0% found this document useful (0 votes)
113 views2 pages

PHYS 101 Chapter 1 Exam Problems

This document contains 21 practice problems from Chapter 1 of a PHYS 101 exam covering measurement, units conversion, dimensional analysis, and density. The problems involve converting between units, calculating densities using mass and volume, using dimensional analysis to determine relationships between physical quantities, and solving physics problems related to motion, light, and fluids.

Uploaded by

Romou Alsaaq
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
113 views2 pages

PHYS 101 Chapter 1 Exam Problems

This document contains 21 practice problems from Chapter 1 of a PHYS 101 exam covering measurement, units conversion, dimensional analysis, and density. The problems involve converting between units, calculating densities using mass and volume, using dimensional analysis to determine relationships between physical quantities, and solving physics problems related to motion, light, and fluids.

Uploaded by

Romou Alsaaq
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 2

PHYS 101 Previous Exam Problems –

CHAPTER
Measurement
1
  Units conversion
  Dimensional analysis
  Density

1. The position y of a particle moving along the y axis depends on the time t according to the equation

=
y At − Bt 2 . What are the dimensions of the quantities A and B, respectively? (Ans: L/T, L/T2)
2. The position x of a particle is given by: x = Bt2 + (C/B)t, where x is in meters and t is in seconds. What is
the dimension of C? (Ans: L2/T3)
3. Suppose A = Bn/C m, where A has dimensions [LT], B has dimensions [L2T–1], and C has dimensions [LT2].
What are the values of the exponents n and m? (Ans: n = 1/5 ; m = −3/5)
4. One shake = 10-8 seconds. Find out how many nano seconds (ns) are there in 1 shake. (1 nano = 10-9)
(Ans: 10 ns )
5. Express the speed of sound, which is equal to 330 m/s, in miles/h. (1 mile = 1609 m) (Ans: 738 miles/h)
6. Using the fact that the speed of light in space is about 3.00×108 m/s, determine how many miles will light
travel in one hour. (1 mile = 1.61 km) (Ans: 6.71× 108 miles)
7. A student remembers that it takes roughly 8.4 minutes for the sun's light to reach the Earth. Using this
information and the fact that the speed of light is (3.0 × 108) m/s, estimate the distance to the sun in km.
(Ans: 1.50×108 km)
8. An empty fuel tank of a car needs 50 liters of gasoline to fill up. Find the volume of the fuel tank in m3.
(1 milliliter = 1 cm3) (Ans: 0.050)
9. A swimming pool is filled with 16500 ft3 of water. What is the volume of water in m3?
(12 inch = 1 ft, and 2.54 cm = 1 inch) (Ans: 467 m3)
10. The mass of 1.0 cm3 of gold is 19.3 g. What is the mass of a solid cube of gold having a side of 0.70 cm?
(Ans: 6.6 × 10–3 kg)
11. A cube of copper has a mass of m = 126 g. Find the number of copper atoms in this cube. Atomic mass of
copper = 63.0 g/mole; Avogadro number = 6.02×1023 atoms/mole. (Ans: 1.20 × 1024)
12. From the fact that the average density of the Earth is 5.50 g/cm3 and its mean radius is 6.37×106 m,
calculate the mass of the Earth? (Ans: 5.95 × 1024 kg)
13. What is the mass of an aluminum cylinder of density 2.70 g/cm3, radius 2.30 cm, and a height of 1.40 m?
(Ans: 6.28 kg)
14. What is the density of a nucleus of volume 3.4×103 fm3 and mass of 100 u? (1 fm = 10-15 m, 1 u = 1.7 ×
10-27 kg) (Ans: 5.0 × 1016 kg/m3)

Dr. M. F. Al-Kuhaili – PHYS 101 – Chapter 1 Page 1


15. The average radius of a nucleus is R = 10.0 fm. Find the density of the nucleus which has a mass of 15u.
(1 fm = 10-15 m, 1 u = 1.66 × 10-27 kg) (Ans: 5.94×1015 kg/m3)
16. A drop of oil (mass = 0.90 milligram, and density = 918 kg/m3) spreads out on a surface and forms a
circular thin film of radius = 41.8 cm and thickness h. Find h in nano meter (nm). (Ans: 1.8 nm)
17. How many molecules of water are there in a cup containing 250 cm3 of water? Molecular mass of water =
18 g/mole; density of water = 1.0 g/cm3; Avogadro’s number = 6.02×1023 molecules/mole. (Ans: 8.4 × 1024)
18. The speed of sound v in a fluid depends upon the fluid density ρ and its bulk modulus B as follows:
v = ρn.Bm. Using dimensional analysis, find the values of constants n and m, respectively. The unit of density ρ
is kg/m3 and that of bulk modulus B is kg/(m.s2). (Ans: -1/2, +1/2)
19. Consider the following physical relation: M = C ρa.rb, where M is mass, ρ is density, r is distance, and a
and b are exponents. C is a dimensionless constant. What are the values of a and b so that the equation is
dimensionally correct? (Ans: a = 1 and b = 3)
20. The force F applied on a particle is given by the relation F = K ρ A B2, where K is a dimensionless
constant, ρ is a density and A is an area. Find the dimension of B. (Ans: L/T)
21. The average density of blood is 1.06×103 kg/m3. If you donate one pint of blood, what is the mass of the
blood you have donated, in grams? [1 pint = 1/2 Liter, 1 Liter = 1000 cm3] (Ans: 530)

Dr. M. F. Al-Kuhaili – PHYS 101 – Chapter 1 Page 2

You might also like