STM 32 L 552 RC
STM 32 L 552 RC
Features
Ultra-low-power with FlexPowerControl
• 1.71 V to 3.6 V power supply LQFP48 (7 x 7 mm) UFQFPN48 (7 x 7 mm)
LQFP64 (10 x 10 mm)
• -40 °C to 85/125 °C temperature range LQFP100(*) (14 x14 mm)
LQFP144 (20 x 20mm)
• Batch acquisition mode (BAM)
• 187 nA in VBAT mode: supply for RTC and
FBGA
Contents
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2 Description . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3 Functional overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1 Arm® Cortex®-M33 core with TrustZone® and FPU . . . . . . . . . . . . . . . . . 20
3.2 Art Accelerator – instruction cache (ICACHE) . . . . . . . . . . . . . . . . . . . . . 20
3.3 Memory protection unit . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.4 Embedded Flash memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
3.5 Embedded SRAM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.6 Boot modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.7 Global TrustZone controller (GTZC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.8 TrustZone security architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.8.1 TrustZone peripheral classification . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
3.9 Power supply management . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9.1 Power supply schemes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
3.9.2 Power supply supervisor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9.3 Voltage regulator . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
3.9.4 SMPS step down converter . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
3.9.5 Low-power modes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40
3.9.6 Reset mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.9.7 VBAT operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.9.8 PWR TrustZone security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.10 Peripheral interconnect matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.11 Reset and clock controller (RCC) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
3.12 Clock recovery system (CRS) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.13 General-purpose inputs/outputs (GPIOs) . . . . . . . . . . . . . . . . . . . . . . . . . 53
3.14 Multi-AHB bus matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.15 Direct memory access controller (DMA) . . . . . . . . . . . . . . . . . . . . . . . . . . 55
3.16 DMA request router (DMAMUX) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56
3.17 Interrupts and events . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.17.1 Nested vectored interrupt controller (NVIC) . . . . . . . . . . . . . . . . . . . . . . 57
List of tables
Table 65. Current consumption in Run mode, code with data processing running from Flash
in dual bank, ICACHE on in 2-way and power supplied by external SMPS . . . . . . . . . . . 185
Table 66. Current consumption in Run mode, code with data processing running from Flash
in dual bank, ICACHE on in 1-way and power supplied by external SMPS . . . . . . . . . . . 186
Table 67. Current consumption in Run mode, code with data processing running from Flash
in dual bank, ICACHE disabled and power supplied by external SMPS. . . . . . . . . . . . . . 187
Table 68. Current consumption in Run mode, code with data processing running from SRAM1,
and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
Table 69. Current consumption in Run mode, code with data processing running from SRAM2,
and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 189
Table 70. Current consumption in Sleep mode, Flash ON and power supplied by external SMPS . 190
Table 71. Current consumption in Run mode, code with data processing running from Flash,
ICACHE on (2-way) and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . 191
Table 72. Current consumption in Run mode, code with data processing running from Flash,
ICACHE on (1-way) and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . 192
Table 73. Current consumption in Run mode, code with data processing running from Flash,
ICACHE disabled and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . 193
Table 74. Current consumption in Run mode, code with data processing running from SRAM1,
and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
Table 75. Current consumption in Run mode, code with data processing running from SRAM2,
and power supplied by external SMPS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 195
Table 76. Current consumption in Stop 2 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 196
Table 77. Current consumption in Stop 1 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Table 78. Current consumption in Stop 0 mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 199
Table 79. Current consumption in Standby mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200
Table 80. Current consumption in Shutdown mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 203
Table 81. Current consumption in VBAT mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 205
Table 82. Peripheral current consumption . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207
Table 83. Low-power mode wakeup timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Table 84. Regulator modes transition times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 85. Wakeup time using USART/LPUART . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 212
Table 86. High-speed external user clock characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
Table 87. Low-speed external user clock characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214
Table 88. HSE oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Table 89. LSE oscillator characteristics (fLSE = 32.768 kHz) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 217
Table 90. HSI16 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218
Table 91. MSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .220
Table 92. HSI48 oscillator characteristics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223
Table 93. LSI oscillator characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 224
Table 94. PLL, PLLSAI1, PLLSAI2 characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Table 95. Flash memory characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Table 96. Flash memory endurance and data retention . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
Table 97. EMS characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Table 98. EMI characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Table 99. ESD absolute maximum ratings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Table 100. Electrical sensitivities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Table 101. I/O current injection susceptibility . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 229
Table 102. I/O static characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Table 103. Output voltage characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 233
Table 104. I/O AC characteristics (All I/Os except FT_c) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Table 105. FT_c I/O AC characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Table 106. NRST pin characteristics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
List of figures
Figure 49. SPI timing diagram - slave mode and CPHA = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Figure 50. SPI timing diagram - master mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Figure 51. SAI master timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Figure 52. SAI slave timing waveforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277
Figure 53. USART master mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Figure 54. USART slave mode timing diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 279
Figure 55. Asynchronous non-multiplexed SRAM/PSRAM/NOR read waveforms . . . . . . . . . . . . . . 280
Figure 56. Asynchronous non-multiplexed SRAM/PSRAM/NOR write waveforms . . . . . . . . . . . . . . 282
Figure 57. Asynchronous multiplexed PSRAM/NOR read waveforms. . . . . . . . . . . . . . . . . . . . . . . . 283
Figure 58. Asynchronous multiplexed PSRAM/NOR write waveforms . . . . . . . . . . . . . . . . . . . . . . . 285
Figure 59. Synchronous multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Figure 60. Synchronous multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 289
Figure 61. Synchronous non-multiplexed NOR/PSRAM read timings . . . . . . . . . . . . . . . . . . . . . . . . 291
Figure 62. Synchronous non-multiplexed PSRAM write timings . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
Figure 63. NAND controller waveforms for read access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Figure 64. NAND controller waveforms for write access . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 295
Figure 65. NAND controller waveforms for common memory read access . . . . . . . . . . . . . . . . . . . . 296
Figure 66. NAND controller waveforms for common memory write access. . . . . . . . . . . . . . . . . . . . 296
Figure 67. OCTOSPI timing diagram - SDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Figure 68. OCTOSPI timing diagram - DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Figure 69. OCTOSPI HyperBus clock . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Figure 70. OCTOSPI HyperBus read. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Figure 71. OCTOSPI HyperBus read with double latency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Figure 72. OCTOSPI HyperBus write . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
Figure 73. SDIO high-speed mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Figure 74. SD default mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Figure 75. DDR mode . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 306
Figure 76. LQFP48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308
Figure 77. LQFP48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309
Figure 78. Example of LQFP48 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . 310
Figure 79. UFQFPN48 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311
Figure 80. UFQFPN48 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Figure 81. Example of UFQFPN48 package marking (package top view). . . . . . . . . . . . . . . . . . . . . 313
Figure 82. LQFP64 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 314
Figure 83. LQFP64 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Figure 84. Example of LQFP64 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . . 316
Figure 85. WLCSP81 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Figure 86. WLCSP 81 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318
Figure 87. Example of WLCSP81 package marking (package top view). . . . . . . . . . . . . . . . . . . . . . 319
Figure 88. LQFP100 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 320
Figure 89. LQFP100 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 321
Figure 90. Example of LQFP100 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . 322
Figure 91. UFBGA132 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 323
Figure 92. UFBGA132 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 324
Figure 93. Example of UFBGA132 package marking (package top view) . . . . . . . . . . . . . . . . . . . . 325
Figure 94. LQFP144 outline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 326
Figure 95. LQFP144 recommended footprint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328
Figure 96. Example of LQFP144 package marking (package top view) . . . . . . . . . . . . . . . . . . . . . . 329
1 Introduction
This document provides the ordering information and mechanical device characteristics of
the STM32L552xx microcontrollers.
