = 4. If the maximum value of the term
                                                                                                  10
                                                         1         −1 
          independent of x in the binomial expansion of  αx 9 + βx 6  is 10k, then k is
                                                                      
                                                                      
          equal to
    	     (A) 176			(B) 336		(C) 352		(D) 84
Ans.	     (B)
                                        10 −r             r
                           1                   −1 
Sol.	
                       10
          Tr + 1   =   Cr  αx 9                βx 6 
                                                    
                                                    
                                                                      10 − r r
	         For term independent of x, 	                                      − =0 ⇒r=4
                                                                        9    6
	         ∴ T5 = 10C4 α6β4
                                           1
          α3 + β2
	
             2
                  ≥ α3β2    (          )   2
                   2
          4    3 2
	           ≥ α β ⇒ (α β )max = 4
                        3 2
           2
           
	         ∴ (T5)max = 10 k
                                                                                                             Binomial Theorem
	         10
            C4(4)2 = 10 k
	                k = 336
                                                                                                       11.
                       Q.	                                                       cosα 
                                                                                                                           10
                             Greatest value of term independent of x in  xsinα +                                               x ∈R
                                                                                   x 
                                                                                   r
                                                                  cos α 
                   Sol.	
                                          10
                             Tr + 1 =          Cr (x sin α )10−r 
                                                                  x 
                       Q.	                                                  1
                                                                                                                  n
                   Sol.	     Put x = 1
                   	         (1 + 1)n = 4096 = 212 ⇒ n = 12
                   	         Greatest binomial coefficient = 12C6
                                                                     (                 )
                                                                                           15
                                                    ( ) ( )
                                                              15−r       r
                   Sol.	
                                          15
                             Tr + 1 =          Cr        2           7
                                                                                                                                       12.
    Q.	    1               
                             20
                                       20 −r        r
                              1               −1 
Sol.	
                     20
          Tr + 1 =        Cr  4 3            6 4 
                                                 
                                                 
	 For rational terms, ‘r’ should be multiple of 4
	 ∴	 Possible values of r is 0, 4, 8, 12, 16, 20
                                 20 − r
		    but at r = 8 and 20 only          is integer
                                   3
	         ∴ 	 r = 8,20
	         Hence, number of rational terms are 2
          (1 + x) − 1 = (1 + x)
                             20                     20
                                                         −1
Sol.	 y =
           (1 + x) − 1        x
	         ∴ coefficient of xp in y is 20Cp+1
	         20
            Cp+1 is greatest when p + 1 = 10 ⇒ p = 9.
(M 1)	
  By method of selection.
	 Consider n boys and n girls in a class. Total number of ways to select n
  students out of 2n is 2nCn. Alternatively, the same selection can be done if out
  of n boys, zero boys and out of n girls, n girls are selected or out of n boys, 1
  boy and out of n girls, (n–1) girls are selected and so on…
	 Hence 	    2n
               Cn = nC0 nCn + nC1 nCn–1 + nC2 nCn–2 +…
			               = nC0 nC0 + nC1 nC1 + nC2 nC2 +…
	 ∴	 2nCn = C02 + C21 + C22 + ...
                                                                                                         Binomial Theorem
                                                                                                   13.
                                           n
                                 1        C 1 C2
                   	          1 +  = C0 +    + 2 + ...
                                 x        x   x
                                                     n
                                                                                                     C1       C2    
                   	
                                      
                                      
                                           1
                                           x
                                                             (
                             (1 + x)n  1 +  = C0 + C1x + C2 x2 + …                )  C 0
                                                                                                  +
                                                                                                      x
                                                                                                           +
                                                                                                               x2
                                                                                                                  + …
                                                                                                                     
                                                                                                                     
                             (1 + x)
                                           2n
                                                        C   C                 C   C                  C   C        
                                                = C0 C0 + 1 + 22 + ... + C1x C0 + 1 + 2 + ... + C2 x2 C0 + 1 + 22 + ... + …
                                  xn                     x  x                  x  x2                  x  x         
                   	Taking coefficient of x0 from both side
                   	 coefficient of xn in (1 + x)2n = C02 + C21 + C22 + ... + Cn2
                   	                   (         )       (       )
                             2S = n + 2 C02 + n + 2 C21 + ... + n + 2 Cn2     (     )
                   	         S=
                                   (n + 2) × 2nC             	
                                                         n
                                           2
                   Sol.	
                      C36 = 73C36 – 72C35 (nCr+1 = n+1Cr+1 – nCr)
                             72
                                                                                                                           14.
Product Of Two Binomial
Sol.	     (M-1)
	         (1 + x)n = C0 + C1x + C2x2 + C3x3 +…
                           n
              1            1      1        1 
	          1 +  = C0 + C1   + C2  2  + C3  3  + ...
              x           x      x        x 
                                      n
                                                                                            C1       C2   
	
