Dreyer Analysis 1988
Dreyer Analysis 1988
by
November 1988
Stellenbosch University http://scholar.sun.ac.za
Declaration
I, the undersigned, hereby declare that the work contained in this thesis
is my own original work and has not previously, in its entirety or in part,
been submitted at any university for a degree.
(Signature of candidate)
j
Stellenbosch University
( i ) http://scholar.sun.ac.za
ABSTRACT
ACKNOWLEDGEMENTS
Prof. D.G. Kroger for his suggestions, patience and interest in the
project;
Mr.· D.C. Uys for the construction of the test section and practical
assistance with the experimental work;
I would also like to thank the National Energy Council for their finanfcial
support.
Stellenbosch University http://scholar.sun.ac.za
( i i i)
CONTENTS
Page
ABSTRACT ( i)
ACKNOWLEDGEMENTS (ii)
CONTENTS (iii)
NOMENCLATURE (v)
1 - INTRODUCTION 1.1
2 - LITERATURE SURVEY 2.1
3 - MATHEMATICAL MODELLING OF EVAPORATIVE COOLERS AND CONDENSERS 3.1
3.1) Basic theory for evaporative coolers 3.2
3.1.1) Exact analysis (Poppe model) 3.2
3.1.2) Merkel analysis 3.10
3.1.3) Improved Merkel analysis 3.11
3.1.4) Simplified model 3.12
3.2) Basic theory for evaporative condensers 3.15
3.2.1) Exact analysis (Poppe model) 3.15
3.2.2) Merkel analysis 3.18
3.2.3) Improved Merkel analysis 3.19
3.2.4) Simplified model 3.19
4 - HEAT/MASS TRANSFER AND PRESSURE DROP CORRELATIONS 4.1
4.1) Film heat transfer coefficient 4.1
4.2) Mass transfer coefficient 4.9
4.3) Pressure drop correlations 4.21
5 - COMPUTER SIMULATION 5.1
5.1) Determination of coefficients 5.2
5.2) Successive calculation models 5.4
5.2.1) Cross-flow evaporative cooler simulation 5.7
5.2.2) Counterflow evaporative cooler simulation 5.16
5.2.3) Combination cooler 5.17
5.3) Simplified models 5.25
5.4) Natural draft cooling tower 5.26
6 - EXPERIMENTAL DETERMINATION OF THE HEAT AND MASS TRANSFER 6.1
COEFFICIENTS IN A CROSS-FLOW EVAPORATIVE COOLER
6.1) Description of wind-tunnel and apparatus 6.1
6.2) Data logging and energy balance calculations 6.12
6.3) Experimental procedure 6.13
6.4) Observations and results 6.16
6.5) Determination of coefficients and correlations 6.29
6.6) Discussion of results 6.43
7 - CONCLUSION 7.1
REFERENCES R.1
Stellenbosch University http://scholar.sun.ac.za
( iv)
- APPENDICES
A - THERMOPHYSICAL PROPERTIES OF FLUIDS A.l
B - DEFINITION OF LEWIS NUMBER AND THE LEWIS FACTOR B.l
C - DEFINITION OF MASS TRANSFER COEFFICIENTS AND MASS TRANSFER C.l
POTENTIALS
D - SINGLE PHASE PRESSURE DROP CORRELATIONS ACROSS PLAIN TUBE D.l
BUNDLES IN CROSS-FLOW
E - DERIVATION OF THE DRAFT EQUATION FOR A NATURAL-DRAFT E.l
CROSS-FLOW EVAPORATIVE COOLING TOWER
F - SOLUTION OF SIMULTANEOUS DIFFERENTIAL EQUATIONS USING THE F.l
4TH ORDER RUNGE-KUTTA METHOD
G - CORRELATIONS FOR CONVECTIVE AND CONDENSATION HEAT TRANSFER G.l
COEFFICIENTS ON THE INSIDE OF TUBES
H - DETERMINATION OF THE AIR/WATER INTERFACE TEMPERATURE H.l
I - CORRECTION OF HEAT TRANSFER COEFFICIENT AT HIGH MASS I.l
TRANSFER RATES
J - EVALUATION OF CONVENTIONAL COOLING TOWER PACKING IN A J.l
COMBINATION EVAPORATIVE COOLER
K - RESULTS OF COMPUTER SIMULATIONS K.l
L - FORTRAN CODE FOR CROSS-FLOW EVAPORATIVE COOLER SIMULATION L.l
PROGRAM
Stellenbosch University
(v) http://scholar.sun.ac.za
NOMENCLATURE
A Area, [m2]
a Effective suface area of tubes per unit volume, [m2;m3]
B Constant defined in section 4.3, [-]
b Slope of the air saturation enthalpy curve, [J/kgK]
c Concentration, [kg/m3]
q 'C2' .. Coefficients, [-]
Cp Specific heat at constant pressure, [J/kgK]
D Diffus~ity, [m2/s]
d Diameter (characteristic length), [m]
E Coefficient defined by equation 2.5, [-]
EP Dimensionless enthalpy potential defined by equation 4.2.21, [-]
F LMTD correction factor or force, [-] or [N]
f Friction factor, [-]
fa Arrangement factor (Appendix D), [-]
fn Correction factor for small number of tube rows (Appendix D), [-]
fz Correction factor for non-isothermal flow (Appendix D), [-]
fzn Correction factor for non-isothermal flow and small number
of tube rows (Appendix D), f-]
G Mass velocity, [kg/m2s]
g Gravitational acceleration, [m/s2]
h Heat transfer coefficient, [W/m2K]
ho Mass transfer coefficient based on Tw, [kg/m2s]
hoi Mass transfer coefficient based on Ti, [kg/m2s]
hoo Overall mass transfer coefficient, [kg/m2s]
hop Mass transfer.coefficient based ·on partial pressure
driving potential and Tw, [s/m]
hopi Mass transfer coefficient based on partial pressure
driving potential and Ti, [s/m]
i .Enthalpy, [J/kg]
~fg Latent heat of evaporation, [J/kg]
~fg
Corrected latent heat of evaporation, [J/kg]
lvo Latent heat of evaporation at ooc, [J/kg]
Ai "Entalpy potential" defined by equation 4.2.21, [J/kg]
Kwb "Wet bulb K" defined by equation 2.1, [-]
K Loss coefficient, [-]
Kg Coefficient defined by equation C.4, [s/m]
k Thermal conductivity, [W/mK]
kg Coefficient defined by equation C.S, [s/m]
kl Coefficient defined by equation C.6, [m/s]
L Length, [m]
LMED Log mean enthalpy difference, [J/kg]
LMTD Log mean temperature difference, [ C]
LVF Liquid void fraction, [-]
m Massflow rate, [kg/s]
N Constant defined by equation 2.6, [-]
n Number [-]
NTU Number of transfer units, [-]
p Pitch, [m]
p Pressure, [N/m2]
Ap Pressure drop, [N/m2]
Stellenbosch University http://scholar.sun.ac.za
(vi)
Dimensionless Groups
Le Lewis number, a/D, Sc/Pr
Nu Nusselt number, hd/k
Pr Prandtl number, CpJ.L/k
Re Reynolds number, pvd/J.L
Sc Schmidt number,v/D
Abbreviations
BTF Back-To-Front
BTT Bottom-To-Top
FTB Front-To-Back
TTB Top-To-Bottom
Stellenbosch University
(vii) http://scholar.sun.ac.za
Subscripts
a Air
atm Atmospheric
as Saturated air
asi Air saturated at air/water interface temperature
asp Air saturated at process fluid temperature
asw Air saturated at bulk recirculating water temperature
c Convective or convection or condensate
ct Cooling tower
crit Critical
d Diagonal or downstream
db Dry bulb
de Drift eliminator
e Equivalant or effective
eb Equivalent (tube-) bundle
ec Equivalent constriction
ff Film cooler
fr Frontal
g Gas
go Gas only
he · Heat exchanger
hor Horizontal
i Inlet or inside or interface
il In-line
1 Longitudinal or liquid
lo Liquid only
lsl Laminar sublayer
m Mean or moist
max Maximum
min Minimum
a Outlet or outside
obl Oblique
p Process fluid (water)
r Refrigerant
rows Rows
rest Restrictions
st Staggered
t Tube or transverse
tp Two phase
thea Theoretical
v Vapour
ver Vertical
w Recirculating (spray) water
wb Wet bulb
~ Free stream
Stellenbosch University http://scholar.sun.ac.za
1.1
CHAPTER 1
INTRODUCTION
by the hot process fluid or the condensing vapour inside the tubes while it
is cooled from the airside by a combined heat and mass transfer
process.
Si nee corre 1at ions or data for heat and mass transfer coeffi ci.ents for
cross-flow evaporative coolers are practically non-existent, a series of
tests were performed on such a unit in order to determine the required
coefficients experimentally. The two phase pressure drop across the wet
tube bundle was also measured and compared with existing correlations.
Stellenbosch University http://scholar.sun.ac.za
1.3
~-------------------------Airflow
.-----t--t-------,
~------------------- Tower she 11
..------------------- Drift e1 imina tor
..----------------Sprayers
~-----------Recirculating water
~=~~!:..____,
Process fluid
U-------------
C::x!:t::::Jif------ Fan
Airflow
-------------------------Pump
CHAPTER 2
LITERATURE SURVEY
Since the air reached the coil almost saturated, he assumed that the
driving force for the heat transfer was the difference between the
condensing temperature and the air wet bulb temperature. Mathematically
his method stated
where Kwb was called the "wet bulb K" and was defined as:
(2.2)
James noted that the tube to water and water to air coefficients, hw and
he, would be the controlling coefficients, and that a significant
improvement in performance of the condenser could be achieved if these
coefficients could be improved. A simple graphical design procedure was
also presented.
Goodman [38G01] and [38G02] gave the first useful procedure to rate or to ~
as the driving force for heat transfer from the recirculating water to air.
" In as much as the spray water wets the outside surface of the coil, the
heat is transferred through the wall of the coil to the water on its
Stellenbosch University
2.3 http://scholar.sun.ac.za
outer surface. But, the water as fast as it receives this heat trans=
fers it in turn to the air flowing over the coil. As the water is
neither heated nor cooled·while it is circulated, it must attain an
equilibrium temperature, but remains constant as long as the operating
conditions remain unchanged".
The design method relied on a graph which was used to determine the
recirculating water temperature if the condensing temperature and the
entering air wet bulb temperature was known.
(2.3)
or from
where
E = 1 - e-N (2.5)
and
N =
(2. 6) .
(2. 7)
Stellenbosch University http://scholar.sun.ac.za
2.4
N =
(2.8)
This is similar to an £ - NTUa approach with the one fluid at a constant
temperature (Cmax/Cmin ~ ~ ) and N = NTUa
Parker and Treybal [61PA1] gave the first accurate design procedure for )(
the evaluation and design of vertical counterflow evaporative coolers. The
model was kept simple by employing the following assumptions:
i) The air-water heat and mass transfer can be described using the
"Merkel" type equation
he
= 1'
ho cpm (2.10)
In· solving the model Parker and Treybal realized that the recirculating
water temperature could not be constant, but since the variation in
recirculating water temperature is small the error introduced by assuming a
Stellenbosch University
2.6 http://scholar.sun.ac.za
linear relation between the ·air saturation enthalpy and the recirculating
water temperature is negligible.
\{· Harris [62HA1] and [64HA1] described the operation of a new type of cooler
~· which he called an "air-evaporative ·cooler."
Correlations for the required transfer coefficients were derived for the
numerical evaluation of evaporative coolers.
Two design methods were proposed. The first method is based on the method
given by McAdams [54Mcl]. Assuming recirculating water temperature to be
constant, the governing equations can be integrated analytically into a
single equation which can be used iteratively for rating or sizing
calculations.
For the setond design method the cooler is divided into a number of
vertical elements and the three governing differential equations are
integrated (using a numerical method) for every element. By a method of
successive calculation the whole cooler is then evaluated.
Finlay and McMillan [70FI1] derived an analytical model .to evaluate the
;-?performance of a mist cooler, the mist cooler consisted of a horizontal
r ,J ~ /
~ ,,. tube bank with horizontal airflow across the tubes. Small amounts of
. L/ water spray was added to the air flow in order to wet the tubes. The
analytical model which is based on the work of Berman [61BE1] represents
the heat and mass transfer process in terms of five differential equations.
Separate equations were derived to describe the transfer
process when the air has become saturated.
The required coefficients for heat and mass transfer were calculated from
dry tube data, employing the Lewis relation and by using Elperins'
[61Ell] equation for two-phase heat transfer.
Two-phase pressure drop measurements were made and the data compared
favourably with the simple theoretical model cited.
Stellenbosch University http://scholar.sun.ac.za
2.9
~- Kals [71KA1] described an evaporative cooler where the air enters from the
'\-'' top and flows downwards over a tube bundle concurrent with a gravity flow
of recirculating water. The airstream is then turned upwards again before
it is discharged. The concurrent flow of the air and the water prevents
the breakup of the water blanket which covers the tubes. Changing the
direction of the airstream after-it has passed through the tube bundle
forces all the entrained water droplets to leave the
airstream. A simple graphical design procedure was provided.
Tasnadi [72TAI] was the first author to describe the operation of a *'
cross-flow evaporative cooler. His model employed the following
assumptions:
i) Lewis factor = = 1,
ho cpm
ii) The air at the air/water boundary is saturated at the bulk
recirculating water temperature and
iii) the water film flow is so turbulent that the temperature of the
film can be taken as the bulk water temperature {Tw = Til
dq = U0 ( Tp - Tw ) dA ( 2. ll)
..
.'·'·
Stellenbosch University
2.10 http://scholar.sun.ac.za
and the heat transfer from the film to the air could be described by
(2.12)
By transforming the heat transfer driving force between the process fluid
and the recirculating water to an enthalpy driving force he could then
write the complete heat/mass transfer process as
(2.13)
where
(2.14)
Tasnadi gave no indication of how the heat and mass transfer coefficients
were determined, and no numerical solution or example was given.
~inlay and Grant [72FI1] found that in the presence of fins on the outside
of the tubes the heat transfer coefficient from the tube to the
recirculating water film was reduced, but the mass transfer coefficient
between the recirculating water and the air was considerably enhanced. The
lower film heat transfer coefficient was attributed to the water held up in
between the fins by surface tension. It was consequently proposed that
the airflow should be arranged downwards to flow concurrently with the
recirculating water to assist in the transport of the recirculating water
through the tube bank.
Stellenbosch University
2.12 http://scholar.sun.ac.za
Finlay and Grant [74Fil] compared the accuracy of various design procedures
for evaporative coolers. As a reference the accurate model which was
introduced in a previous paper by the same authors [72FII] was used. The
mass and heat transfer coefficients required were obtained from the
correlations of Mizushina et al. [67MI1].
It was found that the simplified method of Parker and Treybal [61PA1] w~s
"in good agreement for most engineering purposes" to the accurate method.
The rating method of Tezuka et al. [76TE1] was shown to differ quite
significantly from the accurate solution.
They concluded that for tube banks of· less than seven rows and i small
cooling range the assumption of constant recirculating water temperature
would be reasonably valid as long as a close approach to air
wet bulb temperature is not required.
Correlations for pressure drop and the overall transfer coefficients were
presented for each of the five evaporative cooler coils. These
correlations were subsequently written in terms of dimensionless groups and
a single relation for the overall transfer coefficient was then derived to
unite the existing five correlations.
[72TA1] and Tezuka et al.[72TE1] to give the governing equations for the
operation of a wet surface finned heat exchanger in terms of an enthalpy
difference and an overall transfer coefficient.
The governing equations for a wet surface heat exchanger was shown to have
the same form as the corresponding dry surface equations, which then gave
the governing equation for a wet surface cooler (finned or unfinned) as
The design method for wet surface heat exchangers was then also extended to
the heat exchanger effectiveness form [ £ - NTU form ].
The wet heat and mass transfer coefficients were obtained from the analogy
between heat and mass transfer.
Kreid, Hauser and Johnson [81KR1] continued the previous work of Kreid et )(
al. [78KR1] by experimentally evaluating the unknown wet fin heat transfer
coefficient. This coefficient could not be determined from either first
principles or from existing empirical correlations.
Threlkeld [70TH1] discussed the operation of wet surface finned tube heat Jl
exchangers. A similar approach to that of Kreid et al. [78KR1] and
[81KR1] was used in that a fictitious saturation enthalpy at the process
fluid temperature was defined. The heat transfer from the process fluid to
Stellenbosch University
2.14 http://scholar.sun.ac.za
the air was then described in terms of an overall mass transfer coefficient
and a mean logarithmic enthalpy difference.
All the required coefficients were discussed in detail except the mass
transfer coefficient. The mass transfer coefficient is calculated from the
analogy between mass and heat transfer.
In a later paper Leidenfrost and Korenic [82LE1] used the same model as ~
In the computer model the Lewis factor was not assumed to be unity, but it
was calculated from a relation given by Bosjnakovic [60801]. ~
Stellenbosch University
2.15 http://scholar.sun.ac.za
/(
~A graphical representation of the measured pressure drop across th-e wetted
coil was presented. This showed an increase of up to 40 % in pressure
drop across the wet coil compared to the dry operation of the same coil.
Perez-Blanco and Bird [82PE1] and [84PE2] studied the heat and mass
transfer process that occurs in a vertical tube evaporative cooler where
the air and the cooling water film flow countercurrently inside the tube.
An analytical model based on existing heat and mass transfer correlations
was developed. These transfer coefficients were then experimentally
varified.
Stellenbosch University2.16
http://scholar.sun.ac.za
They defined a fictitious air saturation enthalpy (at the process water
temperature) to formulate a single overall coeffi~ient. According to their
model the capacity is given by
(2.17)
and
i aspo - i ao (2.18)
When this model was experimentally verified it was found that the LMED
.
formulation could only be used for evaporative condensers or when the
cooling/recirculating water temperature change was small, otherwise a
stepwise evaluation would be necessary.
Stellenbosch University
2.17http://scholar.sun.ac.za
Perez-Blanco and Webb [84PE1] noted from the work of Perez-Blanco and
Linkous [83PE1] that the controlling resistance at the air/water interface
has to be lowered in order to enhance-the performance of a vertical tube
evaporative cooler. They studied the effect of coiled wire. turbulence
promoters inside the vertical tube as an alternative to extended surfaces.
The turbulence promoters were placed away from the tube wall in order to
mix the air boundary layer and not the water film. Experimental work
shewed a marked increase in cooler performance. The spacing between
the promoter and the tube wall was found to be of critical importance.
Peterson obtained values for the controlling mass transfer and film heat
transfer coefficients after a series of experiments on an industrial
evaporative condenser, condensing Freon-22.
The correlation for the mass transfer coefficient agrees very well with
that obtained by Parker and Treybal [61PA1] but she could not corre·late
the film coefficient because of the scatter of the experimental readings.
Criticism could however be raised against the assumption of Peterson that
the condensation heat transfer coefficient for the Freon-22 condensing on
Stellenbosch University
2.18 http://scholar.sun.ac.za
The fact that Peterson could not find a correlation for the film
coefficient after measuring the overall heat transfer coefficient could be
ascribed to this incorrect assumption.
Webb and Villacres [84WE1] and [84WE2] made the following assumptions l<
to simplify the evaluation of cooling towers, evaporative coolers
and evaporative condensers:
i) The total heat flux can be written in terms of the enthalpy difference
of moist air, the so-called "Merkel equation",
The controlling heat and mass transfer coefficients governing the operation
of the cooling tower, evaporative cooler and evaporative condenser units
are discussed. The modelling procedures for evaporative coolers and
evaporative condensers assume a constant recirculating water temperature.
Stellenbosch University
2.19http://scholar.sun.ac.za
Rating and selection procedures for all three types of cooler units are
described for both the simplified approach and the successive calculation
methods.
In a later paper Webb and Villacres [84WE2] used the methods described in
their previous work [84WE1] to set up computer programs for the rating of
any of the three units as described on the first article [84WE1] at off-
design conditions.
The heat and mass transfer characteristic for the cooler or condenser to be
rated is determined from the rating data at the design point. These
programs allow the user to evaluate the effects of various off-design
conditions on the cooler. The programs were able to predict the rating·
data given by the manufacturers within 3% for the coolers evaluated.
Various other papers [84WE3],[84WE1] and [85WE1] described the same work
as given in this article.
The complete Fortran program codes for all three the rating programs were
included in the paper.
Rana et al. [86RAI], [87RAI] tested various counterflow single and multi-
tube evaporative coolers to evaluate the mass transfer from the
recirculating water to the air.
The correlations given by Rana et al. for design purposes gives the
correction factor which should be used together with the heat/mass transfer
analogy to determine the mass transfer coefficient. The correlations given
include a term ( Ai/ifg) where Ai is a function of the air inlet and outlet
conditions. The fact that the outlet air enthalpy is required to determine
the mass transfer coefficient presents a complication if the ~quations are
to be used for cooler rating, since the outlet conditions are not known in
the rating calculations.
Block diagrams were presented to show the calculating procedure for the
rating and sizing calculations. The counterflow cooler was divided into a
number of elementary units; for each unit the controlling differential
equations were solved to obtain the inlet/outlet conditions for the next
element. By a method of successive calculation the whole cooler could then
be evaluated.
Since it is known that the inlet and outlet recirculating water streams
must have the same temperature, the solution procedure assumes a value of
the outlet recirculating water temperature and by the successive
calculating procedure the inlet recirculating water temperature is found.
Stellenbosch University
2.21 http://scholar.sun.ac.za
Examples of the temperature profiles along the flow path were given as well
as numerical examples of the rating and the selection programs.
JErens [88ER1] realized that conventiona1 Munters type cool ina tower fill
could be used together with the bare coil of the evaporative cooler to
enhance the performance of the unit.
The packing has the effect of enlarging the mass/heat transfer area and
consequently the average recirculating water temperature is lowered
resultin~ in an improved cooler capacity. Two different variations were
compared to the bare tub~ cooler by employing modified versions of the
bare cooler rating program. The so-called "integral cooler" combined the
coils and the packing while the second layout consisted of a conventional
bare coil section with the packing placed underneath the coil.
Cooler Ca~acity
Erens noted that by using fill together with the tubes it was possible to
use a considerable number of tube rows less than would be required for a
bare tube cooler of the same capacity.
~ Erens and Dreyer [88ER2] used the more accurate modelling procedure of 4f
Poppe [84P01] and Bourillot [83B01] to evaluate a typical element of an
evaporative cooler. This model did not include the Merkel assumptions of a
Lewis factor equal to unity and negligible water loss as result of
evaporation.
Stellenbosch University
2.22http://scholar.sun.ac.za
In conventional cooling tower theory the Merkel type model has become the
accepted model for the analysis of a direct contact cooling tower.
CHAPTER 3
iii) low mass transfer rates (At high mass transfer rates the heat
transfer coefficient would be influenced by the mass transfer
rate; refer to Apppendix I);
principles.
The exact analytical method presented uses the same basic approach as
Poppe [84P01] and Bourillot [83801] to describe the transfer processes
between the air and the recirculating water in a conventional cooling
tower.
The more commonly used Merkel model can easily be found from the
controlling equations of the exact analytical model.
ia + dia
wa + dwa
Tp + dTp
ia + dia
wa + dwa
Tw + dTw Tw + dTw
mw + dmw mw + dmw
:. dwa =
(3.1.1)
(3.1.2)
The controlling equation governing the heat and mass transfer from the
water film to the air is dependant on whether or not the air is
over-saturated (mist).
(3.1.3)
(3.1.4)
Stellenbosch University
3.4 http://scholar.sun.ac.za
By noting from equation (3.1.7.) that iva+ cpvTw = iv, this becomes
Stellenbosch University
3.6 http://scholar.sun.ac.za
= h0dA 0 [( ; asw - ; a ) + [ [ h
0
h~pm ] - 1 ] [ ( ; asw - i a )
- ( wasw - wa ) ;v J]
h:~PJ J [(;
hD dA 0
:. di a=
rna [[ i asw- i a ) + [[ 1 asw - i a )
(3.1.11)
Stellenbosch University
3.7 http://scholar.sun.ac.za
(3.1.12)
The following supplementary equations can be used to simplify the
equation above:
(3.1.16)
The last term in each of equations (3.1.13) and (3.1.15) constitutes a
correction to take into account the amount of water in the form of mist
in the saturated air.
. di =
a
, The heat transfer from the process fluid to the recirculating water is
expressed by
dq . = U ( TP - Tw) dA 0
0
where
~p ~fi l ~w]
1 do d0 1n ( d0 / di ) 1
= + +-1 +
uo [[ : d.1 2 kt hfo/
/
(3.1.18)
Stellenbosch University http://scholar.sun.ac.za
Stellenbosch University
3'. 11 http://scholar.sun.ac.za
dwa =
[ ~asw - ~a ]
1 1
[
1 \asw ] dia
asw - a
By substituting equation (3.1.20) into the equation above, it can
be reduced to
(3.1.22)
If the Singham equation is not employed with the Merkel method the
outlet air density has to be calculated after assuming that the
air leaving the evaporative coil is saturated.
Stellenbosch University
3.12 http://scholar.sun.ac.za
Tp;
00000
7 _..,.__ Tp;
1a i
.... 00000
00000
...
i ao (
)
00000 _ _....,._ Tpo
Tpo/
i ai t ~Two
Figure 3.2)a) Cross-flow Figure 3.2)b) Counterflow
evaporative cooler layout. evaporative cooler layout.
dA 0 =
mp cpp
u0
[ dTP
TP - Twm
l
mp cpp
. A0 -- Tpi
••
uo [ ln ( Tp - Twm TI
Tpo
:. Ao =
mp cpp
uo
ln
[ TPl. - Twm
Tpo Twm
l (3.1.25)
Stellenbosch University
3. 13 http://scholar.sun.ac.za
dA 0 =
ho
(3.1.26)
From equations (3.1.25) and (3.1.26) it follows that
(3.1.27)
By solving equation (3.1.27) iteratively for Twm [note that iasw = ias
(Twm)l and then using this value of Twm that satisfies equation
(3.1.27) _in either equations (3.1.25) of (3.1.26), the required cooler
surface area can be found.
Ao Uo
with NTUP = mpcpp
(3.1.28)
and from equation (3.1.26) we have
.
1 .
1 ( 1. . ) e -NTUa
ao asw - asw - 1 a i
Stellenbosch University
3. 14 http://scholar.sun.ac.za
(3.1.29)
For the whole cooler we have
Tw i a + di a
ir + dir mw wa + dwa
ia + dia
wa + dwa
Tw + dTw Tw + dTw
mw + dmw mw + dmw
(3.2.1)
Stellenbosch University
3.16http://scholar.sun.ac.za
maia+ mwcpwTw + mr ir =
After simplification
(3.2.2)
Depending on whether the air is saturated or not, the controlling
equation for the heat and mass transfer from the water film to the air
is given by case 1 and case 2 respectively.
(3.2.3)
From the exact analysis given in section 3.1.1 the change of air
enthalpy is given by
dia =
hD dA 0
rna r( iasw - i a ) +
[ he
ho cpm - I l
[ ( i asw - ia) - ( wasw - wa) iv J] (3.2.4)
Stellenbosch University
3. 17 http://scholar.sun.ac.za
(3.2.5)
where
1
+-
hfo
J (3.2.6)
(3.2.7)
(3.2.8)
From section (3.1.1) the Poppe-type analysis for the case of saturated
air results in
h dA
0
--·-
j
Stellenbosch University http://scholar.sun.ac.za
3.18
(3.2.9)
The complete system for the case of saturated inlet air is now given by
equations (3.2.1), (3.2.2), (3.2.7), (3.2.8) and (3.2.9).
The main assumptions that need to be made to reduce the exact analysis
to the Merkel analysis are
i) the evaporation of the recirculating water is negligible and
ii) the Lewis factor is equal to unity.
hD dA 0
. dia = ( i asw - i a )
rna (3.2.10)
1
dTw = ( -madia - mrdir )
mw cpw (3.2.11)
(3.2.12)
Stellenbosch University
3. 19 http://scholar.sun.ac.za
Tw; ~
/ _..,.,..__ iri
i ai
...
00000
00000
00000
..
i ao (
(
00000
----- iro
iro/
ka
Figure 3.4)a) Cross-flow Figure 3.4)b) Counterflow
evaporative condenser layout. evaporative condenser la~out.
q = rna ( i ao - i ai ) = mr ( X; - xo ) i fg
Stellenbosch University
3.20 http://scholar.sun.ac.za
q = mrifg
By making the Merkel assumptions, the operation of an evaporative
condenser can be described by the following two relations
(3.2.15)
and integration of equation (3.2.14) between the inlet and outlet sides
result in
(3.2.16)
Substituting equation (3.2.15) into equation (3.2.16) gives
ln [ :::: :
(3.2.17)'
By solving equation (3.2.17) iteratively for Twm and then using the
value of Twm which satisfies equation (3.2.17) in equation
(3.2.15), the required condenser area for the given load can be
determined.
Stellenbosch University
3.21 http://scholar.sun.ac.za
.[ ~ asw
1asw
- i a1'
i ao
l =e
--NTU a
....
fJ \. \...:.
where
ho Ao
NTU a =
rna
q = rna ( i ao - i ai ) = Uo ( Tr - Twm ) Ao
Uo Ao
~ iao= iai + rna (3.2.19)
Uo Ao
iai + rna ( Tr - Twm)
( Tr - Twm )
the previous choice of Twm until Twm converges. The outlet enthalpy of
the air can now be found by employing equations (3.2.18) or (3.2.19).
rna ( i ao - i ai )
= ' '
('•
ifg \.. (3.3.21)
It is interesting to note that equation (3.2.20) could easily be found
using the £.-NTU design approach used for the rating of conventional
heat exchangers. For heat exchanger with one fluid at a constant
temperature the efficiency £. is given by
£. = 1 _ e -NTU (3.2.22)
Stellenbosch University
4. 1 http://scholar.sun.ac.za
CHAPTER 4
The heat transfer between the cooler or condenser tube and the
recirculating water film is governed by the film heat transfer
coefficient. Various investigators have determined this coefficient
experimentally and analytically for vertical and horizontal tubes in
evaporative coolers or condensers and in so called "film"-, "trickle"-
. or "trombone" coolers.
In a "film" cooler there is no airflow through the cooler to cool the
water film flowing over the tubes as is the case in an
evaporative cooler or condenser.
I I I •
( Q' .L,c., t ~- "! t
(4.1.2)
for
and
r
1,36 < < 3 [ kg/m2s ]
do
hff = 3334,6 [ ~o ] 1I 3
(4.1.3)
if
4r
< 2100
J.Lw
(4.1.4)
Stellenbosch University
4.3 http://scholar.sun.ac.za
Mizushina et al. [67MI1] found the following correlati<_m for the film
heat transfer coefficient in a counterflow horizontal tube
evaporative cooler
hw • 2102,9 [ ~O ] 113
(4.1.5)
with
r
0,195 < < 5,556 [kg/m2s]
do
The correlation given by Mizushina et al. was obtained from test data
using tube diameters of 12,7 mm, 19,05 mm, and 40,00 mm.
= 2.2
(4.1.6)
Nuff = 1,06 Re Pr ~]
[ w w pd
0 (4.1.7)
with
(4.1.8)
This relation was derived for a film cooler, but by using the factor
proposed by Parker and Treybal [61PA1] this relation can be rewritten
for use in an evaporative cooler or condenser as follows
hw = 0,735
(4.1.9)
hw = f [~do [c(] ,
[ g p2 d3
r ~f ]] (4.1.10)
for both the developed and the developing regions. The actual
determination of the mean film heat transfer coefficient is rather
complicated since it requires a numerical integration procedure to
determine the required coefficients for the two regions. The mean film
heat transfer coefficient consists of a combination of the film
coefficients of the two regions.
r ]0,252
hw = 2064,3 [ do (4.1.11)
where
r
2 < < 5,6 [kg/m2s]
do
Leidenfrost and Korenic used a tube diameter of 15,9 mm for all their
tests.
0,46
(4.1.12)
with
After simplification and using equation (4.1.1) this gives the film
heat transfer coefficient in an evaporati~e cooler or condenser as
0,67 k~ o- 0, 54 [ Jl.
l
Pwrw o' 46 l
[ rdo o' 46
(4.1.13)
Stellenbosch University
4.7 http://scholar.sun.ac.za
where
=
(4.1.14)
~
1,3 < [
0 ] < 3,4 [kgjm2s]
Chyn and Berqles [87CH1] proposed a model for calculating the film heat
transfer coefficient between a saturated water film and a horizontal
tube. The model is based on three definite heat transfer regions: the
jet. impingement region, the thermal developing region and the fully
., region. The exponent of the term ( f/d 0 ) in the
develoP.ed
.
This model correlated experimental data well when the liquid flowed
from one tube to the next as a sheet but not if the liquid feeds in
columns and droplets, in which case the model underpredicts the heat
transfer coefficient.
10000
/
v
.........·· ,...--
/
v .. 7'
-.~_,.··
........ ,........
/
/
.....·
~,- --- 1.-
v v ~ ~
_.-/
........ ,,'"'
,"'
v _,...... , ·" ~
/
v /
...." -
..-;·:.;·:''.,.,,
....·,
/
v
/ .....···
v ......,..,.....·
...........··
..-.....
.....··•·
.......·'
......
1000
0.1 1 10
f/do [ kgjm2s ]
- Parker et a l ..·--·-·-··Mizushina et al -McAdams
----- leidenfrost - - Nakoryakov ·-···•····· Oorokhov
The analogy usually gives good results for well defined layouts such
as the heat~ and mass transfer from a flat plate, but in the case of
the flow of air through a wet surface tube bank the interfacial area
between the air and the water film would not be the same as the outside
surface of the tubes, because of the falling films and drops. The
heat- and mass transfer analogy would thus fail in the case of the wet
surface tube bundle, because of the non-similarity of the wet- and dry
surface areas.
1 b l-1
= [ hoi + hL (4.2.1)
Stellenbosch University
4. 11 http://scholar.sun.ac.za
where
b =
(4.2.2)
hL = 11 360 [W/m2 K]
diasw
dTw
= b = ( 2,568 - 0,059668 Tw+ 0,0049971 T! J x 10 3 (4.'2.5)
di = 27 [mm]
do = 24,5 [mm]
Pl = 64 [mm]
Pt = 81,6 [mm]
b l-1
1
G
[ ( 1 + wa ) max
J 0,905 + 11360
(4.2.7)
Peterson assumed throughout that the air saturation enthalpy at a level
of 1 700 m above sea level is given by
The correlation given by Peterson holds for the following flow ranges
r.
1, 3 <- < 3,4 [kg/m2s]
do
Stellenbosch University http://scholar.sun.ac.za
4.13
Peterson found that the correlation for the mass transfer coefficient
given by Parker and Treybal [61PA1] holds with good approximation in
the range,
8 9
ho a := 5,0278 x 10- (Rea) 0, ( Rew) o, 15 ( d0 ) -
2, 6 ( . . )
4 29
where
Pa v•~ . ...-. L
Rea = Gmax ;,.