This document should be read in conjunction with the STM32L552xx and STM32L562xx
reference manual (RM0438).
For information on the Arm®(a) Cortex®-M33 core, refer to the Cortex®-M33 Technical
Reference Manual, available from the www.arm.com website.
a. Arm is a registered trademark of Arm Limited (or its subsidiaries) in the US and/or elsewhere.
2 Description
- USB device FS
- USB Type-C / USB power delivery controller
The devices operate in the -40 to +85 °C (+105 °C junction) and -40 to +125 °C (+130 °C
junction) temperature ranges from a 1.71 to 3.6 V power supply. A comprehensive set of
power-saving modes allows the design of low-power applications.
Some independent power supplies are supported like an analog independent supply input
for ADC, DAC, OPAMPs and comparators, a 3.3 V dedicated supply input for USB and up to
14 I/Os, which can be supplied independently down to 1.08 V. A VBAT input allows the
backup of the RTC and the backup of the registers.
The STM32L552xx devices offer seven packages from 48-pin to 144-pin.
STM32L552QExxQ,
STM32L552MExxP/
STM32L552ZExxQ,
STM32L552MExxQ
STM32L552QCxxQ
STM32L552RExxQ
STM32L552VCxxQ
STM32L552VExxQ,
STM32L552QExxP/
STM32L552ZCxxQ
STM32L552CExxP
STM32L552RExxP/
STM32L552CC/
STM32L552RC/
STM32L552CE,
STM32L552RE,
STM32L552VE/
STM32L552ZE/
Peripherals
STM32L552QExxQ,
STM32L552MExxP/
STM32L552ZExxQ,
STM32L552MExxQ
STM32L552QCxxQ
STM32L552RExxQ
STM32L552VCxxQ
STM32L552VExxQ,
STM32L552QExxP/
STM32L552ZCxxQ
STM32L552RExxP/
STM32L552CExxP
STM32L552CC/
STM32L552RC/
STM32L552CE,
STM32L552RE,
STM32L552VE/
STM32L552ZE/
Peripherals
SPI 3
I2C 4
USART(1)/UART 3/2 (2)
UART 2
Communication LPUART 1
interfaces
SAI 2
FDCAN 1
USB FS Yes
SDMMC No Yes/No/Yes Yes
Digital filters for sigma-
Yes (4 filters)
delta modulators
Number of channels 8
Real time clock (RTC) Yes
Tamper pins 3 4/4/3 3 5/4 5 8/7
True random number generator Yes
HASH (SHA-256) Yes
GPIOs 38/36 52/50/47 54/51 83/79 108/105 115 /111
Wakeup pins 3 4/3/3 3 5/4 5 5/4
Nb of I/Os down to 1.08 V 0 0 6 0 13/10 14/13
Capacitive sensing
5 10/10/9 10 19/18 22 22/21
Number of channels
12-bit ADC 2
ADC Number of
9 16/16/15 16/15 16/14 16 16/14
channels
12-bit DAC 1
DAC Number of
2
channels
Internal voltage
Yes
reference buffer
Analog comparator 2
Operational amplifiers 2
Max. CPU frequency 110 MHz
STM32L552QExxQ,
STM32L552MExxP/
STM32L552ZExxQ,
STM32L552MExxQ
STM32L552QCxxQ
STM32L552RExxQ
STM32L552VCxxQ
STM32L552VExxQ,
STM32L552QExxP/
STM32L552ZCxxQ
STM32L552RExxP/
STM32L552CExxP
STM32L552CC/
STM32L552RC/
STM32L552CE,
STM32L552RE,
STM32L552VE/
STM32L552ZE/
Peripherals
Icache
8KB
110 MHz RNG
C-BUS
TrustZone
FPU Flash HASH
up to
512KB
S-BUS
@ VDDUSB
AHB bus-matrix
SRAM 192 KB
DP
FIFO
PHY
D[7:0], D[3:1]dir SRAM 64 KB USB FS DM
FIFO
CMD, CMDdir,CK, CKin SDMMC1
D0dir, D2dir
VDD Power management
AHB1 110AHB1
PA[15:0] GPIO PORT A 4- 16MHz OSC_OUT
PCLKx
HCLKx
AWU
RTC_TAMP[8:1]
PG[15:0] GPIO PORT G Backup register
RTC_OUT
PH[1:0] GPIO PORT H VBAT = 1.55 to 3.6 V
RTS as AF irDA
3 0 M Hz
FDCAN1 TX, RX as AF
MOSI, MISO,
SPI1
P B 1(max)
SCK, NSS as AF
2 110MHz
MCLK_B, SD_B, FS_B, SCK_B as AF TIM7 16b OpAmp1 OUT, INN, INP
60P
A
SYSCFG @ VDDUSB
DP
PHY
UCPD1
DM
@ VDDA
OUT1 OUT2
32-bits AHB bus 32-bits APB bus VDDIO2 power domain VDDUSB power domain
MSv49361V6
3 Functional overview
TrustZone security
When the TrustZone security is enabled, the whole Flash is secure after reset and the
following protections are available:
• Non-volatile watermark-based secure Flash area: the secure area can be accessed
only in secure mode.
– In single bank mode, four areas can be selected with a page granularity.
– In dual bank mode, one area per bank can be selected with a page granularity.
• Secure hidden protection area: it is part of the Flash secure area and it can be
protected to deny an access to this area by any data read, write and instruction fetch.
For example, a software code in the secure Flash memory hidden protection area can
be executed only once and deny any further access to this area until next system reset.
• Volatile block-based secure Flash area. In a block-based secure area, each page can
be programmed on-the-fly as secure or non-secure.