                  
                  
                       1
                       x
                                            (
          (1 + x)  1 +  = C0 + C1x + C2 x2 + … .
                       n
                                                                               )  C
                                                                                     0
                                                                                         +
                                                                                             x
                                                                                                  +
                                                                                                      x2
                                                                                                        + …
                                                                                                           
                                                                                                           
                                                            1
	         Equating coefficients of                            both sides-
                                                            x
                                                                  (      )
                                                                         n
                         1             1+ x
	         Coefficient of   in (1 + x)n                                       = C0C1 + C1C2 + C2C3+…+ Cn–1Cn
                         x              xn
	         Coefficient of xn–1 in (1 + x)2n = C0C1 + C1C2 + C2C3 +…2nCn–1 =                                            Cn+1
                                                                                                                     2n
	(M-2)
	 LHS = C0Cn–1 + C1Cn–2 + C2Cn–3 +…+ Cn–1C0 consider ‘n’ boys and ‘n’ girls out of
  which ‘n–1’ students are to be selected. First way is to select zero boys out of
  n and (n – 1) girls out of n. For this number of ways are nC0 . nCn–1 second ways
  is to select 1 boy out of n and (n – 2) girls out of n. This can be done in nC1 nCn–2
  ways and so on…
	 Hence total number of ways equals L.H.S. Now, another ways is to directly
  select (n – 1) students out of ‘2n’ in 2nCn–1 ways which is equal to 2nCn+1 (R.H.S)
	 Hence, C0C1 + C1C2 +… = 2nCn+1 		
Ans.	
                                                                                                                                                  Binomial Theorem
(D)
Sol.	     Ar = 10Cr, Br =            20
                                          Cr, Cr =   30
                                                          Cr
                10                                   10
                ∑(                                   ∑(
                       10
	         B10                  Cr )(20 Cr ) − C10           10
                                                                 Cr )2
                r =1                                 r =1
                                                                                                                                            15.
                                       10                               10         
                   	         20
                                       ∑
                                  C10   10 C10−r  20 Cr  −
                                       r = 0           
                                                                30
                                                                          ∑
                                                                     C10  ( 10 Cr )2  −
                                                                         
                                                                            r =0
                                                                                      
                                                                                            20
                                                                                                 C10 +   30
                                                                                                              C10
                   	20
                      C10 30C10 – 30C10 20C10 +                 30
                                                                     C10 –    C10
                                                                             20
                   	30
                      C10 – 20C10 = C10 – B10
                       Q.	   The value of r for which 20Cr 20C0 + 20Cr–1 20C1 + 20Cr–2 20C2 +…+ 20C020Cr is
                             maximum is
                       	     (A) 15			(B) 20			(C) 11			(D) 10
Ans. (B)
                   Sol.	     Out of 20 boys and 20 girls, total ‘r’ students are selected. This is stated by the
                             given series.
                   	         40
                               Cr is maximum at r =     = 20
                                                     2
                   Sol.	     (M 1)
                   	           S = C0 + 2C1 + 3C2 + 4C3 +…+ (n + 1)Cn
                   	         + S = (n + 1) Cn + nCn–1 +…+ 2C1 + C0
                   	          2S = (n + 2) [C0 + C1 +…+ Cn]
                                    n+2 n
                   	           S=         [2 ]= (n + 2) 2n–1
                                      2
                   	
                     (M 2)
                   	 Consider
                   		    (1 + x)n = C0 + C1x + C2x2 +…+ Cnxn
                     d                                  d
                                          (     )
                                                 n
                   		     1+ x                       x =   [C0x + C1x2 + C2x3 + … + Cnxn+1]
                    dx                               dx
                   		    (1 + x)n + nx(1 + x)n–1 = C0 + 2C1x + 3C2x2 + … + (n + 1)Cnxn
                   	 Put x = 1
                   		2n + n2n–1 = C0 + 2C1 + 3C2 + … + (n + 1)Cn
Binomial Theorem
                                                                                                                    16.
    Q.	   Show that S = 1.C1 + 2.C2 + 3.C3 +…+ n.Cn = n.2n–1 	
Sol.	 (M 1)
			Consider
          (1 + x)
               = C0 + C1x + C2x2 +…+ Cnxn
                        n
		