L
~'a l' ~ .,-
4r l\1\...,..._
Rew = o:= ·1
;;. ·,I
~'w t5 .. .,•
with
r
0,195 < d < 5,6 kg/m2s
0
0,9069
a =
do (4.2.10)
Stellenbosch University
4.14 http://scholar.sun.ac.za
h
0
= 5,544 x 10- 8 (Rea) o,g ( Rew) 0, 15 ( d0 ) -1,6 (4.2.11)
hoo = [ ~D + !'_r
uo .
and
dias
b =
dTP
4 x flow area
de = wetted perimeter
( 2 Pl ) ( Pt ) - do
= -1r -d- - do
0 (4.2.13)
Stellenbosch University http://scholar.sun.ac.za
4. 15
(4.2.14)
(4.2.15)
where
-1
+ ~]
hw (4.2.16)
and
0,25
d 0,7]
T -0,75
= 1,1828 [ d:0,3 p
(4.2.17)
in the ranges
1 <
[ ~r l < 4,2 [kg/m2s]
=
ho, thea (4.2.19)
Various studies were conducted by Rana et al.[81RA1], [86RA1] and
[87RA1] to find correlations for the ratio RR. The experimental work
was carried out on various counterflow evaporative cooler layouts,
including a single tube unit. According to Rana [87RA1] single tube
correlations developed by Rana [86RA1] overpredicts the mass transfer
coefficients by between 200 and 500 %.
Rana et al .[81RA1] determined the following correlation for a full
coil test unit
(4.2.20)
Stellenbosch University
4.17 http://scholar.sun.ac.za
where
4r
Rew =
'
~-'w
Pa va,max do
Rea =
~-'a
Ai
EP
and
( i as , wall , i - i ai ) ( i as,wall ,o - i ao )
.Ai =
ln
[ i as , wa 11 , i - >i
.
1
as,wall,o 1
ao
l
in the ranqes
Nu c = ( Rea ) 0,628
(4.2.22)
Various other investigators determined correlations for the convective
heat transfer coefficient in dry tube bundles e.g.
Zukauskas [74ZHI] or Grimison [37GRI].
........
V)
N
s
~-
..........
0'
~
...... A
c ~
/
..s:
A
~
c
.,...
Q)
.,. •
~
~
u
.,...
Q)
0.1
:-,.. F?.·
..
....... ..--:-r
,,
--•.. .. ......
~
~
.~
£,j ,·
~;·
.....·"'-·
"./
•.
V)
V)
res .....
:::E: ~.. .... _ -·
.. ,•·~. ...··
, .··''
, ., .........·
.........
~/ --
............
..
···...··
0.01
0.1 1 10
Free stream air velocity, v~ [ m/s ]
--Parker et a l -Peterson ------·· Mi zush ina et al
----- Tezuka et al ............. Analogy - Rana et al
Figure 4.2 Correlations for the mass transfer. coefficient, d0 = 19,05 mm.
Stellenbosch University
4.20 http://scholar.sun.ac.za
~-
,......, ,
......::::
,:;:/ ~
VI
N ......,...·
5 .•'
.......... ..,....."''
C'l
..:.~: , ......·"'"
........ 0.1 ...·
,
"• ..·· ....
...- -
,
Cl
,,
/ ./ -~·
.c / /' ........
.•
,,' / /
-
.··•
A
~
c: ..
, ,
,
/ v ..·· I"""' _,......~
.. ' , . .
.•
.,...
u
Q)
.,... ,
,
~ v ......
.........
...··
.
.... •.. "
~---·· .•.
~~
'+- , .... ,.... ......
'+-
Q) ...........·
_,.........
0 r;.....-
~A v~;:::~
u
s..
Q)
'+- _............-:./·
···
VI
c:
tU
0.01 ......-..........
...
s.. ..
~ .,
VI
VI
tU
:::E:
0.001
0.1 1 10
Free stream velocity, v~ [ m/s ]
--Parker et a1 -Peterson ·-·-···-··· Mi zush ina et ·a 1
----- Tezuka et al ·······•·-·· Analogy -Rana et al
Figure 4.3 Correlations for the mass transfer coefficient, d0 38,1 mm.
Stellenbosch University http://scholar.sun.ac.za
4.21
Various researchers have studied the single phase pressure drop across
tube bundles. Appendix D gives an overview of the available
correlations for single phase pressure drop across a tube bundle.
Stellenbosch University http://scholar.sun.ac.za
4.22
Diehl and Unruh [58DI1] tested various tube bundles to determine two-
phase pressure drop correlations for different tube layouts. Graphical
correlations were presented for staggered tubes with a 45° layout and
60° layout· as well as for in-line tubes. They found that the
correlations for the in~line tube bundle and the staggered bundle with
the 60° triangular layout were the same. The pressure drop for the
tube bundle with the 45° staggered layout was found to higher than
that for the other two layouts.
where
(4.3.2)
Aptp
---*- = [ 1,327] 0,0795 + 0,002888 r
Apa 1+r (4.3.5)
LVF
=
( Pal Pw J ( Re: J 0,5
mw
= [ rna + mw ( P/Pw J] ( Re; )0,5
(4.3.6)
Stellenbosch University http://scholar.sun.ac.za
4.24
Aptp
~
upa
= 1,370042 + 44591,59 1/J -
[ 0,0000369198
0,0001 + ,hY'
l
- 103378,776 log 10 ( 1 .+ 1/J) (4.3.7)
and if 0,007 < 1/J < 1,0 the data was correlated by
0,00261965]
0,00376946 + 0,0087965111 1/J + [ 0,001 + 1/J
- 0,0052407713 1/J
2 (4.3.8)
(4.3.9)
where
(4.3.10)
Collier [72C01] rewrote the model of Wallis [69WA1] and compared the
result with the data given by Diehl and Unruh [57011],
Stellenbosch University http://scholar.sun.ac.za
4.25
Aptp 1 1
-*- = 1+ r (1 - (Pa/Pw))
::::::
1 + r (4.3.11)
Apa
where
(4.3.12)
Grant and Chisholm [79GR1] conducted a study on the two phase pressure
drop through the shell side of a segmentally baffled shell and tube
heat exchanger. The correlation presented is of the following form
where
1; 2
[ Ap:
rG =
Apw
l
The coefficient n is the exponent in the Blasius type
(4.3.14)
single phase
fluid friction equation as given by
f =
(4.3.15)
Grant and Chisholm uses the value of n = 0,46 in the cross-flow
pressure drop correlation. The correlation can consequently be
simplified as
Grant and Chisholm reports that the correlation matches the data of
Diehl and Unruh [57DI1] and [58DI1] to within 2 percent for y
~ 0,6 and
B = 0,75 + 3,5 y
10 (4.3.17)
2
~Ptp = 0w ~Pw (4.3.18)
where
c 0,205
1/)2 = 1 + +
w Xtt 2
Xtt (4.3.19)
with
and
1 ,8
1 - y Pa
2
Xtt = [ Y ] Pw (4.3.21)
(4.3.22)
where
8 1
= 1 + - + -2
Xtt Xtt (4.3.23)
Very little pressure drop data measured on an actual ·evaporative
cooler or condenser have been supplied in the literature. Two
investigators reported pressure drop data for counterflow evaporative
coolers or condensers while no data has been found on horizontal
cross-flow pressure drop across an evaporative cooler or condenser.
~ ]0,32 [ ~ ]1,6
= 66,034 X 10 6 C1 [
Afr Afr (4.3.24)
A different C1 value was proposed for each of the five coils tested.
Stellenbosch University
4.28 http://scholar.sun.ac.za
The following table gives the C1 value for each of the coils tested:
100
.......
N
5
.........
:z:: 80
......
0.
~
~
0.
0
s.. 60
"'0
Q)
s..
::::s
II)
II)
Q)
s..
. Q.. 40
0~~~--L_~L_~L_~--~--~L_~
0 2 4 6 8 10 12 14 16
Air massflow rate, rna [ kg/s ]
-Dry tube bundle -Diehl (60°) .
--Diehl (45°)
-·~·~·~·-·Wallis/Collier -----Grant et al
300r---~r---.----.----.----.----.----~--~
,......
'N
e
~ 200
.......
c..
<I
~
c..
0
s..
"'C
150 ..
..·······•·
Ql
s.. ...·····•
:::::J
VI ...·•···
VI
Ql
..··'
s.. ........•.-·....
0..
100
0 1 2 3 4 5 6 7 8
Air massflow rate, rna [ kg/s ]
--rezuka et al -Grant et al ·-··-·-·-Ishihara et al
-----Diehl et al - Dry tube bundle
Figure 4.5 Pressure drop across a tube bundle in a counterflow layout with
a recirculating water massflow rate of 4 kg/s.
Stellenbosch University
5. 1 http://scholar.sun.ac.za
CHAPTER 5
COMPUTER SIMULATION
The following table lists the various programs and the solution method
used in each program.
mw = 2 r L nhor (5.1.1)
or
mw
r = --~, --
2\L nhor (5.1.2)
mw = 4 r L nhor (5.1.3)
or
r- - - - -
- 4 L nhor (5.1.4)
The mass transfer coefficient correlation given by Mizushina et al.
[67MI1] (see Chapter 4.2) was used to determine the mass transfer
coefficient for both cross-flow and counterflow evaporative
coolers or condensers. The mass transfer coefficient correlation
given by Mizushina et al. [67MI1] was determined for a counterflow
evaporative cooler, but because of the lack of more suitable data this
correlation was also used for the cross-flow coolers and condensers.
The film heat transfer coefficients used in all the programs are
determined with the correlation ~resented by Mizushina et al. [67MI1].
Refer to Chapter 4.1 for a description of this film heat transfer
coefficient correlation.
The heat transfer coefficients on the inside of the tubes in the case
of an evaporative cooler are calculated from the correlations by
Gnielinski [75GN1] and Kays et al. [55KA1] for turbulent and laminar
flows respectively.
'' ''
'' ''
'' ''
'' ''
'' '''
'
-~---....._..,,- -~--- .....--.,,-
'' ''
' '' ''
' ''
a b
/
/
/
/
/
/
/
/ /
/
I " /
I "
v" /
/
"I /
/
"" I /
/ /
/
/
/
- -~------
/
/
/
/
/
/
/
/
lI
Figure 5.3 Top-to-bottom serpentining arrangement as used in a counterflow
evaporative cooler.
Stellenbosch University
5.7 http://scholar.sun.ac.za
If the water flowing over the tubes is recirculated the inlet and
outlet recirculating water temperature should be the same, as soon as
the cooler is operating in a steady state. If the water flowing over
the tubes is not recirculated, but fresh water is sprayed over the
tubes, then the inlet spray water temperature has to be specified in
order to evaluate the cooler performance.
If the cooling water flowing over the outer surface of the tubes is
recirculated, a viable inlet recirculating water temperature is chosen
{the recirculating temperature at the inlet will always be larger than
the air inlet wet bulb temperature and smaller than the process fluid
inlet temperature).
As soon as all the blocks have been evaluated the average outlet
cooling water temperature can be determined. If the cooling water is
recirculated and the chosen inlet temperature of the recirculating '
water differs from the outlet temperature, a new value of inlet
temperature of the recirculating water is chosen and the whole
calculation is repeated l!ntil_the inlet and outlet recirculating_wat_g_r
temperatures are the same, giving the operating point of the cooler.
I TL'
2
The modified interval halving method typically requires less than half
the number of iterations that would be required by the
conventional interval halving technique.
Once the calculated and specified process fluid inlet temperatures are
equal the average inlet and outlet recirculating water temperatures are
compared and the inlet recirculating water temperature is adjusted
5. 10 http://scholar.sun.ac.za
Stellenbosch University
B~IN
FIEAD IN
CODLEFI
DIMENSIONS
AND OPERATING
PAFIAMETEFIS
CHOOSE TWI
EVALUATE CODLEFI
FFIOM TOP ELEMENT AT
THE AIFI INLET SIDE.
CALCULATE TWD.TPD
ETC. USING EITHER
THE MEFIKEL. IMPROVED
MERKEL DR POPPE
MODEL
PFIINT FIESULTS
STOP
Figure 5.5 Program logic used in the determination of the operating point
of a cross-flow evaporative cooler with either a straight
through, top-to-bottom or a front-to-back process fluid flow
arrangement.
Stellenbosch University
5.11http://scholar.sun.ac.za
If the cooling water flowing over the tubes is not recirculated, the
cooling water inlet temperature has to be specified and no iterative
solution method would be needed in determining the operating point
except in the case of back to front process fluid flow where the
iterative solution method for determining the process fluid outlet
temperature would still be needed.
Apppendix K shows the results of the program CROSS for a few example
calculations to compare the different flow patterns and
the analytical models.
Stellenbosch University
5.12http://scholar.sun.ac.za
ISI!lllN
READ IN
COOL.ER
DIMENSIONS
AND OPERATINIJ
PARAMETERS
CHOOSE Till
CNOOSE TPO
!VAL.UATE COOL.ER
FROM TOP EL.EMENT AT
THE AIR INL.ET SIDE. CORRECT TPO
CAL.CUL.ATE TWO.TPI (GUESS AN
ETC. USING EITHER OUTL.ET
THE MERKEL.. IMPROVED TEMPERATURE
MERKEL. OR POPPE PROFlL.EJ
MODEL.
NO
NO
STOP
Figure 5,6 Program logic used in the determination of the operating point
of a cross-flow evaporative cooler with a back-to-front process
fluid flow arrangement.
Stellenbosch University
5.13 http://scholar.sun.ac.za
1 1\
Top I ·,
~
' \\
~ I
I
I
~
'
I \
~ '
I
\
I
6 -~
1-
I
'
I
I
\
I
l
I
I i
~
.c ~
I
l
....cur:n
.c
s..
cu
~
~ l!'
,.... 11 -~ j
0
- I
I
0
u
r:n
c:
- !I
0
,.... -
"'
c:
~ I
I
0
16 -~ I
~ J
1- !
V) i
0
c.. 1- i!
1- l
I
1- i
21 -- Ii
- ~
i .
i
-
- ii
~
i
j
I I I I I
26
30 35 40 45 50 55
Temperature [OC]
---- Tp (air inlet side) - - Tp (air outlet side)
·---·--- Tw (air in 1et side) ----- Tw (air outlet side)
1 Top ~ .
""-:--,
'\,'\I \
6
~
.c
....en J )
I /
Q)
.c
~
- 11
Q)
0
0
u i
i
:
•
I !
en
s::
-0
IU
s::
....
0 16
....
~
VI
0
Q.
i
;
i
I ,'
,
!
,
I '
21
I ,'
! :
26
I
f
I I!
,'
30 35 40 45 50 55
Temperature [°C]
1 Top
....cu
..c
....~
0
11
0
u
C')
c
....
0
IU
c
.:= 16
....
VI
0
0..
21
- FTB - BTF
·-·-··-··· TTB
Figure 5.7 c) Outlet air enthalpy profiles along the height of a cross-
flow evaporative cooler.
s.
Stellenbosch University
16 http://scholar.sun.ac.za
If more than one block is chosen along the length of the cooler the
solution is further complicated by the fact that a different
recirculating water outlet temperature has to be selected for each
block to ensure that the calculated recirculating water inlet
temperatures are constant along the top tube.
The program COMBINE uses sections of the COUNTER program but several
simplific~tions hav~ been introduced to allow the practical use of the
RUO JH
COOL.~
OlME.NSIDNS
.t.NO OP!:R4TlN&
PARANI!iERS
CHOOSe: TPO
CHOOSE MWO
CHOOSE TWO
!VALUATE CDDI.~
~OM THE AIR INLeT
SIDE. CA~CIJU.TE
TWI. TPt. HWI ETC.
USING £ITHEA TH~
MERKEL. IMPROVED
MeRKEL DR POPPI!
MODEL
Figure 5.8 Program logic used in the determination of the operating point
of a counterflow evaporative cooler with a top-to-bottom (TTB)
process fluid flow arrangement.
Stellenbosch University
5.19 http://scholar.sun.ac.za
III!IUN
AI!AD IN
CDDI..I!A
DIMI!NSIDNS
AND OPEAATINIII
PARANI!TI!RS
OIODSI! MWD
CHDDSI! TWD
EVAI..UATE CODI..EA
FADM THE AIR INI..ET
SIDE. CAI..CUUTE
TWI.TPD.MWI ETC.
USING EITHER THI!
MERKEl... IMPROVED
MERKEl. OF< POPPE
HODEl.
STOP
Figure 5.9 Program logic used in the determination of the operating point
of a counterflow evaporative cooler with a bottom-to-top (BTT)
process fluid flow arrangement.
Stellenbosch University
5.20 http://scholar.sun.ac.za
It has been found that the addition of a section of fill material can
lead to a significant decrease in the number of tube rows required to
exchange a given amount of heat. Typical numerical examples are shown
in Appendix K.
I!II!IUN
READ IN
CDDL.I!R
DIMENSIONS
AND DPERATIMB
PIIAAMETERS
CHDDSI! TWO
TTB
CHDDSI! TPD
STOP
Figure 5.10 Program logic used in the determination of the operating point
of a counterflow evaporative cooler with conventional cooling
tower fill placed above or below the tubes.
Stellenbosch University
5.22 http://scholar.sun.ac.za
1 Top
Packing section
....cu
..c
s..
....cu
0
0
u· 11 I
C'l I
c: I
....
0
IU
I
I
I Tube section
I
c: I
....
0
I
I
....
II)
I
I
I
I
0
c..
16
21
35 40 45 50 55
Temperature. [°C]
- - Tp (with packing)
. - Tw (with packing)
·-···-····-Tp (without packing) ----- Tw (without packing)
i
I
I
I
l
~
6 I
.=.
en
.,....
cv
.=.
I
I
I
s.. !
cv
,....
0
0
I
1
u !
I
en !
c: 11
0
,.... ··...
···...
cu ~
Tube section
\ .. I
c: ·.\. I
0 I
.,....
~ \\ ' '
.,....
VI
\ ''
0 '
Q. I I '
16
\ l I'
'
I '
li I
I
'
I
I ''
I I '
I
I
I
21
/
35 40 45 50 55
Temperature, [°C]
-Tp (with packing) ··~··~~~·· Tw (with packing)
-----Tp (without packing) -Tw (without packing)
1
Top Packing section
~
.s:
C)
.,_ 11
C1)
.s:
Tube section
~
C1) I
..- I
I
0 I
0 I
u I
C) 16 , I
,,
s:::: I
0
..- ,
n:l
,,
s::::
0
, ,·
.,_
,,
,'
~ ,
.,_
V'l
21
0
0..
26
31
60 80 100 120 140 160 180
Air Enthalpy, [kJ/kg]
--ia {packing above) ······-··- ia {no packing)
----- ia {packing below) ·
Stellenbosch University
5.25 http://scholar.sun.ac.za
Four programs, SCOUNT, SCROSS, CSCOUNT and CSROSS using the simplified
analytical modelling procedure for evaluating evaporative coolers or
condensers have been written.
All four of these programs can be used for cooler or condenser rating
and sizing calculations, and the relative fast execution time allows
for the easy adaptation of these programs for execution on a personal
computer.
The simplified model gives results which agree fairly well with the
results obtained with numerical integration model in cross-flow
evaporative coolers with relative sh~rt tube lengths. The discrepancy
in results at longer tube lengths is due to the three dimensional
nature of the recirculating water temperature profile, which cannot be
represented well enough by a single representative temperature.
In order to keep the process fluid velocity within allowable limits the
front-to-back or the back-to-front process fluid flow patterns are
normally employed. As mentioned before the relatively long execution
time of the back-to-front process fluid flow pattern compared to that
of the front-to-back flow pattern does not justify its use since there
is very little difference in the cooler capacities obtained with these
two flow patterns.
If the initial air massflow rate was chosen correctly the pressure drop
through the tower would be exactly balanced by the available draft, but
if the pressure drop is not matched by the available draft a new air
massflow rate has to be selected and the whole calculation process must
be repeated.
BEGIN
RI!AO IN TOWER
OIMI!NSION5
AND OPERATING
PARAMETERS
CHOOSE IN~ET
AIR MASSF~OW
RATE
I!VA~UATE COOLER
UNIT FROM THE AIR
IN~ET SIDE.
CA~CULATE TAO.TPO
ETC. USING EITHER
THE MERKEL. IMPROVED
MERKa DR POPPE
MOOEL.
CAL.CIJL.A TE THE
AVAI~AB~E PRESSURE
DIFFERENCE ACROSS
THE TOWER AND THE
PRESSURE DROP
THROUGH THE TOWER.
STOP
Figure 5.12 Program logic used in the determination of the operating point
of a natural draft cooling tower with cross-flow evaporative
cooling units placed around the outer perimeter of the tower.
Stellenbosch University
5.29 http://scholar.sun.ac.za
base has been found to be almost saturated, if not fully saturated, and
consequently the assumption of saturated outlet air to.determine the
outlet air density when employing the Merkel type analytical model is
normally a good assumption. The exact method does not employ this
assumption since the air properties are fixed at every part of the
cooler, therefore it is generally expected that the exact model will
yield more accurate results.
Stellenbosch University
6.1 http://scholar.sun.ac.za
CHAPTER 6
r - - - - - - - - - - - - - - - D r i f t eliminator
r - - - - - - - - Mixers
,.----....,:__ Mesh
.
Cl'
Two cross-flow evaporative cooler test sections were built. The first
test section (see figure 6.2) consisted of 250 galvanized steel tubes,
38,1 mm OD and 34,9 mm 10, spaced in a 2 x d0 tri.angular array of ten
vertical rows. The sides of the test section ~a~made of a 13 mm
thick transparent Perspex plate to allow observation of the test
section. Incomplete wetting of the lower tubes facing the airstream
was observed when testing the upright test section at high air
velocities and low recirculating water flow rates.
The second test section was suspended in a frame which pivoted around
the middle of the test section as seen in figure 6.3, this allowed the
test section to be rotated by up to 18,75° from the vertical. Only 22
vertical rows of tubes could be fitted in the rotating test· section in
a 2 x d0 triangular array. The same 38,1 mm 00 and 34,9 mm ID
galvanized steel tubes were used for the inclined and the upright test
sections.
\'---------..J
Figure 6.2 Upright test section layout. ·
r-----Air flow
process water flowed back into the bottom of the water storage tank,
ensuring a stable process water inlet temperature at the
test section.
The recirculating water was pumped from the sump underneath the test
section to the spray tubes located above the test section. Each of
the tubes in the top row of the test section has a spray tube directly
above it to ensure an even distribution of recirculating water. The
layout of a spray tube is shown in figure 6.4. A spray tube consists
of a horizontal copper tube which has small diameter holes drilled
into the top of the tube along its length. The copper tube is
enclosed in a larger diameter plastic tube. The plastic tube has a
narrow slot machined at the bottom of the tube along its length. The
recirculating water which· is pumped from the sump undefneath the test
section is fed into a header which distributes the water to the copper
tubes of each spray tube. Since the pressure inside the copper tubes
is high, an equal amount of recirculating water is sprayed out of each
hole at the top of the copper tubes. The spraj water strikes the
insi~e of the larger diameter plastic tube and .flows downwards and out
through the slit in the bottom of the plastic tube and onto the top
tubes in the test section.
Special care was.taken to prevent the air stream from short circuiting
the test section. Galvanized plates were suspended underneath the
bottom row of tubes in the test section. The ends of the plates hung
in the.water in the recirculating water sump effectively stopping the
air from short circuiting underneath the test section.
Flat galvanized steel plates were placed on top of the spray tubes to
prevent short circuiting of the air through the gaps between the spray
tubes.
In the evaporative cooler tests the following quantities had to be
measured:
a) Massflow measurements
The process water massflow rate was measured using an orifice plate
placed in the process water supply line between the hot water tank and
the test section. The orifice plate was made and installed according
to the BS-1042 standard with pressure tappings at a distance equal to
one tube diameter upstream of the orifice plate and half a tube
diameter downstream of the orifice plate.
The pressure difference ·across the orifice plate was recorded with two
Foxboro differential pressure transducers. These two transducers
covered different pressure ranges and this allowed a wide massflow
range to be measured without having to change the orific~ plate. The
4 - 20 rnA signal delivered by the Foxboro pressure transducers were
converted to a voltage signal (between 1 and 5 V) by passing the
current through a high precision 250 ohm resistor. The pressure
transducers were calibrated by using a zero differential pressure
signal as the low range calibration point and a known pressure
difference near the pressure transducer full scale position as the
high range calibration point. The calibration of the transducers were
checked using a weighing drum and a stopwatch.
The rotameter which was installed can measure a water massflow rate of
up to 3,33 kg/s on a linear scale from 0 to 25. The rotameter ·was
consequently calibrated by using a stopwatch and a weighing drum and
a simple second order polynomial curve was fitted to the data and this
curve was then used as the calibration curve for the rotameter.
The air massflow rate was determined from the differential pressure
measured across the air measuring nozzles in the test tunnel (see
figure 6.1). The five elliptical nozzles were made according to the
ASHRAE 51 - 75 standard. The differential pressure readings across
the nozzles were taken with a calibrated low pressure Foxboro
transducer. As in the use of the other pressure transducers the
current signal of the transducer was converted to a voltage reading
through the use of a precision resistor. At low air massflow rates
one or more of the nozzles were closed up to give higher differential
pressure readings to ensure more accurate massflow determination.
b) Temperature readings
-----Plastic tube
I
~~--Small diameter holes
I I . . .. . ... .. .. .. . . . . . I
·····················
\ I I I
---------------
.... ::::::::.·::::::::::::::::::::::.·:::....
I
'----- Narrow s1ot
I ____J I I
3
a-~--~-J_
j_~·-, _..(ihj
~12w
, - - - - - - - - Perspex cylinder
,----- Thermocoup 1e
The air wet bulb and dry bulb temperature were measured upstream and
downstream of the test section. The wet bulb temperature readings
were taken using a simple sampling tube as shown in figure 6.6. The
wet bulb thermocouples were kept wet by a small cotton sleeve which
was pulled over the tip of the thermocouple while the other end of the
sleeve was suspended in a small water reservoir to keep it wet. To
ensure that the correct wet bulb temperature would be read with the
wetted sleeve thermocouple, a small fan was installed to draw the air
through the air sampling tube at between 3 and 5 m/s. In order to
read the average air temperature, five wet bulb and five dry bulb
thermocouples were installed at each air sampling point.
c) Other measurements
, - - - - - - - - - - - - - - - D r y bulb thermocouple
, - - - - - - - - - - - - W e t bulb thermocouple
~--Air inlet
Water container
······•· . . .
·::::::t·::: ::
............
.... .. ... ....
..........
::::::.r:::. ::.
······!······
...... ········
............
... .... ...... .
'
Copper tube
The data logging was performed using a Kayes Digilink 4 data logger
linked to an Olivetti M21 personal computer. The data logging system
layout is shown in figure 6.8.
transducers
Figure 6.8 Block diagram showing the data logging system layout.
A computer program was written in TurboBasic to read all the data from
the Digilink and to perform the necessary energy balance calculations
on the data. The flow chart for the data logging program
Stellenbosch University
6. 13 http://scholar.sun.ac.za
where
(6.2)
Aqw = mwi cpwi Twi - ( mwi - rna ( wao - wai ) ) cpwo Two (6.3)
BEGIN
LOG
INITIAL.I:ZE THe
REQUIRED
OPERATING READ OATAI"ILE
PARAMETERS AND
YARIABL.ES.
CORRECT THE
TEMPERATURE
A~D DATA MEASUREMENTS USING
FADM THE THERMOCOUPLE
DIGIL.INK- CALIBRATION DATA.
DATAL.OGGER CAL.CUL.ATE THE
HASSFLDW RATES ANO
THE ENERGY BALANCE.
CORRECT THE
TEMPERATURE
MEASUREMENTS USING
THE THEAMOCDUPL.E DISPLAY THE
CAL.IBAATIDN DATA. RESULTS ON
CAL.CUL.ATE THE THE SCREEN.
MASSFL.OW RATES AND
THE ENEABY BAL.ANCE.
SAVE THE
DATA ON DISK.
NO
YES
STDP
The inlet process water temperatures used for all the tests lie
between 38°C and ssoc which would be the normal operating temperatures
for evaporative coolers. Since the tunnel draws in fresh atmospheric
air the tests were all conducted without any control over the inlet
air conditions.
The swing angle of the inclined test section was always set to ensure
complete wetting of all the tube rows. The water distribution on the
tubes is dependant on the air and the recirculating water massflow
rates which implies that the optimum swing angle is a function of the
air and recirculating water massflow rates.
The only ~arameters which were freely variable ·were the massflow
rates of the air, process water and the recirculating water. The
process· water massflow rate could be varied between 5 and 16 kg/s.
For the upright test section the following massflow ranges were
possible, 1 ~ mw ~ 4 kg/s and 1 ~rna~ 6 kg/s and for the inclined
test section the following massflow ranges were covered: 1 < mw < 7
kg/s and 1 < rna < 12 kg/s.
Upon starting a new test the hot process water was allowed to
circulate through the test section and back to the hot water reservoir
to warm the piping and the test section. A low air massflow rate
through the tunnel ensured that the tunnel walls were sufficiently
warm in order to shorten the time needed to reach a steady operating
condition when the cooler operates as an evaporative cooler. After
about five minutes the recirculating water was started and the mass
'/·_.,...-· /" /
flow set to the required flow rate. The air massflow rate was then
increased to the required flow rate and the make-up line to the
recirculating water·sump was closed off.
The tests were run until the following stabilization criteria were met
i) an energy balance of better than 5% and
ii) the difference between the inlet and outlet recirculating water
temperatures stabilized.
Stellenbosch University
6.16 http://scholar.sun.ac.za
As expected it was ·found that the recirculating water flow was dragged
downstream by the cross-flow air at high air velocities which meant
that the bottom tubes facing airstream started to form dry patches.
At free stream air speeds of up to 1,25 m/s (rna z_6 kg/s) the
distribution of recirculating water among the tube rows in the upright
test section was still good. As the air velocity increased the first
few tube tows received less and less recirculating water until they
ran completely dry. The obvious solution to this problem was to swing
the test section through a small angle in order to align each
horizontal tube below and slightly downstream of the previous tube
above it. It was observed that the recirculating water flowed from
one tube to the next in the form of evenly spaced columns or droplets.
It was also noted that a recirculating water column falling from a
tube would adhere to the tube below if it only touched the lower tube.
If the airspeed was just slightly higher the deflected column would
miss the lower tube completely and it would be swept away. This
phenomena is graphically illustrated in figure 6.10. ·
If the lower tube was placed slightly downstream of the upper tube the
water column which would just be swept away in an upright test
section, would strike the lower tube and a good distribution of
recirculating water would still be obtained.
Based on the work of Yung et al. [80YU1] and the current test section
dimensions (Pt = 2 x d0 , Pd = 2 x d0 ), two graphs were plotted to
determine the deflection of the· recirculating water flowing in droplet
and· column modes respectively. According to Yung et al. the liquid
flow in the droplet mode consists of a primary drop and four or five
smaller secondary drops. The smallest drops are obviously swept away
first by the cross-flowing air stream.
From figure 6.11 it can be seen that the smallest drops are swept
away from the lower tube in the upright test section at a free stream
velocity of about 2 m/s, if the test section is inclined at 18° the
smallest drops would be swept away only at a free stream velocity of
3 m/s.
Figure 6.12 shows the deflection of the water flow in the column flow
mode. According to the criterion given by Yung et al. the column mode
starts at r = 95 kg/m/hr for water at 40°C. It can be seen from
figure 6.12 that the maximum allowable free stream velocity (before
the water column is swept away) increases dramatically by inclining
the test section through relatively small angles from the vertical.
7
~
v/
'•
~,..
,....., 6 ,........
v·
v/ V'
VI
g
,__,
5 1--/
./ ~
v
9
>
.. ..../
..,..·
/
~
+o)
.,...
u
0
.....-
4 ...........·
.--
,.,.
1.-·'
/.,.,,.,.
L
v ~
_.,.,.. ~
~
v/ V'
Q,)
>
s..
.,...
"'e 3
--
......
......./·····/ v ./'
V'
"'s..
..··•••··
v v~ .
/: /
Q,)
+o)
VI
. ... ··
Q,)
..
Q,)
s.. 2
fj /
1..1..
0
~
0 1 2 3 4 5 6 7 8 9 10
Droplet size, d [ mm ]
----a= oo ( in-line )
············· a = 18°
Figure 6.11 Maximum allowable freestream air velocity versus droplet size
for droplet deflection for in-line and inclined tubes.
Stellenbosch University
6 19 http://scholar.sun.ac.za
0
5~--------~----------~--------~--------~
..... 4
VI
~
.......
9
>
>,
..
.....,
....u 3 ..... -·
..·-- ---- _.....
....cv
0
..··..·
..·······
,., -
...
,- -~
> ... ··· _, ...
....s-
tU .·.
.· .·
, ·'
,,
~
.. ,. ,
stU ,. ,
cv 2 , ;
s-
....., ;
VI
cv
"
cv
s-
1.1..
0~--------~~--------~----------~----------~
m/s it can be deduced from figures 6.11 and 6.12 that a swing angle of
18,75° should be sufficient to ensure very little water entrainment by
the airstream.
Since there was some uncertainty as to what size and how many of the
small spray holes should be drilled along the top edge of copper tubes -1
in the spray tubes, it was decided to drill 40 holes of 1,5 mm
diameter along the top of each copper tube. These spray tubes were
then used in the tests of the upright test section and this limited
the recirculating water massflow rate to 4 kg/s.
The holes in the top of the copper tubes inside the spray tubes were
increased to 2,25 mm in diameter and this allowed recirculating water
massflow rates of up to 7 kg/s.
The results of the tests are presented in table 6.1. Tests 908.1 to
1808.3 were conducted on the upright test section and tests 2610.1 to
411.8 were conducted on the inclined test section.
Stellenbosch University http://scholar.sun.ac.za
Table 6.1 Experimental results of the tests conducted on the inclined and upright test sections.
908.1 101.690 48.900 45.• 024 43.411 43.720 15.602 10.777 14.285 2.309 3.905
908.2 101.690 46.746 43.394 41.778 42.110 15.223 10.701 14.285 2.323 2.996
908.3 101.690 44.982 42.099 40.396 40.814 16.583 11.550 14.245 2.377 1.603
1508.1 101.098 47.054 40.160 38.562 38.581 19.064 14.760 10.298 4.997 3.897
1508.2 101.098 45.507 39.292 37.645 37.675 20.064 14.671 10.373 5.013 2.996
1508.3 101.098 44.361 38.873 36.904 37.167 20.131 14.728 10.384 5.021 1.603
1508.4 100.584 47.276 42.204 40.254 40.493 19.340 15.348 14.861 4.960 3.902
1508.5 100.584 46.193 41.441 38.959 39.746 18.631 15.040 14.836 4.968 2.996
1608.1 100.566 49.998 42.186 40.406 40.380
39.170
19.266
19.362
14.628
14.485
10.134
10.131
4.800
4.847
3.916
2.996
......