TrustZone security
When the TrustZone security is enabled, all SRAMs are secure after reset. The SRAM can
be programmed as non-secure by block based using the MPCBB (memory protection
controller block based) in GTZC controller. The granularity of SRAM secure block based is a
page of 256 bytes.
The RSS is available on all devices, after enabling the TrustZone through the TZEN option
bit.
Refer to the application note Overview secure firmware install (SFI) (AN4992) for more
details.
Refer to Table 3 and Table 4 for boot modes when TrustZone is disabled and enabled
respectively.
When TrustZone is enabled by setting the TZEN option bit, the boot space must be in
secure area. The SECBOOTADD0[24:0] option bytes are used to select the boot secure
memory address.
A unique boot entry option can be selected by setting the BOOT_LOCK option bit, allowing
to boot always at the address selected by SECBOOTADD0[24:0] option bytes. All other boot
options are ignored.
The boot address option bytes enables the possibility to program any boot memory address.
However, the allowed address space depends on Flash read protection RDP level.
If the programmed boot memory address is out of the allowed memory mapped area when
RDP level is 0.5 or more, the default boot fetch address is forced to:
• 0x0800 0000 (when TZEN = 0)
• RSS (when TZEN = 1)
Refer to Table 5.
0.5 N/A
1 Any boot address
0x0800_0000
Non-secure Non-secure Non-secure
Code - Flash and 0x0BFF_FFFF
SRAM 0x0C00_0000
NSC Secure or NSC Secure or NSC
0x0FFF_FFFF
0x1000_0000
Code - external 0x17FF_FFFF
Non-secure
memories 0x1800_0000
Non-secure
0x1FFF_FFFF
0x2000_0000
Non-secure
0x2FFF_FFFF
SRAM
0x3000_0000
NSC Secure or NSC Secure or NSC
0x3FFF_FFFF
0x4000_0000
Non-secure Non-secure Non-secure
0x4FFF_FFFF
Peripherals
0x5000_0000
NSC Secure or NSC Secure or NSC
0x5FFF_FFFF
0x6000_0000 Secure or non- Secure or non-
External memories Non-secure
0xDFFF_FFFF secure or NSC secure or NSC
OCTOSPI1 registers
AHB3
FMC registers
SDMMC1
AHB 2 RNG
ADC
ICACHE registers
AHB1 TSC
CRC
DFSDM1
SAI2
SAI1
TIM17
TIM16
TIM15
APB2
USART1
TIM8
SPI1
TIM1
COMP
VREFBUF
UCPD1
USB FS
FDCAN1
LPTIM3
LPTIM2
I2C4
LPUART1
LPTIM1
OPAMP
DAC1
CRS
I2C3
I2C2
I2C1
APB1
UART5
UART4
USART3
USART2
SPI3
SPI2
IWDG
WWDG
TIM7
TIM6
TIM5
TIM4
TIM3
TIM2
GPIOH
GPIOG
GPIOF
GPIOE
AHB2
GPIOD
GPIOC
GPIOB
GPIOA
MPCBB2
MPCBB1
MPCWM2
MPCWM1
TZIC
TZSC
AHB1
EXTI
Flash memory
RCC
DMAMUX1
DMA2
DMA1
APB2 SYSCFG
PWR
APB1
RTC
VDDA domain
2 x A/D converters
VDDA 2 x comparators
2 x D/A converters
VSSA 2 x operational amplifiers
Voltage reference buffer
VDDUSB
USB transceivers
VSS
VDDIO2 domain
VDDIO2 VDDIO2
I/O ring
VSS PG[15:2]
VDD domain
VDDIO1 I/O ring
Flash memory
Low voltage detector
Backup domain
LSE crystal 32 K osc
VBAT
BKP registers
RCC BDCR register
RTC
MSv49301V1
VDDA domain
2 x A/D converters
VDDA 2 x comparators
2 x D/A converters
VSSA 2 x operational amplifiers
Voltage reference buffer
VDDUSB
USB transceivers
VSS
VDDIO2 domain
VDDIO2 VDDIO2
I/O ring
VSS PG[15:2]
VDD domain
VDDIO1 I/O ring
VCORE domain
Reset block
Temp. sensor
Core
3 x PLL, HSI, MSI
SRAM1
Standby circuitry SRAM2
VSS (Wakeup logic,
IWDG) Digital
VDD VCORE peripherals
Voltage regulator
2x VDD12
Flash memory
Low voltage detector
Backup domain
LSE crystal 32 K osc
VBAT
BKP registers
RCC BDCR register
RTC
MSv49336V1
VDDA domain
2 x A/D converters
VDDA 2 x comparators
2 x D/A converters
VSSA 2 x operational amplifiers
Voltage reference buffer
VDDUSB
USB transceivers
VSS
VDDIO2 domain
VDDIO2 VDDIO2
I/O ring
VSS
VDD domain
VDDIO1 I/O ring
Reset block
Temp. sensor
3 x PLL, HSI, MSI
VCORE domain
Standby circuitry
VSS (Wakeup logic,
IWDG) Core
VDD
Voltage regulator SRAM1
2 x V15SMPS VCORE SRAM2
MR
VLXSMPS Digital
VDDSMPS SMPS
LPR peripherals
VSSSMPS
Backup domain
LSE crystal 32 K osc
VBAT
BKP registers
RCC BDCR register
RTC
MSv49332V1
During power-up and power-down phases, the following power sequence requirements
must be respected:
• When VDD is below 1 V, other power supplies (VDDA, VDDIO2 and VDDUSB) must remain
below VDD +300 mV.
• When VDD is above 1 V, all power supplies are independent.
• During the power-down phase, VDD can temporarily become lower than other supplies
only if the energy provided to the MCU remains below 1 mJ; this allows external
decoupling capacitors to be discharged with different time constants during the power-
down transient phase.
3.6
VDDX(1)
VDD
VBOR0
0.3
Invalid supply area VDDX < VDD + 300 mV VDDX independent from VDD
MSv47490V1
1. VDDX refers to any power supply among VDDA, VDDIO2 and VDDUSB.
The ultra-low-power STM32L552xx devices support dynamic voltage scaling to optimize its
power consumption in Run mode. The voltage from the main regulator that supplies the
logic (VCORE) can be adjusted according to the system’s maximum operating frequency.
The main regulator operates in the following ranges:
• Range 0 with the CPU running at up to 110 MHz.
• Range 1 with the CPU running at up to 80 MHz.
• Range 2 with a maximum CPU frequency of 26 MHz. All peripheral clocks are also
limited to 26 MHz.
The VCORE can be supplied by the low-power regulator, the main regulator being switched
off. The system is then in Low-power run mode.
• Low-power run mode with the CPU running at up to 2 MHz. Peripherals with
independent clock can be clocked by the HSI16.