                     
         = n.n–1Cr–1   n Cr =
                     
                               n n− 1
                               r
                                          
                                   Cr − 1 
                                          
                                                     (                   )
                    n                          n
 S = n.
		                 ∑
                   r=1
                            n− 1
                                   Cr − 1 =   n ∑ 
                                               r=1
                                                         n− 1
                                                                Cr − 1
= n.(2n–1)
Sol.	
  9950 + 10050 ↔ (101)50
	 10050 ↔ (1 + 100)50 – (1 – 100)50
	10050 ↔ (C0 + C1x + C2x2 +…) – (C0 – C1x + C2x2…) 	                                      (x = 100)
	10050 ↔ 2[50C1 100 + 50C31003 +…+ 50C4910049]
	10050 ↔ 2[50C1100 + 50C31003 +…] + 10050
	 Hence right hand side is bigger than left hand side
	 ⇒ 9950 + 10050 < (101)50
    Q.	                                                                       4n
          Show that : 2n–2Cn–2 + 2.2n–2Cn–1 + 2n–2Cn >                            , n∈N n > 2   	
                                                                             n+ 1
	         Adding, LHS ≥ 4
                         4n + 4 − 4           4
                                                                                                            Binomial Theorem
                                                                                                      17.
                                                                                                                              9
                                                                              3      1 
                       Q.	   If the term independent of x in the expansion of  x2 −
                                                                              2
                                                                                         is k, then 18k is
                                                                                     3x 
                             equal to
                       	     (A) 5			(B) 9			(C) 7			(D) 11
Ans. (C)
                                                                   9−r             r
                                          3                             −1 
                   Sol.	     Tr + 1 = 9Cr  x2 
                                          2 
                                                                             
                                                                          3x 
                                                             9−r                         r        r
                               3          1  1
                   		     = Cr   x 18−2r  −   
                                             9
                               2          3 x
                   	 For term independent of x, 18 – 3r = 0 ⇒ r = 6
                                                                                                      3       6
                                                             3   −1  7                    9
                   	         So, term independent of x = C6     =
                                                            2  3     18
                                                            7
                   	         ∴ 18K = 18 ×                      =7
                                                            18
                       Q.	                                                   22       23      24            2n+ 1      3n+ 1 − 1
                             Prove that: 2.C0 +                                 .C1 +    C2 +    C3 + ... +       Cn =
                                                                             2        3       4             n+ 1        n+ 1
                   Sol.	     (M 1)
                             2                               2
                             ∫ (1 + x)                       ∫ (C                                         )
                                                 n
                   	                                 dx =            0
                                                                             + C1x + C2 x2 + ... + Cnxn dx
                             0                               0
                                                      2  
                              (              )
                                               n+ 1
                                  1+ x                               C 1x 2      x3            xn+ 1 
                   	                                        = C0 x +        + C2    + ... + Cn       
                                   n+ 1                               2         3             n + 1
                                                                                                      
                                                      0
                             3 −1n+ 1
                                           C .22        23
                   	               = 2.C0 + 1    + C2 .    + ....
                              n+ 1           2          3
                   	 (M 2)	
                         2r + 1 nCr
                   	Tr =
Binomial Theorem
                           r+1
                                         n                               n
                                                 2r + 1 nCr                   2r + 1 n+ 1Cr + 1
                   	         S=         ∑
                                        r =0
                                                     r+1
                                                                 =   ∑ (n + 1)
                                                                     r =0
                                                                                                                                   18.
                               n
                    1
	             =            ∑
                  n + 1 r =0
                              n+ 1 Cr + 1 2r + 1
                               n
                    1
	             =            ∑
                  n + 1 r= 0
                              n+ 1 Cr + 1 2r + 1
                   1  n+ 1
	             =         1 + C1 21 + n+ 1C2 22 + n+ 1C3 23 + ... + n+ 1Cn+ 1 2n+ 1 − 1
                  n+ 1                                                              
                    1                                 
                               (            )
                                            n+ 1
	             =            1+ 2                     − 1
                  n + 1                              
                  3n+ 1 − 1
	             =
                   n+ 1
    Q.	                   C0           C1           C2           C3             Cn            1 + n.2n+ 1
          Prove :                  +            +           +         + ... +         =
                           2            3           4            5              n+2       (n + 1)(n + 2)
          ∫x ( 1 + x )                  ∫ (C x + C x                                  )
                          n                                           2
	                             dx =                  0            1
                                                                          + C2 x3 + ... dx
          0                             0
	         Put (1 + x) = t
	          dx = dt
          2                                                                               1
                                x2      x3      x4       
          ∫(          )   n
	              t − 1 t dt =  C0    + C1    + C2    + ... 
                                2       3       4        
          1                                              0
          2          2
                             C   C   C        C 
	         ∫
          1           1
                          ∫
            tn+ 1dt − tndt =  0 + 1 + 2 + ... n 
                              2
                                  3   4      n + 2 
                      2                         2
           tn + 2       tn + 1    C  C   C          C
	                   −           = 0 + 1 + 2 + ... + n
           n + 2  1  n + 1  1 2   3   4        n+2
                                           C   C   C
	
