DGT Pair of St. Lines
DGT Pair of St. Lines
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 2
3x 2 5xy 2y 2 = 0 is Corollary 1
Condition for the lines to be perpendicular
3 3 The lines are perpendicular if the angle between
a. and b. and
2 2 2 2
them is
5 3 2
c. and d. none of these
2 2
2 2 i.e. =
Sol (b) We have 3 x –5xy – 2y = 0 2
Let m1 and m2 be the slopes of the lines.
cot = cot
5 2
m1 + m2= – and
2 2
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 3
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 4
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 5
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 6
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 7
Practice Exercise
Exercise 1
(Topical Problems)
Combined Equation of Two Lines and 7. The angle between the pair of lines represented
Homogeneous Equation of Second Degree by 2x2 – 7xy + 3y2 = a is
1. The combined equation of lines 2x + y + 3 = a a. 60° b. 45°
and x – y + 4 = a is
7
a. x2 + 2y2 + 10x – 12y + 5 = a b. tan–1 d. 30°
6
b. x2 + y2 + 2x + 3y + 5 = a
b. 2x2 – xy – y2 + 11x + y – 12 = a 8. If e is the acute angle between the lines given by
x2 – 2pxy + y2 = 0, then
d. None of the above
a. cos = P b. tan = P
2. Separate equation of lines represented by the
b. see = p d. cot = p
equation 6x2 + 5xy – 4y2 = a is
9. If the pairs of straight lines ax2 + 2hxy – ay2 = a
a. x – 2y = 0 and x + 3y = 0 and bx2 + 2gxy – by2 = a be such that each bisects
b. 2x – y = a and 3x + 4y = 0 the angles between the other, then
b. x + y = 0 and x – 4y = 0 a. hg + ab = 0 b. ah + bg = 0
2
d. None of the above b. h – ab = 0 d. ag + bh = 0
3. The two straight lines given by 10. If the equation x2 + 4xy + 5y2 = a represents
x2(tan2 + cosy2) – 2xy tan + y2 sin2 = a two lines inclined at an angle n, then A is equal to
a. 5/4 b. 4/5
make with the axis of x angles such that the
difference of their tangents is b. – 45 d. None of these
11. The product of the perpendiculars drawn from
a. 4 b. 3
the point (1, 2) to the pair of lines x2 + 4xy + y2 =
b. 2 d. None of these a is
4. If the slopes of the lines given by a. 9/4 b. 3/4
ax2 + 2hxy + by2 = a are in the ratio 3 : 1, then h2 b. 9/16 d. None of these
is equal to 12. The equation of straight lines through the point
ab 4ab (x1, y1) and parallel to the lines given by
a. b. ax2 + 2hxy + by2 = 0 is
3 3
a. a(y – y1)2 + 2h(x – x1) (y – y1)+ b(x – x1)2 = 0
4a b. a(y – y1)2– 2h(x – x1)(y – y1)+ b(x – x1)2 = 0
b. d. None of these
3b c. b(y – y1)2+ 2h(x – x1) (y – y1)+ a(x – x1)2 = 0
5. The equation to the pair of lines perpendicular to d. None of the above
the pair of lines 3x2 – 4xy + y2 = 0, is
13. The combined equation of the pair of lines through
a. x2 + 4xy + 3y2 = 0 b. x2 – 4xy – 3y2 = 0 the point (1, 0) and perpendicular to the lines
b. x2 + 4xy + y2 = 0 d. None of these represented by 2x2 – xy – y2 = a is
6. If the pairs of lines ax2 + 2hxy + by2 = 0 and a. 2x2 – xy – y2 – x + y –1 = 0
a' x2 + 2h' xy + b' y2 = a have one line in common, b. 2y2 + xy – x2 + 2x – Y – 1 = 0
then (ab' – a' b)2 is equal to b. 2y2 + xy – x2 – x – y + 2 = 0
a. (h' b – hb') (ha' – h' a) d. None of the above
b. 4(h' b – hb') (ha' – h' a) 14. The combined equation of the lines L1, and L2 is
b. 2(h' b – hb') (ha' – h' a) 2x2 + 6xy + y2 = 0 and that of the lines L3 and L4
d. 4(h' b + hb') (ha' + h' a) is 4x2 + 18xy + y2 = 0. If the angle between
L1 and L4 be , then the angle between L2 and
L3 will be
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 8
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 9
p p c
c. d. c. d. None of these
1 q 1 q (a b) 2 4h 2
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 10
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 11
Exercise 2
(Miscellaneous Problems)
1. The lines represented by 8. The point of intersection of the pair of straight
x2 + 2xy + 2y2 = 0 and the lines represented by lines given by
(1+ ) x2 – 8xy + y2 = 0 are equally inclined, then 6x2 + 5xy – 4y2 + 7x + 13 y – 3 = 0, is
a. is any real number b. > 2 a. (1, 1) b. (1,– 1)
c. = + 2 d. < –2 c. (–1, 1) d. (–1, –1)
2. The equation (x3 – 3xy2) + y3 – 3x2y = 0 9. If first degree terms and constant terms are to be
represents three straight lines passing through the removed from the equation
origin such that 12x2 + txy –12y2 –17x–31y –7 = 0,
a. they are equally inclined to one another then the origin must be shifted at the point