VDD VDDSMPS
VLXSMPS SMPS
Step Down
Converter
V15SMPS
V15SMPS VCORE
Main
VSSSMPS VDD regulator
VSS
MSv49346V1
If the selected package is with the SMPS step down converter option but it is never used by
the application, it is recommend to set the SMPS power supply pins as follows:
• VDDSMPS and VLXSMPS connected to VSS
• V15SMPS connected to VDD
Functional overview
The ultra-low-power STM32L552xx devices support seven low-power modes to achieve the best compromise between low-power
consumption, short startup time, available peripherals and available wake-up sources. Table 11 shows the related STM32L552xx
modes overview.
Ranges 0/1
All
SMPS HP mode
Run Yes ON(3) ON Any N/A
Range 2
All except USB_FS, RNG
SMPS LP or HP mode
Any
LPRun LPR Yes ON(3) ON All except USB_FS, RNG N/A
except PLL
DS12737 Rev 6
Ranges 0/1
All
SMPS HP mode
Sleep No ON(3) ON(4) Any Any interrupt or event
Range 2
All except USB_FS, RNG
SMPS LP or HP mode
Any
LPSleep LPR No ON(3) ON(4) All except USB_FS, RNG Any interrupt or event
except PLL
BOR, PVD, PVM
RTC, IWDG Reset pin, all I/Os
COMPx (x=1,2) BOR, PVD, PVM
DAC1 RTC, IWDG
OPAMPx (x=1,2) COMPx (x=1..2)
LSE
Stop 0(5) Ranges 0/1/2 No Off ON USARTx (x=1...5)(6) USARTx (x=1...5)(6)
LSI
LPUART1(6) LPUART1(6)
I2Cx (x=1...4)(7) I2Cx (x=1...4)(7)
STM32L552xx
LPTIMx (x=1,2) LPTIMx (x=1,2)
*** USB_FS(8)
All other peripherals are frozen
Table 10. STM32L552xx modes overview (continued)
STM32L552xx
Regulator and SMPS
Mode CPU Flash SRAM Clocks DMA and Peripherals(2) Wakeup source
mode(1)
Functional overview
41/340
Table 10. STM32L552xx modes overview (continued)
42/340
Functional overview
Regulator and SMPS
Mode CPU Flash SRAM Clocks DMA and Peripherals(2) Wakeup source
mode(1)
STM32L552xx
STM32L552xx Functional overview
By default, the microcontroller is in Run mode after a system or a power reset. It is up to the
user to select one of the low-power modes described below:
• Sleep mode
In Sleep mode, only the CPU is stopped. All peripherals continue to operate and can
wake up the CPU when an interrupt/event occurs.
• Low-power run mode
This mode is achieved with VCORE supplied by the low-power regulator to minimize
the regulator's operating current. The code can be executed from SRAM or from Flash,
and the CPU frequency is limited to 2 MHz. The peripherals with independent clock can
be clocked by HSI16.
• Low-power sleep mode
This mode is entered from the Low-power run mode. Only the CPU clock is stopped.
When wakeup is triggered by an event or an interrupt, the system reverts to the Low-
power run mode.
• Stop 0, Stop 1 and Stop 2 modes
Stop mode achieves the lowest power consumption while retaining the content of
SRAM and registers. All clocks in the VCORE domain are stopped, the PLL, the MSI
RC, the HSI16 RC and the HSE crystal oscillators are disabled. The LSE or LSI is still
running.
The RTC can remain active (Stop mode with RTC, Stop mode without RTC).
Some peripherals with wake-up capability can enable the HSI16 RC during Stop mode
to detect their wake-up condition.
Three Stop modes are available: Stop 0, Stop 1 and Stop 2 modes. In Stop 2 mode,
most of the VCORE domain is put in a lower leakage mode.
Stop 1 offers the largest number of active peripherals and wakeup sources, a smaller
wakeup time but a higher consumption than Stop 2. In Stop 0 mode, the main regulator
remains ON, allowing a very fast wakeup time but with much higher consumption.
The system clock when exiting from Stop 0, Stop 1 or Stop 2 modes can be either MSI
up to 48 MHz or HSI16, depending on software configuration.
• Standby mode
The Standby mode is used to achieve the lowest power consumption with BOR. The
internal regulator is switched off so that the VCORE domain is powered off. The PLL,
the MSI RC, the HSI16 RC and the HSE crystal oscillators are also switched off.
The RTC can remain active (Standby mode with RTC, Standby mode without RTC).
The Brownout reset (BOR) always remains active in Standby mode.
The state of each I/O during Standby mode can be selected by software: I/O with
internal pull-up, internal pull-down or floating.
After entering Standby mode, SRAM1 and register contents are lost except for registers
in the Backup domain and Standby circuitry. Optionally, the full SRAM2 or 4 Kbytes can
be retained in Standby mode, supplied by the low-power regulator (standby with RAM2
retention mode).
The BORL (brown out detector low) can be configured in ultra-low-power mode to
further reduce power consumption during standby mode.
The device exits Standby mode when an external reset (NRST pin), an IWDG reset,
WKUP pin event (configurable rising or falling edge), or an RTC event occurs (alarm,
periodic wakeup, timestamp, tamper) or a failure is detected on LSE (CSS on LSE).
The system clock after wakeup is MSI up to 8 MHz.
• Shutdown mode
The Shutdown mode allows to achieve the lowest power consumption. The internal
regulator is switched off so that the VCORE domain is powered off. The PLL, the
HSI16, the MSI, the LSI and the HSE oscillators are also switched off.
The RTC can remain active (Shutdown mode with RTC, Shutdown mode without RTC).
The BOR is not available in Shutdown mode. No power voltage monitoring is possible
in this mode, therefore the switch to Backup domain is not supported.
SRAM1, SRAM2 and register contents are lost except for registers in the Backup
domain.
The device exits Shutdown mode when an external reset (NRST pin), a WKUP pin
event (configurable rising or falling edge), or an RTC event occurs (alarm, periodic
wakeup, timestamp, tamper).
The system clock after wakeup is MSI at 4 MHz.