           1  n+ 2
          n+2 
                2   − 1 −
                       
                            1
                           n+ 1
                                2n+ 1 − 1 = 0 + 1 + 2 + ...
                                            2   3   4
                                                            (              )
               C0         C1           C2               2      1     1     1
	         ∴           +            +     + ... = 2n+ 1      −     −     +      	
                  2       3            4               n + 2 n + 1 n + 2 n + 1
                                                                                                                  Binomial Theorem
				                                                    = 2n+ 1
                                                                      ( 2n + 2 − n − 2) + (n + 2 − n − 1)
                                                                        (n + 2)(n + 1) (n + 1)(n + 2)
                                                                  2n+ 1.n + 1
				                                                    =
                                                                (n + 1)(n + 2)
                                                                                                            19.
                       Q.	    n
                             ∑r .
                                    2 n
                                           Cr =
                             r= 0
                   Sol.	     (M 1)
                              n                            n                          n
                   	         ∑
                             r =0
                                    r.( r.nCr ) = n     ∑r =1
                                                                r.n− 1 Cr − 1 = n    ∑ (r − 1)
                                                                                     r =1
                                                                                             n− 1
                                                                                                    Cr − 1 + n− 1Cr − 1
                                              n                         n
                   	= n(n − 1)               ∑
                                             r =2
                                                    n− 2
                                                           Cr −2 + n   ∑
                                                                       r=1
                                                                             n− 1
                                                                                    Cr − 1
                   	         S=               × 2n
                                        2
                   	         ∴ S = (n + 1)2n.
                                                                                                                          20.
    Q.	                                           q + 1  q + 1      q + 1
                                                                                                       2                    n
Ans. (D)
                                                               n+ 1
                              q + 1
                                    −1
                 n+ 1
                q −1           2         (q + 1)n+ 1 − 2n+ 1
Sol.	      Sn =
                 q− 1
                      ; Tn =
                                q+ 1
                                         =
                                              (q − 1)2n
                                      −1
                                  2
                            101                        q2 − 1 101 q3 − 1                  q101 − 1 
	          Now                   C1 + 101C2                  + C3        + ... + 101C101           
                                                       q−1        q− 1                    q− 1 
                                                                                                   
	=
                 1 
               q − 1 
                             (    101
                                        C1q1 + 101C2q2 + ... + 101C101q101 −   ) (   101
                                                                                                                      )
                                                                                           C1 + 101C2 + ... + 101 C101 
                                                                                                                        
	=
                  1
               (q − 1)
                              {
                       [(1 + q)101 − 1] − [2101 − 1] = α.T100         }
                 (1 + q)101 − 2101    (q + 1)101 − 2101
	          ⇒                       =α
                      (q − 1)           (q − 1)2100
	          α = 2100
    Q.	
                   n                    n
                 ∑      k           ∑       n
                                                C k ·k2                                                                          n     n
                                                                                                                                           Ck
             n
                 k =0               k =0
                                      n
                                                          = 0 holds for some positive integer n then find                       ∑k + 1.
            ∑ k. C ∑
            k =0
                       n
                             k
                                    k =0
                                            n
                                                Ck .3k                                                                          k =0
            n(n + 1)
                     n(n + 1)2n−2
Sol.	          2                  =0
             n.2n− 1   (1 + 3)n
                                                                                                                                                      Binomial Theorem
                               1
                                     2n−2
	          n(n+1)             2           =0
                                n− 1  n n
                            n.2      2 .2
                                                                                                                                                21.
                              1 2n− 1
                   	                    =0
                             n 2n+ 1
                   	2n+1 – n.2n–1 = 0 ⇒ (4 – n) 2n–1 = 0
                   	 n=4
                         4  4
                              Ck 4      4
                                          C1   4
                                                 C2 4 C 3 4 C4
                   	 ∴
                       k =0
                            k+1 ∑= C0 +
                                          2
                                             +
                                                3
                                                     +
                                                        4
                                                          +
                                                            5
                                                             1
                   		              =1+2+2+1+                   = 6.2
                                                             5
                       Q.	            C + C1   C1 + C2   C2 + C3   Cn− 1 + Cn  (n + 1)n
                             Prove :  0                       ...        =
                                     