b. two of which are at right angles a. (1,–1) b. (–1, 1)
c. two of which are coincident b. (–1, –1) d. None of these
d. None of the above 10. The straight lines represented by
3. The equation x3 + x2y – xy2 – y3 = 0 represents (y – mx)2 = a2(1 + m2) and (y – nx)2 = a2(1 + n2)
three straight lines passing through the origin such form a
that
a. rectangle b. trapezium
a. two of them are coincident and two of them
b. rhombus d. None of these
are perpendicular
11. A pair of perpendicular straight lines is drawn
b. two of them are coincident but no two are
through the origin forming with the line
perpendicular
2x + 3y = 6 an isosceles triangle right angled at
c. two of them are perpendicular but no two are the origin. The equation to the line pair is
coincident
a. 5x2 – 24xy–5y2=0 b. 5x2 – 26xy – 5y2 = 0
d. None of the above
b. 5x2+24xy – 5y2=0 d. 5x2 + 26xy – 5y2 = 0
4. The straight lines represented by
12. If the origin is shifted to the point (ab / (a – b), (0)
x2 + mxy – 2y2 + 3y – 1 = 0 meet at the point without rotation, then the equation
a. (1/3,-2/3) b. (–1/3, –2/3) (a – b) (x2 + y2) – 2abx = 0 becomes
c. (1/3, 2/3) d. None of these a. (a – b) (x2 + y2) – (a + b) XY + ab x =a2
5. The angle between the straight lines joining the b. (a + b)(X2 + y2) = 2ab
origin to the point of intersection of
c. (X2 + y2) = (a2 + b2)
3x2 + 5xy – 3y2 + 2x + 3y = 0 and 3x–2y = 1 is
d. (a – b)2 (X2 + Y2) = a2b2
13. If one of the lines of my2 + (1– m2 ) xy – mx2 = 0
a. b.
3 4 is a bisector of the angle between the lines xy = 0,
then m is
c. d. a. 3 b. 2
6 2
6. All chords of the curve 3x2– y2 – 2x + 4y = 0 b. –1/ 2 d. –1
which subtend a right angle at the origin always 14. The slopes of the lines represented by
asses through the point x2 + 2hxy + 2y2 = 0 are in the ratio 1 : 2, then
a. (1, 2) b. (–1, 2) h equals
b. (1,–2) d. (–1, –2) 3
7. If the equation x4 + bx3y + cx2y2 + dxy + ey4 = 0 a. + –1 b. +
2
represents two pairs of perpendicular lines, then
b. + 1 d. + 3
a. b + d =1 and e= –1 b. b + d = 0 and e = –1
b. b+d = 0 and e = 1 d. None of these
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 12
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 13
7 5 1 2
c. d. a. b. +
4 4 5 5
31. The line x – 2y = 0 will be a bisector of the angle c. + 3. 5 d. None of these
between the lines represented by the equation
38. The locus of the point P(x, y) satisfying the relation
x2 – 2hxy – 2y2 = 0, if h is equal to
1 (x 3) 2 (y 1) 2 + (x 3) 2 (y 1) 2 = 6,
a. b. 2 is
2
a. point
1
c. –2 d. b. pair of coincident straight lines
2
c. circle
32. If r (1– m2) + m(p – q) = 0, then a bisector of the
d. ellipse
angle between the lines represented by the
equation px2 – 2rxy + qy2 = 0, is 39. The equation of pair of straight lines joining the
point of intersection of the curve x2 + y2 = 4 and
a. y = x b. y = – x
y – x = 2 to the origin, is
c. y = mx d. ym = x
a. x2 + y2 =(y – x)2
33. The equation of the perpendiculars drawn from
b. x2 + y2 = 4(y –x)2
the origin to the lines represented by the equation
2x2 –10xy +12y2 +5x –16y –3 = 0,is b. x2 + y2 + (y – x)2 = 0
a. 6x2 + 5xy + y2 = 0 b. 6y2 + 5xy + x2 = 0 d. x2 + y2 + 4 (y – x)2 = 0
b. 6x2– 5xy + y2 = 0 d. None of these 40. The lines joining the origin to the points of
intersection of the line 3x – 2y = 1and the curve
34. The equation 2x2 + 4xy – py2 + 4x + qy + 1= 0
3x2 + 5xy – 3y2 + 2x + 3y= 0, are
will represent two mutually perpendicular straight
lines, if a. parallel to each other
a. P = 1and q = 2 or 6 b. perpendicular to each other
b. P = 2 and q = 0 or 8 c. inclined at 45° to each other
c. P = 2 and q = 0 or 6 d. None of the above
d. P = – 2 and q = – 2 or 8 41. The pair of straight lines joining the origin to the
35. The acute angle formed between the lines joining points of intersection of the line y = 2 2 x + c
the origin to the points of intersection of the curves and the circle x2 + y2 = 2 are at right angles, if
x2 + y2 – 2x –1 = 0 and x + y = 1,is a. c2 – 4 = 0 b. c2 – 8 = 0
1 c. c2 – 9 = 0 d. c2 –10 = 0
a. tan–1 b. tan–1(2) 42. The value of h for which the equation
2
3x2 + 2hxy – 3y2 – 40x + 30y – 75 = 0 represents
1 a pair of straight lines, are
b. tan–1 d. 600
2 a. 4, 4 b. 4, 6
36. The distance between the parallel lines b. 4, – 4 d. 0, 4
9x2 – 6xy + y2 + 18x – 6y + 8 = 0, is 43 Which of the following second degree equation
represented a pair of straight lines?