0'
N
1608.2 100.566 47.915 40.896 39.047
1608.3 100.566 45.980 39.888 37.442 38.060 18.910 14.273 10.089 4.904 1.603
1608.4 100.566 43.999 39.719 38.584 38.619 18.281 14.104 9.783 2.448 3.858
1608.5 100.566 43.160 39.166 37.894 38.013 .18.258 13.932 9.808 2.487 2.996
1608.6 100.566 42.054 38.480 37.022 37.315 17.963 13.745 9.774 2.512 1.603
1708.1 100.792 50.024 41.334 39.385 39.328 18.588 14.052 10.470 6.021 3.837
1708.2 100.792 47.709 39.940 37.876 38.002 . 17.964 13.936 10.483 6.063 2.996
1708.3 100.792 45.573 38.908 36.231 36.879 17.553 13.679 10.457 6.135 1.603
1808.1 100.524 52.734 44.467 42.757 42.747 14.959 11.519 9.366 3.482 3.824
1808.2 100.524 50.276 42.900 40.985 41.220 14.992 11.381 9.402 3.553 2.996
1808.3 100.524 47.700 41.391 . 39.120 39.630 14.701 11.226 9.469 3.691 1.603
2610.1 100.919 47.582 39.508 36.747 37.515 23.563 14.967 12.420 8.011 6.861
2610.2 100.919 41.847 35.680 33.213 34.021 22.971 14.724 12.358 8.160 5.824
2610.3 100.919 40.266 34.861 32.466 33.186 22.423 14.579 12.289 8.224 4.653
2610.4 100.919 37.563 33.157 30.612 31.524 21.791 14.345 12.100 8.334 2.996
2610.5 100.581 53.087 39.720 35.863 36.975 11.773 9.773 10.204 10.002 6.927
2610.6 100.581 43.936 35.806 32.424 33.494 12.032 9.724 12.169 10.211 5.807
2610.7 100.581 40.691 33.882 30.641 31.533 11.274 9.355 12.467 10.305 4.828
2610.8 100.583 37.444 32.043 28.557 29.495 10.549 8.911 13.027 10.443 2.996
Stellenbosch University http://scholar.sun.ac.za
Table 6.1 (cont.) Experimental results of the tests conducted on the inclined and upright test sections.
2710.1 99.645 49.943 42.116 38.422 39.939 20.219 14.670 14.177 7.495 6.865
2710.2 99.645 47.739 40.660 37.083 38.559 19.265 14.232 14.150 7.580 6.078
2710 .. 3 99.645 C) 45.517 39.043 35.372 36.840 19.160 13.870 14.155 8.330 4.614
2710.4 99.645 42.530 37.159 33.472 34.795 17.465 12.755 13.911 8.344 2.996
2710.5 99.915 48.139 39.095 35.506 36.639 13.813 11.450 13.218 9.434 6.790
2710.6 99.915 46.476 38.211 34.591 35.851 14.160 11.544 13.233 9.505 5.916.
2710.7 99.915 45.115 37.680 33.880 35.159 13.783 11.426 13.239 9.585 4.336
2710.8 99.915 42.943 36.608 32.474 33.961 13.722 11.553 13.246 9.688 2.996
2810.1 100.179 47.897 39.173 35.701 36.838 17.470 11.992
11.945
13.308
13.330
9.146
8.938
6.806
5.784
.
0'
Table 6.1 ·(cont.) Experimental results of the tests conducted on the inclined and upright test sections.
3110.6 100.290 44.720 38.688 34.895 36.036 17.643 14.697 13.174 8.482 2.485
111.1 100.262 52.173 44.284 42.061 42.330 25.168 15.669 13.633 5.898 6.782
111.2 100.262 50.291 43.173 40.914 41.316 25_.481 15.588 13.650 5.969 5.970
111.3 100.262 48.443 42.064 39.725 40.151 24.476 15.149 13.674 6.069 4.952
111.4 100.262 46.364 40.730 38.401 38.854 24.377 15.179 13.674 6.079 3.935
111.5 100.262 44.069 39.061 36.900 37.274 23.021 14.703 13.630 6.141 3.610
111.6 100.262 42.560 37.492 35.768 36.050 23.167 14.823 13.638 6.092 5.957
111.7 100.262 41.775 36.850
39.095
35.267
37.120
35.524
37.275
23.039
12.652
14.886
10.376
13.659
12.925
6.170
6.926
6.643
6.596
.
211.1 100.189 46.369 N
w
211.2 100.189 44.156 37.644 35.730 35.870 12.532 10.484 12.910 7.005 5.956
211.3 100.189 43.026 36.907 34.934 35.174 12.395 10.413 12.900 7.013 5.310
211.4 100.189 41.779 36.091 34.099 34.377 12.612 10.572 12.922 7.051 4.906
311.1 100.874 52.728 44.045 41.575 41.930 16.847 11.558 13.852 6.531 6.795
311.2 100.874 50.625 42.843 40.297 40.695 16.566 10.940 13.806 6.609 5.530
311.3 100.874 47.377 40.937 38.306 38.757 .15.870 11.186 13.801 6.747 4.005
311.4 100.874 45.163 39.361 36.810 37.223 16.918 11.537 13.784 6.801 3.610
411.1 100.710 52.419 43.927 41.375 41.614 16.437 11.777 14.970 7.144 6.774
411.2 100.710 50.419 42.711 40.236 40.439 16.495 11.461 14.957 7.282 5.795
411.3 100.710 48.072 41.141 38.587 38.959 17.169 11.870 14.926 7.365 5.087
411.4 100.710 47.141 40.754 38.121 38.425 "17.347 11.417 14.945 7.457 3.974
411.5 100.710 45.961 40.225 37.375 37.739 17.859 12.122 14.864 7.537 2.996
411.6 100.710 44.146 37.969 36.053 \ 36.082 17.757 11.913 14.853 7.567 6.793
411.7 100.710 42.613 37.095 35.122 35.250 18.317 12.273 14.737 7.633 5.574
411.8 100.710 40.559 35.829 33.748 33.964 19.093 12.803 14.472 7.757 4.192
Stellenbosch University
6.24 http://scholar.sun.ac.za
The single phase pressure drop was measured across the tube bank and
the results are tabulated in table 6.3 · The pressure drop measurements
were all taken across the movable test section. The upstream pressure
Stellenbosch University
6.25 http://scholar.sun.ac.za
Table 6.3 Measured pressure drop across the dry tube bundle.
The two phase pressure drop across the test section was measured for
various combinations of air and recirculating water massflow rates.
In all the pressure drop readings it was ensured that the
recirculating water distribution through the tube bundle was uniform.
Stellenbosch University
6.26 http://scholar.sun.ac.za
Table 6.4 Measured pressure drop across the wet tube bundle.
mw rna ~Ptp(corr)
5. 71 8.22 76.13
5.23 8.26 72.12
4.47 8.38 70.09
4.48 8.41 68.08
6.58 7.44 67.28
5.88 7.48 64.28
3.61 8.36 62.10
3.61 8.46 62.07
4.94 7.50 61.27
5.45 7.23 58.32
4.43 7.42 56.79
6.64 6.98 55.87
4.74 7.24 55.32
5.89 6.89 53.89
5.91 6.94 53.38
6.76 6.55 52.94
6.90 6.41 51.97
6.87 6.35 51.48
5.38 6.92 51.38
5.35 7.01 51.36
3.64 7.33 51.30
6.98 6.31 50.48
6.85 6.31 49.98
3.00 7.45 49.28
4.85 6.96 48.87
4.84 7.10 48.85
3.00 7.24 48.32
6.09 6.51 47.45
6.12 6.42 47.27
6.63 6.08 46.02
6.61 6.07 45.52
2.00 7.53 45.27
5.31 6.40 44.97
2.00 7.37 44.30
6.87 5.93 44.05
4.00 6.63 43.93
3.61 6.76 43.91
5.97 6.18 43.01
6.82 5.83 42.56
Stellenbosch University
6.27 http://scholar.sun.ac.za
Table 6.4 (cont.) Measured pressure drop across the wet tube bundle.
mw rna APtp(corr)
Table 6.4 (cont.) Measured pressure drop across the wet tube bundle.
mw rna f1Ptp(corr)
Table 6.4 shows the measured two phase pressure drop across the tube
bundle at various combinations of air and recirculating water
massflow rates.
All three analytical models availabl~ in the rating program have been
incorporated into COEFFS, i.e. the Merkel, the Improved Merkel and
the Poppe models.
(6.5)
(6.6)
or it can be based on film/air interface temperature as follows
B!:GlN
RI!AD IN TEST
DATA
CHDDS!: HD
CHDDS!: HW
STOP
Figure 6.13 Flow chart fa~ program COEFFS, showing program logic for the
iterative determination of the required coefficients from the
test data.
Stellenbosch University
6.31 http://scholar.sun.ac.za
The following correlations were obtained through the use of Lotus 123
5 Re0,66 Re 0,20
hoi ,Merkel = 5,07155 X 10- a w (6.11)
(6.12)
and
4f
Rew = ~w (6.13)
Table 6.5 Calculated film heat transfer coefficients and mass transfer coefficients.
908.1 351.45 2546.7 638.97 0.02984 3701.57 0.03237 3738.40 0.03139 2358.26
908.2 269.64 2565.0 475.67 0.02781 3279.79 0.03005 3309.86 0.02922 2085.23
908.3 144.27 2616.5 247.98 0.02536 2958.66 0.02730 2990.27 0.02657 1882.92
1508.1 350.73 5485.6 582.05 0.05059 4144.73 0.05397 4211.76 0.05360 2673.18
1508.2 269.64 5484.8 439.57 0.04812 3718.14 0.05127 3776.73 0.05107 2389.72
1508.3 144.27 5492.9 231.79 0.04238 3202.19 0.04508 3256.89 0.04502 2048.53
1508.4 . 351.18 5446.2 602.00 0.04795 3843.58 0.05135 3891.41 0.05123 2465.37
1508.5 269.64 5464.5 450.92 0.04526 3660.53 0.04838 3705.04 0.04830 2340.62
1608.1 352.44 . 5265.2 605.91 0.04942 3856.67 0.05293 3917.75 0.05284
0.04985
2495.13
2474.64
.
0"
Table 6.5 (cont.) Calculated film heat transfer coefficients and mass transfer coefficients.
2710.1 617.85 9291.3 1022.58 0.07294 4294.84 0.07816 4319.65 0.07983 2806.67
2710.2 547.02 9418.4 881.98 0.07151 4122.43 0.07641 4143.90 0.07796 2685.04
2710.3 415.26 10347.4 647.14 0.07235 3757.88 0.07706 3776.44 0.07907 2434.31
2710.4 269.64 10402.3 404.29 0.06654 2882.88 0.07064 2893.07 0.07328 1855.04
2710.5 611.10 11876.2 954.90 0.09283 4181.99 0.09880 4209.57 0.10239 2739.34
2710.6 532.44 11953.8 816.77 0.08832 4099.57 0.09387 . 4124.41 0.09688 2677.03
2710.7 390.24 12067.0 590.03 0.08229 3540.67 0.08734 3560.42 0.09069 2296.25
2710.8 269.64 12201.5 396.04 0.07550 2872.04 0.07996 2883.95 0.08389 1853.50
2810.1 612.54 11387.3 960.89 0.09031 4325.63 0.09633 4353.78 0.09913 2831.03
2810.2 520.56 11128.8 796.36 0.08358 4143.25 0.08898 4166.89 0.09114 2700.23
2385.14
."'
2810.3 404.37 11355.3 605.26 0.07883 3677.37 0.08379 3694.75 0.08606
2810.4 269.64 11111.6 397.27 0.07217 2700.67 0.07662 2711.54 0.08025 1739.77
2810.5 608.76 11354.9 960.90 0.09087 4513.10 0.09704 4546.70 0.09985 2962.38
2910.1 610.02 11299.8 1014.65 0.08730 4682.09 0.09368 4722.33 0.09636 3062.32
2910.2 542.61 10903.3 879.07 0.07917 4553.10 0.08478 4587.53 0.08647 2964.65
2910.3 415.26 10761.6 658.58 0.07227 4064.34 0.07723 4093.91 0.07879 2632.89
2910.4 269.64 10724.2 418.92 0.06859 2719.29 0.07315 2731.76 0.07701 1749.46
2910.5 324.81 10790.3 483.09 0.06984 3364.13 0.07426 3379.53 0.07607 2168.78
3010.1 609.21 12058.8 1024.06 0.09335 4545.70 0.10010 4588.45 0.10418 2982.27
3010.2 531.72 11606.4 869.10 0.08551 4464.02 0.09149 4499.26 0.09429 2912.19
3010.3 426.78 11732.4 683.06 0.08139 3975.33 0.08690 4003.95 0.08991 2581.95
3010.4 269.64 11233.1 419.60 0.07130 2863.86 0.07592 2876.61 0.07990 1844.77
3010.5 324.90 11251.9 495.38 0.07224 3410.69 0.07685 3427.28 0.07928 2200.74
3110.1 606.33 10117.7 1061.79 0.08143 6394.40 0.09017 5576.01 0.09168 3618.45
3110.2 521.82 10282.6 885.95 0.07925 4854.96 0.08484 4902.00 0.08662 3171.81
3110.3 462.87 10412.8 762.03 0.07765 4505.11 0.08290 4541.70 0.08473 2931.35
3110.4 401.22 10514.1 643.49 0.07649 4187.04 0.08140 4216.47 0.08341 2713.28
3110.5 324.90 10558.7 509.54 0.07209 3682.75 0.07658 3705.29 0.07873 2381.59
3110.6 223.65 10601.5 345.20 0.06862 2773.41 0.07279 2784.53 0.07652 1782.76
•
Stellenbosch University http://scholar.sun.ac.za
Table 6.5 (cont.) Calculated film heat transfer coefficients and mass transfer coefficients.
111.1 610.38 7209.5 1082.45 0.06858 5509.24 0.07406 5557.38 0.07365 3579.95
111.2 537.30 7288.1 932.62 0.06477 5345.74 0.06979 5388.56 0.06922 3465.03
111.3 445.68 7427.9 756.35 0.06152 4575.65 0.06610 4606.08 0.06599 2953.15
111.4 354.15 7442.9 585.90 0.05894 4202.60 0.06314 4228.18 0.06315 2702.66
111.5 324.90 7544.9 521.96 0.05784 3908.75 0.06176 3926.28 0.06190 2505.19
111.6 536.13 7482.8 842.16 0.06719 4868.84 0.07163 4888.91 0.07123 3139.77
111.7 597.87 7582.5 929.75 0.06850 5160.67 0.07293 5180.31 0.07234 3339.10
211.1 593.64 8737.5 957.84 0.07464 5264.20 0.07964 5301.91 0.07949 3413.92
211.2 536.04 8842.0 841.38 0.07312 4807.32 0.07780 4836.53 0.07788 3109.10
211.3 477.90 8855.2 738.21 0.07082 4710.36 0.07527 4736.94 0.07528 3039.09
211.4 441.54 8899.0 670.59 0.06948
0.07195
4394.84
5796.51
0.07374
0.07752
4416~ 11
5854.45
0.07394
0.07712
2830.78
3771.94
.
Cl'
0,32
hw,Merkel = 2946,494 [~al (6.14)
~0 l
0,33
hw,Poppe = 2937,132 [ (6.15)
r ·] o,3s
hwi,Merkel" 1843,035 do
[ (6.16)
The correlations for the film coefficient holds in the following range
The film heat transfer coefficient data and correlations are shown
graphically in figures 6.17, 6.18 and 6.19.
0.03 r - - - - - - - - - - - - - - - - - - - - ,
0.025 •
0.02
0
C\J
0.015
0.01
0.005
o~----~----~----~----~----~----~----~
0 2 4 6 8 10 12 14
Air Reynolds number, Rea (xlOOO)
• Experimental data --Carre 1at ion
0.03r-----------------------------------~
•
0.025
0.02
-
N
0
A
3
~ 0.015
d
...c
0.01
0.005
o~--~~--~----~----~----~----~----~
0 2 4 6 8 10 12 14
Air Reynolds number, Rea (xlOOO)
• Experimental data --Carrel at ion
0.03 r - - : - - - - - - - - - - - - - - - - - - - - - ,
•
0.025
0.02
0
N
~
0
3:
c:::
ClJ
0.015
'
..c
0
•
0.01
0.005
o~--~~--~----~----~----~----~----~
0 2. 4 6 8 10 12 14
Air Reynolds number, Rea (xlOOO)
• Experimental data - - Carre 1at ion
I
Stellenbosch University http://scholar.sun.ac.za
6.39
6r---------------------------~--------------~
•
-5
0
--
0
0
X
,.....
~
N
s
, ...
.......... 4 ,'
/, "
, ..
::::3:
.__.
3 ,,
~
... •
~
Q)
.,..
c:
3
, .........
u
.,.. , ... '·
,
,,
4-
4-
,
,,
Q)
0
u
s
,_..
.,.. 2
1.1..
o~--~~--~----~----~----~----~----~----~
6~------------------------------------------~
•
-5
0
--
0
0
.,
.. ........... ---..
X "' "'
........ , "'
~ , ,, • ,-·
,, .~-·
~4 , , ,' I
~ ,/
........... ..
•
~
--- ---
.
.....,
-~
·u
3
.,... , . -·
,.,"''
,,
.
...
4- ,.
4-
, ,;
,,
Q)
0
u
~2
.,...
1.1..
o~----~--~~--~----~----~----~----~----~
0 100 200 300 400 500 600 700 . 800
Recirculating water massflow, r [kg/m/hr]
• Experimental data --Correlation
----- ± 15%
4r------------------------------------------
•
-
--
0
0
0
X 3
,....... ,
~ ,•'
N
s , ,'
........... , ,'
......
3
, ,'
..... ,
3: , ,,
..c
~
,./
.+-J ~~I
c
Q.l
2 ~
~
.,...
u
.,...
~
'+-
Q.l
0
u
s
.....
.,...
u...
1
o~--~----~--~----~--~----~--~--~
0 100 200 300 400 500 600 700 800
Recirculating water massflow, r [kg/m/hr]
• Experimental data --Correlation
± 15%
60~------------------------------------~
40
......
N
E
...........
z
.......
<I
c.30
~
Q.
0
~
"0
Q)
~
:::s
~ 20
Q)
~
Q..
10
o~--~--~--~--~--~--~--~--~--~--~~~
0 1 2 3 4 5 6 7 8 9 10 11
Air massflow rate, rna [kg/s]
• Experimental data ··--····-Jakob
--Gaddis et al
Figure 6.20 Single phase pressure drop values measured across the dry tube
bundle compared to existing correlations for single phase
pressure drop.
Stellenbosch University http://scholar.sun.ac.za
6.43
The measured two phase pressure drop was correlated by defining the
following parameter
mw
TJ =
( rna + mw (P/ Pw) ) Re*a (6.17)
where Rea* =
[ ma +
Afr,min
~ l do
f.l.a
By simple regression analysis, using Lotus 123, the following
correlation for two phase pressure drop across a wet tube bundle could
be found
1,5482 10- 4 X
= -5 - 0,32773 (6.18)
T] + 9,25 X 10
in the ranges
rna
0,85 < A < 2,5 [kg/m2/s]
fr
100 < r < 630 [kg/m/hr]
The measured two phase pressure drop data and the pressure drop
correlation are shown graphically in figure 6.21.
1.2 . . - - - - - - - - - - - - - - - - - - - - - - - - ,
\
\
\
\
0.8
ojC tU
c..
<I
'c.
+oJ
0.6
c..
<I
0.4
0.2
o~-~--~--~----._--~--~--~~--~--~--~
Figure 6.21 Two phase pressure drop values measured across the test
section.
Stellenbosch University
6.45 http://scholar.sun.ac.za
hc = C Re 0a ' 6 (6.19)
Parker and Treybal [61PA1] and Peterson (84PE1] found the mass
transfer coefficient to be independent of the recirculating water flow
while Mizushina et al. [67MI1] found that the mass transfer
coefficient was dependant on the recirculating water Reynolds number
to the power of 0,15 which is in agreement with the findings of this
study where the exponent of the recirculating water Reynol~s number
was found to be 0,2.
0.14r-----------------------------------~
.•
..·····
o. 12
0.1
.,...
u
.,....
4-
~0.08
0
u
S-
Q)
4-
Vl
s:::
~ 0.06
~
Vl
. "'
Vl
::=:::
.
0;04
0.02
o~--~----~--~----~--~----~--~~
0 2 4 6 8 10 12 14
Air Reynolds number, Rea
- ho,Merkel - - ho, Poppe · ·-·---··-· Mi zushi na (counterflow)
-Analogy ----- ho; , Merke 1
The correlations fitted to the data show the film heat transfer
coefficient to be dependant on the recirculating water massflow rate
per unit length (f) to the power of about 0,33, which is similar to
the findings of other investigators including McAdams [54Mc1], Parker
and Treybal [61PA1] and Mizushina et al. [67MI1].
The correlations for film coefficient determined in this study is
graphically compared to the correlations of McAdams [54Mc1] and
Mizushina et al. [67MI1] in figure 6.23. The correlation by McAdams
[54MI1] was determined for a film cooler (without airflow) while the
correlation given by Mizushina et al. [67MI1] was determined for a
counterflow evaporative cooler. The new correlation for hw based on
the Merkel model corresponds closely to the correlation for hw based
on the Poppe model as expected since they are both based on the same
driving force (Twall - Tw).
The correlation for hwi gives film coefficients which are lower than
those based on the bulk water temperature since the driving force for
the film coefficient based on the interface temperature is larger than
the driving force based on the bulk recirculating water temperature at
the same heat flux.
The single phase pressure drop measured across the tube bundle
corresponds very well to the correlations by Jakob [37JA1] and Gaddis
and Gnielinski [85GA1] as seen in figure 6.20. The two phase pressure
drop across the tube bundle was correlated by a parameter ~ given by
The correlation fitted through the data correlates the data-very well
with only 1 of 117 points differin~ from the correlation by more than
7,5% as seen in figure 6.21.
6r--------------------------------------------
..... -- -·
-· ---
5
--
-
0
0
0
...... ,,
-4 X
,......,
~ ,"
,. ,-'
... ...
N
5 , , ,'
~ , ,,
.........
,,
;
~ ,
s::
.....cu ,,
u
..... 3
1+-
1+-
cu
0
u
5
,.....
..... 2
u.
o~--~----~----~----~----~----L---~~
0 100 200 300 400 500 600 700
Recirculating water massflow rate, r [kg/m/hr]
-hw,Merkel - - hwi ,Merkel
-Mizushina ----- McAdams
60•.--------------------------------------~
50
c.
~
~40
C..
0
- ,,
s..
,,
,'
~
QJ ,,
s.. ,/
~ 30 ,/
VI
QJ
,/
,,
.'
s..
c.
QJ
VI
"'
-g_20
.0
3
1-
10
o~~--~--~--~~--~--~--~~~~--~~
CHAPTER 7
CONCLUSION
A survey of the avaflable data for the heat- and mass transfer
coefficients was conducted and all the relevant correlations were
summarized and compared. The relevant correlations for two phase
pressure drop across a tube bundle, which could be found in the
literature are also presented.
The use of Mizushina's [67Mil] correlations for the heat- and mass
transfer coefficients, are recommended for the analysis of counterflow
evaporative coolers and condensers. The correlations presented here
should be used in the analysis of cross-flow evaporative coolers
and condensers.
The effect of tube diameter and tube spacing on the heat and mass
transfer coefficient could be the subject of further investigations.
Stellenbosch University
R. 1 http://scholar.sun.ac.za
REFERENCES
[33CH1] Chilton, T.H., and Generaux, R.P.,· Pressure Drop Across Tube
Banks, Transactions of AIChE, Vol. 29, pp. 161 - 173, 1933.
[35HI1] Higbie, R., Transactions of AIChE, Vol. 31, pp. 365- 389, 1935.
[37AC1] Ackermann, G., Simultaneous Heat and Mass Transfer with a Large
Temperature and Partial Pressure Difference, Ver. Deutcher Ing.
Forch, Vol. 8, pp. 1 - 16, 1937.
Stellenbosch University
R.2 http://scholar.sun.ac.za
[37GR1] Grimison, E.D., Correlation and Utilization of New Data for Cross
Flow of Gases Over Tube Banks, Transactions of ASME, Vol. 59, pp.
582 - 594, 1937.
[38G01] Goodman, W., The Evaporative Condenser, Heating, Piping and Air
Conditioning, pp. 165 - 168, March 1938.
[38G02] Goodman, W., The Evaporative Conden$er, Heating, Piping and Air
Conditioning, pp. 255 - 258, April 1938.
[38JA1] Jakob, M., Discussion - Heat Transfer and Flow Resistance in Cross
Flow Over Tube Banks, Transaction of ASME, Vol. 60, pp. 381 - 392,
1938.
[SOBEl] Bedingfield, Jr., C.H., and Drew, T.B., Analogy between Heat
Transfer and Mass Transfer - A Psychrometric Study, Industrial and
Engineering Chemistry, Vol. pp. 1164 - 1173, June 1950.
Stellenbosch University http://scholar.sun.ac.za
R.3
[508E2] Bergelin, O.P., Colburn, A.P., and Hull, H.L., Heat Transfer and
Pressure drop during Viscous Flow across Unbaffled Tube Banks,
University of Delaware, EES-Bulletin No.2, 1950.
[510A1] Oanckwerts, P., Industrial and Engineering Chemistry, Vol. 43, pp.
1460 - ' 1951.
[54Mc1] McAdams, W.H., Heat Transmission, pp. 244- 248, McGraw-Hill, .New
York, 1954.
[55KA1] Kays, W.M., Numerical Solution for Laminar Flow- Heat Transfer in
Circular Tubes, Transactions of ASME, Vol. 77, pp. 1265- 1274,
1955.
[580I1] Diehl, J.E., and Unruh, C.H., Two-Phase Pressure Drop for
Horizontal Crossflow Through Tube Banks, ASME Paper No. 58-HT-20,
1958.
Stellenbosch University
R.4 http://scholar.sun.ac.za
[58T01] Toor, H.L., and Marchello, J.M., AIChE Journal, Vol.4, pp. 97 -
101, 1958.
[59MI1] Mizushina, T., Hashimoto, N., and Nakajima, M., Design of Cooler
Condenser for gas-vapour mixtures, Chemical Engineering Science,
Vol. 9, pp. 195- 204, 1959.
[61EL1] .Elperin, I.F., Heat Transfer between a Bank of Tubes and a Two-
Phase Flow, Inzh. - Fiz.Zh., Vol. 4, pp. 30- 35, 1961.
[61PA1] Parker, R.O., and Treybal, R.E., The Heat, Mass Transfer
Characteristics of Evaporative Coolers, Chemical Engineering
Progress Symposium Series, Vol. 57, pp. 138- 149, 1961.
[65BOI] Boelter, L.M.K., Cherry, V.H., Johnson, H.A., and Martinelli, R.C.,
Heat Transfer Notes, pp. 578- 623, McGraw-Hill, New York, 1965.
[67MII] Mizushina, t., Ito, R., and Miyashita, H., Experimental Study of an
Evaporative Cooler, International Chemical Engineering, Vol. 7, pp.
727 - 732, October 1967.
[68MII] Mizushina, T., Ito, R., and Miyashita, H., Characteristics and
methods of Thermal Design of Evaporative Coolers, International
Chemical Engineering, Vol. 8, pp. 532- 538, July 1968.
[70FII] Finlay, I.C., and McMillan, T., Pressure drop, Heat and Mass
Transfer during Air/Water Flow Across a Bank of Tubes, NEL Report
474, 1970.
· -[-72C01] Collier, J.G., Convective Boiling and Condensation, pp. 341 - 343,
McGraw-Hill, New York, 1972.
[72TE1] Tezuka, S., Takada, T., and Kasai, S., Performance of Evaporative
Cooler - No.1 Report, The Volumetric Overall Heat Transfer
Coefficient, Refrigeration, Vol. 47, pp. 1 - 7, August 1972.
[74Cll] Close, O.J., and Banks, P.J.,. Coupled Heat and Mass Transfer in a
Packed Bed with the Lewis Relation not Satisfied, Chemical
Engineering Science, Vol. 29, pp. 1147- 1155. 1974.
[74Fil] Finlay, I.C., and Grant, W.O., The Accuracy of some Simple Methods
of Rating Evaporative Coolers, NEL Report 584, December 1974.
[74KA1] Kast, W., Pressure Drop in Cross Flow Across Tube Bundles, VDI-
Warmeatlas, Section Ld, 2nd ed., 1974.
Stellenbosch University
R.7 http://scholar.sun.ac.za
[74SK1] Skelland, A.H.P.~ Diffusional Mass Transfer, John Wiley and Sons,
New York, 1974.
[75GN1] Gnielinski, G., Forsch. Ing. Wesen, Vol. 41, No.1, 1975
[75SH1] Sherwood, T.K., Pigf6rd, R.L., and Wilke, C.R., Mass Transfer, pp.
178 - 297, McGraw-Hill, New York, 1975.
[77IS1] Ishihara, K., Palen, J.W., and Taborek, J., Critical Review of
Correlations for predicting Two-Phase Flow Pressure Drop Across
Tube Banks, ASME-Paper No. 77-WA/HT-23, 1977.
Stellenbosch University http://scholar.sun.ac.za
R.8
[77NA1] Nahavandi, A.N., and Dellinger, J.J., An Improved Model for the
Analysis of Evaporative Counterflow Cooling Towers, Nuclear
Engineering and Design, Vol. 40, pp. 327- 336, 1977.
[79GR1] Grant, I.D.R., and Chisholm, D., Two-Phase Flow on the Shell-Side
of a Segmentally Baffled Shell-and-Tube Heat Exchanger, Journal of
Heat Transfer, Vol. 101, pp. 38- 42,· February 1979.
[79NA1] Nakoryakov, V.Y., and Grigor'yeva, N.I., Combined Heat and Mass
Transfer in Film Absorpsion, in Heat and Mass Transfer and Hydrogas
dynamics in Boiling and Condensation, Siberian Division of the
Stellenbosch University
R.9 http://scholar.sun.ac.za
[79SH1] Shah, M.M., A General Correlation for Heat Transfer During Film
Condensation inside Pipes, International Journal of Heat and Mass
Transfer, Vol. 22, pp. 547- 556, 1979.
[80F01] Foust, A.S., Wenzel, L.A., Clump, C.W., Maus, L., and Anderson,
L.B., Principles of Unit Operations, 2nd Ed, pp. 302 - 455, John
Wiley and Sons, New York, 1980.
[80YU1] Yung, D., Lorenz, J.J., and Ganic, E.N., Vapour/Liquid Interaction
and Entrainment in Falling Film Evaporators, Journal of Heat
Transfer, Vol. 102, pp. 20- 25, February 1980.
[81RA1] Rana, R.S., and Charan, V., Heat and Mass Transfer in an
Evaporative Tubular Heat Exchanger, VIth National Mass Transfer
Conference, I.I.T., Madras, India, 1981.
[81R01] Rogers, J.T., Laminar Falling Film Flow and Heat Transfer
Characteristics on Horizontal Tubes, The Canadian Journal of
Chemical Engineering, Vol. 59, pp. 213- 222, April 1981.
[82GA1] Ganic, E.N., and Mastanaiah, K., Hydrodynamics and Heat Transfer in
Falling Film Flow, in Low Reynolds Number flow Heat Exchangers, ed
S. Kakac et al, pp. 487- 527, Hemisphere Publishing Corporation,
Washington, 1982.
Stellenbosch University
R.lO http://scholar.sun.ac.za
[82LE1] Leidenfrost, W., and Korenic, B., Evaporative Cooling and Heat
Transfer Augmentation Related to Reduced Condenser Temperatures,
Heat Transfer Engineering, Vol. 3, pp. 38- 59, 1982.
[82PE1] Perez-Blanco, H., and Bird, W.A., Study of Heat and Mass Transfer
in Evaporative Coolers, ORNL/TM-8150, Oak Ridge, Tennessee, June
1982.
[83001] Dorokhov, A.R., and Bochagov, V.N., Heat Transfer to a Film Falling
over Horizontal Cylinders, Heat Transfer- Soviet Research, Vol.
15, pp. 96 ~ 101, March - April 1983.
[83FI1] Fisher, U;, Leidenfrost, W., and Li, J., Hybrid Evaporative -
Condenser Cooling Tower, Heat Transfer Engineering, Vol. 4, pp. 28
- 41, 1983.
[83KE1] Kern, D.Q., Process Heat Transfer, pp. 563- 623, McGraw-Hill, New
York, 1983.
[83MA2] Majumdar, A.K., Singhal, A.K., Reilly, H.E., and Bartz, J.A.,
Numerical Modelling of Wet Cooling Towers - Part 2: Application to
Natural and Mechanical Draft Towers, Journal of Heat Transfer, Vol.
105, pp. 736 - 743, November 1983.
Stellenbosch University
R.ll http://scholar.sun.ac.za
[83ZU1] Zukauskas, A., and Ulinskas, R., Banks of Plain and Finned Tubes,
in Heat Exchanger Design Handbook, ed. E. Gurney et al, Hemisphere
Publishing Corporation, 1983.
[84CU1] Cussler, E.L., Diffusion -Mass Transfer in Fluid Systems, pp. 215
- 469, Cambridge University Press, Cambridge, 1984.
[84PE1] Perez-Blanco, H., and Webb, R.L., Enhancement of Combined Heat and
Mass Transfer in a Vertical Tube Evaporative Cooler, AIChE
Symposium Series- Heat Transfer, Niagara-Falls, Vol. 80, pp. 465-
469, 1984.
[84PE2] Perez-Blanco, H., and Bird, W.A., Study of Heat and Mass Transfer
in a Vertical Tube Evaporative Cooler, Journal of Heat Transfer,
Vol. 106, pp. 210- 215, February 1984.
[84P01] Poppe, M., and Rogener, H., Evaporative Cooling Systems, VDI-
Warmeatlas, Section Mh, 1984.
Stellenbosch University
R.12 http://scholar.sun.ac.za
[84WE3] Webb, R.L., and Villacres, A., Cooling Tower Performance, ASHRAE
Journal, pp. 34- 40, November 1984.
[85GA1] Gaddis, E.S., and Gnielinski, V., Pressure Drop in Cross Flow
across Tube Bundles, International Chemical Engineering, Vol. 25,
pp. 1 - 15, January 1985.
[86K01] Kotze, J.C.B., Bellstedt, M.O., and Kroger, D.G., Pressure Drop and
Heat Transfer Characteristics of Inclined Finned Tube Heat
Exchanger Bundles, Proceedings of the 8th International Heat
Transfer Conference, San Francisco, 1986.
· [86RA1] Rana, R.S., Charan, V., and Varma, H.K., Heat and Mass Transfer
from a Horizontal Tube of an Evaporative Heat Dissipater,
International Journal of Heat and Mass Transfer, Vol. 29, pp. 555-
561, 1986.
[87DA1] Datta, S., Sahgal, P.N., Subrahmaniyam, S., Dhingra, S.C., and
Kishorc, V.V.N., Design and Operating Characteristics of
Evaporative Cooling Systems, International Journal of
Refrigeration, Vol. 10, pp. 205- 208, July 1987.
[87SC1] Schrage, D.S., Hsu, J.-T., and Jensen, M.K., Void Fractions and
·Two-phase Friction Multipliers in a Horizontal Tube Bundle, AIChE
Symposium Series - Heat Transfer, Pittsburgh, pp. 1 - 8, 1987.
[87WA1] Wassel, A.T., and Mills, A.F., Design Methodology for a Counter-
Current Falling Film Evaporative Condenser, Journal of Heat
Transfer, Vol. 109, pp. 784- 787, August 1987.
[88DU1] Du Preez, A.F., and Kroger, D.G., Proceedings of the 6th IAHR
Cooling Tower Workshop, Pisa, Italy, 1988.
[88ER2] Erens, P.J., and Dreyer, A.A., A General Approach for the Rating of
Evaporative Closed Circuit Coolers, Internal Report, Department of
Mechanical Engineering, University of Stellenbosch, South Africa,
1988.
[88KR1] Kroger, D.G., Dry Cooling Towers for Power Stations, Department of
Mechanical Engineering, University of Stellenbosch, South Africa,
1988.