                                      C0   C1   C2   Cn− 1                        n!
                                     n− 1                        n− 1 n+ 1
                                             Cr + Cr + 1                   Cr + 1
                   Sol.	     LHS :   ∏
                                     r =0
                                            
                                                Cr
                                                           =
                                                           
                                                                 ∏
                                                                 r =0
                                                                        n
                                                                             Cr
                                     n− 1
                                            n+ 1                  1         (n + 1)n
                   		
                    =                ∏
                                     r= 0
                                            r+1
                                                 = (n + 1)n ×
                                                              1.2.3.....n
                                                                          =
                                                                               n!
Ans. (B)
                   	         ∴ (x + x2 − 1)6 + (x − x2 − 1)6
Binomial Theorem
                                                                                                                         22.
    Q.	   (1 + x + x2)n = a0 + a1x + a2x2 + … + a2nx2n
    	     (i) Show that a0 + a1 + a2 + … + a2n = 3n
Sol.	     (M 1)
	         [1 + (x + x2)]n = nC0 + nC1(x + x2) + nC2(x + x2)2 +…
	         Put x = 1
	         (1 + 1 + 1)n = a0 + a1 +…+ a2n
	         ∴ a0 + a1 +…+ a2n = 3n
	 (M 2)
	[x2 + (x + 1)]n = nC0(x2)0(x + 1)n + nC1(x2)1(x + 1)n–1 + nC2(x2)2(x + 1)n–2 +…
	 put x = 1
	 (1 + 1 + 1)n = a0 + a1 + a2 +…
	 ∴ a0 + a1 + a2 +…= 3n
Sol.	
	
          Put x = – 1 in given expression
          [1 – 1 + (–1)2]n = a0 – a1 + a2 +…+ a2n
	         ∴ a0 – a1 + a2 – a3+… = 1
(iii) a1 + a3 + a5 +…+a2n–1 =
                                             3n + 1
    	     (iv) a0 + a2 + a4 +…+ a2n =
                                               2
                                                                                   23.
                       	     (v) Show that ar = a2n–r ∀ r ∈ W
                                                   1
                       Sol.	 Replace x by          x
                                               n
                                 1  1         a 1 a2        a2n
                   	          1 + + 2  = a0 +    + 2 + ... + 2n
                                 x x          x x           x
                   	         Multiply both sides by x2n
                   	         (1 + x + x2)n = a0x2n + a1x2n–1 + a2x2n–2 +…+ a2n
                   	         Also, (1 + x + x2)n = a0x0 + a1x1 + a2x2 +…+ a2nx2n				…(A)
                   	         comparing coefficient of xr both sides ar = a2n–r
                                                       1
                   Sol.	     Replaced x by –
                                                       x
                                               n
                                 1  1         a 1 a2
                   	          1 − + 2  = a0 −    +   ...
                                 x x          x x2
                   	(x2 – x + 1)n = a0x2n – a1x2n–1 + a2x2n–2…		 			…(B)
                   	 Multiply (A) and (B)
                   	 (1 + x + x2)n (x2 – x + 1)n = (a0 + a1x + a2x2 +…) (a0x2n – a1x2n–1+ a2x2n–2 –…)
                   	(x4 + x2 + 1)n = a0{a0x2n – a1x2n–1 +…} + a1x{a0x2n – a1x2n–1 + a2x2n–2 +…} +
                   				a2x2{a0x2n – a1x2n–1 + a2x2n–2 +…} +…			                                    …(C)
                   	 Taking coefficient of x from RHS-
                                                   2n
                   Sol.	 Taking coefficient of x from RHS in (C) & from RHS in (E)
                                                             2n–1
Binomial Theorem
                   	–a a + a a – a a + … = 0
                                0 1      1 2       2 3
                   	a0a1 – a1a2 + a2a3 – … = 0
                                                                                                          24.
    	     (viii) a0a2 – a1a3 + a2a4 – … =
    Q.	   If (1 + x)n = C0 + C1x + C2x2 +…+ Cnxn, then show that the sum of the products of
          the Ci’s taken two at a time, represented by           CiC j is equal to             ∑∑
                                                                                               0≤ i < j ≤ n
                       2n!
          22n− 1 −
                      2(n!)2
Sol.	
			