Wakeup capability
Wakeup capability
Wakeup capability
Wakeup capability
Low- Low-
Peripheral Run Sleep power power VBAT
run sleep - - - -
CPU Y - Y - - - - - - - - - -
Flash memory
O(2) O(2) O(2) O(2) - - - - - - - - -
(512 Kbyte)
SRAM1
Y Y(3) Y Y(3) Y - Y - - - - - -
(192 Kbytes)
SRAM2 (64 Kbytes) Y Y(3) Y Y(3) Y - Y - O(4) - - - -
FSMC O O O O - - - - - - - - -
OCTOSPI O O O O - - - - - - - - -
Backup registers Y Y Y Y Y - Y - Y - Y - Y
Brownout reset
Y Y Y Y Y Y Y Y Y Y - - -
(BOR)
Programmable
voltage detector O O O O O O O O - - - - -
(PVD)
Peripheral voltage
monitor (PVMx; O O O O O O O O - - - - -
x=1,2,3,4)
DMA O O O O - - - - - - - - -
High speed internal (5) (5)
O O O O - - - - - - -
(HSI16)
Oscillator HSI48 O O - - - - - - - - - - -
High speed external
O O O O - - - - - - - - -
(HSE)
Low speed internal
O O O O O - O - O - - - -
(LSI)
Low speed external
O O O O O - O - O - O - O
(LSE)
Multi speed internal
O O O O - - - - - - - - -
(MSI)
Clock security
O O O O - - - - - - - - -
system (CSS)
Clock security
O O O O O O O O O O - - -
system on LSE
Wakeup capability
Wakeup capability
Wakeup capability
Wakeup capability
Low- Low-
Peripheral Run Sleep power power VBAT
run sleep - - - -
VDD voltage
monitoring,
O O O O O O O O O O - - -
temperature
monitoring
RTC / TAMP O O O O O O O O O O O O O
Number of RTC
8 8 8 8 8 O 8 O 8 O 8 O 3
Tamper pins
USB, UCPD O(8) O(8) - - - O - - - - - - -
USARTx
O O O O O(6) O(6) - - - - - - -
(x=1,2,3,4,5)
Low-power UART
O O O O O(6) O(6) O(6) O(6) - - - - -
(LPUART)
I2Cx (x=1,2,4) O O O O O(7) O(7) - - - - - - -
(7)
I2C3 O O O O O O(7) O(7) O(7) - - - - -
SPIx (x=1,2,3) O O O O - - - - - - - - -
FDCAN1 O O O O - - - - - - - - -
SDMMC1 O O O O - - - - - - - - -
SAIx (x=1,2) O O O O - - - - - - - - -
DFSDM1 O O O O - - - - - - - - -
ADCx (x=1,2) O O O O - - - - - - - - -
DAC1 O O O O O - - - - - - - -
VREFBUF O O O O O - - - - - - - -
OPAMPx (x=1,2) O O O O O - - - - - - - -
COMPx (x=1,2) O O O O O O O O - - - - -
Temperature sensor O O O O - - - - - - - - -
Timers (TIMx) O O O O - - - - - - - - -
Low-power timer 1,
3 (LPTIM1 and O O O O O O O O - - - - -
LPTIM3)
Low-power timer 2
O O O O O O - - - - - - -
(LPTIM2)
Independent
O O O O O O O O O O - - -
watchdog (IWDG)
Wakeup capability
Wakeup capability
Wakeup capability
Wakeup capability
Low- Low-
Peripheral Run Sleep power power VBAT
run sleep - - - -
Window watchdog
O O O O - - - - - - - - -
(WWDG)
SysTick timer O O O O - - - - - - - - -
Touch sensing
O O O O - - - - - - - - -
controller (TSC)
Random number
O(8) O(8) - - - - - - - - - - -
generator (RNG)
CRC calculation
O O O O - - - - - - - - -
unit
5 5
GPIOs O O O O O (9) (11)
O O O pins pins -
(10) (10)
1. Legend: Y = yes (enable). O = optional (disable by default, can be enabled by software). - = not available.
Gray cells highlight the wakeup capability in each mode.
2. The Flash can be configured in Power-down mode. By default, it is not in Power-down mode.
3. The SRAM clock can be gated on or off.
4. 4 Kbytes or full SRAM2 content is preserved depending on RRS[1:0] bits configuration in PWR_CR3 register.
5. Some peripherals with wakeup from Stop capability can request HSI16 to be enabled. In this case, HSI16 is woken up by
the peripheral, and only feeds the peripheral which requested it. HSI16 is automatically put off when the peripheral does not
need it anymore.
6. UART and LPUART reception is functional in Stop mode, and generates a wakeup interrupt on Start, address match or
received frame event.
7. I2C address detection is functional in Stop mode, and generates a wakeup interrupt in case of address match.
8. Voltage scaling ranges 0 and 1 only.
9. I/Os can be configured with internal pull-up, pull-down or floating in Standby mode.
10. The I/Os with wakeup from standby/shutdown capability are: PA0, PC13, PE6, PA2, PC5.
11. I/Os can be configured with internal pull-up, pull-down or floating in Shutdown mode but the configuration is lost when
exiting the Shutdown mode.
supercapacitor is present. The VBAT pin supplies the RTC with LSE and the backup
registers. Three anti-tamper detection pins are available in VBAT mode.
The VBAT operation is automatically activated when VDD is not present. An internal VBAT
battery charging circuit is embedded and can be activated when VDD is present.
Note: When the microcontroller is supplied from VBAT, neither external interrupts nor RTC
alarm/events exit the microcontroller from the VBAT operation.
Stop 0 / Stop 1
Stop 2
Sleep
Interconnect
Run
Low-power sleep
Low-power run
Stop 0 / Stop 1
Stop 2
Sleep
Interconnect
Run
Interconnect source Interconnect action
destination
All clocks sources (internal TIM2 Clock source used as input channel for
Y Y Y Y - -
and external) TIM15, 16, 17 RC measurement and trimming
interrupt is generated if enabled. LSE failure can also be detected and generated an
interrupt.
• Clock-out capability:
– MCO (microcontroller clock output): it outputs one of the internal clocks for
external use by the application
– LSCO (low-speed clock output): it outputs LSI or LSE in all low-power modes
(except VBAT).
Several prescalers allow to configure the AHB frequency, the high speed APB (APB2) and
the low-speed APB (APB1) domains. The maximum frequency of the AHB and the APB
domains is 110 MHz.
LSCO
to RTC
OSC32_OUT
LSE OSC
/32
32.768 kHz
OSC32_IN
LSE to PWR
LSI
MSI to AHB bus, core, memory and DMA
MCO HSI16
/ 1→16 HSE AHB PRESC HCLK FCLK Cortex free running clock
SYSCLK / 1,2,..512
PLLCLK to Cortex system timer
HSI48 /8
Clock
source APB1 PRESC PCLK1
control / 1,2,4,8,16 to APB1 peripherals
OSC_OUT HSE OSC
4-48 MHz
HSE x1 or x2
to TIMx
OSC_IN Clock MSI x=2..7
SYSCLK
detector HSI16 LSE
HSI16 to USARTx
SYSCLK X=2..5
HSI RC to LPUART1
16 MHz
HSI16
MSI RC SYSCLK to I2Cx
100 kHz – 48 MHz x=1,2,3,4
RC 48 MHz LSI
LSE to LPTIMx
HSI16 x=1,2
MSI
PLL HSI16 MSI
/M
HSE OCTOSPI clock
/P PLLSAI3CLK
48 SDMMC clock
HSI16 MSI MHz
48 MHz clock to USB, RNG
SYSCLK
to ADC
FDCAN HSI16
To UCPD1
MSI HSE
HSI16 MSI
/M
PLLSAI2 HSE HSI16
/P PLLSAI2CLK DFSDM
audio clock
/Q
HSI16 to SAI1
/R
SAI1_EXTCLK
to SAI2
SAI2_EXTCLK
MSv49302V2
TrustZone security
When the TrustZone security is activated by the TZEN option bit, the RCC is switched in
TrustZone security mode.