[88SC1] Schrage, D.S., Hsu, S.-T., and Jensen, M.K., Two-phase Pressure
Drop in Vertical Crossflow across a Horizontal Tube Bundle, AIChE
Journal, Vol. 34, pp. 107- 115, January 1988.
Stellenbosch University
R.15 http://scholar.sun.ac.za
APPENDICES
Stellenbosch University http://scholar.sun.ac.za
A. 1
APPENDIX A
pROpERTIES OF FLUIDS
Density
. {A.l. 1)
p p /RT, kg/m3
=
a a
where R = 287.08 J/kgK
a = 1.045356x10 3
1
b = -3.161783x10-l
4
c = 7.083814x10-
d = -2.705209x10-?
Thermal conductivity
a = -4.937787x10- 4
b = 1 .018087x10- 4
c = -4.627937x10-B
d = 1 .250603x10-tl
Stellenbosch University http://scholar.sun.ac.za
A.2
T Pa c pa JJ• ka a Pr a
a a
K kg/m 3 J/kgK kg/ms W/mK
x10 5 x10 5
1009
°·024 1.8 1.2
u ·-
.._ :::.::
1 ~ ! ~~ -~-lillllllll-1111111 :
a
E
(..
E
a ·-u 11'1
C1l c C1l c
f= 0.022 l; 1.7 ~ 1008 ~1.1
Stellenbosch University http://scholar.sun.ac.za
2
Figure A.l: The thermophysical properties of dry air at standard atmospheric pressure (101325 N/m )
Stellenbosch University http://scholar.sun.ac.za
A.4
(A.2.1)
p
v =
z = · a ( 1- x) + b 1og
10
:J
( x) + c [i - 10d{ ( 1I x} - 1 + e ( 10f ( 1- x) - 1) + 9
X = 273.16/T
a = 1.079586x10
b = 5.028080
4
c = 1.504740x10-
d = -8.296920
e = 4.287300x10-l;
f = 4.769550
9 = 2.786118312
Specific heat
c = a +. bT + cT 5 + dT 6 , J/k9K (A.2.2}
pv
a = 1 .3605x103
b = 2.31334
c = -2.46784x10- 10
d = 5.91332xlo- 13
Dynamic viscosi~y
2 3 (A.2.3)
lJ v = a+ bT + cT + dT • kg/ms
a = 2.562435x10- 6
b = 1.816683x1o~ 8
11
c : 2.579066xlo-
-14
d = -1.067299x10 .
Stellenbosch University http://scholar.sun.ac.za
A.5
k ~ a + bT + cT 2 + dT 3 , W/mK (A.2.4)
v
a ~ 1.3046x10- 2
b = -3.756191x10-S
c ~ 2.217964x10- 7
d ~ -1.111562x10- 10
(A.2.5)
a = -4.062329056
b = 0.10277044
c = -9.76300388 X 10- 4
d = 4.475240795 X 10- 6
e = -1.004596894 X 10- 8
f = 8.9154895·x 10~ 12 ·
Stellenbosch University http://scholar.sun.ac.za
A.6
T Pv Pv cpv 'IJV kv a
v Pr v
K N/m2 kg/m 3 J/kgK kg/ms W/mK
x10 6 x10 5
Density (]2AS iJ
Pav = (1+w) [!-w/(w+0.62198>] (pab/RT), kg/m3 (A.3.1)
(A.3.3)
0
kav = (X k M 0.33 + X k M 0.33)/(X M 0 • 33 + X .M • 33 ) ·W/mK (A 3 L)
a a a v v v a a v v ' • • ..
where
M
a
= 28.97 kg/mole
M
v
= 18.016 kg/mole
X = 1/(1+1.608w)
a
X
·v
= w/(w+0.622)
Humidity ratio
.
I
2501.6- 2.3263(Twb- 273.15) · ]
w = 2501.6 + 1.B577(Tdb- 273.15) - 4.184(Twb- 273.15)
X o.62509pvwb
[ pa b s. - 1.005p vw b
l
·~ l.00416(Tdb- Twb)
2501.6 + t.8577(Tdb- 273.15) - 4.t84(Twb- 273. 15) ' kg/kg
(A.3.5 )
l
Stellenbosch University http://scholar.sun.ac.za
A.9
Density
p
w = (A.4.1)
a = 1.49343x10- 3
b = -3.7164x10- 6
c = 7.09782x10- 9
d = -1.90321x10- 20
Specific heat
c = a + bT + cT
2 6
+ dT , J/kgK (A.4.2)
pw
a = 8.15599x10 3
b = -2.80627x10
c = 5.11283x10-
2
d = -2.17582x10- 13
a = 2.414x10-S
b = 247.8
c = 140
Stellenbosch University http://scholar.sun.ac.za
A. 10
Thermal conductivity
W/mK (A.~.4)
k = a + bT +
w
a = -6.1~255x10- 1
b = 6.9962x10-3
c = -1.01075x10-5
d = ~.7~737x10- 12
(A.~.5)
6
a = 3.4831814 X 10
b = -5.8627703 X 10 3
c = 1.2139568 X 10.
2
d = -1.~.0290~31 ·x 10-
Critical pressure
6 (A.~.6)
p
we
= 22.09 X 10 ,
a = 10- 2
5.1~8103 X
4
b = 3.998714 X 10-
-6
c = -1.4721869 X 10
9
d = 1.21405335 X 10-
Stellenbosch University http://scholar.sun.ac.za
A. 11
T Pw c pw lJw kw ew Pr w
K kg/m3 J/kgK kg/ms W/mK 1/K
x10 4 x10 5
Ill
ve 0.66 e 12 4210 1000
. , ......
en
~ .X
~
.. u p..,
0 .
.X en Cpv
M .X
>..
.... 0.64 ~· 1.200 990
-:l 10
> )I
....>. u
n ...e
Ill
....u
:J 0 ..: 'en
'0 u 0 .X
c Ill Cl1
0 0.62 8 .c 4190 980
u > J
u
u )>
0 .... ....~
e ·-e Ill
c.. 0 u N
Cl1 c Cl1 c
.c
._ >- Cl1
0.60 0 6 a- 4180 0 970
A. 13
2 3 ,. (A.5.1)
p = a + bT + cT + dT + eT ,
ammv
6
a= 1.992448 x 10.
b = -57.568140 X 103
C = 0.5640265 X 10
3
d = -2.337352
e = 3.541430 x 10-3
2 3 ,.
p
ammv
=a + bT + cT + dT + eT , (A.5.2)
2
a = -6.018936 x 10
b = 5.361048
2
C = -1.187296 X 10-
· d = -1 • 161 479 X .1 0- 5
8
e = 4.739058 x 10-
c =a + bT + cT
2 + dT3 J/kg K (A.5.3)
pammv '
4
a= -2.7761190256 x 10
2
b= 3.39116449 X 10
c = -1 .-3055687 . I
a= ~2.748011 x 10-5
b = 2.82526 10-7
X
-10
C = -5.201831 X 10
d = -~.061761 X 10-
13
e = 2.126070 x 10-15
k =a+ bT + cT 2 + dT 3 + eT ,
4 W/mK (A.5.6)
ammv
a = -0.1390216
b = 1.35238 X 10-3
C = -2.532035 X 10 -6
d = -4.~84341 X 10-9
e = 1.418657 x 1G-11
Stellenbosch University http://scholar.sun.ac.za
A. 15
pommv 1 L
-
In -
0.044 E 13 3600 80 8
.........
01
~ .X -
N IJ OIMIY
E E
~· 00 z
0 ' - iJ
~
01
X .X ....
i 0.038 1t 3200 60 IO 6
.xo -,
i
0
' X -
::1 , j
.....>- ~ E i ( OIIIIIY
0 0
- 01 C1.
> .....>- uo.
.X
'
..... In C1l
u -
:::1 0.032 0 9 ..... 2800 40 c.. 4
u u 0 :::1
In C1l
i In )>
c a..o In .
0 .c
u > C1l ij_
u c.. -
u >- 0. II
0 .... ..... OIMIY
E c..
In
e0 u 0
c..
C1l c C1l c 0. POIIIIIY
>- 0. C1l 0
'.c
1- 0.026 CJ 7 tn 2400 0 20 > 2
~ ~
Stellenbosch University http://scholar.sun.ac.za
0.020 5 2000 0 0
-40 -20 0 20 40 60 80 100 120
0
Temperature, (
Density (]7YA 1]
2
a = 2.312 x 10
b = 0.2471
Tc = 405.5 K
2
c =a + bT + cT + dT 3 J/kgK (A.6.2)
pamm '
3
a = -2.497276939 x 10
b ~ 7.7813907 X 10
1
C = -3.006252 X 10-
d = 4.06714 X 10~ 4
2
u = 0.001 x 10(a + b/T + cT + dT >, kg/sm (A.6.3)
amm
a = -8.591
b = 876.4
c = 0.02681
d = -3.612 x· 10-5
Stellenbosch University http://scholar.sun.ac.za
A. 18
2 (A.6.4)
k = a + bT + cT , W/mK
amm
a = 1.068229
b = -1.576908 X 10- 3
C = -1.228884 X 10- 6
a = 1.370758 X 10 6·
b = 405.55
c ·= 239.72
d = 6.38
Stellenbosch University http://scholar.sun.ac.za
A. 19
T Pamm c J.lamm k Pr i
pamm amm anrn . fgamm
K kg/m 3 J/kgK kg/sm W/mk J/kg
x10 5 x1o- 3
A.21
REFERENCES
1970.
82AN1 Anon., Heat Transfer and Fluid Flow Data Book, General
Electric Co., Corporate Research Division, New York, 1982.
Stellenbosch University http://scholar.sun.ac.za
B. 1
APPENDIX B
In simultaneous heat and mass transfer the factor (hc/hDCpm) and the
Lewis number are often used as dimensionless parameters. In some of
the literature encountered there seems to be some confusion about ·the
definitions of these dimensionless numbers and the factor (hc/hDcpm)
is often incorrectly referred to as the Lewis number. The correct
definitions of both these parameters will now be presented to
clarify any misconceptions.
[ ~) ~
__ [ a x]a:
or
(8.1)
or
(8.2)
Stellenbosch University http://scholar.sun.ac.za
8.2
(8.3)
The three coefficients v, a and D in these rate equations all have the
dimensions [ L2/T ]. Any ratio of these coefficients would result in
a dimensionless number.
v
Pr = a =
(8.4)
In processes where simultaneous momentum and mass transfer occur the
Schmidt number is defined as the ratio of v to D, or
v
Sc = D (8.5)
Le (8.7)
Stellenbosch University http://scholar.sun.ac.za
B.3
Similarly we have
om
Pr = (8.8)
ot
om
Sc = - (8.9)
oC
From the definitions above the Lewis number can be expressed in various
forms e.g.
Q k ot Sc
Le = D = = = Pr (8.10)
pep oC
= 1
ho cpm (8.11)
for gas/liquid systems.
Although the proof given by Lewis was incorrect the factor (hc/hocpm)
is today known as the Lewis factor and the relation hc/hocpm = 1 is
Stellenbosch University http://scholar.sun.ac.za
(B.l2)
According to Cussler [84CU1] the exponent in the Chilton-Colburn
relation does not represent the best fit on the experimental data, but
it facilitated easier calculations with slide rules.
Bedingfield and Drew [SOBEl] obtained data on the heat and mass
transfer by studying solid cylinders of volatile solids such as
naphthalene in a normal gas flow. The data was correlated by the
following relation
he
= 1230,7 (Sc) 0 , 56
ho (B.l3)
1230,7 0 56
_ _ _(Pr)_ _,_ (Le)0,56
cpm
Stellenbosch University http://scholar.sun.ac.za
8.5
(8.14)
in the temperature range normally encountered in evaporative coolers
and condensers.
Boelter et al.[65801] gave the following relation for the Lewis factor
for natural convection systems
c1
= ( Le)
(8.15)
where
2 3
3 < c1 < 4
n
For laminar and turbulent airflow Bos.inakovic [60801] proposed the
following correlation for the Lewis factor, i.e.
he
ho cpm
=
( r -
ln
1 )
r
_va
[ "rna
l[~2 ]
(Le)0,67
(8.16)
where
0,622 + wasw
r = 0,622 + wa
0, 622 + wasw , - 1 l
l
[ 0,622, + wa
(Le)0,67
ln [ 0,622 + wasw
0,622 + wa (8.17)
Stellenbosch University http://scholar.sun.ac.za
8.6
Patm (B.l8)
for air/water systems.
he
= (Le)o,s
ho cpm (B.l9)
Threlkeld [70TH!] expressed the Lewis factor as
c
(Le) 1
(B.20)
where
Le Pr +
Pr + ( 1
l (B.21)
where
free stream velocity nears zero then the ratio r would approach unity
and the Lewis factor would approach the Lewis number. If the free
stream velocity increases to infinity the ratio r becomes zero and the
Lewi~ factor would approach a value of unity, regardless of the Lewis
number.
The Arnold relation shows that the Lewis factor will have values
ranging from the Lewis number to unity depending on the free stream
velocity.
(8.22)
Foust et al.[80F01] gave C1 as 0,98 < C1 < 1,13 for turbulent airflow,
while Sherwood [75SH1] reported values of C1 varying from 0,95 to 1,12.
APPENDIX C
ac
-D ay (C.l)
The subscript rel in the massflux term indicates that the massflux
given by this relation is expressed in respect to moving coordinates.
This is the massflow observed by an observer travelling with the bulk
flow.
( ~ ) abs • ( ~ ) re 1 + cv bu 1k (C.2)
coordinates.
Bird, Stewart and Lightfoot [66BI1] stated that the mass transfer
coefficient, as defined by equation (C.3), is independent of the mass
transfer rate at only very low mass transfer rates. Thus mass transfer
coefficients defined with respect to stationary coordinates would be
dependant on the massflow rate at high massflow rates.
This effect arises from the distortion of the velocity and
concentration profiles by the high massflow rate across the interface.
(C.4)
where
Stellenbosch University http://scholar.sun.ac.za
C.3
DJ = kg ( Pg - p.
1 ) (C.5)
= kl ( cl - c.1 ) (C.6)
It is assumed that the vapour pressure at the interface is a linear
function of the liquid concentration at the interface as expressed by
pi = aci + b (C. 7)
ap.1
:. a =
ac.1 (C.8)
The composition p* does not physically exist, but it represents a gas
(vapour) phase composition which would be in equilibrium with the
average liquid composition at the point under consideration.
(C.ll)
and
Pa • [ wa :•0,622 ] Patm
Since the term ( wa/0,622 ) is much smaller than unity for air water
systems the term [ wa/(wa + 0,622) ] can be simplified as follows
wa
0,622
l
wa
:. Pa : : : 0,622 (C.13)
similarly
wasw wasw
Pasw - 0,622 [ 1 - 0,622
l Patm (C.l4)
Stellenbosch University http://scholar.sun.ac.za
C.5
[
m
A
l = hop
[ wasw
0,622 Patm
= hop
[ wasw - wa
0,622 -
( wasw + wa ) ( wasw - w.)
( 0,622)2
J Patm
= hop
[ wasw - wa
0,622 [I - [ wasw + w•]] ]
0,622 Patm
(C.l5)
Patm ]
[ 0,622 (C.l6)
Berman stressed that care should be taken when converting hop values
into ho values, since considerable errors may be introduced because of
the simplifications used. The reason for this lies in the fact that
the relatively small errors made in the simplifications may be
Stellenbosch University http://scholar.sun.ac.za
C.6
APPENDIX D
pi
Ap = Kn - -
2 (D.l)
where
pvd
Re = (D.2)
J.L
Deviations from the ideal situation are allowed for by the use of
correction factors. The different tube configurations and the
geometrical parameters which have an influence on the pressure drop
coefficient are shown in Figure 0.1.
Stellenbosch University http://scholar.sun.ac.za
0.2
b c
(0.3)
For in-line tubes and for staggered tubes with the narrowest cross
section perpendicular to the flow the following parameters are used
(0.4)
1
= { 4a - 1r
4a (0.5)
a
vmax = ( a - 1 ) (0.6)
Stellenbosch University http://scholar.sun.ac.za
0.3
For staggered tubes with the narrowest cross section along the diagonal
the following parameters are used
dec -i ~ I i 4c ~ wI do (0.7)
(a/(2c))
•
" { 4c - n } v~
vm
4c (0.8)
a
vmax = 2 ( c - 1 ) v~ (0.9)
According to Bell [63BEI] the flow through the tube bundle will be
laminar if Re < 100 and turbulent if Re > 4000. The flow is in the so-
called intermediate regime when 100 < Re < 4000.
If the flow is laminar the proposed relations for this method are
L
n = deb , d = deb , v = vmax
and
106
K = Re
and
1,32
K
Stellenbosch University http://scholar.sun.ac.za
0.4
3,0
K = Re0,2
1 0,47
K = Re 0,16 { I +
( a - 1 )1,06 }
and for an in-line tube 1ayout
1 0,32
K = Re0,15 { 0,176 +
( a - 1 )(0,43 + ( 1,13/b)) }
where
n = "rest' d = do ' v - v
max
Gunter and Shaw [45GUI] proposed the following equations to determine
the pressure drop coefficient of laminar flow across a tube bundle.
K
Stellenbosch University http://scholar.sun.ac.za
D.S
where
L
n = d = deb' v = vmax
deb '
Gunter and Shaw also proposed equations to determine the pressure drop
coefficient when the flow through the tube bank is turbulent.
K
- 1,92 J 4 •: - w 10,4 J =a l0,6
Re0,145 l J l J
and for an in-line layout
1,92
K = Re 0, 145·
where
L
n = deb ' d = deb' v = vmax
= 280 J ~ l1,6
K
Re lcJ
If the layout is in-line or if .the layout is staggered with
Stellenbosch University http://scholar.sun.ac.za
0.6
b ~ ~ ( 2a + 1 )0,5
where
280 J ~ ll,6
K
~
=
laJ
where
' -"~ 1 ! I I I I I I I I I I : I I I I I I I _
4
N f'-N_
I I Ill I I Ill I I II I I -
I 6
""'
-~
I
Re':'10'
I I
.,...
u 10 '
I"[' I~ I !!¢~!1! I I :~rill I I -
.,... ' ' - I
II )r:NI I i -
8
1+- I I I ! '-, I.: '-,I I I • =b I i ! I
6
1+- I f'{ "\-.. I I I II
I I ~ill
Q) 4 - !
10"
i i I ! I l i ' I 10', 10"
! liN"' ~~ ~/t 1 I II I
125
0
u
I
i 8
6
1I I I I I ~ I
I~ -
I
I , II I ! I II
Q.
0
s.. 10 . ' , I I I"' rt'' ~I I !' I. I I I I I I II I l'::--
8
I
:
I
'
I 4
-6·810'' 2 4
I
6 8 10" 2 4 6:
"C 6 ! i i i ' I N.. ......... I"'., I I I I io-11/lb-11
Q) ! I l! I II!~ ~f'i-.. !
'
I , 1.5? I I II I I I II -
s..
:::s
VI
4
i
Ill I I II
VI
~
Q)
10' '
!
4 6 B10' 2. 4 6 8 10•
I I !
2 4
II
6 010'
I
:2 4
I II i 6 8 10"
i I I II . :2:So/ I Ill
2 4 6 810 2 4 6. 8 10
Reynolds number, Re
6 ~~r=·~I:::=J::IJI::[I::[}IJI::r==c~~~~~~====~~~~
4 ~ "J. I J II I I I I I
':v ! "'- I I I
t-~:'--f--+,"f:::l"'-:---"~,"--:---:,~-+~-+,-.:...,-,:--+1-+1-+1-+-1-+-+
/
. "-.J o• N /._,/ cr >- I
1
1 1
g- I I I"~ 6 8 ~ 4 10"
1
...
i; ~· ~~~~·~'~-=~~~=t'~~~·~E:~~~~,.._~±·~~·t£1j:±:::;t·;j':::j:;jl:tl=·~lbt:l=·~,:tt:t::3- .....
E 4 r-i'-rn'~-+~-~rt~~+-~~~~f=P•H-~-f~~~~~-~-~~~-,5v~~~~~~~~-r'~~-Ttllrl ~
1:.tjj~±=tWtJ=±'ftt~~t'ojjti~~~J~~-,~.~~~E. f~,
1 1 1 1 11 1 1 1 1
~
:::s
c..
I I I I 2 4 6810' 2
I 4
I I I 6810'
12.J,1 l
2 4
I
6810' 2 4 6810' 2 4 6810' 2 4 6810" 2
Reynolds number, Re
Kast (74KA1] proposed an equation for the pressure drop coefficient for
staggered tube bundles with the narrowest cross section perpendicular
to the direction flow. Charts were given for in-line tube bundles and
staggered tube bundles where the narrowest cross section is along the
diagonal.
do
n = d "rows, v = vm
ec
The equation for K for staggered tube bundles with the narrowest cross
section perpendicular. to the direction of flow is given as
128 4 } '
K = Re + Re0,16
{
Note that this ~quation holds for all flow regimes from· laminar to
turbulent. Figure 0.4 and Figure b.S gives the charts for determining
the pressure drop coefficient for the in-line tube configuration and
the staggered layout (when the narrowest cross section is along the
diagonal) respectively.
,. I
.. '
. ..• ,. e.e-
I I I I I I I
~. -
-----
I I I
~
c: K~
.....QJu ['\r: ~
I
I I
I I
I
II - ee
.,... 111 ~ '
I
I .. o. i I I I i
' I I
4-
4- ' I "'-"'i-. x~ I I I I I
QJ
0
u ""'{.~ I I
·~zr
I
...
~~-~'
11-J.f)
Q. T
0
s.. .:: '
I d"(,-1, tJ.•U·ti-3./JLG.• •:J,JJ
-
II.•U~
'
"0
'·• I 1- ~.4¢ r--1'"4'=' t~.•IJII6b•~
QJ
s.. II "' ~~~
I I I
"'
1/11 b•IJ5 ·- a.•U6 b•t,JB I
::s z ~ ~ I
H~ ~.\%5
Ul
Ul
QJ 111
I I' ['...
I
II' I
I
I
' I I
'' 'I
'
I
'
.
~
s.. I I I I I! I I ! I I
'
I I
'' .
I I I I
Q.. '. ,,,, '. ',, '' ' ' ld
I • • '111 z • f I 111• l
• I I 1/J<I z • 4 ' 10• z • • 10• z • I 11/J
Reynolds number, Re
2
t
I
''I
•
I
f
I I
I 10 1
'
I
4
I I l
4 • 1oJ
I
'
2
I ' '
' • ro•
'
'
'
.
'' I I I
I''"
• ' 10'
i
z •
I
I HD
Reynolds number, Re
Figure 0.5 - Pressure drop coefficient for staggered tube bundles where
the narrowest cross section is along the diagonal.
=
J Re + 1000 l}
K Ki,l fzn,l + ( Ki,t fz,t + fn,t) {I- exp l- 2000 J
Stellenbosch University http://scholar.sun.ac.za
D. 10
Re + 200 ~
K = K.1, 1 f zn, 1 + ( K.1, t f z, t + f n, t ) { 1 exp Jl - 1000 J
where
fa,1
i) Ki,1 = Re
For an in-line configuration or a staggered configuration with the
narrowest cross section perpendicular to the flow,
f a,t,st
Ki,t = Re0,25
Stellenbosch University http://scholar.sun.ac.za
D. 11
with
fa,t,il =
10,22 + 0,12
r- ~t 13
( a - 0,85 ) '
6
+ 0,03 ( a - 1 ) ( b - 1 )
and
1,2
fa,t,st= 2, 5 + ( 1 06
a - 0,85 ) ' 3
- 0,01 { ~ - 1}
0,25 .
0,57 "rows
{ 10 } .
where k • ll 4;b - 1 J Re J 0,25
and if nrows > 10 then
1
f
n,t
= K0 {
"rows - :o }
Stellenbosch University http://scholar.sun.ac.za
D. 12
fn,t = 0
c -
a - ::f
Comparison of the different correlations
pv ro
Ry =
The variation of the product of the pressure loss coefficient and the
characteristic number of tube rows vs Ry-number is shown in Figure 0.6.
4.5 """'r\
\
'
1\'I\
:\ ~ 1\ ' '
····... ~' i\,.
c. 4 "
.............. '
r.
r--. r-..\
:::...::
~... ' ~
~
l\
~
~
(ll. ··..... '
0
.--
r.\'·. ~-
~'
~
(ll
"0 3.5
~
"'
Q)
'
~
.u,...
~
0
.--
Q) 3 ~- .
'~
>
~'
2.5
2
10000 100000 100000
Ry - number [m-1]
-Jakob - - Gunter et a1 - Zukauskas et a1
----- Kast ~ Gaddis et al
APPENDIX E
dp = - pg dz (E.l)
p
(E.2)
dT
dz = 0,00975 r·c;m]
resulting in the following temperature profile in the atmosphere ·
--------.- ®
Tower shell
-
c....
Evaporative
cool-er unit
Cooler unit
(E.4)
with
] = Pal 1-
(E. 5)
Between points 2 and 3 the air flows through the evaporative cooler
'
coils and the drop separators. If the coils are positioned in an A-
frame configuration there is an additional jetting or oblique flow
pressure drop. This can be expressed mathematically as
(E. 6)
Stellenbosch University http://scholar.sun.ac.za
E.4
[ Pa3 +
P3 v~
2 ]-[ Pa4 +
~2]
2 + P34g ( H4 - H3 )
(E. 7)
Between positions 4 and S the airflow can be described by
2 2
4
P v4 ] [ Ps vs ]
[ Pa4 + 2 - Pas + 2 = P4s g ( Hs - H4 ) (E.S)
2
P23 v23
Pal - Pas = Khe 2
- 0,0097S H2 ]0,0097S Ra
+ Pal Tal (E. 9)
At the operating point of the tower the pressures inside and outside
the tower must be in balance, i.e.
+ (E.ll)
where
P4 = P3
1
+-
p3
l- 1
Ps =R
. a
[ Ta3 + ~pa ( Hs - H2 ) l
P3s = ( P3 + Ps ) I 2
v23 = P23
1 [ rna
Afr
l (E.12)
[ :;r l
1
v3 = p3 ( E.13)
v4 = p4
1
[ Afr
A4
][ ~
Afr
l (E.14)
Stellenbosch University http://scholar.sun.ac.za
E.6
(E.15)
Equation (E.11) can be simplified by employing equations (E.12),(E.13),
(E.14) and (E.15) ..
2
P23] P23 [ Afr ]
= [ p3 + Kct p A + Ps
4 4
1
(E.16)
2 p 23
Equation (E.16) is the final form of the draft equat~on for natural
convection cooling towers.
The cooling tower loss coefficient for a tower with vertical heat
exchangers in the tower inlet was determined by Du Preez and Kroger
[88DU1] as
2
Drift eliminator pressure loss coefficients range between 2,2 and 7,3
according to Chilton [52CH1] and Chan and Golay [77CH1]. A design
value of Kde = 5 was used throughout this investigation.
Stellenbosch University http://scholar.sun.ac.za
E.7
The pressure drop and the associated pressure loss coefficient for
airflow across a wet tube bundle can be calculated with the
correlations presented in Chapter 3.
The oblique flow pressure loss coefficient for a heat exchanger with an
A-frame layout was correlated by Kotze el al. [86KOI] as
(E.l8)
where
and
_ 0,0019 [ ~ r+ 0,9133 [ ~ J _3,1558 (~.19)
APPENDIX F
dy
dx = f ( x,y )
Y ( Xo ) = Yo
where
al = h f( xn , Yn )
a2 = h f( xn + h; 2, Yn + a1; 2 )
a3 = h f( xn + h; 2, Yn+ a2; 2 )
a4 = h f( xn + h,yn + a3 )
Van Iwaarden [77VA1] shows how the fourth order Runge-Kutta method can
be extended to a system of first order initial value problems.
Consider the following system of two differential equations and two
initial values
dy
dx = f{x,y,z)
dz
= g(x~y,z)
dx
y ( Xo ) = Yo
z ( Xo ) = zo
Yn+l = Yn + ( a1 + 2a 2 + 2a 3 + a4 ) I 6
zn+l = zn + ( b1 + 2b 2 + 2b3 + b4 ) I 6
where
=h f( xn, y n, zn )
= h g ( xn, y n, zn )
a4 = h f( xn + ·h, Yn + a3 , zn + b3 )
b4 = h g( xn + h, Yn + a3 , zn + b3 )
This method i.s self starting (no initial estimates are needed) and the
new y and z values are calculated £fter calculating the required a's
and b's.
The fourth order Runge-Kutta method can easily be extended to solve any
number of simultaneous ordinary differential equations.
The following example shows how the fourth order Runge-Kutta method can
be used to solve the simultaneous differential equations governing the
heat and mass transfer processes of a single element.
dia = K2 ( i asw - ia )
hD dA 0
K2 =
rna
hD dA 0
K3 =
mw cpw
U0 dA0
K4 = mw cpw
Stellenbosch University http://scholar.sun.ac.za
F.4
dA 0 = 0,25m2
ho = 0,25 kg/m2s
rna = 0,25 kg/s
mw = 0,5 kg/s
mp = 0,6 kg/s
Cpw = 4190 JjkgK
Cpp = 4190 JjkgK
Tpi = 50°C
Twi = 35oc
iai = 55 kJ/kg
U0 = 1500 Wjm2K
KI = 0,1492
K2 = 0,25
K3 = 29,833 X Io-6
K4 = 0,1790
Step 1:
Step 2:
Step 3:
Al .- \s [ Twl +
3
c~ ) - [ lal + b~ ) - 67785,095 J/kg
Step 4:
APPENDIX G
0, 104 ( Rep Pr P ( di I L ) )
= 3,66 + 08 (G.1)
1 + 0, 016 ( Rep Pr P ( di I L ) ) '
-2
= ( 1,82 log 10 Rep - 1,64 ) (G.3)
o < ( di I L ) <1
If the fluid properties vary significantly along the flow path the
following corrections must be made to the turbulent heat transfer
coefficient correlation and the fluid friction factor:
a oP, 25 (G.5)
= ( Pr I Pr wall ) (cooling)
ii) The isothermal friction factor must be multiplied by the following
correction factor
a _ (
- ~wall
I ~
) o,
p
25 (G.6)
0,25
0,555
J (G. 7)
with
(G.S)
where hL is given as
04
hl = 0,023 Re~,a Prc ' ( kc 1 di ) (G.9)
with
Rec = [ Pc :: d; l (G.IO)
APPENDIX H
(H.2)
A simple model is now proposed for the determination of the interface
temperature. The assumption of Ti = Tw does not have to be made when
this model is employed. Consider the typical temperature profile in
Figure H.l.