      To find : 	              C0(C1 + C2 +…+ Cn) +		
                               C1(C2 + C3 +…+ Cn) + 		
                                                                                   i=0
                                                                                   i=1
			                            C2(C3 +…+ Cn) + 		                                  i=2
			                             				  		
			                             				  	
			                             				  		
			                             				  	
			                            Cn–1Cn				 i=n–1
                                                            n
	(C0 + C1 + C2 +….+ Cn)2 =                                 ∑C
                                                           r =0
                                                                  2
                                                                  r    ∑ ∑ CC
                                                                      +2
                                                                           0≤i < j≤n
                                                                                       i   j
          (2n )2 − 2nCn
	
                  2
                                =    ∑∑CC        i    j
                                     0 ≤i< j≤n
                                                     (2n) !
	         ∴   ∑∑CC         i    j
                                    = 22n− 1 −
                                                     2(n!)2
              0 ≤i< j≤n
                                                              n
    Q.	   For any positive integers m, n (with n ≥ m) let   = nC m . Prove that
                                                              m
                                                               
            n   n − 1  n − 2            m  n + 1 
    	       +      +     + ... +   =     
           m  m   m                      m   m + 1
Sol.	 (M 1)
                                                                                                                            Binomial Theorem
			    C + C
          m
          =( C
              m
                     m+1
                    m+1
                         +…+ nCm
                            m
                            + m+1
                                  Cm) + m+2Cm +…+ nCm [∵ nCr + nCr+1 =                                   n+1
                                                                                                              Cr+1]
                        m+1
		               = ( Cm+1 +
                    m+2        m+2
                                   Cm) + m+3Cm +…+ nCm
		               = ( Cm+1 +
                    m+3        m+3
                                   Cm) +…+ nCm
  n+1
		m+1
                 =    C
                                                                                                                      25.
                   	         (M 2)
                   	         Coefficient of xm in(1 + x)m + (1 + x)m+1 + (1+x)m+2+…+ (1 + x)n
                                                           [(1 + x)n−m+ 1 − 1]
                   	         Coefficient of xm in (1 + x)m
                                                               (1 + x) − 1
                   	         Coefficient of xm+1 in (1 + x)m+n–m+1 =                 n+1
                                                                                        Cm+1
                       Q.	   Prove that
                                 n  n         n  n − 1            n n − 2                   n n − k  n
                       	     2k     − 2k − 1               + 2k −2               ......( −1)k          =
                                 0  k         1   k − 1           2   k − 2                k   0   k 
                                                                                                      
                   				             ↓
                            n!          (n − r) !       k!
                   			                                ×
                       r !(n − r) ! (k − r) !(n − k) ! k !
                                                    n!             k!
                   			                                       ×
                                                (n − k) ! k ! r !(k − r) !
                   			                         = nCk 	 kCr
                                               k
                   	         LHS = n Ck       ∑ (−1)
                                              r= 0
                                                           r k
                                                                 Cr 2k −r = nCk (2 − 1)k = nCk 	
                       Q.	                         n
                             Show that          ∑
                                                k =0
                                                       n
                                                           Ck sinkx cos(n – k)x = 2n–1 sinnx
                   Sol.	
                   	