The RCC TrustZone security allows to secure some RCC system configuration and
peripheral configuration clock from being read or modified by non-secure accesses:
• RCC system security:
– HSE, HSE-CSS, HSI, MSI, LSI, LSE, LSE-CSS, HSI48 configuration and status
bits
– Main PLL, PLLSAI1, PLLSAI2, AHB prescaler configuration and status bits
– System clock SYSCLK and HSI48 source clock selection and status bits
– MCO clock output configuration and STOPWUCK bit
– Reset flag RMVF configuration bit
• RCC peripheral security:
– When a peripheral is secure, the related peripheral clock, reset, clock source
selection and clock enable during low power modes control bits are secure.
• A peripheral is in secure state when:
– For securable peripherals, when it's corresponding SEC security bit is set in the
TZSC (TrustZone security controller)
– For TrustZone-aware peripherals, a security feature of this peripheral is enabled
through its dedicated bits.
CORTEX®-M33 Legend
DMA1 DMA2 SDMMC1
with TrustZone and FPU Bus multiplexer Master Interface
C-bus
Slave Interface
S-bus
FLASH
512 KB
MPCBB1 SRAM1
MPCBB2 SRAM2
AHB1
peripherals
AHB2
peripherals
MPCWM1 OctoSPI1
MPCWM2 FSMC
MPCWM3
BusMatrix-S
MSv61198V1
TrustZone security
When the TrustZone security is enabled, the whole FSMC banks are secure after reset.
Non-secure area can be configured using the TZSC MPCWMx controller.
• The FSMC NOR/PSRAM bank:
– Up to two non-secure area can be configured thought the TZSC MPCWM2
controller with a granularity of 64 Kbytes.
• The FSMC NAND bank:
– Can be either configured as fully secure or fully non-secure using the TZSC
MPCWM3 controller.
The FSMC registers can be configured as secure through the TZSC controller.
TrustZone security
When the TrustZone security is enabled, the whole OCTOSPI bank is secure after reset.
Up to two non-secure area can be configured thought the TZSC MPCWM1 controller with a
granularity of 64 Kbytes.
The OCTOSPI registers can be configured as secure through the TZSC controller.
VREFBUF
VDDA DAC, ADC
Bandgap + VREF+
Low frequency
100 nF
cut-off capacitor
MSv40197V1
Any integer
Advanced Up, down,
TIM1, TIM8 16-bit between 1 Yes 4 3
control Up/down
and 65536
Any integer
General- Up, down,
TIM2, TIM5 32-bit between 1 Yes 4 No
purpose Up/down
and 65536
Any integer
General- Up, down,
TIM3, TIM4 16-bit between 1 Yes 4 No
purpose Up/down
and 65536
Any integer
General-
TIM15 16-bit Up between 1 Yes 2 1
purpose
and 65536
Any integer
General-
TIM16, TIM17 16-bit Up between 1 Yes 1 1
purpose
and 65536
Any integer
Basic TIM6, TIM7 16-bit Up between 1 Yes 0 No
and 65536
• Up to 16 slots available with configurable size and with the possibility to select which
ones are active in the audio frame.
• Number of bits by frame may be configurable.
• Frame synchronization active level configurable (offset, bit length, level).
• First active bit position in the slot is configurable.
• LSB first or MSB first for data transfer.
• Mute mode.
• Stereo/Mono audio frame capability.
• Communication clock strobing edge configurable (SCK).
• Error flags with associated interrupts if enabled respectively.
– Overrun and underrun detection.
– Anticipated frame synchronization signal detection in slave mode.
– Late frame synchronization signal detection in slave mode.
– Codec not ready for the AC’97 mode in reception.
• Interruption sources when enabled:
– Errors.
– FIFO requests.
• DMA interface with two dedicated channels to handle access to the dedicated
integrated FIFO of each SAI audio sub-block.
The controller uses specific I/Os supporting the USB Type-C and USB Power Delivery
requirements, featuring:
• USB Type-C pull-up (Rp, all values) and pull-down (Rd) resistors
• “Dead battery” support
• USB Power Delivery message transmission and reception
• FRS (fast role swap) support
The digital controller handles notably:
• USB Type-C level detection with debounce, generating interrupts
• FRS detection, generating an interrupt
• Byte-level interface for USB Power Delivery payload, generating interrupts (DMA
compatible)
• USB Power Delivery timing dividers (including a clock pre-scaler)
• CRC generation/checking
• 4b5b encode/decode
• Ordered sets (with a programmable ordered set mask at receive)
• Frequency recovery in receiver during preamble
The interface offers low-power operation compatible with Stop mode, maintaining the
capacity to detect incoming USB Power Delivery messages and FRS signaling.