( Ti - Twall }
T(y) = o Y + Twa 11 (H.3)
( Pw. - pa ) g sin 9
v =
x ~w (H.4)
According to the definition of bulk recirculating water temperature it
follows that
J ( cpw Pw vx T ) dy
0
(H.5)
5 3
- T. + - T
8 1 8 wall (H.6)
By defining the film coefficient as
3 qll
T.1 = Tw 8 h
wi (H.8)
Stellenbosch University http://scholar.sun.ac.za
H.3
APPENDIX I
(I. I)
The first term in equation (I.l) accounts for the sensible heat
transfer and the second term accounts for the latent heat transfer. If
only sensible heat transfer took place equation (I.l) would become
Note that the 'F1 factor does not appear in equation I.2. The term F1
accounts for the effect of the mass transfer on the sensible heat
transfer when the heat and mass transfer processes take place
simultaneously.
cl
Fl =
1 - e-el (I. 3)
. where
2
= ( Le )/ 3
- 2I
:. cl = ( wasi - wa ) ( Le ) '3 (I. 4)
q z 1' 1 ( wasi - wa )
In the temperature range 20°C < Ti < sooc the correction factor
typically varies between 1,003 < F1 < 1,043
APPENDIX J
dq = ho ( iasw - ia ) dA ( J .1)
dq = rna dia
(J .3)
and
( i asw - i a ) dA
(J.4)
For a typical 12mm Munters type extended film packing Cale [77CA1]
states that
a = 243 m2;m3
Stellenbosch University http://scholar.sun.ac.za
J.2
and
~] [ mw ] -0,585
[ Afr rna (J.5)
The surface area of a typical element can be expressed as
dA = a Afr dz (J.6)
ho a
dia = ( i asw - i a ) Afr dz ·
rna (J. 7)
and
ho a
dTw =
mw cpw ( i asw - i a ) Afr dz (J .8)
APPENDIX K
RESULTS OF COMPUTER SIMULATIONS
AI TTB Merkel 1
A2 TTB Merkel 5
A3 TTB Improved Merkel 1
A4 TTB Poppe 1
AS FTB Merkel 1
A6 BTF Merkel 1
A7 Single pass Merkel 1
AS TTB Simplified model -
Stellenbosch University http://scholar.sun.ac.za
K.2
Example AI
Simulation program CROSS
Process water flow layout TOP TO BOTTOM
Analytical model MERKEL
Pipe outer diameter .................... . = 38.10 mm
Pipe inner diameter .................... . = 34.90 mm
Vertical spacing between pipes ......... . = 76.20 mm
Horizontal spacing between pipes ...•.... = 65.99 mm
Height of cooler unit .................. . = 0.80 m
Width of cooler unit ........•........... = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 1
Fouling coefficient (inside) ........... . = 20000.00 w;m2 K
Fouling coefficient (outside) .......... . = 20000.00 w;m2 K·
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Inlet air density ...................... = 1.175 kg/m3
Dry air massflow through cooler ........ = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.880 kg/s
Air velocity through cooler ............ = 2.499 m/s
Air enthalpy in ........................ = 55. 779 kJ/kg
Air enthalpy out (incl. mist) ....... ·... = 116.017 kJ/kg
Inlet air humidity ratio ............... = 0.0120087 kg/kg
Outlet air humidity ratio (saturated) .. = 0. 0323806 kg/kg
Outlet air temperature (saturated) ..... = 32.844 oc
Outlet air density (saturated) ......... = 1.132 kgjm3
· Recirc·.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ........... . 1. 3333 kg/ s '
Recirc. water lost through evaporation . = 0. 0379 kg/s
Recirculating water temperature in ..... = 41.214 oc
Recirculating water temperature out ... . 41.214 oc
Process water massflow through cooler .. = 15.000 kg/s
Process water flow velocity in pipes ... = 1.587 m/s
Process water temperature in ........... = 50.000 oc
Process water temperature out .......... = 48.214 oc
Capacity of cooler unit ................ = 112.383 kW
Stellenbosch University
K.3 http://scholar.sun.ac.za
Example A2
Simulation program CROSS
Process water flow layout TOP TO BOTTOM
Analytical model MERKEL
Pipe outer diameter .........•.....•...•. = 38.10 mm
Pipe inner diam~ter .................... . = 34.90 mm
Vertical spacing between pipes ......... . = 76.20 mm
Horizontal spacing between pipes ....... . = 65.99 mm
Height of cooler unit .•................. = 0.80 m
Width of cooler unit ................... . = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 5
Fouling coefficient (inside) ........... . = 20000.00 w;m2 K
Fouling coefficient (outside) .......... . = 20000.00 w;m2 K
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ·····!· = 19.500 oc
Inlet air density ...................... = 1.175 kg/m3
Dry air massflow through cooler ........ = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.880 kg/s
Air velocity through cooler ............ = 2.499 m/s
Air entha 1py in . . . . . . . .. . . . . . . . . . . . . . . .. . = 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 116.015 kJ/kg
Inlet air humidity ratio ............... = 0.0120087 kg/kg
Outlet air humidity ratio (saturated) .. = 0. 0323806 kg/kg
Outlet air temperature (saturated) ..... = 32.844 "C
Outlet air density (saturated) ......... = 1.132 kg/m3
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
In 1et reci rc. water massfl ow ........... . 1.3333 kg/s
Recirc. water lost through evaporation . = 0.0379 kg/s
Recirculating water temperature in ..... = 41.217 oc
Recirculating water temperature out .... = 41.216 oc
Process water massflow through cooler .. = 15.000 kg/s
Process water flow velocity in pipes .. . 1. 587 m/s
Process water temperature in ........... = 50.000 oc
Process water temperature out .......... = 48.214 oc
Capacity of cooler unit ................ = 112.380 kW
Stellenbosch University http://scholar.sun.ac.za
K.4
Example A3
Simulation program CROSS
Process water flow layout TOP TO BOTTOM
Analytical model IMPROVED MERKEL
Pipe outer diameter .................... . = 38.10 mm
Pipe inner diameter •.......•..•....•..•. = 34.90 mm
Vertical spacing between pipes ......... . = 76.20 mm
Horizontal spacing between pipes ....... . = 65.99 mm
Height of cooler unit ........•.......... = 0.80 m
Width of cooler unit ................... . = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 1
Fouling coefficient (inside) ........... . = 2oooo.oo w;ni2 K
Fouling coefficient (outside) .......... . = 20000.00 w;m2 K
Pipe wall conductivity ................ ~. = 43.00 W/mK
Atmospheric pressure .................. . = 101.325 kPa
Inlet air temperature (dry bulb) ...... . = 25.000 oc
Inlet air temperature (wet bulb) ...... . = 19.500 oc
Inlet air density ..................... . = 1.175 kg/m3
Dry air massflow through cooler ....... . = 1.858 kg/s
Inlet air massflow (inc vapour) ..•..... = 1.880 kg/s
Air velocity through cooler ........... . = 2.499 m/s
Air enthalpy in ....................... . 55. 779 kJ/kg
Air enthalpy out (incl. mist) ......... . = 115.597 kJ/kg
Inlet air humidity ratio .............. . = 0.0120087 kg/kg
Outlet air humidity ratio (incl. mist) . 0. 0328293 kg/kg
Outlet air relative humidity .......... . = 1.0000000
Outlet air temperature (dry bulb) ..... . = 32.738 oc
Outlet air density ................... . 1.132 kg/m3
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 1.3333 kg/s
Outlet recirc. water massflow .......... = 1. 2946 kg/s
Recirc. water lost through evaporation . = 0.0387 kg/s
Recirculating water temperature in ..... = 41.242 oc
Recirculating water temperature out ... . 41.241 oc
Process water massflow through cooler .. = 15.000 kg/s
Process water flow velocity in pipes .. . 1.587 m/s
Process water temperature in ........... = 50.000 oc
Process water temperature out .......... = 48.226 oc
Capacity of cooler unit ................ = 111.664 kW
Stellenbosch University http://scholar.sun.ac.za
K.5
Example A4
Simulation program CROSS
Process water flow layout TOP TO BOTTOM
Analytical model POPPE
Pipe outer diameter .................... . = 38.10 mm
Pipe inner diameter ......•..........•... = 34.90 mm
Vertical spacing between pipes ......... . = 76.20 mm
Horizontal spacing between pipes ....... . = 65.99 mm
Height of cooler unit ................•.. = 0.80 m
Width of cooler unit ................... . = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 1
Fouling coefficient (inside) ........... . = 20000.00 w;m2 K
Fouling coefficient (outside) .......... . = 20000.00 w;m2 K
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure .................... = 101.325 kPa
Inlet air temperature (dry bulb) ...... . 25.000 oc
Inlet air temperature (wet bulb) ...... . = 19.500 oc
Inlet air density ..................... . 1.175 kgjm3
Dry air massflow through cooler ....... . = 1.858 kg/s
Inlet air massflow (inc vapour) ....... . = 1.880 kg/s
Air velocity through cooler ........... . = 2.499 m/s
·Aif enthalpy in ....................... . = 55. 779 kJ/kg
Air enthalpy out (incl. mist) ......... . = 120.665. kJ/kg
Inlet air humidity ratio .............. . = 0.0120087 kg/kg
Outlet air humidity ratio (incl. mist) . = 0. 0405106 kg/kg
Outlet air relative humidity .......... . = 1.0000000
Outlet air temperature (dry bulb) ..... . = 33.429 oc
Outlet air density ................... . = 1.129 kgjm3
Recirc.water massflow I length ........ . 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 1.3333 kg/s
Outlet recirc. water massflow .......... = 1. 2804 kg/s
Recirc. water lost through evaporation . = 0.0530 kg/s
Recirculating water temperature in ..... = 41.291 oc
Recirculating water temperature out ... . 41.290 oc
Process water massflow through cooler .. = 15.000 kg/s
Process water flow velocity in pipes ... = 1.587 m/s
Process water temperature in .......... . 50.000 oc
Process water temperature out .......... = 48.222 oc
Capacity of cooler unit .... ~ ........... = 111.884 kW
Stellenbosch University http://scholar.sun.ac.za
K.6
Example AS
Simulation program CROSS
Process water flow layout FRONT TO BACK
Analytical model MERKEL
Pipe outer diameter .................•... = 38.10 mm
Pipe inner diameter .............•....... = 34.90 mm
Vertical spacing between pipes ......... . = 76.20 mm
Horizontal spacing between pipes ....... . = 65.99 mm
Height of cooler unit .................. . = 0.80 m
Width of cooler unit ................... . = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 1
Fouling coefficient (inside) ........... . = 20000.00 w;m2 K
Fouling coefficient (outside) ....... ~ .. . = 20000.00 Wjm2 K
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Inlet air density ...................... = 1.175 kgjm3
Dry air massflow through ·cooler ........ = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.880 kg/s
Air velocity through cooler ............ = 2.499 m/s
Air enthalpy in .............•........•. = 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 115.784 kJ/kg
Inlet air humidity ratio ............... = 0 ._0120087 kg/kg
Outlet _air humidity ratio (saturated) .. = 0. 0322668 kg/kg
Outlet air temperature (saturated) ..... = 32.784 oc
Outlet air density (saturated) ......... = 1.132 kg/m3
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 1.3333 kg/s
Recirc. water lost through evaporation . = 0.0376 kg/s
Recirculating water temperature in ..... = 41.524 oc
Recirculating water temperature out .... = 41.524 oc
Process water massflow through cooler .. 15.000 kg/s
Process water flow velocity in pipes ... = 1.587 m/s
Process water temperature in .......... . 50.000 oc
Process water temperature out ......... . 48.221 oc
Capacity of cooler unit ................ = 111.952 kW
Stellenbosch University http://scholar.sun.ac.za
K.7
Example A6
Simulation program CROSS
Process water flow layout BACK TO FRONT
Analytical model MERKEL
Pipe outer diameter .................... . = 38.10 mm
Pipe inner diameter .................... . = 34.90 mm
Vertical spacing between pipes ......... . = 76.20 mm
Horizontal spacing between pipes ....... . = 65.99 mm
Height of cooler unit .................. . = 0.80 m
Width of cooler unit ............. ~ ..... . = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe •. = I
Fouling coefficient (inside) ..........•. = 20000.00 w;m2 K
Fouling coefficient (outside) .......... . = 20000.00 w;m2 K
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure ................... = 101.3'25 kPa
Inlet air tempe~ature (dry bulb) ····~·· = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Inlet air density ...................... = 1.175 kg/m3
Dry air massflow through cooler ........ = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.880 kg/s
Air velocity through cooler ........... . 2.499 m/s
Air enthalpy in ........................ = 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 116.025 kJ/kg
Inlet air humidity ratio .............. . 0.0120087 kg/kg
Outlet air humidity ratio (saturated) .. = 0.0323806 kg/kg
Outlet air temperature (saturated) ..... = 32.844 oc
Outlet air density (saturated) ......... = 1.132 kg/m3
Recirc.water massflow I length .......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 1.3333 kg/s
Recirc. water lost through evaporation . 0.0379 kg/s
Recirculating water temperature in ..... = 41.481 oc
Recirculating water temperature out .... = 41.481 oc
Process water massflow through cooler .. 15.000 kg/s
Process water flow velocity in pipes .. . 1.587 m/s
Process water temperature in ........... = 50.000 oc
Process water temperature out .......... = 48.115 oc
Capacity of cooler unit ............... . 118.646 kW
Stellenbosch University http://scholar.sun.ac.za
K.8
Example A7
Simulation program CROSS
Process water flow layout STRAIGHT THROUGH
Analytical model MERKEL
Pipe outer diameter ..................... = 38.10 mm
Pipe inner diameter ..................... = 34.90 mm
Vertical spacing between pipes .......... = 76.20 mm
Horizontal spacing between pipes ........ = 65.99 mm
Height of cooler unit ................... = 0.80 m
Width of cooler unit .................... = 0.80 m
Number of rows of pipes across airstream ·= 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 1
Fouling coefficient (inside) ............ = 20000.00 w;m2 K
Fouling coefficient (outside) ........... = 20000.00 w;m2 K
Pipe wall conductivity .................. = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Inlet air density .................... .. 1.175 kg/m3
Dry air massflow through cooler ........ = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.880 kg/s
Air velocity through· cooler ............ = 2.499 m/s
Air enth~lpy in ·······~················ = 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 99.850 kJ/kg
Inlet air humidity ratio ............... = 0.0120087 kg/kg
Outlet air humidity ratio (saturated) .. = . 0.0272164 kg/kg
Outlet air temperature (saturated) ..... = 29.925 oc
Outlet air density (saturated) ......... = 1.146 kg/m3
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ........... . 1.3333 kg/s
Recirc. water lost through evaporation . 0. 0283 kg/s
Recirculating water temperature in ..... = 37.535 oc
Recirculating water temperature out .... = 37.535 oc
Process water massflow through cooler .. = 15.000 kg/s
Process water flow velocity in pipes ... = 0.159 m/s
Process water temperature in ........... = 50.000 oc
Process water temperature out ......... . 48.694 oc
Capacity of cooler unit ................ = 82.230 kW
Stellenbosch University
K.9 http://scholar.sun.ac.za
Example AS
Simulation program SCROSS
Process water flow layout TOP TO BOTTOM
Cooler type TUBES ONLY
Process fluid WATER
Pipe outer diameter ....................• = 38.10 mm
Pipe inner diameter ...•................. = 34.90 mm
Vertical spacing between pipes ......... . = 76.20 mm
Horizontal spacing between pipes ....... . = 65.99 mm
Height of cooler unit .. .' ............... . = 0.80 m
Length of cooler unit .................. . = 0.80 m
Number of pipe rows along the airflow .. . = 10
Number of pipes facing the airstream ... . = 10
Order of tube serpentining ............ . = 1
Fouling coefficient (inside) ........... . = 20000.00 W/m2 K
Fouling coefficient (outside) .......... . = 20000.00 W/m2 K
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
Altitude (above sea level ) ............ . 0.000 m
Inlet air temperature (dry bulb) ....... 25.000
= oc
Inlet air temperature (wet bulb) ....... 19.500
= oc
Dry air massflow through cooler ........ =
1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.881 kg/s
Air velocity through cool·er ............= 2.500 m/s
Air enthalpy in···········~············= 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 115.740 kJ/kg
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 1.3333 kg/s
Recirc. water lost through evaporation = 0. 0377 kg/s
Recirculating water temperature in ..... = 41.60 oc
Recirculating water temperature out .... = 41.60 oc
Process fluid massflow through cooler .. = 15.000 kg/s
Process fluid flow velocity in pipes ... = 1.587 m/s
Process fluid temperature in ........... = 50.000 oc
Process fluid temperature out ......... . 48.222 oc
Capacity of cooler unit ................ = 111.893 kW
Stellenbosch University http://scholar.sun.ac.za
K. 10
B1 BTT Merkel 1
B2 BTT Merkel 5
B3 8TT Improved Merkel 1
B4 8TT Poppe 1
85 TTB Merkel 1
86 BTT+Packing Merkel 1
87 TTB+Packing Merkel 1
88 TTB Simplified model -
Stellenbosch University http://scholar.sun.ac.za
K. 11
Example B1
Simulation program COUNTER
Process water flow layout BOTTOM TO TOP
Analytical model MERKEL
Pipe outer diameter ..................... = 38.10 mm
Pipe inner diameter ..................... = 34.90 mm
Vertical spacing between pipes .......... = 66.00 mm
Horizontal spacing between pipes ........ = 76.20 mm
Width of cooler unit .................... = 0.80 m
Length of cooler unit ................... = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 1
Atmospheric pressure . . . . . . . . . . . . . . . . . . . = 101.325 kPa
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Inlet air density ...................... = 1.175 kg/m3
Dry air massflow through cooler ........ = 1.858 kg/s
Inlet air massflow (inc vapour) ....... ~ = 1.880 kg/s
Air velocity through cooler ............ = 2.499 m/s
Air enthalpy in ........................ = 55.779 kJ/kg
Air enthalpy out (incl. mist) .......... = 118.231 kJ/kg
Inlet air humidity ratio ............... = 0.0120087 kg/kg
Outlet air humidity ratio (saturated) .. = 0. 0330753 kg/kg
Outlet air temperature (saturated) ..... = 33.203 oc
Outlet air density (saturated) ......... = 1.130 kg/m3
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 2.6667 kg/s
Recirc. water lost through evaporation . = 0.0391 kg/s
Recirculating water temperature in .~ ... = 41.39 oc
Recirculating water temperature out .... = 41.38 oc
Process water massflow through cooler .. = 15.000 kg/s
Process water flow velocity in pipes .. . 1.587 m/s
Process water temperature in ........... = 50.000 oc
Process water temperature out .......... = 48.237 oc
Capacity of cooler unit ................ = 110.955 kW
Stellenbosch University http://scholar.sun.ac.za
K.12
Example 82
Simulation program COUNTER
Process water flow layout BOTTOM TO TOP
Analytical model MERKEL
Pipe outer diameter ..................... = 38.10 mm
Pipe inner diameter .....•............... = 34.90 mm
Vertical spacing between pipes .......... = 66.00 mm
Horizontal spacing between pipes ........ = 76.20 mm
Width of cooler unit .................... = 0.80 m
Length of cooler unit ................... = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 5
Atmospheric pressure ................... = 101.325 kPa
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Inlet air density ...................... = 1.175 kgjm3
Dry air massflow through cooler ........ = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.880 kg/s
Air velocity through cooler ............ = 2.499 m/s
Air enthalpy in ...........•............ = 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 118.222 kJ/kg
Inlet air humidity ratio ............... = 0.0120087 kg/kg
Outlet air humidity ratio (saturated) .. = 0. 03307.53 kg/kg
Outlet air temperature (saturated) ..... = 33.203 oc
Outlet air density (saturated) ......... = 1.130 kg/m3
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 2.6667 kg/s
Recirc. water lost through evaporation . = 0.0391 kg/s
Recirculating water temperature in ..... = 41.38 oc
Recirculating water temperature out .... = 41.39 oc
Process water massflow through cooler .. = 15.000 kg/s
Process water flow velocity in pipes ... = 1. 587 m/s
Process water temperature in ........... = 50.000 oc
Process water temperature out .......... = 48.237 oc
Capacity of cooler unit ................ = 110.972 kW
Stellenbosch University http://scholar.sun.ac.za
K.13
Example 83
Simulation program COUNTER
Process water flow layout BOTTOM TO TOP
Analytical model IMPROVED MERKEL
Pipe outer diameter ...•............•.... = 38.10 mm
Pipe inner diameter ..................... = 34.90 mm
Vertical spacing between pipes .......... = 66.00 mm
Horizontal spacing between pipes ........ = 76.20 mm
Width of cooler unit .................... = 0.80 m
Length of cooler unit ..... o ••••••••••••• = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 1
Atmospheric pressure ................... = 101.325 kPa
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Inlet air density ...................... = 1.175 kg/m3
Dry air massflow through cooler ........ = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.880 kg/s
Air velocity through cooler ........... . 2.499 m/s
Air enthalpy in ........................ = 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 117.697 kJ/kg
Inlet air humidity ratio ............... = 0. 0120087 kg/kg
Outlet air humidity ratio (incl. mist) = 0. 0335399 kg/kg
Outlet air relative hu~idity ........... = 1.0000000
Outlet air temperature (dry bulb) ...... = 33.092 oc
Outlet air.density .................... = 1.131 kgjm3
Recirc.water massflow I length ........ . 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 2.6667 kg/s
Outlet recirc. water·massflow .......... = 2.6267 kg/s
Recirc. water lost through evaporation . 0.040Q kg/s
Recirculating water temperature in ..... = 41.43 c
Recirculating water temperature out .... = 41.43 oc
Process water massflow through cooler .. 15.000 kg/s
Process water flow velocity in pipes ... = I. 587 m/s
Process water temperature in ........... = 50.000 oc
Process water temperature out .......... = 48.251 oc
Capacity of cooler unit ............... . 110.051 kW
Stellenbosch University http://scholar.sun.ac.za
K.14
Example 84
Simulation program COUNTER
Process water flow layout BOTTOM TO TOP
Analytical model POPPE
Pipe outer diameter .......•............. = 38.10 mm
Pipe inner diameter ........•....•....... = 34.90 mm
Vertical spacing between pipes ......... . = 66.00 mm
Horizontal spacing between pipes ....... . = 76.20 mm
Width of cooler unit ......•............. = 0.80 m
Length of cooler unit .................. . = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 1
Atmospheric pressure ................... = 101.325 kPa
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 °C
Inlet air density ...................... = 1.175 kgjm3
Dry air massflow through cooler ........ = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.880 kg/s
Air velocity through cooler ............ = 2.499 m/s
Air enthalpy in ........................ = 55.779 kJ/kg
Air enthalpy out (incl. mist) .......... = 119.121 kJ/kg
Inlet air humidity ratio ............... = 0.0120087 kg/kg
Outlet air humidity ratio (in<:l. ·mist) . = 0.0337335 kg/kg
Outlet air relative humidity .......... . 1.0000000
Outlet air temperature (dry bulb) : ..... = 32.897 oc
Outlet air density ·················~·· = 1.132 kg/m3
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 2.6667 kg/s
Outlet recirc. water massflow .......... = 2.6263 kg/s
Recirc. water lost through evaporation . = 0.0404 kg/s
Recirculating water temperature in ..... = 41.75 °C
Recirculating water temperature out .... = 41.75 °C
Process water massflow through cooler .. = 15.000 kg/s
Process water flow velocity in pipes ... = 1.587 m/s
Process water temperature in ........... = 50.000 oc
Process water temperature out ......... . 48.319 oc
Capacity of cooler unit ................ = 105.786 kW
Stellenbosch University http://scholar.sun.ac.za
K. 15
Example 85
Simulation program COUNTER
Process water flow layout TOP TO BOTTOM
Analytical model MERKEL
Pipe outer diameter ..................... = 38.10 mm
Pipe inner diameter ..................... = 34.90 mm
Vertical spacing between pipes .......... = 66.00 mm
Horizontal .spacing between pipes ........ = 76.20 mm
Width of cooler unit ..................... = 0.80 m
Length of coo 1er unit . . . . . . . . . . . . . . . . . . . = 0.80 m
Number of rows of pipes across airstream = 10
Number of pipes facing the airstream .... = 10
Number of elements along a single pipe .. = 1
. '
,.,
/- '
Stellenbosch University http://scholar.sun.ac.za
K.16
Example B6
Simulation program COMBINE
Process water flow layout BOTTOM TO TOP
Cooler type TUBES + 300 mm PACK ABOVE
Process fluid WATER
Pipe outer diameter ..•.......•.......... = 38.10 mm
Pipe inner diameter •.................... = 34.90 mm
Vertical spacing between pipes .......... = 65.99 mm
Horizontal spacing between pipes ........ = 76.20 mm
Width of cooler unit .................... = 0.80 m
Length of cooler unit ................... = 0.80 m
Number of pipes facing the airstream .... = 10
Number of pipe rows along the airflow ... = 10
Order of tube serpentining ............. = 1
Fouling coefficient {inside) ............ = 20000.00 W/m2 K
Fouling coefficient {outside) ........... = 20000.00 w;m2 K
Pipe wall conductivity .................. = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
A1t i tude {above sea 1eve 1) ............ · = 0 .· 00 0 'lie
Inlet air temperature {dry bulb) ....... = 25 000
Inlet air temperature .{wet bulb) ....... = 19.500 oc
Dry air massflow through cooler........ 1.858 kg/s
Inlet air massflow {inc vapour) ........ = 1.881 kg/s
Air velocity through cooler ............ = 2.5o·o m/s
Air enthalpy in ........................ = 55.779 kJ/kg
Air enthalpy out {incl. mist) .......... = 133.839 kJ/kg
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ........... . 2.6667 kg/s
Recirc. water lost through evaporation . 0.0485 kg/s
Recirculating water temperature in ..... = 40.39 oc
Recirculating water temperature out ... . 40.39 oc
Process fluid massflow through cooler .. = 15.000 kg/s
Process fluid flow velocity in pipes ... = 1.587 m/s
Process fluid temperature in ..........• = 50.000 oc
Process fluid temperature out ......... . 47.751 oc
Capacity of cooler unit ............... . 141.559 kW
Stellenbosch University http://scholar.sun.ac.za
K.17
Examole B7
Simulation program COMBINE
Process water flow layout TOP TO BOTTOM
Cooler type TUBES + 300 mm PACK ABOVE
Process fluid WATER
Pipe outer diameter .................... . = 38.10 mm
Pipe inner diameter .................... . = 34.90 mm
Vertical spaciri'g between pipes ......... . = 65.99 mm
Horizontal spacing between pipes ....... . = 76.20 mm
Width of cooler unit .......•..•......... = 0.80 m
Length of cooler unit ......•............ = 0.80 m
Number of pipes facing the airstream ... . = 10
Number of pipe rows along the airflow .. . = 10
Order of tube serpentining ............ . = 1
Fouling coefficient (inside) ........... . = 20000.00 w;m2 K
Fouling coefficient (outside) .......... . = 20000.00 w;m2 K
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
Altitude (above sea level) ............. = 0.000 m
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Dry air massflow through cooler ........ = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.~81 kg/s
Air velocity through cool.er ............ = 2.500 m/s
Air enthalpy in ........................ = 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 132.670 kJ/kg
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 2.6667 kg/s
Recirc. water lost through evaporation . = 0.047~ kg/s
Recirculating water temperature in ..... = 39.99 c
Recirculating water temperature out .... = 40.00 oc
Process fluid massflow through cooler .. 15.000 kg/s
Process fluid flow velocity in pipes ... = 1.587 fli/S
Process fluid temperature in ........... = 50.012 c
Process fluid temperature out ......... . 47.796 oc
Capacity of cooler unit ................ = 139.469 kW
Stellenbosch University http://scholar.sun.ac.za
K.18
Example B8
Simulation program SCOUNT
Process water flow layout TOP TO BOTTOM
Cooler type TUBES ONLY
·Process fluid WATER
Pipe outer diameter ..................... = 38.10 mm
Pipe inner diameter ..................... = 34.90 mm I,
Vertical spacing between pipes .......... = 65.99 nim
Horizontal spacing between pipes ........ = 76.20 mm ..
Width of cooler unit .................... = 0.80 m
Length of cooler unit ................... = 0.80 m
Number of pipes facing the airstream .... = 10 ..
Number of pipe rows along the airflow ... = 10
Order of tube serpentining ............. = 1
Fouling coefficient (inside) ............ = 20000.00 w;m2 K
Fouling coefficient (outside) ........... = 20000.00 w;m2 K
Pipe wall conductivity .................. = 43.00 W/mK I •
,.... 'I
t ... .. (..
..,
I
• :l"
. '-
Stellenbosch University http://scholar.sun.ac.za
K.19
Cl Cross Steam
C2 Cross R22
C3 Cross Ammonia
C4 Counter Steam
cs Counter R22
C6 Counter Ammonia
Stellenbosch University http://scholar.sun.ac.za
K.20
Example C1
Simulation program CSCROSS
Condenser type TUBES ONLY
Refrigerant STEAM
Pipe outer diameter ....•................ = 38.10 mm
Pipe inner diameter .................... . = 34.90 mm
Vertical spacing between pipes ......... . = 76.20 mm
Horizontal spacing between pipes ....... . = 65.99 mm
Height of condenser unit ............... . = 0.80 m
Length of condenser unit ............... . = 0.80 m
Number of pipe rows along the airflow .. . = 10
Number of pipes facing the airstream ... . = 10
Fouling coefficient (inside) ........... . = 20000.00 w;m2 K
Fouling coefficient (outside) .......... . = 20000.00 w;m2 K
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
Altitude (above sea 1eve 1) . . . . . . . . . . . . . = 0.000 m
Inlet air temperature (dry bulb) ...... . 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Dry air massflow through condenser ..... = 1.858 kg/s
Inlet air massflow (inc Vapour) ........ = 1.881 kg/s
Air velocity through condenser ......... = 2.500 m/s
Air enthalpy in ........................ = 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 119.749 kJ/kg
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 1.3333 kg/s
Recirc. water lost through evaporation . = 0. 040Q kg/s
Recirculating water temperature (ave) .. = 42.46 c
Refrigerant massflow through condenser . 0.04989 kg/s
Condensing temperature ................. = 50.000 oc
Capacity of condenser unit ............. = 118.8800 kW
Stellenbosch University http://scholar.sun.ac.za
K.21
Example C2
Simulation program CSCROSS
Condenser type TUBES ONLY
Refrigerant R22 (Freon 22)
Pipe outer diameter ..................... = 38.10 mm
Pipe inner diameter ..................... = 34.90 mm
Vertical spacing between pipes .......... = 76.20 mm
Horizontal spacing between pipes ........ = 65.99 mm
Height of condenser unit ................ = 0.80 m
Length of condenser unit ................ = 0.80 m
·Number of pipe rows along the airflow ... = 10
Number of pipes facing the airstream .... = 10
Fouling coefficient (inside) ............ = 20000.00 W/m2 K
Fouling coefficient (outside) ........... = 20000.00 W/m2 K
Pipe wall conductivity ...............•.. = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
Altitude (above sea level) ............. = 0.000 m
25. 0 ~ 0
500
Inlet air temperature (dry bulb) ....... = :cc
Inlet air temperature (wet bulb) ....... = 19
Dry air massflow through condenser..... 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.881 kg/s
Air velocity through condenser ......... = 2.500 m/S
Air enthalpy in ........................ = 55.779 kJ/kg
Air enthalpy out (incl. mist) .......... = 87.996 kJ/kg
Recirc.water massflow I length ........ . = 300.0000 kg/m/hr
Inlet recirc.water massflow ........... . 1.3333 kg/s
Recirc. water lost through evaporation . = 0.0215 kg/s
Recirculating water temperature (ave) .. = 34.14 oc
Refrigerant massflow through condenser . = 0.38896 ~g/s
= 50.000 c
Condensing temperature . . . . . . . . . . . . . . . . .
Capacity of condenser unit ............. = 59.8717 kW
Stellenbosch University http://scholar.sun.ac.za
K.22
Example C3
Simulation program CSCROSS
Condenser type TUBES ONLY
Refrigerant R717 (Ammonia)
Pipe outer diameter ·······~············· = 38.10 mm
Pipe inner diameter ...............•..... = 34.90 mm
Vertical spacing between pipes ......... . = 76.20 mm
Horizontal spacing between pipes ....... . = 65.99 mm
Height of condenser unit ............... . = 0.80 m
Length of condenser unit ............... . = 0.80 m
Number of pipe rows along the airflow .. . = 10
Number of pipes facing the airstream ... . = 10
Fouling coefficient (inside) ........... . = 20000.00 w;m2 K
Fouling coefficient (outside) .......... . = 20000.00 Wjm2 K
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
Altitude (above sea level) . . . . . . . . . . . . . = ·o.ooo m
= ·_25 ..000" c
0
Inlet air temperature (dry bulb) .......
Inlet air temperature (wet bulb) ....... = 19:'500 oc
Dry air massflow through condenser ..... = !.858 kg/s
Inlet air massflow (inc vapour) ....... . 1.881 kg/s
Air velocity through condenser ......... = 2.500 m/s
Air enthalpy in ....................... . 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 117.180 kJ/kg
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............. = 1.3333 kg/s
Recirc. water lost through evaporation . = 0. 038~ kg/s
Recirculating water temperature (ave) .. = 41.91 c
Refrigerant massflow through condenser . = 0.10860 ~g/s
Condensing temperature ................ . 50.000 c
Capacity of condenser unit ............. = 114.1063 kW
Stellenbosch University http://scholar.sun.ac.za
K.23
Example C4
Simulation program CSCOUNT !A ...l. I
Condenser type TUBES ONLY "'· .J ~ I . )
Refrigerant STEAM
Pipe outer diameter .................... . = 38.10 mm
Pipe inner diameter .................... . = 34.90 mm
Vertical spacing between pipes ......... . = 65.99 mm
Horizontal spacing between pipes ....... . = 76.20 mm
Width of condenser unit ............... .. = 0.80 m
Length of condenser unit ............... . = 0.80 m
Number of pipes facing the airstream ... . = 10
Number of pipe rows along the airflow .. . = 10
Order of tube serpentining ............ . = 1
Fouli-ng coefficient (inside) .......... .. = 20000.00 w;m2 K
Fouling coefficient (outside) .......... . = 20000.00 w;m2 K
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
A1t itude (above sea 1eve 1) .............
= 0.000 m
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Dry air massflow through condenser ..... = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.881 kg/s
Air velocity through condenser ......... = 2.500 m/s
Air enthalpy in ........................ = . 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 119.412 kJ/kg
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ = 2.6667 kg/s
Recirc. water lost through evaporation . = 0.039~ kg/s
Recirculating water temperature (ave) .. = 42.39 c
Refrigerant massflow through condenser . 0.04963 ~g/s
Condensing temperature ................. = 50.000 c
Capacity of condenser unit ............ . 118.2548 kW
Stellenbosch University http://scholar.sun.ac.za
K.24
Example CS
Simulation program CSCOUNT
Condenser type TUBES ONLY
Refrigerant R22. (Freon 22)
Pipe outer diameter ......•......•....... = 38.10 mm
Pipe inner diameter .................... . = 34.90 mm
Vertical spacing between pipes ......... . = 65.99 mm
Horizontal spacing between pipes .......• = 76.20 mm
Width of condenser unit ................ . = 0.80 m
Length of condenser unit ............... . = 0.80 m
Number of pipes facing the airstream ... . = 10
Number of pipe rows along the airflow .. . = 10
Order of tube serpentining ............ . = 1
Fouling coefficient (inside) ........... . = 20000.00 w;m2 K
Fouling coefficient (outside) .......... . = 20000.00 w;m2 K
Pipe wa 11 conductivity ................. . = 43.00 W/mK
Atmospheric pressure . . . . . . . . . . . . . . . . . . . = 101.325 kPa
Altitude (above sea level) ............. = 0.000 m
Inlet air temperature (dry bulb) ....... = 25.000 oc
Inlet air temperature (wet bulb) ....... = 19.500 oc
Dry air massflow through condenser ..... = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.881 kg/s
Air velocity through condenser ......... = 2.500 m/s
Air enthalpy in ........................ = 55. 779 kJ/kg
Air enthalpy out (incl. mist) .......... = 87. 929 kJ/kg
Recirc.water massflow I length ......... = 300. 0000 kg/m/hr
Inlet recirc.water massflow ............ = 2.6667 kg/s
Recirc. water lost through evaporation . = 0.021? kg/s
Recirculating water temperature (ave) .. = 34.12 c
Refrigerant massflow through condenser . = 0.38816 ~g/s
Condensing temperature . . . . . . . . . . . . . . . . . = 50.000 c
Capacity of condenser unit ............. = 59.7479 kW
Stellenbosch University http://scholar.sun.ac.za
K.25
Example C6
Simulation program CSCOUNT
Condenser type TUBES ONLY
Refrigerant R717 (Ammonia)
Pipe outer diameter .................... . = 38.10 mm
Pipe inner diameter •.................... = 34.90 mm
Vertical spacing between pipes ......... . = 65.99 mm
Horizontal spacing between pipes ....... . = 76.20 mm
Width of condenser unit ................ . = 0.80 m
Length of condenser unit ............... . = 0.80 m
Number of pipes facing the airstream ... . = 10
Number of pipe rows along the airflow .. . = 10
Order of tube serpentining ............ . = 1
Fouling coefficient (inside) ........... . = 20000.00 w;m2 K
Fouling coefficient (outside) .......... . = 20000.00 w;m2 K
Pipe wall conductivity ................. . = 43.00 W/mK
Atmospheric pressure ................... = 101.325 kPa
Altitude (above sea level) ............. = 0.000 m
Inlet air temperature (dry. bulb) ....... = 25.000 °C
Inlet air temperature (wet bulb) ....... = ·19.500 oc
Dry air massflow through condenser ..... = 1.858 kg/s
Inlet air massflow (inc vapour) ........ = 1.881 kg/s
Air velocity through condenser ......... = 2.500 m/s
Air enthalpy in ·········~·············· = 55. 779 kJ/kg
Air enthalpy out (incl. mist) ..... : .... = 117.181 kJ/kg
Recirc.water massflow I length ......... = 300.0000 kg/m/hr
Inlet recirc.water massflow ............ · = 2.6667 kg/s
Recirc. water lost through evaporation . = 0.038~ kg/s
Recirculating water temperature (ave) .. = 41.91 c
Refrigerant massflow through condenser . = 0.10860 ~g/s
Condensing temperature ................. = 50.000 c
Capacity of condenser unit ............ . 114.1073 kW
Stellenbosch University http://scholar.sun.ac.za
K.26
APPENDIX L
c =================================================
c = =
c = EVALUATION OF A =
c = CLOSED CIRCUIT CROSSFLOW
c = EVAPORATIVE COOLER
c = =
c = The evaluation of a evaporative cooler =
c = unit using a finite difference method. =
c = The evaporative cooler units are devided =
c = into small three dimensional blocks. =
c = The blocks are evaluated from a point where =
c = all the initial values for the block are =
c = known ; by continuing from this block =
c = the whole cooler unit may be evaluated.
c = =
c = ******************** =
c = =
c = Written by A.A.DREYER (8312818) =
c = =
c = DEPARTMENT OF MECHANICAL ENGINEERING =
c = UNIVERSITY OF STELLENBOSCH =
c = VAX 7·85 - FORTRAN Version 4.5 =
c = =
c = LAST REVISION 18 August 1988 =
c = =
c =================================================
c
C Tsp - Process water temperature (array) [ C]
C Tsw - Recirc. water temperature (array) [ C]
C Tsa - Dry bulb air temperature (array) [ C]
c sisa Enthalpy of air (array) [kJ/kg]
c swsa - Humidty of air (array) [kg water/kg air]
c smsw - Recirc. water massflow rate (array) [kg/s]
c Tspi Inlet process water temperature for element [ C]
c Tspo - Outlet process water temperature for element [ C]
c Tswi Inlet recirc. water temperature for element [ C]
c Tswo - Outlet recirc. water temperature for element [ C]
c Tsai Inlet air temperature for element [ C]
c Tsao - Outlet air temperature for element [ C]
c sisai Inlet air enthalpy for element [kJ/kg]
c sisao Outlet air enthalpy for element [kJ/kg]
c swsai Inlet air humidity for element [kg water/kg air]
c swsao - Outlet air humidity for element [kg water/kg air]
c smswi Inlet recirc. water massflow for element [kg/s]
c smswo - Outlet recirc. water massflow for element [kg/s]
c Tsa - Air temperature [ C]
c Tsai - Air temperature into element [ C]
c Tsao - Air temperature from element [ C]
c Tspi1 Inlet temperature of hot process water [ C]
c Tswil Inlet temperature of reciculating water [ C]
c TR - Right boundary of temperature interval [ C]
c TL - Left boundary of temperature interval [ C]
Stellenbosch University http://scholar.sun.ac.za
20 CONTINUE
30 CONTINUE
C Call subroutine to set default values for a typical cooler
CALL INITIAL(spsatm,Tsadb,Tsawb,L,H,sdso,sdsi,Kmax,
+ Lmax,Mmax,vspas,hspas,smsp,PI,gamma,skst,Tspil,
+ clrtype,model,smsa,flowlayout,Tswil,shsfl,shsf2)
C Call subroutine to edit coolertype,flowlayout,model,size etc.