                    Let s = C0 sin0 cosnx + C1 sinx cos(n–1)x + … + nCnsin(nx)cos(ox)
                        s = Cnsin(nx)cos(ox) + Cn–1sin(n – x)x cosx + … + C0 sin0 cos nx
                   	+
                                                                                                               I = Integral part,
                                                                                                               f = Fractional
                                                                                                               part where f ∈ [0, 1)
                                                                                                                                       26.
    Q.	    Find the integral part of (2 + 3)6
	          (2 + 3)6 + (2 − 3)6 = I + f + f1
	2[6C026 + 6C22431 + 6C42232 + 6C6 33] = I + (f + f1)
	 2[64 + 15 × 48 + 15 × 36 + 27] = I + (f + f1)
	 Even integer = I + (f + f1)
	f1 + f = integer 								…(i)
		     (odd)
	 Now, 	      	
                 0<f<1
                 0 < f1 < 1
			                           							…(ii)
               0 < f + f1 < 2
	 from (i) and (ii)	
		    f + f1 = 1
	 ∴ 	 2[64 + 720 + 540 + 27] = I + 1
		    I = 2701
           (3 + 7 )n = I + f , 0 < f < 1 
Sol.	                                     ⇒ 0 < f1 + f < 2 				…(i)
            +(3 − 7 )n = f1 , 0 < f1 < 1
	 ⇒ f + f1 = integer 								…(ii)
	 from (i) & (ii) f + f1 = 1 							…(iii)
	 ∴	 even integer – (f + f1) = I
		    even integer – 1 = I
	 ∴	 I is an odd integer
                                                                                      27.
                       Q.	   Show that integral part of (5 + 3 3)2n+ 1 is even.
                   Sol.	     (5 + 3 3)2n+ 1 = I + f
                   	         + (5 − 3 3)2n+ 1 = – f1 	     f1 ∈ (0, 1)
                   	2[2n+1C0 52n+1 +         2n+1
                                                 C2 52n–1 (3 3)2 +…] = I + f – f1
                   	         Even integer = I + f – f1
                   	         ∴ f – f1 integer between – 1 & 1 ⇒ f – f1 = 0
                              0<f<1 
                              −1 < −f < 0 
                   	                  1      
                              −1 < f − f1 < 1
                                             
                                             
                   	         ∴ even integer = I + 0
                   	         ∴ I = Even integer. 	
                       Q.	   Let I denotes the integral part & f the proper fraction part of (3 + 5)n where
                             n∈N and if ρ denotes the rational part and σ the irrational part of the same,
                                            1              1
                             show that ρ = (I + 1) and σ = (I + 2f – 1)
                                            2              2
                                       I + 2f − 1
                   	         ∴	 σ =               	
                                            2
                                                                                                              28.
    Q.	   Sum of last 10 coefficients in the expansion of (1 + x)19
Sol.	
	
          	
          +	
                 S = 19C19 + 19C18 +…+ 19C10
                 S = 19C0 + 19C1 +…+ 19C9		 (nCr =                n
                                                                   Cn–r)
2S = 219 ⇒ S = 218
Sol.	
	
          	
          +	
                 S = 18C18 + 18C17 +…+ 18C10
                 S = 18C0 + 18C1 +…+ 18C8
	              2S= (18C0 + 18C1 +…+ 18C8 + 18C9 + 18C10 +…+ 18C18) – 18C9
                     218 − 18C9
	               S=
                         2
Ans. (C)
                       1 10
    Q.	   Find S =
                       2
                           C0 – 10C1 + 10C2 . 2 – 10C3 . 22 +…10C10 29
                 1 10
Sol.	     S=
                 2
                   [ C0 – 10C1 21 + 10C222 +…+ 10C10 210]
                 1             1
	         S=       [1 − 2]10 =
                 2             2
                                                                                  Binomial Theorem
                                                                            29.
                       Q.	   Prove that: nC0 + n+1C1 + n+2C2 +…+ n+rCr = n+r+1Cr
                       Q.	            1
                             If x =     , find the greatest term in the expansion of (1 + 4x)8
                                      3
                                  8!                    8!
                   	                      (4x) ≥
                             r !(8 − r) !        (r − 1) !(9 − r) !
                             41   1
                   	            ≥    ⇒ 36 – 4r ≥ 3r
                             3 r 9−r
                                    36
                   	         ∴r≤       = 5.1 (approx)
                                     7
                   	         at r = 5	  T6 ≥ T5 	               Also, 	 T7 ≤ T6
                   	         at r = 4 	     T5 ≥ T4 			T8 ≤ T7
                   	         at r = 3	      T4 ≥ T3			T9 ≤ T8
                   	         at r = 2 	     T3 ≥ T2
                   	         eat r = 1 	 T2 ≥ T1
                   	         Hence, greatest is T6
                                                          5
                                        1   8 × 7 × 6 45   57344
                   	T6 = T5+1 = 8 C5 4    =          × 5 =       	
                                          3
                                              6     3     243
Binomial Theorem
                                                                                                 30.
    Q.	   Find which term is numerically greatest term in (3 – 2x)9 at x = 1
		
                 at r = 2	                 T3 ≥ T2			                      
		               at r = 1		                T2 ≥ T1			T10 ≤ T9
	         ∴	T4 = T5 are greatest term.
    Q.	                                     3x 
                                                                    10
range of x.
           1  3x    2      3x 1 2
	                 <   				   × >
           4 8      7      8  3 8
                   64
	         | x |<      					|x| > 2
                   21
               64        64 
	         x ∈ −   , −2  ∪  2, 
               21        21 
                                                                                                                    Binomial Theorem
                                                                                                              31.
                   Binomial theorem for any index :
                   	   When n is a negative integer or a fraction then
                       the expansion of a binomial is possible only
                       when
                   	   (i) Its first term is 1, and
                   	(ii) Its second term is numerically less than 1.
                        Thus when n ∉ N and |x| < 1, then it states
                                          n(n − 1) 2 n(n − 1)(n − 2) 3
                   (1 + x)n = 1 + nx +            x +               x + …	
                                             2!            3!
                   			