1 2
a. b. a. x2 – xy – y2 = 1 b. –x2 + xy – y2 = 1
10 10
c. 4x –4xy+ y = 4 d. x2 + y2 = 4
2 2
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 14
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 15
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 16
3 5 3 5 1
a. , b. , a. – b. – 2
2 2 2 2 2
c. (–3, –5) d. (3,5) c. + 1 d. 2
76. All chords of the curve 3x2 – y2 – 2x + 4 y = 0 81. The distance between the pair of parallel lines
which subtend a right angle at the origin, pass x2 + 2xy + y2 – 8ax – 8ay – 9a2 = 0 is
through the fix point a. 2 5 b. 10
a. (1,2) b. (1,–2)
c. 10 a d. 5 2
c. (–1, 2) d. (–1,–2)
77. The pair of lines joining origin to the points of 82. If the bisectors of angles represented by
intersection of the two curves ax2 + 2hxy + by2 ax2 + 2hxy + by2 = 0 and a'x2 + 2h' xy + b' y2 = 0
+ 2gx = 0 are same, then
and a' x2 + 2h' xy + b' y2 + 2g' x = 0 will be at a. (a–b)h'=(a'– b')h b. (a–b) h = (a'– b')h'
right angles, if b. (a+b)h'=(a'–b')h d. (a–b)h'=(a'+b')h
a. (a' + b')g'=(a + b)g
b. (a + b)g'=(a' + b')g 83. If pairs of straight lines x2 – 2pxy – y2 = 0 and
c. h2 – ab = h'2 – a' b' x2 – 2qxy – y2 = 0 be such that each pair bisects
the angle between the other pair, then
d. a + b + h2 = a' + b' + h'2
a. pq = 1 b. pq = –1
78. The angle between the pair of straight lines formed
by joining the points of intersection of x2 + y2 = 4 b. pq = 2 d. pq = –2
and y = 3x + c to the origin is a right angle. Then, 84. The angle between the pair of straight lines
c2 is equal to y2 sin2 – xy sin2 + x2 (cos2 –1) = 0 is
a. 20 b. 13 a. / 3 b. / 4
b. 115 d. 5 b. /6 d. n/2
79. The angle between lines joining origin and 85. The distance between the pair of parallel lines
intersection points of line 2x + Y = 1and curve x2 + 4xy + 4y2 + 3x + 6y – 4 = 0 is
3x2 + 4 yx – 4x + 1= 0 is
2
a. n/2 b. n/3 a. 5 b.
5
c. n/4 d. n/6
80. If one of the lines my2 + (1– m2) xy – mx2 = 0 is 1 5 5
a bisector of the angle between the lines xy = 0, c. d. e.