5 CALL MENUl{clrtype,model,H,L,spsatm,Tsadb,Tsawb,flowlayout,
+ Tswi1,shsf1,shsf2)
C Call subroutine to edit the cooler dimensions and operating parameters
CALL MENU2(sdso,sdsi,H,L,PI,svsa,vspas,hspas,Lmax,Kmax,Mmax,
+ spsatm,Tsadb,Tsawb,gamma,skst,Tspi1,smsp,svsp,sa,Aspi,
+ Aspo,clrtype,dA,model,smsa,flowlayout,Tswi1,shsfl,shsf2)
C Open result files for program results and cooler temperature gradients
gradfile=O ! 0 - print nothing , 1 - print gradients
gradplot=O ! 0 - print nothing , 1 - print gradients
OPEN (UNIT=1, FILE='CROSS.RES', STATUS='NEW')
IF (gradfile.EQ.l) THEN
OPEN (UNIT=4, FILE='CROSS.GRA', STATUS='NEW')
ELSE IF (gradplot.EQ.1) THEN
OPEN (UNIT=S, FILE='CROSS.PLO', STATUS='NEW')
END IF
C Determine the air flow parameters for cooler
CALL Airhumidity(Tsadb,Tsawb,spsatm,swsai1)
CALL AirVapMixdensity{Tsadb,swsai1,spsatm,rhosail)
svsa=(smsa*(l.O+swsai1))/(rhosai1*L*(Lmax+0.5)*vspas)
ReyC=svsa*(vspas/sdso)*(vspas-sdso)
C Determine the massflow of each fluid for a typical element
CALL Waterdensity(Tspi1,rhosw)
smsael=smsa/(Mmax*(Lmax+O.S)) Air massflow I element
smspel=svsp*rhosw*Aspi Process water massflowjelement
smswel=2.0*gamma*L/Mmax Recirc. water massflow/element
smswi1=2.0*gamma*L*Kmax Total inlet recirc. water massflow
C Evaluate cooler with given flowlayout
C clrtype = 1 ==>Recirculating cooling water
C clrtype = 2 ==>Cooling water makes only single pass through cooler
CALL LIB$ERASE PAGE(1,1)
WRITE(*,*)' ITERATIVE CALCULATION IN PROGRESS'
WRITE(*,*)'***********************************'
IF (clrtype.EQ.l) THEN
TR=Tspi1 Set upper value for Tw(in)
TL=Tsawb ! Set lower value for Tw(in)
40 Tswi1=(TR+TL)/2~0 ! Halve the Tw(in) interval
IF (flowlayout.EQ.1) THEN
CALL FRONTTOBACK (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,smspel,
Stellenbosch University http://scholar.sun.ac.za
+ smswel,sisail,sisaol,Tspil,Tspol,Tswil,Tswol,swsail,
+ swsaol,smswil,smswol,L,H,sdsi,sdso,dA,Tsadb,Tsawb,
+ spsatm,gamma,Vstot,sa,skst,svsp,Aspi,Aspo,ReyC,
+ gradfile,Kmax,Lmax,Mmax,PI,model,Tsaol,shsfl,shsf2)
ELSE IF (flowlayout.EQ.2) THEN
CALL BACKTOFRONT (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,smspel,
+ smswel,sisail,sisaol,Tspil,Tspol,Tswil,Tswol,swsail,
+ swsaol,smswil,smswol,L,H,sdsi,sdso,dA,Tsadb,Tsawb,
+ spsatm,gamma,Vstot,sa,skst,svsp,Aspi,Aspo,ReyC,
+ gradfile,Kmax,Lmax,Mmax,PI,model,Tsaol,shsfl,shsf2)
ELSE IF (flowlayout.EQ.3) THEN
CALL TOPTOBOTTOM {Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,smspel,
+ smswel,sisail,sisaol,Tspil,Tspol,Tswil,Tswol,swsail, -
+ swsaol,smswil,smswol,L,H,sdsi,sdso,dA,Tsadb,Tsawb,
+ spsatm,gamma,Vstot,sa,skst,svsp,Aspi,Aspo,ReyC,
+ gradfile,Kmax,Lmax,Mmax,PI,model,Tsaol,shsfl,shsf2,
+ gradplot)
ELSE IF (flowlayout.EQ.4) THEN
CALL STRAIGHT (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,smspel,
+ smswel,sisail,sisaol,Tspil,Tspol,Tswil,Tswol,swsail,
+ swsaol,smswil,smswol,L,H,sdsi,sdso,dA,Tsadb,Tsawb,
+ spsatm,gamma,Vstot,sa,skst,svsp,Aspi,Aspo,ReyC,
+ gradfile,Kmax,Lmax,Mmax,PI,model,Tsaol,shsfl,shsf2)
END IF
IF (ABS(Tswil-Tswol).GT.O.OOl) THEN
IF (Tswil.LT.Tswol) THEN
TL=Tswol ! TL=Tswil
IF (TL.GT.Tspil) TL=Tspil
ELSE IF (Tswil.GT.Tswol) THEN
TR=Tswol ! TR=Tswil
END IF
GO TO 40
END IF
ELSE IF (clrtype.EQ.2) THEN
IF (flowlayout.EQ.l) THEN
CALL FRONTTOBACK (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,smspel,
+ smswel,sisail,sisaol,Tspil,Tspol,Tswil,Tswol,swsail,
+ swsaol,smswil,smswol,L,H,sdsi,sdso,dA,Tsadb,Tsawb,
+ spsatm,gamma,Vstot,sa,skst,svsp,Aspi,Aspo,ReyC,
+ gradfile,Kmax,Lmax,Mmax,PI,model,Tsaol,shsfl,shsf2)
ELSE IF (flowlayout.EQ.2) THEN
CALL BACKTOFRONT (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,smspel,
+ smswel,sisail,sisaol,Tspil,Tspol,Tswil,Tswol,swsail,
+ swsaol,smswil,smswol,L,H,sdsi,sdso,dA,Tsadb,Tsawb,
+ spsatm,gamma,Vstot,sa,skst,svsp,Aspi,Aspo,ReyC,
+ gradfile,Kmax,Lmax,Mmax,PI,model,Tsaol,shsfl,shsf2)
ELSE IF (flowlayout.EQ.3) THEN
CALL TOPTOBOTTOM (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,smspel,
+ smswel,sisail,sisaol,Tspil,Tspol,Tswil,Tswol,swsail,
+ swsaol,smswil,smswol,L,H,sdsi,sdso,dA,Tsadb,Tsawb,
+ spsatm,gamma,Vstot,sa,skst,svsp,Aspi,Aspo,ReyC,
+ gradfil e, Kmax, Lmax ,Mmax, PI, mode 1, Tsaol, shsfl, shsf2,
Stellenbosch University http://scholar.sun.ac.za
+ gradplot)
ELSE IF (flowlayout.EQ.4) THEN
CALL STRAIGHT (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,smspel,
+ smswel,sisai1,sisao1,Tspi1,Tspo1,Tswi1,Tswo1,swsai1,
+ swsao1,smswi1,smswo1,L,H,sdsi,sdso,dA,Tsadb,Tsawb,
+ spsatm,gamma,Vstot,sa,skst,svsp,Aspi,Aspo,ReyC,
+ gradfile,Kmax,Lmax,Mmax,PI,model,Tsao1,shsf1,shsf2)
END IF
END IF
C Print final temperature,enthalpy etc. profiles
IF (flowlayout.EQ.3) THEN ! TTB flow pattern
DO j=1,Lmax+1
IF (j.EQ.1) THEN
tpi=Tspil
tpo=Tspi1
ELSE
iflag=j-2.0*INT(j/2.0)
IF (iflag.EQ.O) THEN
tpi=Tsp(1,j-1,3)
tpo=Tsp(Kmax,j-1,3)
ELSL
tpi=Tsp(1,j-1,1)
tpo=Tsp(Kmax,j-1,1)
END IF
END IF
twi=Tsw(l,j,2)
two=Tsw(Kmax,j,2)
siao=sisa(Kmax+1,j,2)
swao=swsa(Kmax+1,j,2)
WRITE(10,*)j,tpi,twi,tpo,two,siao,swao
END DO
WRITE(10,*)1
I
DO i=1,Kmax
WRITE(lO,*)i,Tsp(i,Lmax,3),Tsw(i,Lmax+1,2)
ENDDO
ELSE IF ((flowlayout.EQ.1).0R.(flowlayout.EQ.2)) THEN FTB&BTF
DO j=1,Lmax+1
tpi=Tsp(l,j,2)
tpo=Tsp(Kmax,j,1)
twi=Tsw(1,j,2)
two=Tsw(Kmax,j,2)
siao=sisa(Kmax+1,j,2)
swao=swsa(Kmax+1,j,2)
WRITE(11,*)j,tpi,twi,tpo,two,siao,swao
END DO
WRITE(ll,*)1
I
DO i=1,Kmax
jflag=i-2.0*INT(i/2.0)
IF (jflag.EQ.1) THEN
tp=Tsp(i,Lmax,3)
ELSE
Stellenbosch University http://scholar.sun.ac.za
tp=Tsp(i,Lmax,l)
END IF
WRITE(ll,*)i,tp,Tsw(i,Lmax+l,2)
ENDDO
END IF
C Print solution model used, ambient conditions and results
IF (model.EQ.l) THEN
TR=Tspil
TL=Tsawb
50 Tsaol=(TR+TL)/2.0
CALL Satenthalpy(Tsaol,spsatm,sisasa)
IF (ABS(sisasa-sisaol).GT.O.l) THEN
IF (sisasa.GT.sisaol) THEN
TR=Tsaol
ELSE
TL=Tsaol
END IF
GO TO 50
END IF
CALL Airhumidity(Tsaol,Tsaol,spsatm,swsaol)
CALL AirVapMixdensity(Tsaol,swsaol,spsatm,rhosaol)
CALL Airhumidity(Tsadb,Tsawb,spsatm,swsal)
CALL AirVapMixdensity(Tsadb,swsal,spsatm,rhosail)
smswol=smswil-(swsaol-swsal)*smsa
ELSE IF (model.EQ.2) THEN
CALL Satvappressure(Tsaol,spssat)
spsvap=spsatm*swsaol/(1.005*(0.62198+swsaol))
phio=spsvap/spssat
IF (phio.GT.l.O) THEN
phio=l.O
CALL Airhumidity(Tsaol,Tsaol,spsatm,swsao2)
CALL AirVapMixdensity(Tsaol,swsao2,spsatm,rhosaol)
ELSE
CALL AirVapMixdensity(Tsaol,swsaol,spsatm,rhosaol)
END IF
ELSE IF (model.EQ.3) THEN
CALL Satvappressure(Tsaol,spssasa)
spsvap=spsatm*swsaol/(1.005*(0.62198+swsaol))
phio=spsvap/spssasa
IF (phio.GT.l.O) THEN
phio=l.O
CALL Airhumidity(Tsaol,Tsaol,spsatm,swsao2)
CALL AirVapMixdensity(Tsaol,swsao2,spsatm,rhosaol)
ELSE
CALL AirVapMixdensity(Tsaol,swsaol,spsatm,rhosaol)
END IF
END IF
CALL Airhumidity(Tsadb,Tsawb,spsatm,swsal)
CALL AirVapMixdensity(Tsadb,swsal,spsatm,rhosail)
CALL Cpw(Tspil,scsppi)
CALL Cpw(Tspol,scsppo)
Stellenbosch University http://scholar.sun.ac.za
Power=smsp*((Tspi1)*scsppi-(Tspo1)*scsppo)/1000.0
CALL PRINT_RESULTS(Tspi1,Tspo1,smsp,sdsi,sdso,vspas,hspas,
+ Kmax,Lmax,Mmax,gamma,Vstot,rhosai1,Vseff2,sisai1,sisao1,
+ Tswi1,Tswo1,svsp,flowlayout,H,L,spsatm,PI,Tsawb,Tsadb,svsa,
+ swsai1,swsao1,smswi1,smswo1,model,Tsao1,rhosao1,phio,Power,
+ shsfl,shsf2,skst,smsa)
C Rerun program or return to DCL
WRITE(*,100)
100 FORMAT(' RERUN program or return to DCL (R/D) ?' ,$)
READ(*,'(A)')char
CLOSE (UNIT =1)
CLOSE (UNIT =4)
CLOSE (UNIT=5)
IF ((char.EQ.'R').OR.(char.EQ.'r')) GO TO 5
C End of main program
END
c *******************************************************************
c* *
c* COUNTER FLOW (FROM BACK TO FRONT OF COOLER) *
c* *
c *******************************************************************
C Subroutine to evaluate a cooler layout where the process fluid flows
C in a direction ~ounter to the direction of the airstream
SUBROUTINE BACKTOFRONT (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,smspel,
+ smswel,sisai1,sisao1,Tspi1,Tspo1,Tswi1,Tswo1,swsai1,
+ swsao1,smswi1,smswo1,L,H,sdsi,sdso,dA,Tsadb,Tsawb,
+ spsatm,gamma,Vstot,sa,skst,svsp,Aspi,Aspo,ReyC,
+ gradfile,Kmax,Lmax,Mmax,PI,model,Tsao1,shsf1,shsf2)
DIMENSION Tsp(40,400,10)
DIMENSION Tsw(40,400,10)
DIMENSION Tsa(40,400,40)
DIMENSION sisa(40,400,10)
DIMENSION swsa(40,400,10)
DIMENSION smsw(40,400,10)
REAL L
INTEGER flag,flag2,gradfile
C Choose an average temperature for the outlet process water
Tspo1=(Tspi1+Tswil)/2.0
DO 50 j=1,Lmax
Tsp(1,j,2)=Tspo1
50 CONTINUE
C Initialize the arrays with the known temperature and enthalpy values
999 CALL Enthalpy(Tsadb,Tsawb,spsatm,sisail)
CALL Airhumidity(Tsadb,Tsawb,spsatm,swsail)
Stellenbosch University http://scholar.sun.ac.za
DO 20 j=1,Lmax
DO 10 k=2,Mmax+1
sisa(1,j,k)=sisai1
swsa(1,j,k)=swsai1
Tsa(1,j,k)=Tsadb
10 CONTINUE
20 CONTINUE
DO 40 i=1,Kmax
DO 30 k=2,Mmax+1
Tsw(i,1,k)=Tswi1
smsw(i,1,k)=smswel
30 CONTINUE
40 CONTINUE
C N.B. flag=1 for·backward process fluid flow
c L.W. flag=O for forward process fluid flow
· fl ag=O
C Start of the outer loop to evaluate each i-level of the model
DO 60 i=1,Kmax
flag2=i-2*INT(i/2.0)
C Flag2=1 in the, first row,O in the second row etc.
C Start of the middle loop to evaluate each j-level of the model
DO 70 j=1,Lmax
C Start of the inner loop to evaluate each each element of the model
IF (flag.EQ.O) THEN
C Process water flow is in a forward direction
DO so k=2,Mmax+1
C Determine the input values for each element
Tspo=Tsp(i,j,k)
IF((k.EQ.2).AND.(i.NE.1}) Tspo=Tsp(i-l,j,k-1)
Tswi=Tsw(i,j,k)
Tsai=Tsa(i,j,k)
sisai=sisa(i,j,k)
swsai=swsa(i,j,k)
smswi=smsw(i,j,k)
C Determine the enthalpy of air entering each element in the packed formation
IF ((flag2.EQ.1).AND.(i.NE.l)) THEN
IF (j.EQ.l) THEN
sisai=(sisa(i-1,j,k)+sisa(i,j,k))/2.0
swsai=(swsa(i-l,j,k)+swsa{i,j,k))/2.0
Tsai=(Tsa(i-l,j,k)+Tsa(i,j,k))/2.0
ELSE
sisai=(sisa{i,j,k)+sisa{i,j-l,k))/2.0
swsai=(swsa(i,j,k)+swsa(i,j-l,k))/2.0
Tsai=(Tsa{i,j,k)+Tsa{i,j-l,k))/2.0
END IF
Stellenbosch University http://scholar.sun.ac.za
END IF
IF (flag2.EQ.O) THEN
IF (j.EQ.Lmax) THEN
sisai=(sisa(i,j,k)+sisa(i-l,j,k))/2.0
swsai=(swsa(i,j,k)+swsa(i-l,j,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i-l,j,k))/2.0
ELSE
sisai=(sisa(i,j,k)+sisa(i,j+l,k))/2.0
swsai=(swsa(i,j,k)+swsa(i,j+l,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i,j+l,k))/2.0
END IF
END IF
C Call subroutine to determine outlet conditions of each element
IF (model.EQ.l) THEN
CALL MERKEL2 (Tspi,Tswi,sisai,swsail,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,Aspi,Aspo,
+ ReyC,shsfl,shsf2,Kmax)
ELSE IF (model.EQ.2) THEN
CALL IMPMERKEL2 (Tspi,Tswi,sisai,swsai,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,swsao,Aspi,Aspo,
+ ReyC,smswi,smswo,Tsai,Tsao,shsfl,shsf2,Kmax)
ELSE
CALL POPPE2 (Tspi,Tswi,Tsai,sisai,swsai,smswi,L,H,sdsi,
+ sdso,dA,Tsadb,sp~atm,gamma,Vstot,smsael,smspel,
+ smswel,sa,skst,svsp,Tspo,Tswo,Tsao,sisao,swsao,
+ smswo,Aspi,Aspo,ReyC,shsfl,shsf2,Kmax)
END IF
C Determine the exit values for each element
Tsp(i,j,k+l)=Tspi
Tsw(i,j+l,k)=Tswo
Tsa(i+l,j,k)=Tsao
sisa(i+l,j,k)~sisao
swsa(i+l,j,k)=swsao
smsw(i,j+l,k)=smswo
C Write the temperature and enthalpy gradients to file CROSS.GRA
IF (gradfile.EQ.l) THEN
. WRITE(4,*)i,j,k-1
WRITE(4,*)Tspo,Tspi
WRITE(4,*)Tswi,Tswo
WRITE(4,*)sisai,sisao
IF (model.NE.l) THEN
WRITE(4,*)swsai,swsao
WRITE(4,*)smswi,smswo
IF (model .EQ.3) THEN
WRITE(4,*)Tsai,Tsao
END IF
END IF
Stellenbosch University http://scholar.sun.ac.za
END IF
80 CONTINUE
ELSE IF (Flag.EQ.l) THEN
C Start of the inner loop to evaluate each each element of the model
C Process water flow is backwards to the origin
DO 90 k=Mmax+1,2,-1
C Qetermine the input values for each element
Tspo=Tsp(i,j,k)
IF (k.EQ.(Mmax+l)) Tspo=Tsp(i-l,j,k+l)
Tswi=Tsw(i ,j,k)
Tsai=Tsa(i,j,k)
sisai=sisa(i,j,k)
swsai=swsa(i,j,k)
smswi=smsw(i,j,k)
C Determine the enthalpy of air entering each element in the packed formation
IF ((flag2.EQ.l).AND.(i.NE.l)) THEN
IF (j.EQ.l) THEN
sisai=(sisa(i-l,j,k)+sisa(i,j,k))/2.0
swsai=(swsa(i-l,j,k)+swsa(i,j,k))/2.0
Tsai=(Tsa(i-l,j,k)+Tsa(i,j,k))/2.0
ELSE
sisai=(sisa(i,j,k)+sisa(i,j-l,k))/2.0
swsai=(swsa(i,j,k)+swsa(i,j-l,k))/2.0
Tsa i =(Tsa ( i , j, k) +Is a (.i , j -1, k)) /2.0
END IF
END IF
IF (flag2.EQ.O) THEN
IF (j.EQ.Lmax) THEN
sisai=(sisa(i,j,k)+sisa(i-l,j,k))/2.0
swsai=(swsa(i,j,k)+swsa(i-l,j,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i-l,j,k))/2.0
ELSE
sisai=(sisa(i,j,k)+sisa(i,j+l,k))/2.0
swsai=(swsa(i,j,k)+swsa(i,j+l,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i,j+l,k))/2.0
END IF
END IF
C Call subroutine to determine outlet conditions of each element
IF (model.EQ.l) THEN
CALL MERKEL2 (Tspi,Tswi,sisai,swsail,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,Aspi,Aspo,
+ ReyC,shsfl,shsf2,Kmax)
ELSE IF (model.EQ.2) THEN
CALL IMPMERKEL2 (Tspi,Tswi,sisai,swsai,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,swsao,Aspi,Aspo,
+ ReyC,smswi,smswo,Tsai,Tsao,shsfl,shsf2,Kmax)
Stellenbosch University http://scholar.sun.ac.za It
ELSE
CALL POPPE2 (Tspi,Tswi,Tsai,sisai,swsai,smswi,L,H,sdsi,
+ sdso,dA,Tsadb,spsatm,gamma,Vstot,smsael,smspel,
+ smswel,sa,skst,svsp,Tspo,Tswo,Tsao,sisao,swsao,
+ smswo,Aspi,Aspo,ReyC,shsfl,shsf2,Kmax)
END IF
C Determine the exit values for each element
Tsp(i,j,k-l)=Tspi
Tsw(i,j+l,k)=Tswo
Tsa(i+l,j,k)=Tsao
sisa(i+l,j,k)=sisao
swsa(i+l,j,k)=swsao
smsw(i,j+l,k)=smswo
C Write the temperature and enthalpy gradients to file CROSS.GRA
IF (gradfile.EQ.l) THEN
WRITE(4,*)i,j,k-1
WRITE(4,*)Tspo,Tspi
WRITE(4,*)Tswi,Tswo
WRITE(4,*)sisai,sisao
IF (model.NE.l) THEN
WRITE(4,*)swsai,swsao
WRITE(4,*)smswi,smswo
IF (model.EQ.3) THEN
WRITE(4,*)Tsai,Tsao
END IF
END IF
END IF
90 CONTINUE
END IF
70 CONTINUE
IF (flag.EQ.O) THEN
flag=!
ELSE
flag=O
END IF
60 CONTINUE
C Determine the average inlet temperature of process water
suml=O.O
sum2=0.0
rem=Mmax+2
IF (flag.NE.l) rem=l
DO 120 j=l,Lmax
CALL Cpw(Tsp(Kmax,j,rem),scspp)
suml=suml+Tsp(Kmax,j,rem)*scspp
sum2=sum2+Tsp(Kmax,j,rem)
120 CONTINUE
CALL Cpw((sum2/Lmax),scspp)
Tspi2=suml/(Lmax*scspp)
Stellenbosch University http://scholar.sun.ac.za f)
sum3=sum3+Tsa(Kmax+I,j,k)
I30 CONTINUE
I40 CONTINUE
DO ISO k=2,Mmax+I
IF (flag2.EQ.O) THEN
sumi=sumi+sisa(Kmax,I,k)/2.0
sum2=sum2+swsa(Kmax,I,k)/2.0
sum3=sum3+Tsa(Kmax,I,k)/2.0
ELSE
sumi=sumi+sisa(Kmax,Lmax,k)/2.0
sum2=sum2+swsa(Kmax,Lmax,k)/2.0
sum3=sum3+Tsa(Kmax,Lmax,k)/2.0
END IF
ISO CONTINUE
sisaoi=sumi/(Mmax*(Lmax+.S))
swsaoi=sum2/(Mmax*(Lmax+.5))
Tsaoi=sum3/(Mmax*(Lmax+.S))
C Print the recirc.water inlet and outlet temperatures on the screen
WRITE(*,I60)Tswii,Tswoi
I60 FORMAT(' ',/' Tw(in) = ',F7.3,' Tw(out) = ',F7.3/)
RETURN
END
c *******************************************************************
c* *
C* PARALLEL FLOW (FROM FRONT TO BACK OF COOLER) *
c* *
c *******************************************************************
C Subroutine to evaluate a cooler layout where the process fluid flows
C in a direction parallel to the direction of the airstream
SUBROUTINE FRONTTOBACK (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,
+ smspel,smswel,sisaii,sisaoi,Tspii,Tspoi,Tswii,
+ Tswoi,swsaii,swsaoi,smswii,smswol,L,Hlsdsi,sdso,
+ dA,Tsadb,Tsawb,spsatm,gamma,Vstot,sa,skst,
+ svsp,Aspi,Aspo,ReyC,gradfile,Kmax,Lmax,Mmax,PI,
+ model,Tsaol,shsfl,shsf2)
DIMENSION Tsp(40,400,10)
DIMENSION Tsw(40,400,10)
DIMENSION Tsa(40,400,10)
DIMENSION sisa(40,400,IO)
DIMENSION swsa(40,400,IO)
DIMENSION smsw(40,400,10)
REAL L
INTEGER flag,flag2,gradfile
C Initialize the three arrays with the known temperature and enthalpy values
CALL Enthalpy(Tsadb,Tsawb,spsatm,sisail)
CALL Airhumidity(Tsadb,Tsawb,spsatm,swsail)
DO 20 j=l,Lmax
Stellenbosch University http://scholar.sun.ac.za
DO 10 k=2,Mmax+1
sisa(1,j,k)=sisai1
swsa(1,j,k)=swsai1
Tsa(1,j,k)=Tsadb
10 CONTINUE
20 CONTINUE
DO 40 i=1,Kmax
DO 30 k=2,Mmax+1
Tsw(i,1,k)=Tswi1
smsw(i,1,k)=smswel
30 CONTINUE
40 CONTINUE
DO 50 j=1,Lmax
Tsp(1,j,2)=Tspi1
50 CONTINUE
C N.B. flag=1 for backward process fluid flow
C L.W. flag=O for forward process fluid flow
flag=O
C Start of the outer loop to evaluate each i-level of the model
DO 60 i=1,Kmax
flag2=i-2*1NT(i/2.0)
C Flag2=1 in the first row,O in the second row etc.
C Start of the middle loop to evaluate each j-level of the model
DO 70 j=1,Lmax
C Start of the inner loop to evaluate each each element of the model
IF (flag.EQ.O) THEN
C Process water flow is in a forward direction
DO 80 k=2,Mmax+1
C Determine the input values for each element
Tspi=Tsp(i,j,k)
IF((k.EQ.2).AND.(i.NE.1)) Tspi=Tsp(i-1,j,k-1)
Tswi=Tsw(i ,j,k)
Tsai=Tsa(i,j,k)
sisai=sisa(i,j,k)
swsai=swsa(i,j,k)
smswi=smsw(i,j,k)
.
C Determine the enthalpy of air entering each element in the packed formation
IF ((flag2.EQ.1).AND.(i.NE.1)) THEN
IF (j.EQ.1) THEN
sisai=(sisa(i-1,j,k)+sisa(i,j,k))/2.0
swsai=(swsa(i-1,j,k)+swsa(i,j,k))/2.0
Tsai=(Tsa(i-l,j,k)+Tsa(i,j,k))/2.0
ELSE
sisai=(sisa(i,j,k)+sisa(i,j-1,k))/2.0
Stellenbosch University http://scholar.sun.ac.za
swsai=(swsa(i,j,k)+swsa(i,j-l,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i,j-l,k))/2.0
END IF
END IF
IF (flag2.EQ.O) THEN
IF (j.EQ.Lmax) THEN
sisai=(sisa(i,j,k)+sisa(i-l,j,k))/2.0
swsai=(swsa(i,j,k)+swsa(i-l,j,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i-l,j,k))/2.0
ELSE
sisai=(sisa(i,j,k)+sisa(i,j+l,k))/2.0
swsai=(swsa(i,j,k)+swsa(i,j+l,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i,j+l,k))/2.0
END IF
END IF
C Call subroutine to determine outlet conditions of each element
IF (model.EQ.l) THEN
CALL MERKEL (Tspi,Tswi,sisai,swsail,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm~gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,Aspi,Aspo,
+ ReyC,shsfl,shsf2,Kmax)
ELSE IF (model.EQ.2) THEN
CALL IMPMERKEL (Tspi,Tswi,sisai,swsai,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,swsao,Aspi,Aspo~
+ ReyC,smswi,smswo,Tsai,Tsao,shsfl,shsf2,Kmax)
ELSE
CALL POPPE (Tspi,Tswi,Tsai,sisai,swsai,smswi,L,H,sdsi,
+ sdso,dA,Tsadb,spsatm,gamma,Vstot,smsael,smspel,
+ smswel,sa,skst,svsp,Tspo,Tswo,Tsao,sisao,swsao,
+ smswo,Aspi,Aspo,ReyC,shsfl,shsf2,Kmax)
END IF
C Determine the exit values for each element
Tsp(i,j,k+l)=Tspo
Tsw(i,j+l,k)=Tswo
Tsa(i+l,j,k)=Tsao
sisa(i+l,j,k)=sisao
swsa(i+l,j,k)=swsao
smsw(i,j+l,k)=smswo
C Write the temperature and enthalpy gradients to file CROSS.GRA
IF (gradfile.EQ.l) THEN
WRITE(4,*)i,j,k-1
WRITE(4,*)Tspi,Tspo
WRITE(4,*)Tswi,Tswo
WRITE(4,*)sisai,sisao
IF (model.NE.l) THEN
WRITE(4,*)swsai,swsao
WRITE(4,*)smswi,smswo
IF (model.EQ.3) THEN
Stellenbosch University http://scholar.sun.ac.za
WRITE(4,*)Tsai,Tsao
END IF
END IF
END IF
80 CONTINUE
ELSE IF (Flag.EQ.l) THEN
C Start of the inner loop to evaluate each each element of the model
C Process water flow is backwards to the origin
DO 90 k=Mmax+l,2,-l
C Determine the input values for each element
Tspi=Tsp(i,j,k)
IF (k.EQ.(Mmax+l)) Tspi=Tsp(i-l,j,k+l)
Tswi=Tsw(i,j,k)
Tsai=Tsa(i,j,k)
sisai=sisa(i,j,k)
swsai=swsa(i,j,k)
smswi=smsw(i,j,k)
C Determine the enthalpy of air entering each element in the packed formation
IF ((flag2.EQ.l).AND.(i.NE.l)) THEN
IF (j.EQ.l) THEN
sisai=(sisa(i-l,j,k)+sisa(i,j,k))/2.0
swsai=(swsa(i-l,j,k)+swsa(i,j,k))/2.0
Tsai=(Tsa(i-l,j,k)+Tsa(i,j,k))/2.0
ELSE . .
sisai=(sisa(i,j,k)+sisa(i,j-l,k))/2.0
swsai=(swsa( i ,j, k·)+swsa( i ,j -1, k) )/2. 0
Tsai=(Tsa(i,j,k)+Tsa(i,j-l,k))/2.0
END IF
END iF
IF (flag2.EQ.O) THEN
IF (j.EQ.Lmax) THEN
sisai=(sisa(i,j,k)+sisa(i-l,j,k))/2.0
swsai=(swsa(i,j,k)+swsa(i-l,j,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i-l,j,k))/2.0
ELSE
sisai=(sisa(i,j,k)+sisa(i,j+l,k))/2.0
swsai=(swsa(i,j,k)+swsa(i;j+l,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i,j+l,k))/2.0
END IF
END IF
C Call subroutine to determine outlet conditions of each element
IF (model.EQ.l) T~EN
CALL MERKEL (Tspi,Tswi,sisai,swsail,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,Aspi,Aspo,
+ ReyC,shsfl,shsf2,Kmax)
ELSE IF (model.EQ.2) THEN
CALL IMPMERKEL (Tspi,Tswi,sisai,swsai,L,H,sdsi,sdso,dA,
Stellenbosch University http://scholar.sun.ac.za
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,swsao,Aspi,Aspo,
+ ReyC,smswi,smswo,Tsai,Tsao,shsf1,shsf2,Kmax)
ELSE
CALL.POPPE (Tspi,Tswi,Tsai,sisai,swsai,smswi,L,H,sdsi,
+ sdso,dA,Tsadb,spsatm,gamma,Vstot,smsael,smspel,
+ smswel,sa,skst,svsp,Tspo,Tswo,Tsao,sisao,swsao,
+ smswo,Aspi,Aspo,ReyC,shsf1,shsf2,Kmax)
END IF '
C Determine the exit values for each element
Tsp(i,j,k-1)=Tspo
Tsw(i,j+1,k)=Tswo
Tsa(i+1,j,k)=Tsao
sisa(i+1,j,k)=sisao
swsa(i+1,j,k)=swsao
smsw(i,j+1,k)=smswo
C Write the temperature and enthalpy gradients to file CROSS.GRA
IF (gradfile.EQ.1) THEN
WRITE(4,*)i,j,k-1
WRITE(4,*)Tspi,Tspo
WRITE(4,*)Tswi,Tswo
WRITE(4,*)sisai,sisao
IF (model.NE.1) THEN
WRITE(4,*)swsai,swsao
WRITE(4,*)smswi,smswo
IF (model.EQ.3) THEN
WRITE(4,*)Tsai,Tsao
END IF
END IF
END IF
90 CONTINUE
END IF
70 CONTINUE
IF (flag.EQ.O) THEN
flag=1
ELSE
flag=O
END IF
60 CONTINUE
C Determine the average exit temperature of recirculating water
sum1=0.0
sum2=0.0
DO 110 i=1,Kmax
DO 100 k=2,Mmax+1
CALL Cpw(Tsw(i,Lmax+1,k),scspw)
sum1=sum1+Tsw(i,Lmax+1,k)*scspw
sum2=sum2+smsw(i,Lmax+1,k)
100 CONTINUE
110 CONTINUE
Stellenbosch University http://scholar.sun.ac.za
CALL Cpw(Tswi1,scspw)
Tswo1=sum1/(Mmax*Kmax*scspw)
smswo1=sum2
C Determine the average exit temperature of process water
sum1=0.0
sum2=0.0
rem=Mmax+2
IF (flag.NE.1) rem=1
DO 120 j=1,Lmax
CALL Cpw(Tsp(Kmax,j,rem),scspp)
sum1=sum1+Tsp(Kmax,j,rem)*scspp
sum2=sum2+Tsp(Kmax,j,rem)
120 CONTINUE
CALL Cpw((sum2/Lmax),scspp)
Tspo1=sum1/(Lmax*scspp)
C Determine the average exit enthalpy of the air
sum1=0.0
sum2=0.0
sum3=0.0
DO 140 J=1, Lmax
DO 130 k=2,Mmax+1
sum1=sum1+sisa(Kmax+1,j,k)
sum2=sum2+swsa(Kmax+l,j,k)
sum3=sum3+Tsa(Kmax+1,j,k)
130 CONTINUE
140 CONTINUE
DO 150 k=2,Mmax+1
IF (flag2.EQ.O) THEN
sum1=sum1+sisa(Kmax,1,k)/2.0
sum2=sum2+swsa(Kmax,1,k)/2.0
sum3=sum3+Tsa(Kmax,l,k)/2.0
ELSE
suml=suml+sisa(Kmax,Lmax,k)/2.0
sum2=sum2+swsa(Kmax,Lmax,k)/2.0
sum3=sum3+Tsa(Kmax,Lmax,k)/2.0
END IF
150 CONTINUE
sisaol=suml/(Mmax*(Lmax+.5))
swsao1=sum2/(Mmax*(Lmax+.5))
Tsao1=sum3/(Mmax*(Lmax+.5))
C Print the recirc.water inlet and outlet temperatures on the screen
WRITE(*,160)Tswil,Tswol
160 FORMAT(' ','Tw(in) = ',F7.3,' Tw(out) = ',F7.3)
RETURN
END
Stellenbosch University http://scholar.sun.ac.za
c *******************************************************************
c* *
C* IMPROVED MERKEL METHOD TO EVAUALTE A SINGLE ELEMENT *
c* *
c *******************************************************************
C Subroutine to apply the Runge-Kutta method of solution to the three
C Merkel equations and one additional equation which controls the
C state of a single element
SUBROUTINE IMPMERKEL(Tspi,Tswi,sisai,swsai,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,swsao,Aspi,Aspo,
+ ReyC,smswi,smswo,Tsai,Tsao,shsfl,shsf2,nrow)
REAL L,musav,musw,kog,koga,Kl,K2,K3,K4
C Determine the neccessary Reynoldsnumbers
CALL Waterviscosity(Tspi,musw)
CALL Waterdensity(Tspi,rhosw)
Reysp=rhosw*sdsi*svsp/(musw) ! Reynoldsnumber of process water
CALL AirVapMixdensity(Tsai,swsai,spsatm,rhosav)
CALL AirVapMixviscosity(Tsai,swsai,spsatm,musav)
Reysa=ReyC*rhosav/musav ! Reynoldsnumber of airflow
CALL Waterviscosity(Tswi,musw) '
gammal=gamma*(smswi/smswel)
Reysw=4.0*gammal/musw Reynoldsnumber of recirc.water
C Determine the neccessary transfer-coefficients ·
CALL Waterconductivity(Tspi,sksp)
CALL Prandtl(Tspi,Prasp)
shsw=4.186*118.0*((gamma1*3600.0/sdso)**(l.0/3.0))/3.6
IF (Reysp.LT.2300.0) THEN
term=Reysp*Prasp*sdsi/(L*nrow)
shsp=(3.66+0.104*(term)/(1.0+0.016*(term)**(0.8)))*sksp/sdsi
ELSE
sfsd=(1.82*LOGIO(Reysp)-1.64)**(-2.0)
terml=Prasp*(l.O+(sdsi/(L*nrow))**(0.67))
term2=1.0+12.7*((sfsd/8.0)**(0.5))*(Prasp**(0.67)-1.0)
shsp=((sfsd/8.0)*(Reysp-1000.0)*terml/term2)*sksp/sdsi
END IF
koga=1.81E-4*((Reysa)**.9)*((Reysw)**.15)*((sdso)**(-2.6))/3600.
kog=kogajsa ! Mass-transfer coefficient
Uo=l.O/((sdso/sdsi)*((l.O/shsp)+(l.O/shsfl))+(l.O/shsw)
+ +(l.O/shsf2)+sdso*LOG(sdso/sdsi)/(2.0*skst))
C Determine the controlling constants Kl,K2,K3 and K4 .