PH3-BOOT0
PA15
PA14
VDD
VSS
PB4
PB9
PB8
PB7
PB6
PB5
PB3
48
47
46
45
44
43
42
41
40
39
38
37
VBAT 1 36 VDD
PC13 2 35 VSS
PC14_OSC32_IN 3 34 PA13
PC15_OSC32_OUT 4 33 PA12
PH0-OSC_IN 5 32 PA11
PH1-OSC_OUT 6 31 PA10
NRST 7
LQFP48 30 PA9
VSSA/VREF- 8 29 PA8
VDDA/VREF+ 9 28 PB15
PA0 10 27 PB14
PA1 11 26 PB13
PA2 12 25 PB12
13
14
15
16
17
18
19
20
21
22
23
24
PB0
PB1
PB2
VSS
PB10
VDD
PA3
PA4
PA5
PA6
PA7
PB11
MSv49322V1
PA14
VSS
PA15
PB8
PB7
PB6
PB5
PB3
PB4
48
47
46
45
44
43
42
41
40
39
38
37
VBAT 1 36 VDD
PC13 2 35 VSS
PC14-OSC_IN 3 34 PA13
PC15-OSC_OUT 4 33 PA12
PH0-OSC_IN 5 32 PA11
PH1-OSC_OUT 6 31 PA10
NRST 7
LQFP48 30 PA9
VSSA/VREF- 8 29 PA8
VDDA/VREF+ 9 28 PB15
PA0 10 27 PB14
PA1 11 26 PB13
PA2 12 25 PB12
13
14
15
16
17
18
19
20
21
22
23
24
PB0
PB1
PB2
PB10
VDD12_1
VSS
VDD
PA3
PA4
PA5
PA6
PA7
MSv49311V1
PH3-BOOT0
PA15
PA14
VDD
VSS
PB9
PB8
PB7
PB6
PB5
PB4
PB3
48
47
46
45
44
43
42
41
40
39
38
37
VBAT 1 36 VDD
PC13 2 35 VSS
PC14-OSC32_IN 3 34 PA13
PC15-OSC32_OUT 4 33 PA12
PH0-OSC_IN 5 32 PA11
PH1-OSC_OUT 6 31 PA10
NRST 7
UFQFPN48 30 PA9
VSSA/VREF- 8 29 PA8
VDDA/VREF+ 9 28 PB15
PA0 10 27 PB14
PA1 11 26 PB13
PA2 12 25 PB12
13
14
15
16
17
18
19
20
21
22
23
24
PB0
PB1
PB2
VSS
PB10
VDD
PA3
PA4
PA5
PA6
PA7
PB11
MSv49321V2
PA15
PA14
VDD
VSS
PB8
PB7
PB6
PB5
PB4
PB3
48
47
46
45
44
43
42
41
40
39
38
37
VBAT 1 36 VDD
PC13 2 35 VSS
PC14-OSC_IN 3 34 PA13
PC15-OSC_OUT 4 33 PA12
PH0-OSC_IN 5 32 PA11
PH1-OSC_OUT 6 31 PA10
NRST 7
UFQFPN48 30 PA9
VSSA/VREF- 8 29 PA8
VDDA/VREF+ 9 28 PB15
PA0 10 27 PB14
PA1 11 26 PB13
PA2 12 25 PB12
13
14
15
16
17
18
19
20
21
22
23
24
PB0
PB1
PB2
VSS
PB10
VDD12_1
VDD
PA3
PA4
PA5
PA6
PA7
MSv49310V2
PH3-BOOT0
PC12
PC10
PC11
PA15
PA14
VDD
VSS
PD2
PB9
PB8
PB7
PB6
PB5
PB4
PB3
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
VBAT 1 48 VDDUSB
PC13 2 47 VSS
PC14-OSC32_IN 3 46 PA13
PC15-OSC32_OUT 4 45 PA12
PH0-OSC_IN 5 44 PA11
PH1-OSC_OUT 6 43 PA10
NRST 7 42 PA9
PC0 8 41 PA8
PC1 9 LQFP64 40 PC9
PC2 10 39 PC8
PC3 11 38 PC7
VSSA/VREF- 12 37 PC6
VDDA/VREF+ 13 36 PB15
PA0 14 35 PB14
PA1 15 34 PB13
PA2 16 33 PB12
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
VSS
VDD
PC4
PC5
PB0
PB1
PB2
VSS
PB10
VDD
PA3
PA4
PA5
PA6
PA7
PB11
MSv49323V1
PH3-BOOT0
PC12
PC10
PC11
PA15
PA14
VDD
VSS
PD2
PB8
PB7
PB6
PB5
PB4
PB3
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
VBAT 1 48 VDDUSB
PC13 2 47 VSS
PC14-OSC32_IN 3 46 PA13
PC15-OSC32_OUT 4 45 PA12
PH0-OSC_IN 5 44 PA11
PH1-OSC_OUT 6 43 PA10
NRST 7 42 PA9
PC0 8 41 PA8
PC1 9 LQFP64 40 PC9
PC2 10 39 PC8
PC3 11 38 PC7
VSSA/VREF- 12 37 PC6
VDDA/VREF+ 13 36 PB15
PA0 14 35 PB14
PA1 15 34 PB13
PA2 16 33 VDD
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
VSS
VDD
PB0
PB1
PB2
PB10
VDDSMPS
VLXSMPS
VSSSMPS
VSS
V15SMPS_1
PA3
PA4
PA5
PA6
PA7
MSv49316V1
PH3-BOOT0
VDD12_2
PC12
PC10
PC11
PA15
PA14
VDD
VSS
PB9
PB8
PB7
PB6
PB5
PB4
PB3
64
63
62
61
60
59
58
57
56
55
54
53
52
51
50
49
VBAT 1 48 VDDUSB
PC13 2 47 VSS
PC14-OSC32_IN 3 46 PA13
PC15-OSC32_OUT 4 45 PA12
PH0-OSC_IN 5 44 PA11
PH1-OSC_OUT 6 43 PA10
NRST 7 42 PA9
PC0 8 41 PA8
PC1 9 LQFP64 40 PC9
PC2 10 39 PC8
PC3 11 38 PC7
VSSA/VREF- 12 37 PC6
VDDA/VREF+ 13 36 PB15
PA0 14 35 PB14
PA1 15 34 PB13
PA2 16 33 PB12
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
VSS
VDD
PC4
PB0
PB1
PB2
PB10
VDD12_1
VSS
VDD
PA3
PA4
PA5
PA6
PA7
PB11
MSv49312V2
PC15- PC14-
C PA11 PA12 PC11 PG10 PG15 PB6 PB8
OSC32_OUT OSC32_IN
PH1-
D PA9 PA13 PA14 PG9 PG14 PB7 PH3-BOOT0 PH0-OSC_IN
OSC_OUT
MSv49317V1
PC15- PC14-
C PA11 PA12 PC11 PG10 PG15 PB6 PB8
OSC32_OUT OSC32_IN
PH1-
D PA9 PA13 PA14 PG9 PG14 PB7 PH3-BOOT0 PH0-OSC_IN
OSC_OUT
MSv49313V1
PC12
PC10
PC11
PA15
PA14
VDD
VSS
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PE1
PE0
PB9
PB8
PB7
PB6
PB5
PB4
PB3
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PE2 1 75 VDD
PE3 2 74 VSS
PE4 3 73 VDDUSB
PE5 4 72 PA13
PE6 5 71 PA12
VBAT 6 70 PA11
PC13 7 69 PA10