5 2 2
then m is/are
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 17
MHT-CET Corner
1. If one of the lines of the pair ax2 + 2hxy + by2 = 0 6. If S is the angle between the lines
bisects the angle between positive direction of the ax2 + 2hxy + by 2 = 0, then angle between
axes, then a, band h satisfy the relation x2 + 2xy sec a + y2 = 0 is
a. a + b = 2 | h | b a + b = – 2h a. a b. 2s
c. – s d. 3s The equation
c. a – b = | h | d. (a – b)2 = 4h2
7. The equation
2. If a pair of lines x2 – 2pxy – y2 = 0 and x2 – 2qxy 12x2 + txy + ay2 + 13x – y + 3 = 0 represents a
– y2 = 0 is such that each pair bisects the angle pair of perpendicular lines. Then, the value of a is
between the other pair, then
7
a. pq = –1 b. pq = 1 a. b. –19
2
1 1 1 1 c. –12 d. 12
c. 0 d. =0
p q p q 8. If x2 – 2pxy – y2 = 0 and x2 – 2qxy – y2 = 0 bisect
3. The angle between the lines angles between each other, then
x2 – xy – 6y2 – 7x + 31y –18 = 0 is a. p + q = 1 b. pq = 1
c. pq + 1= 0 d. p2 + pq + q2 = 0
9. The angle between the lines represented by the
a. b.
4 6 equation 2x2 + 3xy – 5y2 = 0, is
c. d. a. b.
2 3 3 2
4. The equation of the lines passing through the 12 7
1 c. tan–1 d. tan–1
5 3
origin and having slopes 3 and –
3 2 2
10. If the equation 4x + hxy + y = 0 coincident
a. 3y2 + 8xy – 3x = 0 b. 3x + 8xy + 3y2 = 0
2 2
lines, then h is equal to
c. 3y2 – 8xy – 3x2 = 0 d. 3x2 + 8xy – 3y2 = 0 a. 1 b. 3
5. Joint equation of pair of lines through (3, – 2) and c. 2 d. 4
parallel to x2 – 4xy + 3y2 = 0 is 11. The sum of slopes of lines 3x2 + 5xy – 2y2 = 0 is
a. x2 + 3y2 – 4xy – 14x + 24y + 45 = 0 5 5
a. – b.
b. x2 + 3y2 + 4xy – 14x + 24y + 45 = 0 3 2
c. x2 + 3y2 + 4xy – 14x + 24y – 45 = 0 5 2
c. – d. –
d. x2 + 3y2 + 4xy – 14x – 24y – 45 = 0 2 3
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 18
Answers
Exercise 1
1. (c) 2. (b) 3. (c) 4. (b) 5. (a) 6. (b) 7. (b) 8. (c) 9. (a) 10. (b)
11. (d) 12. (c) 13. (b) 14. (d) 15. (b) 16. (c) 17. (a) 18. (c) 19. (b) 20. (a)
21. (c) 22. (a) 23. (b) 24. (c) 25. (d) 26. (b) 27. (b) 28. (d) 29. (b) 30. (c)
31. (a) 32. (c) 33. (a) 34. (c) 35. (a) 36. (b) 37. (d) 38. (c) 39. (c) 40. (a)
41. (b) 42. (b) 43. (a) 44. (a) 45. (c) 46. (a) 47. (c) 48. (d) 49. (c) 50. (d)
51. (c) 52. (b) 53. (d) 54. (c) 55. (a) 56. (b) 57. (d)
Exercise 2
1. (c) 2. (a) 3. (a) 4. (c) 5. (d) 6. (c) 7. (b) 8. (c) 9. (a) 10. (c)
11. (a) 12. (d) 13. (d) 14. (b) 15. (c) 16. (a) 17. (a) 18. (b) 19. (b) 20. (a)
21. (c) 22. (d) 23. (c) 24. (a) 25. (c) 26. (a) 27. (b) 28. (d) 29. (a) 30. (d)
31. (c) 32. (c) 33. (a) 34. (c) 35. (b) 36. (b) 37. (c) 38. (b) 39. (a) 40. (b)
41. (c) 42. (a) 43. (c) 44. (b) 45. (c) 46. (a) 47. (b) 48. (d) 49. (a) 50. (d)
51. (c) 52. (a) 53. (c) 54. (c) 55. (d) 56. (a) 57. (a) 58. (d) 59. (c) 60. (b)
61. (a) 62. (c) 63. (c) 64. (d) 65. (b) 66. (a) 67. (d) 68. (b) 69. (c) 70. (c)
71. (a) 72. (d) 73. (b) 74. (c) 75. (b) 76. (b) 77. (b) 78. (a) 79. (a) 80. (c)
81. (d) 82. (a) 83. (b) 84. (d) 85. (a)
MHT-CET Corner
1. (b) 2. (a) 3. (a) 4. (d) 5. (a) 6. (a) 7. (c) 8. (c) 9. (d) 10. (d)
11. (b)
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
DGT MH –CET 12th MATHEMATICS Study Material 19
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
20
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
21
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
22
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
23
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
24
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
25
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
26
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
27
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
28
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
29
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
30
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
31
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
32
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
33
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
34
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
35
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
36
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
37
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
38
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448
39
DGT Group - Tuitions (Feed Concepts) XIth – XIIth | JEE | CET | NEET | Call : 9920154035 / 8169861448