CALL Cpw(Tspi,scspp)
CALL Cpw(Tswi,scspw)
Kl=kog*dA/(smsael)
K2=Uo*dA/(smswi*scspw)
K3=kog*dA*lOOO.O/(smswi*scspw)
K4=Uo*dA/(smspel*scspp)
Stellenbosch University http://scholar.sun.ac.za
2(
IF (sisao.LT.sisasa) THEN
TR=Tsao
ELSE
TL=Tsao
END IF
GO TO 10
END IF
RETURN-
END
c *******************************************************************
c* *
C* IMPROVED MERKEL METHOD(2) TO EVAUALTE A SINGLE ELEMENT *
c*
c ********************************************************************
C Subroutine to apply the Runge-Kutta method of solution to the three
C Merkel equations and one additional equation which controls the
C state of a single element; BACKTOFRONT FLOW CASE
SUBROUTINE IMPMERKEL2{Tspi,Tswi,sisai,swsai,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,swsao,Aspi,Aspo,
+ ReyC,smswi,smswo,Tsai,Tsao,shsfl,shsf2,nrow)
REAL L,musav,musw,kog,koga,Kl,K2,K3,K4
C Determine the neccessary Reynoldsnumbers
CALL Waterviscosity(Tspo,musw)
CALL Waterdensity(Tspo,rhosw)
Reysp=rhosw*sdsi*svsp/(musw) ! Reynoldsnumber of process water
CALL AirVapMixdensity{Tsai,swsai,spsatm,rhosav)
CALL AirVapMixviscosity(Tsai,swsai,spsatm,musav)
Reysa=ReyC*rhosav/musav ! Reynoldsnumber of airflow
CALL Waterviscosity(Tswi,musw)
gammal=gamma*(smswi/smswel)
Reysw=4.0*gammal/musw Reynoldsnumber of recirc.water
C Determine the neccessary transfer-coefficients
CALL Waterconductivity(Tspo,sksp)
CALL Prandtl(Tspo,Prasp)
shsw=4.186*118.0*{(gammal*3600.0/sdso)**(l.0/3.0))/3.6
IF {Reysp.LT.2300.0) THEN
term=Reysp*Prasp*sdsi/{L*nrow)
shsp={3.66+0.104*{term)/(1.0+0.016*(term)**{0.8)))*sksp/sdsi
ELSE
sfsd=(1.82*LOG1J(Reysp)-1.64)**(-2.0)
terml=Prasp*(l.O+(sdsi/(L*nrow))**(0.67))
term2=1.0+12.7*({sfsd/8.0)**(0.5))*{Prasp**(0.67)-l.O)
shsp={(sfsd/8.0)*(Reysp-IOOO.O)*terml/term2)*sksp/sdsi
END IF
koga=l.81E-4*((Reysa)**.9)*((Reysw)**.l5)*((sdso)**(-2.6))/3600.
Stellenbosch University http://scholar.sun.ac.za
10 Tsao=(TR+TL)/2.0
CALL Cpv(Tsao,scspv)
CALL Cpa(Tsao,scspa)
CALL Cpw(Tsao,scspw)
CALL Airhumidity(Tsao,Tsao,spsatm,swsasa)
IF (swsasa.GT.swsao) THEN
sisasa=scspa*Tsao/1000.0+swsasa*(2501.6+scspv*Tsao/1000.0)
ELSE
sisasa=scspa*Tsao/1000.0+swsasa*(2501.6+scspv*Tsao/1000.0)
+ +scspw*(swsao-swsasa)*Tsao/1000.0
END IF
IF ((ABS(sisao-sisasa)).GT.0.1) THEN
IF (sisao:LT.sisasa) THEN
TR=Tsao
ELSE
TL=Tsao
END IF
GO TO 10
END IF
RETURN
END
c *************************************************************
c * *
C * INITIALIZE ALL THE NEEDED PARAMETERS *
c * *
·c *************************************************************
C Subroutine to set default values for a typical cooler
SUBROUTINE INITIAL(spsatm,Tsadb,Tsawb,L,H,sdso,sdsi,Kmax,
+ Lmax,Mmax,vspas,hspas,smsp,PI,gamma,skst,Tspi1,
+ clrtype,model,smsa,flowlayout,Tswi1,shsf1,shsf2)
REAL L
INTEGER clrtype,flowlayout
spsatm=101325.0 Atmospheric pressure [Pa]
Tsadb=25.0 Dry-bulb temperature of air [ C]
Tsawb=19.5 Dry-bulb temperature of air [ C]
sdso=38.1/1000.0 Pipe Outer Diameter [m]
sdsi=34.9/1000.0 Pipe Inner Diameter [m]
Kmax=10 Number of pipe rows
Mmax=1 Number of elements along each pipe
vspas=2.0*sdso Vertical spacing between pipes [m]
hspas=SQRT(3.0)*sdso Horizontal spacing between pipes [m]
PI=4.0*ATAN(1.0) Pi
gamma=300.0/3600.0 Recirc.~ater massflow/length [kg/m/s]
shsfl=20000.0 Fouling heat transfer coeff. [W/m"2 K]
shsf2=20000.0 Fouling heat transfer coeff. [W/m"2 K]
skst=43.0 Thermal conductivity of tube [W/m K]
Tspil=SO. 0 Process water inlet temperature [ C]
smsp=15.0 Total process water-massflow [kg/s]
smsa=11. 75388 Total air massflow [kg/s]
Stellenbosch University http://scholar.sun.ac.za 2)
c *******************************************************************
c* . *
C* MENU (1) : EDIT CURRENT COOLER PARAMETERS *
c* *
c *******************************************************************
C Subroutine to edit the cooler dimensions
SUBROUTINE MENUI(clrtype,model,H,L,spsatm,Tsadb,Tsawb,
+ flowlayout,Tswil,shsfl,shsf2)
C Declare new variable types
REAL l
INTEGER clrtype,flowlayout
C Display the current cooler parameters on the screen
10 CALL LIB$ERASE PAGE(l,l)
WRITE{*,lS) -
lSFORMAT{'',
+ 'CROSSFLOW EVAPORATIVE COOLER - Menu 1'/
+I ---------------------------------------')
IF (clrtype.EQ.l) THEN
WRITE(*,*)'Cooling water flow RECIRCULATING'
ELSE IF (clrtype.EQ.2) THEN
WRITE(*,*)'Cooli~g water flow SINGLE PASS'
END IF
IF (flowlayout.EQ.l) THEN
WRITE(*,*)'Process water flow layout FRONT TO BACK'
ELSE IF (flowlayout.EQ.2) THEN
WRITE(*,*)'Process water flow layout BACK TO FRONT'
ELSE IF (flowlayout.EQ.3) THEN
WRITE(*,*)'Process water flow layout TOP TO BOTTOM'
ELSE IF (flowlayout.EQ.4) THEN
WRITE(*,*)'Process water flow layout STRAIGHT THROUGH'
END IF
IF (model .EQ.l) THEN
Stellenbosch University http://scholar.sun.ac.za 2£
WRITE{*,20)H,L,spsatm/1000.0,Tsadb,Tsawb,shsfl,shsf2
20 FORMAT(
+' 0- Change cooling water flow (single pass/recirc.)'/
+ ' 1 - Change process water flow pattern'/
+ ' 2 - Change solution model (MERKEL/Improved MERKEL/POPPE)'/
+' 3- Cooler height .................... = ',F8.2,' m'/
+' 4- Cooler length (across airflow) ... = ',F8.2,' m'/
+' 5- Atmospheric pressure ............. = ',F8.2,' kPa'/
+' 6- Inlet air temperature (dry bulb) . = ',F8.2,' C'/
+' 7- Inlet air temperature (wet bulb) . = ',F8.2,' C'/
+ ' 8 Fouling coefficient inside tube .. = ',Fl2.2,' W/mA2 K'/
+' 9- Fouling coefficient outside tube = ',Fl2.2,' W/mA2 K')
C Display inlet cooling water temperature
IF (clrtype.EQ.2) THEN
WRITE(*,30)Tswil
30 FORMAT(' 10- Cooling water inlet temperature .. = ',F8.2,' C')
END IF
C Read keyboard to determine which dataset has to be changed
WRITE(*,35)
35 FORMAT(/' Which value has to be changed (15 - CONTINUE) ? ',$)
READ(*,*)number
C Change cooling/recirc. water option
. 999 IF (number.EQ.O) THEN
WRITE(*,*)' I
WRITE(*,*)' 2 - backtofront'
WRITE(*,*}' 3 - toptobottom'
WRITE(*,*}' 4 - straight through'
WRITE(*,*)' I
WRITE{*,*)I I
GO TO 10
C Change cooling water inlet temperature
ELSE IF (number.EQ.S) THEN
WRITE(*,*)' I
c *******************************************************************
c* *
C* MENU (2) : EDIT CURRENT COOLER PARAMETERS *
c* *
c *******************************************************************
C Subroutine to edit the cooler dimensions
SUBROUTINE MENU2(sdso,sdsi,H,L,PI,svsa,vspas,hspas,Lmax,Kmax,
+ Mmax,spsatm,Tsadb,Tsawb,gamma,skst,Tspil,smsp,
+ svsp,sa,Aspi,Aspo,clrtype,dA,model,smsa,flowlayout,
+ Tswi1,shsf1,shsf2)
Stellenbosch University http://scholar.sun.ac.za ]o
WRITE(*,20)sdso*lOOO.O,sdsi*lOOO.O,vspas*lOOO.O,hspas*lOOO.O
20 FORMAT(
+ ' 0 -Go back to previous menu '/
+' 1 -Outer diameter of pipe ............... = ,F7.2,' mm'/ I
ELSE
WRITE{*,*)'REMEMBER TO CHANGE THIS CONDITION AS WELL'
STOP ! Change the DIMENSION statement
END IF
C Check whether the new vertical spacing is allowable
ELSE IF (Lmax.LT.l) THEN
WRITE{*,*)'Vertical spacing too large to fit at least one'
WRITE{*,*)'pipe into the cooler'
WRITE{*,*)'Choose new vertical spacing'
number=2
GO TO 999
END IF
sa=PI*sdso/(vspas*hspas) ! Coolerarea/unit volume
dA=L*PI*sdso/(Mmax) ! Coolerarea/element
Aspi=PI*(sdsi/2.0)**2.0 ! Pipe inner area
Aspo=PI*(sdso/2.0)**2.0 ! Pipe outer area
C Determine the water veloctity inside tubes and massflow needed to give
C a water velocity of 1 m/s in tubes
CALL Waterdensity(Tspil,rhosw)
IF ((flowlayout.EQ.l).OR.(flowlayout.EQ.2)) THEN
svsp=smsp/(Aspi*rhosw*Lmax)
svspl=rhosw*Aspi*Lmax*l.O
ELSE IF (flowlayout.EQ.3) THEN
svsp=smsp/ (As pi *rhosw*Kmax)._
svspl=rhosw*Aspi*Kmax*l.O
ELSE IF (flowlayout.EQ.4) THEN
svsp=smsp/(Aspi*rhosw*Kmax*Lmax)
svspl=rhosw*Aspi*Kmax*Lmax*l.O
END IF
C Print the variable values on the screen in order to edit them if needed
WRITE(*;30)Kmax,Lmax,Mmax,Tspil,smsp,svsp,gamma*3600.0,
+ gamma*Kmax*L*2.0,smsa,skst
30 FORMAT(
+' 3- Number of pipe rows (passes) ......... - ',13/
+ Number of pipes facing the airstream . = ',13/
+ ' 4 - Number of elements along a single pipe= ',13/
+' 5 Process water inlet temperature ...... = ',F7.2,' t'/
+' 6- Process water massflow ............... = ',F7.2,' kg/~'/
+ Process water flow velocity in pipes . = ',F7.2,' m/s'/
+' 7 Recirc.water massflow I length ....... = ',F7.2,' kg/m.hr'/
+ Recirculating water massflow ......... = ',F7.2,' kg/s'/
+ ' 8 Dry air massflow rate ................ = ,F7 .2,' kg/s'/ 1
\
Stellenbosch University http://scholar.sun.ac.za
READ(*,*)number2
IF (number2.EQ.l) THEN
number=2 Change spacing
ELSE
number=l Change pipe diameter
END IF
GO TO 999
END IF
vspas=2.0*sdso
hspas=SQRT(3.0)*sdso
GO TO 10
C Change the spacing of the pipe array
ELSE IF (number.EQ.2) THEN
WRITE(*,*)' I
READ(*,*)vspas
WRITE(*,*)'Give the horizontal spacing between pipes in mm ?'
READ(*,*)hspas
vspas=vspas/1000.0
hspas=hspas/1000.0
C Check whether this configuration is physically possible
C with the chosen pipes
IF (sdso.GT.vspas) THEN
WRITE(*,*)'Element boundaries interfere !!!'
WRITE(*,*)'Choose smaller pipe diameter (0)
WRITE(*,*)'or choose a larger vertical spacing (1) ? '
READ(*,*)number2
IF (number2.EQ.O) THEN
number=! Change pipe diameter
ELSE
number=2 Change spacing
END IF
GO TO 999
ELSE IF (sdso.GT.hspas) THEN
WRITE(*,*)'Element boundaries interfere !!!'
WRITE(*,*)'Choose smaller pipe diameter (0)
WRITE(*,*)'or choose a larger horizontal spacing (lY? '
READ(*,*)number2
IF (number2.EQ.O) THEN
number=! Change pipe diameter
ELSE
number=2 Change spacing
END IF
GO TO 999
END IF
GO TO 10
C Change the number of pipe rows
ELSE IF (number.EQ.3) THEN
WRITE(*,*)' I
ELSE
WRITE{*,*)'Change array DIMENSION in source code'
WRITE(*,*)'REMEMBER to change this condition too'
STOP
END IF
END IF J
GO TO 10
C Change the number of elements·across a single pipe
ELSE IF (number.EQ.4) THEN
WRITE(*,*)' I
WRITE{*,45)gamma*3600
45 FORMAT{' Previous recirc. water massflow (kg/m/hr) = ',F8.2,/
+ ' New recirc. water massflow (kg/m/hr) ? ')
READ{*,*)gamma
gamma=gamma/3600.0
IF (gamma.LT.1.5*700.*sdso/3600.) THEN
WRITE{*,46)1.5*700.*sdso
number=7
GO TO 999
END IF
46 FORMAT(' Recirc. water massflow must be>' ,F8.2,' kg/m/hr')
GO TO 10
C Change the air massflow rate
ELSE IF (number.EQ.8) THEN
WRITE{*,*)' I
c *******************************************************************
c* *
C* • MERKEL(2) METHOD TO EVAUALTE A SINGLE ELEMENT *
c* *
c **************************************************~****************
C Subroutine to apply the Runge-Kutta method of solution to the three
C Merkel equations which controls the state of a single element
C BACKTOFRONT FLOW CASE
SUBROUTINE MERKEL2(Tspi,Tswi,sisai,swsail,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,Aspi,Aspo,
Stellenbosch University http://scholar.sun.ac.za )g
+ ReyC,shsfl,shsf2,nrow)
REAL L,musav,musw,kog,koga,Kl,K2,K3,K4
C Determine the neccessary Reynoldsnumbers
CALL Waterviscosity(Tspo,musw)
CALL Waterdensity(Tspo,rhosw)
Reysp=rhosw*sdsi*svsp/(musw) Reynoldsnumber of process water
Tsa=Tsadb
CALL AirVapMixdensity(Tsa,swsail,spsatm,rhosav)
CALL AirVapMixviscosity(Tsa,swsail,spsatm,musav)
Reysa=ReyC*rhosav/musav ! Reynoldsnumber of airflow
CALL Waterviscosity(Tswi,musw)
Reysw=4.0*gamma/musw ! Reynoldsnumber of recirc.water
C Determine the neccessary transfer-coefficients
CALL Waterconductivity(Tspo,sksp)
CALL Prandtl(Tspo,Prasp)
shsw=4.186*118*{(gamma*3600/sdso)**(l.0/3.0))/3.6
IF (Reysp.LT.2300.0) THEN
term=Reysp*Prasp*sdsi/(L*nrow)
shsp=(3.66+0.104*(term)/(1.0+0.016*(term)**(0.8)))*sksp/sdsi
ELSE
sfsd=(l.82*LOG10(Reysp)-1.64)**(-2.0)
terml=Prasp*(l.O+(sdsi/(L*nrow))**(0.67))
term2=1.0+12.7*((sfsd/8.0)**(0.5))*(Prasp**(0.67)-l.O)
shsp=((sfsd/8.0)*(Reysp-1000.0)*terml/term2)*sksp/sdsi
END IF
koga=l.81E-4*((Reysa)**.9)*((Reysw)**.l5)*((sdso)**(-2.6))/3600.
kog=koga/sa ! Mass-transfer coefficient
Uo=l.O/((sdso/sdsi)*((l.O/shsp)+(l.O/shsfl))+(l.O/shsw)
+ +(l.O/shsf2)+sdso*LOG(sdso/sdsi)/(2.0*skst))
C Determine the controlling constants Kl,K2,K3 and K4
CALL Cpw(Tspo,scspp)
CALL Cpw(Tswi,scspw)
Kl=kog*dA/(smsael)
K2=Uo*dA/(smswel*scspw)
K3=kog*dA*lOOO.O/(smswel*scspw)
K4=Uo*dA/(smspel*scspp)
C Determine the Runge-Kutta coefficients
CALL Satenthalpy(Tswi,spsatm,sisaswl)
al=Kl*(sisaswl-sisai)
bl=K2*(Tspo-Tswi)-K3*(sisaswl-sisai)
cl=K4*(Tspo-Tswi)
CALL Satenthalpy((Tswi+bl/2.0),spsatm,sisasw2)
a2=Kl*(sisasw2-(sisai+al/2.0))
b2=K2*((Tspo+cl/2.0)-(Tswi+bl/2.0))-K3*(sisasw2-(sisai+al/2.0))
c2=K4*((Tspo+cl/2.0)-(Tswi+bl/2.0))
Stellenbosch University http://scholar.sun.ac.za
CALL Satenthalpy{{Tswi+b2/2.0),spsatm,sisasw3)
a3=Kl*{sisasw3-{sisai+a2/2.0)).
b3=K2*{{Tspo+c2/2.0)-{Tswi+b2/2.0))-K3*{sisasw3-{sisai+a2/2.0))
c3=K4*{(Tspo+c2/2.0)-{Tswi+b2/2.0))
CALL Satenthalpy{{Tswi+b3),spsatm,sisasw4)
a4=Kl*(sisasw4-{sisai+a3))
b4=K2*({Tspo+c3)-{Tswi+b3))-K3*{sisasw4-{sisai+a3))
c4=K4*{{Tspo+c3)-{Tswi+b3))
C Determine the exit conditions of the element
sisao=sisai+{al+2.0*{a2+a3)+a4)/6.0
Tswo=Tswi+{bl+2.0*{b2+b3)+b4)/6.0
Tspi=Tspo+{cl+2.0*{c2+c3)+c4)/6.0
RETURN
END
c *******************************************************************
c* *
C* POPPE METHOD TO EVAUALTE A SINGLE ELEMENT *
c* *
c *******************************************************************
C Subroutine to apply the Runge-Kutta method of solution to the five
C Poppe equations which controls the state of a single element
SUBROUTINE POPPE (Tspi,Tswi,Tsai,sisai,swsai,smswi,L,H,sdsi,
+ sdso,dA,Tsadb,spsatm,gamma,Vstot,smsael,smspel,
+ smswel,sa,skst,svsp,Tspo,Tswo,Tsao,sisao,swsao,
+ smswo,Aspi,Aspo,ReyC,shsfl,shsf2,nrow)
REAL L,Lew,musav,musw,kog,koga,Kl,K2,K3,K4,KS,K6,
+ iil,ti2,ii3,ii4,iv
C Determine the neccessary Reynoldsnumbers
CALL Waterviscosity(Tspi,musw)
CALL Waterdensity(Tspi,rhosw)
Reysp=rhosw*sdsi*svsp/(musw) ! Reynoldsnumber of process water
CALL AirVapMixdensity(Tsai,swsai,spsatm,rhosav)
CALL AirVapMixviscosity(Tsai,swsai,spsatm,musav)
Reysa=ReyC*rhosav/musav · ! Reynoldsnumber of airflow
CALL Waterviscosity{Tswi,musw)
gammal={smswi/smswel)*gamma
Reysw=4.0*gammal/musw ! Reynoldsnumber of recirc.water
C Determine the neccessary transfer-coefficients
CALL Waterconductivity(Tspi,sksp)
CALL Prandtl(Tspi,Prasp)
shsw=4.186*118.0*((gamma1*3600.0/sdso)**(l.0/3.0))/3.6
IF (Reysp.LT.2300.0) THEN
term=Reysp*Prasp*sdsi/(L*nrow)
shsp=(3.66+0.104*(term)/(1.0+0.016*(term)**(0.8)))*sksp/sdsi
ELSE
Stellenbosch University http://scholar.sun.ac.za
sfsd=(l.82*LOGIO(Reysp)-1.64)**(-2.0)
terml=Prasp*(l.O+(sdsi/(L*nrow))**(0.67))
term2=1.0+12.7*((sfsd/8.0)**(0.5))*(Prasp**(0.67)-l.O)
shsp=((sfsd/8.0)*(Reysp-1000.0)*terml/term2)*sksp/sdsi
END IF
koga=l.81E-4*((Reysa)**.9)*((Reysw)**.l5}*((sdso)**(-2.6))/3600.
kog=koga/sa ! Mass-transfer coefficient
Uo=l.O/((sdso/sdsi)*((l.O/shsp)+(l.O/shsfl))+(l.O/shsw)
+ +(1. O/shsf2)+sdso*LOG( sdso/sds i )/ (2. O*skst))
C Determine the controlling constants Kl,K2,K3,K4,K5 and K6
- CALL Cpw(Tswi,scspw)
CALL Cpw(Tspi,scspp)
Kl=kog*dA
K2=kog*dA/smsael
K3=kog*dA/smswi
K4=Uo*dA/(smswi*scspw)
KS=kog*dA/(smswi*scspw)
K6=Uo*dA/(smspel*scspp)
CALL Cpv(Tswi,scspv)
iv=2501.6+scspv*Tswi/1000.0
C Determine the humidity of saturated air
CALL Airhumidity(Tsai,Tsai,spsatm,swsasa)
C Determine the Lewis factor
CALL Airhumidity(Tswi,Tswi,spsatm,swsasw)
term=(0.622+swsasw)/(0.622+swsai)
Lew=(0.90854253)*((term-l.O)/(LOG(term)))
C Determine the Runge-Kutta coefficients
IF (swsasa.GE.swsai) THEN ! Air not saturated
CALL Airhumidity(Tswi,Tswi,spsatm,swsasw)
CALL Satenthalpy(Tswi,spsatm,sisasw)
wwl=swsasw-swsai
iil=(sisasw-sisai)
TTl= Tspi-Tswi
al=-Kl*wwl
bl=K2*wwl
cl=K2*(Lew*iil-(Lew-l.O)*wwl*iv)
dl=K3*Tswi*wwl+K4*TT1-KS*(cl/K2)*1000.0
el=-K6*TTI
CALL Airhumidity((Tswi+dl/2.0),(Tswi+dl/2.0),spsatm,swsasw)
CALL Satenthalpy((Tswi+dl/2.0),spsatm,sisasw)
ww2=swsasw-(swsaiTbl/2.0)
ii2=(sisasw-(sisai+cl/2.0))
TT2=(Tspi+el/2.0)-(Tswi+dl/2.0)
a2=-Kl*ww2
b2=K2*ww2
c2=K2*(Lew*ii2-(Lew-l.O)*ww2*iv)
d2=K3*(Tswi+dl/2.0)*ww2+K4*TT2-KS*(c2/K2)*1000.0
Stellenbosch University http://scholar.sun.ac.za
4{
e2=-K6*TI2
CALL Airhumidity((Tswi+d2/2.0),(Tswi+d2/2.0),spsatm,swsasw)
CALL Satenthalpy((Tswi+d2/2.0),spsatm,sisasw)
ww3=swsasw-(swsai+b2/2.0)
ii3=(sisasw-(sisai+c2/2.0))
TT3=(Tspi+e2/2.0)-(Tswi+d2/2.0)
a3=-Kl*ww3
b3=K2*ww3
c3=K2*(Lew*ii3-(Lew-l.O)*ww3*iv)
d3=K3*(Tswi+d2/2.0)*ww3+K4*TT3-KS*(c3/K2)*1000.0
e3=-K6*TT3
CALL Airhumidity((Tswi+d3),(Tswi+d3),spsatm,swsasw)
CALL Satenthalpy((Tswi+d3),spsatm,sisasw)
ww4=swsasw-(swsai+b3)
ii4=(sisasw-(sisai+c3))
TT4=(Tspi+e3)-(Tswi+d3)
a4=-Kl*ww4
b4=K2*ww4
c4=K2*(Lew*ii4-(Lew-l.O)*ww4*iv)
d4=K3*(Tswi+d3)*ww4+K4*TT4-KS*(c4/K2)*1000.0
e4=-K6*TT4 ·
ELSE IF (swsasa.LT.swsai) THEN Air saturated
CALL Airhumidity(Tswi,Tswi,spsatm,swsasw)
CALL Satenthalpy(Tswi,spsatm,sisasw)
wwl=swsasw-swsasa
iil~(sisasw-sisai)
TTl= Tspi-Tswi
wwwl=swsai-swsasa
al=-Kl*wWl
bl=K2*wwl
cl=K2*((Lew*iil-(Lew-l.O)*wwl*iv)
+ +wwwl*Lew*scspw*Tswi/1000.0)
dl=K3*Tswi*wwl+K4*TT1-KS*(cl/K2)*1000.0
el=-K6*TT1 .
CALL Airhumidity((Tswi+dl/2.0),(Tswi+dl/2),spsatm,swsasw)
CALL Satenthalpy((Tswi+dl/2.0),spsatm,sisasw)
ww2=swsasw-swsasa
ii2=(sisasw-(sisai+cl/2.0))
TT2=(Tspi+el/2.0)-(Tswi+d1/2.0)
www2=(swsai+bl/2.0)-swsasa
a2=-Kl*ww2
b2=K2*ww2
c2=K2* ( ( Lew*i i 2- ( Lew-1. 0) *ww2*i v)
+ +www2*Lew*scspw*(Tswi+dl/2.0)/1000.0)
d2=K3*(Tswi+dl/2.0)*ww2+K4*TT2-KS*(c2/K2)*1000.0
e2=-K6*TT2
CALL Airhumidity((Tswi+d2/2.0),(Tswi+d2/2),spsatm,swsasw)
CALL Satenthalpy((Tswi+d2/2.0),spsatm,sisasw)
Stellenbosch University http://scholar.sun.ac.za
42_
ww3=swsasw-swsasa
ii3=(sisasw-(sisai+c2/2.0))
TT3=(Tspi+e2/2.0}-(Tswi+d2/2.0)
www3=(swsai+b2/2.0)-swsasa
a3=-K1*ww3
b3=K2*ww3
c3=K2*((Lew*ii3-(Lew-1.0)*ww3*iv)
+ +www3*Lew*scspw*(Tswi+d2/2.0)/1000.0)
d3=K3*{Tswi+d2/2.0)*ww3+K4*TT3-KS*(c3/K2)*1000.0
e3=-K6*TT3
CALL Airhumidity((Tswi+d3),(Tswi+d3},spsatm,swsasw}
CALL Satenthalpy((Tswi+d3},spsatm,sisasw)
ww4=swsasw-swsasa ·
ii4={sisasw-(sisai+c3))
TT4=(Tspi+e3)-{Tswi+d3)
www4=(swsai+b3)-swsasa
a4=-K1*ww4
b4=K2*ww4
c4=K2*{(Lew*ii4-(Lew-1.0)*ww4*iv)
+ +www4*Lew*scspw*(Tswi+d3)/1000.0)
d4=K3*(Tswi+d3)*ww4+K4*TT4-KS*(c4/K2}*1000.0
e4=-K6*TT4
END IF
smswo=smswi+(a1+2.0*{a2+a3}+a4)/6.0
swsao=swsai+(b1+2.0*(bZ+b3)+b4)/6.0
sisao=sisai+(c1+2.0*(c2+c3)+c4}/6.0
Tswo=Tswi+{d1+2.0*(d2+d3)+d4)/6.0
Tspo=Tspi+(e1+2.0*(e2+e3)+e4}/6.0
C Determine the air outlet temperature and saturation enthalpy
TR=Tspi
TL=O.O
10 Tsao=(TR+TL)/2.0
CALL Cpv(Tsao,scspv)
CALL Cpa(Tsao,scspa)
CALL Cpw{Tsao,scspw}
CALL Airhumidity(Tsao,Tsao,spsatm,swsasa}
IF (swsasa.GT.swsao} THEN
sisasa=scspa*Tsao/1000.0+swsasa*(2501.6+scspv*Tsao/1000.0}
ELSE
sisasa=scspa*Tsao/1000.0+swsasa*(2501.6+scspv*Tsao/1000.0)
+ +scspw*(swsao-swsasa)*Tsao/1000.0
END IF
IF ((ABS(sisao-sisasa)}.GT.0.1} THEN
IF (sisao.LT.sisasa} THEN
TR=Tsao
ELSE
TL=Tsao
END IF
GO TO 10
Stellenbosch University http://scholar.sun.ac.za
4J
END IF
RETURN
END
c *******************************************************************
c* *
C* POPPE METHOD(2) TO EVAUALTE A SINGLE ELEMENT *
c* *
c *******************************************************************
C Subroutine to apply the Runge-Kutta method of solution to the five
C Poppe equations which controls the state of a single element
C BACKTOFRONT FLOW CASE
SUBROUTINE POPPE2 (Tspi,Tswi,Tsai,sisai~swsai,smswi,L,H,sdsi,
+ sdso,dA,Tsadb,spsatm,gamma,Vstot,smsael,smspel,
+ smswel,sa,skst,svsp,Tspo,Tswo,Tsao,sisao,swsao,
+ smswo,Aspi,Aspo,ReyC,shsfl,shsf2,nrow)
REAL L, Lew, musav, musw, kog, koga, Kl ,.K2, K3, K4, KS, K6,
+ iil,ii2,ii3,ii4,iv
C Determine the neccessary Reynoldsnumbers
CALL Waterviscosity(Tspo,musw)
CALL Waterdensity(Tspo,rhosw)
Reysp=rhosw*sdsi*svsp/(musw) ! Reynoldsnumber of process water
CALL AtrVapMixdensity(Tsai,swsai,spsatm,rhosav)
CALL AirVapMixviscosity(Tsai,swsai;spsatm,musav)
Reysa=ReyC*rhosav/musav ! Reynoldsnumber of. airflow
CALL Waterviscosity(Tswi,musw) •
gammal=(smswi/smswel)*gamma
Reysw=4.0*gammal/musw ! Reynoldsnumber of recirc.water
C Determine the neccessary transfer-coefficients
CALL Waterconductivity(Tspo,sksp)
CALL Prandtl(Tspo,Prasp)
shsw=4.186*118.0*((gammal*3600.0/sdso)**(l.0/3.0))/3.6
IF (Reysp.LT.2300.0) THEN
term=Reysp*Prasp*sdsi/(L*nrow)
shsp=(3.66+0.104*(term)/(1.0+0.016*(term)**(0.8)))*sksp/sdsi
ELSE
sfsd=(l.82*LOGIO(Reysp)-1.64)**(-2.0)
terml=Prasp*(l.O+(sdsi/(L*nrow))**(0.67))
term2=1.0+12.7*((sfsd/8.0)**(0.5))*(Prasp**(0.67)-l.O)
shsp=((sfsd/8.0)*(Reysp-IOOO.O)*terml/term2)*sksp/sdsi
END IF
koga=l.81E-4*((Reysa)**.9)*((Reysw)**.IS)*((sd~o)**(-2.6))/3600.