                                              n(n − 1)(n − r + 1) r
                                          +                      x + ...∞ ∞
                                                      r!
                   	   General Terms :
                                  n(n − 1)(n − 2)...(n − r + 1) r
                   	   Tr + 1 =                                ⋅x
                                               r!
                   Note :
                   (i)	 In this expansion the coefficient of different
                        terms can not be expressed as nC0, nC1, nC2, ...
                        because n is not a positive integer.
                   (ii) In this case there are infinite terms in the ex-
                        pansion.
                   (ii) In this case there are infinite terms in the ex-
                        pansion.
                                                                                                                          32.
		          By putting mathrm n = 1, 2, 3 in the above results (c) and (d),
		          we get the following results
                                                                                    1/ 2
                                                                        3 
    Q.	     If |x| < 2 / 3 then the fourth term in the expansion of  1 + x
                                                                        2 
                                                                                is
                  27 3                 27 3                81 3                   81 3
            (A)       x 		       (B) −     x 		       (C) 256 x 		        (D) −      x
                 128                   128                                       256
Sol.	       (A)
                       1   1    
	                1 / 2  − 1  − 2
                       2    2     3x 
                                            3
                                              27 3
            T4 =                     ⋅  =       x
                          3!           2    128
                                                                                                 Binomial Theorem
                                                                                           33.
                                                                                                 2
                                                                            1 − x
                       Q.	   The term independent of x in the expansion of 
                                                                            1 + x 
                                                                                                     is
Sol. (D)
(1 – x)2 (1 + x)–2
⇒ (1 – 2x + x2) (1 – 2x + x2 + ...)
⇒ so term independent of x = 1.
Sol. (D)
∴ Coefficient of x5 = 252
                                                                                                                               
                   	         = 10 {1 + 0.0003333 – 0.00000011 + ...}
                   	         = 10.0033
                                                                                                                              34.
	   (ii) To find the sum of Infinite series :
mined.
                     1   1.3   1.3.5
    Q.	    The sum of 1 +
                       +     +
                     4 4.8 4.8.12
                                      + … ∞ is
                                    1
           (A)    2 			(B)             		 (C)                                    3 		       (D) 23/2
                                     2
Sol.	     (A)
                                        n(n − 1) 2
	         Comparing with 1 + nx +
                                           2!
                                                x +…
	         nx = 1/4									...(i)
                       n(n − 1)x2
	         and		
                           2!
                                  = 1.3 / 4.8
                       nx(nx − x)    3  11      3
	         or	 	
                           2!
                                  =
                                    32
                                       ⇒  − x =
                                        4 4     16
                                                     		                          (by (i))
                       1          3       1 3       1
	         ⇒		           4 − x = 4 ⇒ x = 4 − 4 = − 2 				...(ii)
n(–1/2) = 1 / 4 ⇒ n = – 1/2
                                                                                                       35.
                       (iii)	 Approximation :
                       Q.	    If x is so small so that its square and higher power can be neglected. Find the
                                                           −5
                                                   2x 
                                              1 + 3         + (4 + 2x)1/ 2
                              value of                                           .
                                                      (4 + x)3/ 2
                   Sol.	      (D)
                                            −5
                                    2x                                     10x            x
                               1 + 3         + (4 + 2x)1/ 2          1 − 3  + 2  1 + 4                                        −1
                   	                                                =                                 =
                                                                                                          1
                                                                                                               3−
                                                                                                                  10x x 
                                                                                                                     + 
                                                                                                                                  3x 
                                                                                                                             1 + 8 
                                       (4 + x)3/ 2                                  3x                  8      3  2
                                                                               81 +
                                                                                    8 
                   	              3    17x      3x  3     17x 3x  72 − 95x
                              =     1−       1−     = 1 −     −      =
                                  8     18      8 8        18   8    24 × 8
Binomial Theorem
36.