kog=koga/sa ! Mass-transfer coefficient
Uo=l.O/((sdso/sdsi)*((l.O/shsp)+(l.O/shsfl))+(l.O/shsw)
+ +(l.O/shsf2)+sdso*LOG(sdso/sdsi)/(2.0*skst))
C Determine the controlling constants Kl,K2,K3,K4,KS and K6
CALL Cpw(Tswi,scspw)
Stellenbosch University http://scholar.sun.ac.za
CALL Cpw(Tspo,scspp)
Kl=kog*dA
K2=kog*dA/smsael
K3=kog*dA/smswi
K4=Uo*dA/(smswi*scspw)
KS=kog*dA/(smswi*scspw)
K6=Uo*dA/(smspel*scspp)
CALL Cpv(Tswi,scspv)
iv=2501.6+scspv*Tswi/1000.0
C Determine the humidity of saturated air
CALL Airhumidity(Tsai,Tsai,spsatm,swsasa)
C Determine the lewis factor
CALL Airhumidity(Tswi,Tswi,spsatm,swsasw)
term=(0.622+swsasw)/(0.622+swsai)
lew=(0.90854253)*((term-l.O)/(LOG(term)))
C Determine the Runge-Kutta coefficients
IF (swsasa.GE.swsai) THEN ! Air not saturated
CALL Airhumidity(Tswi,Tswi,spsatm,swsasw)
CALL Satenthalpy{Tswi,spsatm,sisasw)
wwl=swsasw-swsai
iil={sisasw-sisai)
TTl= Tspo-Tswi
al=-Kl*wwl
bl=K2*wwl
cl=K2*(lew*iil-(lew-l.O)*wwl*iv)
dl=K3*Tswi*wwl+K4*TT1-KS*(cl/K2)*1000.0
el=K6*TTI
CALL Airhumidity((Tswi+dl/2.0),(Tswi+dl/2.0),spsatm,swsasw)
CALL Satenthalpy((Tswi+dl/2.0),spsatm,sisasw)
ww2=swsasw-(swsai+bl/2.0)
ii2=(sisasw-(sisai+cl/2.0))
TT2=(Tspo+el/2.0)-(Tswi+dl/2.0)
a2=-Kl*ww2
b2=K2*ww2
c2=K2*(lew*ii2-(lew-l.O)*ww2*iv)
d2=K3*(Tswi+dl./2.0)*ww2+K4*TT2-KS*(c2/K2)*1000.0
e2=K6*TT2
CALL Airhumidity({Tswi+d2/2.0),{Tswi+d2/2.0),spsatm,swsasw)
CALL Satenthalpy({Tswi+d2/2.0),spsatm,sisasw)
ww3=swsasw-{swsai+b2/2.0)
ii3={sisasw-{sisai+c2/2.0))
TT3=(Tspo+e2/2.0)-(Tswi+d2/2.0)
a3=-Kl*ww3
b3=K2*ww3
c3=K2*(lew*ii3-(lew-l.O)*ww3*iv)
d3=K3*(Tswi+d2/2.0)*ww3+K4*TT3-KS*(c3/K2)*1000.0
e3=K6*TT3
Stellenbosch University http://scholar.sun.ac.za
CALL Airhumidity((Tswi+d3),(Tswi+d3),spsatm,swsasw)
CALL Satenthalpy((Tswi+d3),spsatm,sisasw) ·
ww4=swsasw-(swsai+b3)
ii4=(sisasw-(sisai+c3))
TT4=(Tspo+e3)-(Tswi+d3)
a4=-Kl*ww4
b4=K2*ww4
c4=K2'k( Lew*i i 4- (Lew-1. O)*ww4*i v)
d4=K3*(Tswi+d3)*ww4+K4*TT4-KS*(c4/K2)*1000.0
e4=K6*TT4
ELSE IF (swsasa.LT.swsai) THEN Air saturated
CALL Airhumidity(Tswi,Tswi,spsatm,swsasw)
CALL Satenthalpy(Tswi,spsatm,sisasw)
wwl=swsasw-swsasa
iil=(sisasw-sisai)
TTl=Tspo-Tswi
wwwl=swsai-swsasa
al=-Kl*wwl
bl=K2*wwl
cl=K2*({Lew*iil-(Lew-l.O)*wwl*iv)
+ +wwwl*Lew*scspw*Tswi/1000.0)
dl=K3*Tswi*wwl+K4*TT1-KS*(cl/K2)*1000.0
el=K6*TT1
CALL Airhumidity((Tswi+dl/2.0),(Tswi+dl/2),spsatm,swsasw)
CALL Satenthalpy((Tswi+dl/2.0),spsatm,sisasw)
ww2=swsasw-swsasa
ii2=(sisasw-(sisai+cl/2.0))
TT2=(Tspo+el/2.0)-(Tswi+dl/2.0)
www2=(swsai+bl/2.0)-swsasa
a2=-Kl*ww2
b2=K2*ww2
c2=K2*((Lew*ii2-(Lew-l.O)*ww2*iv)
+ +www2*Lew*scspw*(Tswi+dl/2.0)/1000.0)
d2=K3*(Tswi+dl/2.0)*ww2+K4*TT2-KS*(c2/K2)*1000.0
e2=K6*TT2
CALL Airhumidity((Tswi+d2/2.0),(Tswi+d2/2),spsatm,swsasw)
CALL Satenthalpy((Tswi+d2/2.0),spsatm,sisasw)
ww3=swsasw-swsasa
ii3=(sisasw-(sisai+c2/2.0))
TT3=(Tspo+e2/2.0)-(Tswi+d2/2.0)
www3=(swsai+b2/2.0)-swsasa
a3=-Kl*ww3
b3=K2*ww3
c3=K2*((Lew*ii3-(Lew-l.O)*ww3*iv)
+ +www3*Lew*scspw*(Tswi+d2/2.0)/1000.0)
d3=K3*(Tswi+d2/2.0)*ww3+K4*TT3-KS*(c3/K2)*1000.0
e3=K6*TT3
CALL Airhumidity((Tswi+d3),(Tswi+d3),spsatm,swsasw)
Stellenbosch University http://scholar.sun.ac.za
CALL Satenthalpy((Tswi+d3),spsatm,sisasw)
ww4=swsasw-swsasa
ii4=(sisasw-(sisai+c3})
TT4=(Tspo+e3)-(Tswi+d3)
www4=(swsai+b3)-swsasa
a4=-K1*ww4
b4=K2*ww4
c4=K2*((Lew*ii4-(Lew-1.0)*ww4*iv)
+ +www4*Lew*scspw*(Tswi+d3)/1000.0)
d4=K3*(Tswi+d3)*ww4+K4*TT4-KS*(c4/K2)*1000.0
e4=K6*TT4
END IF
·smswo=smswi+(a1+2.0*(a2+a3)+a4)/6.0
swsao=swsai+(b1+2.0*(b2+b3)+b4)/6.0
sisao=sisai+(c1+2.0*(c2+c3)+c4)/6.0
Tswo=Tswi+(d1+2.0*(d2+d3)+d4)/6.0
Tspi=Tspo+(e1+2.0*(e2+e3)+e4)/6.0
C Determine the air outlet temperature and saturation enthalpy
TR=Tspi
TL=O.O
10 Tsao=(TR+TL)/2.0
CALL Cpv(Tsao,scspv)
CALL Cpa(Tsao,scspa)
CALL Cpw(Tsao,scspw)
CALL Airhumidity(Tsao,Tsao,spsatm,swsasa)
IF (swsasa.GT.swsao) THEN
sisasa=scspa*Tsao/1000.0+swsasa*(2501.6+scspv*Tsao/1000.0)
ELSE
sisasa=scspa*Tsao/1000.0+swsasa*(2501.6+scspv*Tsao/1000.0)
+ +scspw*(swsao-swsasa)*Tsao/1000.0
END IF
IF ((ABS(sisao-sisasa)).GT.0.1) THEN
IF (sisao.LT.sisasa) THEN
TR=Tsao
ELSE
TL=Tsao
END IF
GO TO 10
END IF
RETURN
END
c *******************************************************************
c* *
C* SUBROUTINE TO PRINT RESULTS OF CROSS.FOR *
c* *
c *******************************************************************
C Subroutine to print the results of the cooler calculations
SUBROUTINE PRINT RESULTS(Tspi1,Tspo1,smsp,sdsi,sdso,vspas,hspas,
+ Kmax,Imax,Mmax,gamma,Vstot,rhosail,Vseff2,sisail,
Stellenbosch University http://scholar.sun.ac.za
CALL Satenthalpy((Jswi+d3),spsatm,sisasw)
ww4=swsasw-swsasa
ii4=(sisasw-(sisai+c3))
TT4=(Tspo+e3)-{Tswi+d3)
www4=(swsai+b3)-swsasa
a4=-Kl*ww4
b4=K2*ww4
c4=K2*((Lew*ii4-(Lew-l.O)*ww4*iv)
+ +www4*Lew*scspw*{Tswi+d3)/1000.0)
d4=K3*(Tswi+d3)*ww4+K4*TT4-KS*{c4/K2)*1000.0
e4=K6*TT4
END IF
smswo=smswi+(a1+2.0*{a2+a3)+a4)/6.0
swsao=swsai+(b1+2.0*(b2+b3)+b4)/6.0
sisao=sisai+(c1+2.0*(c2+c3)+c4)/6.0
Tswo=Tswi+(d1+2.0*{d2+d3)+d4)/6.0
Tspi=Tspo+(e1+2.0*(e2+e3)+e4)/6.0
C Determine the air outlet temperature and saturation enthalpy
TR=Tspi
TL=O.O
10 Tsao={TR+TL)/2.0
CALL Cpv(Tsao,scspv)
CALL Cpa{Tsao,scspa)
CALL Cpw(Tsao,scspw)
CALL Airhumidity{Tsao,Tsao,spsatm,swsasa)
IF (swsasa.GT.swsao) THEN
sisasa=scspa*Tsao/1000.0+swsasa*{2501.6+scspv*Tsao/1000.0)
ELSE
sisasa=scspa*Tsao/1000.0+swsasa*{2501~6+scspv*Tsao/1000.0)
+ +scspw*{swsao-swsasa)*Tsao/1000.0
END IF
IF ((ABS(sisao-sisasa)).GT.0.1) THEN
IF (sisao.LT.sisasa) THEN
TR=Tsao
ELSE
TL=Tsao
END IF
GO TO 10
END IF
RETURN
END
c *******************************************************************
c* *
C* SUBROUTINE TO PRINT RESULTS OF CROSS.FOR *
c* *
c *******************************************************************
C Subroutine to print the results of the cooler calculations
SUBROUTINE PRINT_RESULTS(Tspi1,Tspol,smsp,sdsi,sdso,vspas,hspas,
+ Kmax,Lmax,Mmax,gamma,Vstot,rhosail,Vseff2,sisail,
Stellenbosch University http://scholar.sun.ac.za
+ sisao1,Tswi1,Tswo1,svsp,flowlayout,H,L,spsatm,PI,Tsawb,
+ Tsadb,svsa,swsai1,swsao1,smswi1,smswo1,model,Tsao),
+ rhosao1,phio,Power,shsfl,shsf2,skst,smsa)
C Initialize variable types
REAL L
INTEGER flowlayout
C Print the results on the screen or in file CROSS.RES
C Print cooler layout and dimensions
CALL LIB$ERASE PAGE{1,1)
WRITE(*, 10) -
WRITE(!, 10)
10 FORMAT(
+ ' CROSSFLOW EVAPORATIVE COOLER SIMULATION'/
+ '******************************************')
C Print. process water flow layout
IF (flowlayout.EQ~1) THEN
WRITE{*,*)'Process water flow layout FRONT TO BACK'
WRITE{1,*)'Process water flow layout FRONT TO BACK'
ELSE IF (flowlayout.EQ.2) THEN
WRITE{*,*)'Process water flow layout BACK TO FRONT'
WRITE{1,*)'Process water flow layout BACK TO FRONT'
ELSE IF (flowlayout.EQ.3) THEN
WRITE{*,*)'Process water flow layout TOP TO BOTTOM'
WRITE{1,*)'Process water flow layout TOP TO BOTTOM'
ELSE IF (flowlayout.EQ.4) THEN
WRITE{*,*)'Process water flow layout STRAIGHT THROUGH'
WRITE{1,*)'Process water flow layout STRAIGHT THROUGH'
END IF
IF (model.EQ.1) THEN
WRITE{l,*)'Analytical model .. MERKEL I
20 FORMAT( ,I I I
+ 1
Inlet air massflow (inc vapour) •....... = ,F8.3,
1
kgJ
1
+ 1
Air velocity through cooler .•.......... = ,F8.3,
1
m/5
1
+ 1
Air enthalpy in ••.••..•..•.•..........• = ,F8.3, kJ/
1 1
+ 1
Air enthalpy out (incl. mist) ......•... = ,F8.3, kJ; _ .
1 1
+ 1
I n1et a1·r hu m1'd't
1 y rat·10 ..•.......•.... = ,Fl2.7, kg/kg')
1 1
30 FORMAT(
+ Outlet air humidity ratio (saturated) ..
1
= ',Fl2.7,' kg/kg'/
, + ' Outlet air temperature (saturated) •.... = ',F8.3, C'/
1
+ 0utl et a1r
1
• dens1'ty ( sa t ura t ed) .•.•..... = ,F8.J, kg/m"J'//
1 1
c *******************************************************************
c* *
c* SINGLE STRAIGHT THROUGH PASS *
c* *
c *******************************************************************
C Subroutine to evaluate a cooler layout where the process fluid flows
C straight through the cooler in one pass
SUBROUTINE STRAIGHT (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,smspel,
+ smswel,sisail,sisaol,Tspil,Tspol,Tswil,Tswol,swsail,
+ swsaol,smswil,smswol,L,H,sdsi,sdso,dA,Tsadb,Tsawb,
+ spsatm,gamma,Vstot,sa,skst,svsp,Aspi,Aspo,ReyC,
+ gradfile,Kmax,Lmax,Mmax,PI,model,Tsaol,shsfl,shsf2)
Stellenbosch University http://scholar.sun.ac.za
DIMENSION Tsp(40,400,10)
DIMENSION Tsw(40,400,10)
DIMENSION Tsa(40,400,10)
DIMENSION sisa(40,400,10)
DIMENSION swsa(40,400,10)
DIMENSION smsw(40,400,10)
REAL L
INTEGER flag,flag2,gradfile
C Initialize the three arrays with the known temperature and enthalpy values
CALL Enthalpy(Tsadb,Tsawb,spsatm,sisai1)
CALL Airhumidity(Tsadb,Tsawb,spsatm,swsai1)
DO 10 j=1,Lmax
DO 20 k=1,Mmax
sisa(1,j,k+1)=sisai1
swsa(1,j,k+1)=swsai1
Tsa(1,j,k+1)=Tsadb
20 CONTINUE
10 CONTINUE
DO 30 i=1,Kmax
DO 40 k=1 ,Mmax
Tsw(i,1,k+l)=Tswil
smsw(i,l,k+l)=smswel
40 CONTINUE
30 CONTINUE
DO 50 i=l,Kmax
DO 60 j=1,Lmax
Tsp(i,j,l+l)=Tspil
60 CONTINUE
50 CONTINUE
C Start of the outer loop to evaluate each i-level of the model
DO 70 i=l,Kmax
flag2=i-2*INT(i/2.0)
C Flag2=1 in the first row,O in the second row etc.
C Start of the middle loop to evaluate each j-level of the model
DO 80 j=l,Lmax
C Start of the inner loop to evaluate each each element of the model
DO 90 k=2,Mmax+l
C Determine the input values for a given element
Tspi=Tsp(i,j,k)
Tswi=Tsw(i,j,k)
Tsai=Tsa(i,j,k)
sisai=sisa(i,j,k)
swsai=swsa(i,j,k)
smswi=smsw(i,j,k)
Stellenbosch University http://scholar.sun.ac.za
C Determine the enthalpy of air entering each element in the packed formation
IF ((flag2.EQ.l).AND.(i.NE.l)) THEN
IF (j.EQ.l) THEN
sisai=(sisa(i-l,j,k)+sisa(i,j,k))/2.0
swsai=(swsa(i-l,j,k)+swsa(i,j,k))/2.0
Tsai=(Tsa(i-l,j,k)+Tsa(i,j,k))/2.0
ELSE .
sisai=(sisa(i,j,k)+sisa(i,j-l,k))/2.0
swsai=(swsa(i,j,k)+swsa(i,j-l,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i,j-l,k))/2.0
END IF
END IF
IF (flag2.EQ.O) THEN
IF (j.EQ.Lmax) THEN
sisai=(sisa(i,j,k)+sisa(i-l,j,k))/2.0
swsai=(swsa(i,j,k)+swsa(i-l,j,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i-l,j,k))/2.0
ELSE
sisai=(sisa(i,j,k)+sisa(i,j+l,k))/2.0
swsai=(swsa(i,j,k)+swsa(i,j+l,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i,j+l,k))/2.0
END IF
END IF
C Call subroutine to determine outlet conditions of each element
IF (model.EQ.l) THEN
CALL MERKEL (Tspi,Tswi,sisai,swsail,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,Aspi,Aspo,
+ ReyC,shsfllshsf2,1)
ELSE IF (model.EQ.2) THEN
CALL IMPMERKEL (Tspi,Tswi,sisai,swsai,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,swsao,Aspi,Aspo,
+ ReyC,smswi,smswo,Tsai,Tsao,shsfl,shsf2,1)
ELSE
CALL POPPE (Tspi,Tswi,Tsai,sisai,swsai,smswi,L,H,sdsi,
+ sdso,dA,Tsadb,spsatm,gamma,Vstot,smsael,smspel,
+ smswel,sa,skst,svsp,Tspo,Tswo,Tsao,sisao,swsao,
+ smswo,Aspi,Aspo,ReyC,shsfl,shsf2,1)
END IF
C Determine the exit values for a given element
Tsp(i,j,k+l)=Tspo
Tsw(i,j+l,k)=Tswo
Tsa(i+l,j,k)=Tsao
sisa(i+l,j,k)=sisao
swsa(i+l,j,k)=swsao
smsw(i,j+l,k)=smswo
C Write the temperature and enthalpy gradients to file CROSS.GRA
Stellenbosch University http://scholar.sun.ac.za
IF (gradfile.EQ.1) THEN
WRITE(4, *) i ,j, k
WRITE(4,*}Tspi,Tspo
WRITE(4,*)Tswi,Tswo
WRITE(4,*)sisai,sisao
IF (model.NE.1) THEN
WRITE(4,*}swsai,swsao
WRITE(4,*)smswi,smswo
IF (model.EQ.3) THEN
WRITE(4,*)Tswi,Tswo
END IF
END IF
END IF
90 CONTINUE
80 CONTINUE
70 CONTINUE
C Determine the average exit temperature of recirculating water
sum1=0.0
sum2=0.0
DO 100 i=1,Kmax
DO 110 k=1 ,Mmax
CALL Cpw(Tsw(i,Lmax+1,k+1},scspw)
sum1=sum1+Tsw(i,Lmax+1,k+1)*scspw
sum2=sum2+smsw(i,Lmax+1,k+1)
110 CONTINUE
100 CONTINUE
CALL Cpw(Tswi1,scspw)
Tswo1=sum1/(Mmax*Kmax*scspw)
smswo1=sum2
C Determine the average exit temperature of process water
sum1=0.0
sum2=0.0
DO 120 i=1,Kmax
DO 130 j=1,Lmax
CALL Cpw(Tsp(i,j,Mmax+1+1),scspp)
sum1=sum1+Tsp(i,j,Mmax+1+1)*scspp
sum2=sum2+Tsp(i,j,Mmax+1+1)
130 CONTINUE
120 CONTINUE
CALL Cpw((sum2/(Kmax*Lmax)),scspp)
Tspo1=sum1/(Kmax*Lmax*scspp)
C Determine the average exit enthalpy of the air
sum1=0.0
sum2=0.0
sum3=0.0
DO 140 j=1,Lmax
DO 150 k=1,Mmax
sum1=sum1+sisa(Kmax+1,j,k+1)
sum2=sum2+swsa(Kmax+1,j,k+1)
Stellenbosch University http://scholar.sun.ac.za
sum3=sum3+Tsa(Kmax+l,j,k+l)
ISO CONTINUE
140 CONTINUE
DO 160 k=l,Mmax
IF (flag2.EQ.O) THEN
suml=suml+sisa(Kmax,l,k+l)/2.0
sum2=sum2+swsa(Kmax,l,k+l)/2.0
sum3=sum3+Tsa(Kmax,l,k+l)/2.0
ELSE
suml=suml+sisa(Kmax,Lmax,k+l)/2.0
sum2=sum2+swsa(Kmax,Lmax,k+l)/2.0
sum3=sum3+Tsa(Kmax,Lmax,k+l)/2.0
END IF
160 CONTINUE
sisaol=suml/(Mmax*(Lmax+.S))
swsaol=sum2/(Mmax*(Lmax+.5))
Tsaol=sum3/(Mmax*(Lmax+.5))
C Print the recirc.water inlet and outlet temperatures on the screen
WRITE(*,l70)Tswil,Tswol
· 170 FORMAT(' ','Tw(in) = ',F7.3,' Tw(out) = ',F7.3)
RETURN
END
c *******************************************************************
c* *
C* TOP TO BOTTOM PROCESS WATER FLOW *
c* *
c *******************************************************************
C Subroutine to evaluate a cooler layout where the process fluid flows
C downwards in a direction perpendicular to the direction of the airstream
SUBROUTINE TOPTOBOTTOM (Tsp,Tsw,Tsa,sisa,swsa,smsw,smsael,
+ smspel,smswel,sisail,sisaol,Tspil,Tspol,Tswil,
+ Tswol,swsail,swsaol,smswil,smswol,L,H,sdsi,sdso,
+ dA,Tsadb,Tsawb,spsatm,gamma,Vstot,sa,skst,
+ svsp,Aspi,Aspo,ReyC,gradfile,Kmax,Lmax,Mmax,PI,
+ model,Tsaol,shsfl,shsf2,gradplot)
DIMENSION Tsp(40,400,10)
DIMENSION Tsw(40,400,10)
DIMENSION Tsa(40,400,10)
DIMENSION sisa(40,400,10)
DIMENSION swsa(40,400,10)
DIMENSION smsw(40,400,10)
REAL L
INTEGER flag,flag2,gradfile,gradplot
C Initialize the arrays with the known values
CALL Enthalpy(Tsadb,Tsawb,spsatm,sisail)
CALL Airhumidity(Tsadb,Tsawb,spsatm,swsail)
Stellenbosch University http://scholar.sun.ac.za
DO 20 j=1,Lmax
DO 10 k=2,Mmax+1
sisa(1,j,k)=sisai1
swsa(1,j,k)=swsai1
Tsa(1,j,k)=Tsadb
10 CONTINUE
20 CONTINUE
DO 40 i=1,Kmax
00 30 k=2,Mmax+1
Tsw(i,1,k)=Tswi1
smsw(i,1,k)=smswel
30 CONTINUE
40 CONTINUE
DO 50 i=1,Kmax
Tsp(i,1,2)=Tspi1
50 CONTINUE
C Start of the outer loop to evaluate each i-level of the model
DO 60 i=1,Kmax
flag=O
flag2=i-2*INT(i/2.0)
C Flag2=1 in the first row,O in the second row etc~
C Start of the middle loop to evaluate each j-level of the model
· DO 70 j=1,Lmax ·
C N.B. flag=1 for backward process fluid flow
C L.W. flag=O for forward process fluid flow
IF (flag.EQ.O) THEN
C Start of the inner loop to evaluate each each element of the model
C Process water flow is in a forward direction
DO 80 k=2,Mmax+1
C Determine the inlet values for a given element
Tspi=Tsp(i,j,k)
IF((k.EQ.2).AND.(j.NE.1)) Tspi=Tsp(i,j-l,k-1)
Tswi=Tsw(i ,j,k)
Tsai=Tsa(i,j,k)
sisai=sisa(i,j,k)
swsai=swsa(i,j,k)
smswi=smsw(i,j,k)
C Determine the enthalpy of air entering each element in the packed formation
IF ((flag2.EQ.l).AND.(i.NE.l)) THEN
IF (j.EQ.l) THEN
sisai=(sisa(i-l,j,k)+sisa(i,j,k))/2.0
swsai=(swsa(i-l,j,k)+swsa(i,j,k))/2.0
Tsai=(Tsa(i-l,j,k)+Tsa(i,j,k))/2.0
ELSE
Stellenbosch University http://scholar.sun.ac.za
sisai=(sisa(i,j,k)+sisa(i,j-l,k))/2.0
swsai=(swsa(i,j,k)+swsa(i,j-l,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i,j-l,k))/2.0
END IF
END IF
IF (flag2.EQ.O) THEN
IF (j.EQ.Lmax) THEN
sisai=(sisa(i,j,k)+sisa(i-l,j,k))/2.0
swsai=(swsa(i,j,k)+swsa(i-l,j,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i-l,j,k))/2.0
ELSE
sisai=(sisa(i,j,k)+sisa(i,j+l,k))/2.0
swsai=tswsa(i,j,k)+swsa(i,j+l,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i,j+l,k))/2.0
END IF
END IF
C Call subroutine to determine outlet conditions of each element
IF (model.EQ.l) THEN
CALL MERKEL (Tspi,Tswi,sisai,swsail,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst;svsp,Tspo,Tswo,sisao,Aspi,Aspo,
+ ReyC,shsfl,shsf2,Lmax)
ELSE IF (model.EQ.2) THEN
CALL IMPMERKEL (Tspi,Tswi,sisai,swsai,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,stsao,swsao,Aspi,Aspo,
+ ReyC,smswi,smswo,Tsai,Tsao,shsfl,shsf2,Lmax)
ELSE
CALL POPPE (Tspi,Tswi,Tsa,sisai,swsai,smswi,L,H,sdsi,
+ sdso,dA,Tsadb,spsatm,gamma,Vstot,smsael,smspel,
+ . smswel,sa,skst,svsp,Tspo,Tswo,Tsao,sisao,swsao,
+ smswo,Aspi,Aspo,ReyC,shsfl,shsf2,Lmax)
END IF
C Determine the exit values for a given element
Tsp(i,j,k+l)=Tspo
Tsw(i,j+l,k)=Tswo
Tsa(i+l,j,k)=Tsao
sisa(i+l,j,k)=sisao
swsa(i+l,j,k)=swsao
smsw(i,j+l,k)=smswo
C Write the temperature and enthalpy gradients to file CROSS.GRA
IF (gradfile.EQ.l) THEN
WRITE(4,*)i,j,k-1
WRITE(4,*)Tspi,Tspo
WRITE(4,*)Tswi,Tswo
WRITE(4,*)sisai,sisao
IF (model.NE.l) THEN
WRITE(4,*)swsai,swsao
WRITE(4,*)smswi,smswo
Stellenbosch University http://scholar.sun.ac.za
IF (model.EQ.3) THEN
WRITE(4,*)Tswi,Tswo
END IF
END IF
ELSE IF (gradplot.EQ.l) THEN
IF (((i.EQ.l).OR.(i.EQ.lO)).AND.(k.EQ.2)) THEN
WRITE(5,3)i,j,k-l,Tspi,Tspo,Tswi,Tswo,sisai,sisao
3 FORMAT(3I4,6F9.3)
END IF
END IF
80 CONTINUE
flag=l
ELSE IF (flag.EQ.l) THEN
C Start of the inner loop to evaluate each each element of the model
C Process water flow is backwards to the origin
DO 90 k=Mmax+l,2,-1
C Determine the inlet values for a given element
Tspi=Tsp(i,j,k)
IF (k.EQ.{Mmax+l)) Tspi=Tsp{i,j-l,k+l}
Tswi=Tsw{i,j,k)
Tsai=Tsa{i,j,k)
sisai=sisa{i,j,k)
swsai=swsa(i,j,k)
smswi=smsw(i,j,k)
C Determine the enthalpy of air entering each element in the packed formation
IF ((flag2.EQ.l).AND.(i.NE.l)) THEN
IF (j.EQ.l) THEN
sisai=(sisa(i-l,j,k)+sisa{i,j,k))/2.0
swsai=(swsa(i-l,j,k)+swsa(i,j,k))/2.0
Tsai=(Tsa(i-l,j,k)+Tsa(i,j,k))/2.0
ELSE
sisai={sisa{i,j,k)+sisa{i,j-l,k))/2.0
swsai=(swsa(i,j,k)+swsa(i,j-l,k))/2.0
Tsai=(Tsa{i,j,k)+Tsa{i,j-l,k))/2.0
END IF
END IF
IF {flag2.EQ.O) THEN
IF (j.EQ.Lmax) THEN
sisai=(sisa{i;j,k)+sisa{i-l,j,k))/2.0
swsai=(swsa{i,j,k)+swsa(i-l,j,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i-l,j,k))/2.0
ELSE
sisai=(sisa(i,j,k)+sisa{i,j+l,k))/2.0
swsai=(swsa(i,j,k)+swsa{i,j+l,k))/2.0
Tsai=(Tsa(i,j,k)+Tsa(i,j+l,k))/2.0
END IF
END IF
C Call subroutine to determine outlet conditions of each element
Stellenbosch University http://scholar.sun.ac.za
IF (model.EQ.l) THEN
CALL MERKEL (Tspi,Tswi,sisai,swsail,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,Aspi,Aspo,
+ ReyC,shsfl,shsf2,Lmax)
ELSE IF (model.EQ.2) THEN
CALL IMPMERKEL (Tspi,Tswi,sisai,swsai,L,H,sdsi,sdso,dA,
+ Tsadb,spsatm,gamma,Vstot,smsael,smspel,smswel,
+ sa,skst,svsp,Tspo,Tswo,sisao,swsao,Aspi,Aspo,
+ ReyC,smswi,smswo,Tsai,Tsao,shsfl,shsf2,Lmax)
ELSE
CALL POPPE (Tspi,Tswi,Tsai,sisai,swsai,smswi,L,H,sdsi,
+ sdso,dA,Tsadb,spsatm,gamma,Vstot,smsael,smspel,
+ smswel,sa,skst,svsp,Tspo,Tswo,Tsao,sisao,swsao,
+ smswo,Aspi,Aspo,ReyC,shsfl,shsf2,Lmax)
END IF
C Determine the exit values for a given element
Tsp(i,j,k-l)=Tspo
Tsw(i,j+l,k)=Tswo
Tsa(i+l,j,k)=Tsao
sisa(i+l,j,k)=sisao
swsa(i+l,j,k)=swsao
smsw(i,j+l,k)=smswo
C Write the temperature and enthalpy gradients to file CROSS.GRA
IF (gradfile.EQ.l) THEN
WRITE(4,*)i,j,k-1
WRITE(4,*)Tspi,Tspo
WRITE(4,*)Tswi,Tswo
WRITE(4,*)sisai,sisao
IF (model.NE.l) THEN
WRITE(4,*)swsai,swsao
WRITE(4,*)smswi,smswo
IF (model.EQ.3) THEN
WRITE(4,*)Tswi,Tswo
END IF
END IF
ELSE IF (gradplot.EQ.l) THEN
IF (((i.EQ.l).OR.(i.EQ.IO)).AND.(k.EQ.2)) THEN
WRITE(5,4)i,j,k-l,Tspi,Tspo,Tswi,Tswo,sisai,sisao
4 FORMAT(3I4,6F9.3)
END IF
END IF
90 CONTINUE
flag=O
END IF
70 CONTINUE
60 CONTINUE
C Determine the average exit temperature of recirculating water
suml=O.O
Stellenbosch University http://scholar.sun.ac.za
sum2=0.0
DO 110 i =1, Kmax
DO 100 k=2,Mmax+l
CALL Cpw(Tsw(i,Lmax+l,k},scspw}
suml=suml+Tsw(i,Lmax+l,k}*scspw
sum2=sum2+smsw(i,Lmax+l,k}
100 CONTINUE
110 CONTINUE
CALL Cpw(Tswil,scspw}
Tswol=suml/(Mmax*Kmax*scspw}
smswol=sum2
C Determine the average exit temperature of process water
suml=O.O
sum2=0.0
rem=Mmax+2
IF (flag.EQ.O} rem=l
DO 120 i=l,Kmax
CALL Cpw(Tsp(i,Lmax,rem},scspp}
suml=suml+Tsp(i,Lmax,rem}*scspp
sum2=sum2+Tsp(i,Lmax,rem}
120 CONTINUE
CALL Cpw(( sum2/Kmax}, scspp J
Tspol=suml/(Kmax*scspp}
C Determine the average exit enthalpy of the air
suml=O.O
sum2=0.0
sum3=0.0
DO 130 j=l,Lmax
DO 130 k=2,Mmax+l
suml=suml+sisa(Kmax+l,j,k}
sum2=sum2+swsa(Kmax+l,j,k}
sum3=sum3+Tsa(Kmax+l,j,k}
130 CONTINUE
140 CONTINUE
DO ISO k=2,Mmax+l
IF (flag2.EQ.O} THEN
suml=suml+sisa(Kmax,l,k}/2.0
sum2=sum2+swsa(Kmax,l,k}/2.0
sum3=sum3+Tsa(Kmax,l,k}/2.0
ELSE
suml=suml+sisa(Kmax,Lmax,k}/2.0
sum2=sum2+swsa(Kmax,Lmax,k}/2.0
sum3=sum3+Tsa(Kmax,Lmax,k)/2.0
END IF
ISO CONTINUE
sisaol=suml/(Mmax*(Lmax+.S}}
swsaol=sum2/(Mmax*(Lmax+.5})
Tsaol=sum3/(Mmax*(Lmax+.5)}
C Print the recirc.water inlet and outlet temperatures on the screen
Stellenbosch University http://scholar.sun.ac.za
WRITE(*,l60)Tswil,Tswol
160 FORMAT(' ','Tw(in) = ',F7.3,' Tw(out) = ',F7.3)
RETURN
END
c *********************************************************************
c * *
c * THERMOPHYSICAL PROPERTIES OF AIR, WATER, WATER-VAPOUR *
c * AND AIR WATER MIXTURES- *
c * *
c *********************************************************************
C Subroutine to calculate the saturation vapour~pressure of water
SUBROUTINE Satvappressure(tl,spssat)
T=tl+273 .16
a=1. 079586El
b=5.02808
c=1.50474E-4
d=-8.29692
e=4.2873E-4
f=4.76955
g=2. 786118312
X=273.16/T .
z=a*(1-x)+b*LOG10(x)+c*(1-10**{d*{(1/x)-1)))+e*(10**(f*(1-x))-l)+g
spssat=10**z ·
RETURN
END
c *******************************************************************
C Subroutine to calculate the specific heat of water-vapour
SUBROUTINE Cpv(tl,scspv)
T=tl+273.16
a=l.3605E3
b=2.31334
c=-2.46784E-10
d=5.91332E-13
scspv=a+b*T+c*T**5+d*T**6
RETURN
END
c *******************************************************************
C Subroutine to calculate the specific heat of air
SUBROUTINE Cpa{t1,scspa)
T=t1+273.16
a=l.045356E3
b=-3.161783E-l
c=7.083814E-4
d=-2.705209E-7
scspa=a+b*T+c*T**2+d*T**3
RETURN
END
c *******************************************************************
Stellenbosch University http://scholar.sun.ac.za
Pra=scspp2*musw2/sksw2
RETURN
END
c *******************************************************************