PC14-OSC32_IN 8 68 PA9
PC15-OSC32_OUT 9 67 PA8
VSS 10 66 PC9
VDD 11 65 PC8
PH0-OSC_IN 12 64 PC7
PH1-OSC_OUT 13 LQFP100 63 PC6
NRST 14 62 PD15
PC0 15 61 PD14
PC1 16 60 PD13
PC2 17 59 PD12
PC3 18 58 PD11
VSSA 19 57 PD10
VREF- 20 56 PD9
VREF+ 21 55 PD8
VDDA 22 54 PB15
PA0 23 53 PB14
PA1 24 52 PB13
PA2 25 51 PB12
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
VSS
VDD
PC4
PC5
PB0
PB1
PB2
PE7
PE8
PE9
VSS
PE10
PE12
PE13
PE14
PE15
PB10
VDD
PA3
PA4
PA5
PA6
PA7
PE11
PB11
MSv49324V1
V15SMPS_2
PH3-BOOT0
PC12
PC10
PC11
PA15
PA14
VDD
VSS
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PE0
PB9
PB8
PB7
PB6
PB5
PB4
PB3
100
99
98
97
96
95
94
93
92
91
90
89
88
87
86
85
84
83
82
81
80
79
78
77
76
PE2 1 75 VDD
PE3 2 74 VSS
PE4 3 73 VDDUSB
PE5 4 72 PA13
PE6 5 71 PA12
VBAT 6 70 PA11
PC13 7 69 PA10
PC14-OSC32_IN 8 68 PA9
PC15-OSC32_OUT 9 67 PA8
VSS 10 66 PC9
VDD 11 65 PC8
PH0-OSC_IN 12 64 PC7
PH1-OSC_OUT 13 LQFP100 63 PC6
NRST 14 62 PD15
PC0 15 61 PD14
PC1 16 60 PD13
PC2 17 59 PD12
PC3 18 58 PD11
VSSA/VREF- 19 57 PD10
VREF+ 20 56 PD9
VDDA 21 55 PD8
PA0 22 54 PB15
PA1 23 53 PB14
PA2 24 52 PB13
PA3 25 51 VDD
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
VSS
VDD
PB0
PB1
PB2
PE7
PE8
PE9
VSS
PE10
PE12
PE13
PE14
PE15
PB10
VDDSMPS
VLXSMPS
VSSSMPS
V15SMPS_1
PA4
PA5
PA6
PA7
PE11
PB11
MSv49318V1
A PE5 PE3 PE1 PB9 PB6 PG12 PD6 PD5 PD2 PC11 PA15 VDDUSB
B VBAT PE4 PE2 PG15 PH3-BOOT0 PB4 PG9 PD4 PD1 PC12 PC10 PA12
PC14-
C PE6 PC13 PE0 PB8 PB3 PG10 PD3 PD0 PA13 PA14 PA11
OSC32_IN
PC15-
D PF0 PF3 VDD PB7 PB5 PD7 VDDIO2 VDD PA9 PA10 PA8
OSC32_OUT
F PH0-OSC_IN PF5 PC2 PC3 VSS VDD PG6 PG7 PC6 PG8
PH1-
G NRST PC1 PA1 VDD VSS PG4 PG2 PG3 PG5
OSC_OUT
OPAMP1_VI
H VSSA/VREF- PC0 VSS VSS PD14 PD13 PD15
NM
J VREF+ PA0 PC5 VDD PF14 PE8 PE10 PE12 VDD PD9 PD11 PD12
K VDDA PA2 PA7 PB2 PF11 PG1 PE7 PE14 PB10 PB13 PB14 PB15
L PA3 PA6 PA4 PB1 PF12 PF15 PE11 PE15 PB11 VSS PB12 PD8
OPAMP2_VI
M PA5 PC4 PB0 PF13 PG0 PE9 PE13 PG14 PG13 PG11 PD10
NM
MSv49325V1
A PE5 PE3 PE1 PB9 PB6 PG12 PD6 PD5 PD2 PC11 PA15 VDDUSB
B VBAT PE4 PE2 V15SMPS_2 PH3-BOOT0 PB4 PG9 PD4 PD1 PC12 PC10 PA12
PC14-
C PE6 PC13 PE0 PB8 PB3 PG10 PD3 PD0 PA13 PA14 PA11
OSC32_IN
PC15-
D PF0 PF3 VDD PB7 PB5 PD7 VDDIO2 VDD PA9 PA10 PA8
OSC32_OUT
F PH0-OSC_IN PF5 PC2 PC3 VSS VDD PG6 PG7 PC6 PG8
PH1-
G NRST PC1 PA1 VDD VSS PG4 PG2 PG3 PG5
OSC_OUT
OPAMP1_VI
H VSSA/VREF- PC0 VSS VSS PD14 PD13 PD15
NM
J VREF+ PA0 PC5 VDD PF14 PE8 PE10 PE12 VDD PD9 PD11 PD12
K VDDA PA2 PA7 PB2 PF11 PG1 PE7 PE14 PB10 PB13 PB14 PB15
L PA3 PA6 PA4 PB1 PF12 PF15 PE11 PE15 PB11 VSSSMPS PB12 PD8
OPAMP2_VI
M PA5 PC4 PB0 PF13 PG0 PE9 PE13 VDDSMPS VLXSMPS V15SMPS_1 PD10
NM
MSv49319V1
PH3-BOOT0
VDDIO2
PG15
PG14
PG13
PG12
PG10
PC12
PC10
PG11
PC11
PA15
PA14
VDD
VDD
VSS
VSS
PG9
VSS
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PE1
PE0
PB9
PB8
PB7
PB6
PB5
PB4
PB3
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
109
119
118
117
116
115
114
113
112
110
111
PE2 1 108 VDD
PE3 2 107 VSS
PE4 3 106 VDDUSB
PE5 4 105 PA13
PE6 5 104 PA12
VBAT 6 103 PA11
PC13 7 102 PA10
PC14-OSC32_IN 8 101 PA9
PC15-OSC32_OUT 9 100 PA8
PF0 10 99 PC9
PF1 11 98 PC8
PF2 12 97 PC7
PF3 13 96 PC6
PF4 14 95 VDDIO2
PF5 15 94 VSS
VSS 16 93 PG8
VDD 17 92 PG7
PF6 18 91 PG6
PF7 19 LQFP144 90 PG5
PF8 20 89 PG4
PF9 21 88 PG3
PF10 22 87 PG2
PH0-OSC_IN 23 86 PD15
PH1-OSC_OUT 24 85 PD14
NRST 25 84 VDD
PC0 26 83 VSS
PC1 27 82 PD13
PC2 28 81 PD12
PC3 29 80 PD11
VSSA 30 79 PD10
VREF- 31 78 PD9
VREF+ 32 77 PD8
VDDA 33 76 PB15
PA0 34 75 PB14
PA1 35 74 PB13
PA2 36 73 PB12
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
VSS
VDD
PC4
PC5
PB0
PB1
PB2
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE12
PE13
PE14
PE15
PB10
VSS
VDD
PA3
PA4
PA5
PA6
PA7
PF11
PE11
PB11
MSv49326V1
V15SMPS_2
PH3-BOOT0
VDDIO2
PG15
PG14
PG13
PG12
PG10
PC12
PC10
PC11
PA15
PA14
VDD
VDD
VSS
VSS
PG9
VSS
PD7
PD6
PD5
PD4
PD3
PD2
PD1
PD0
PE1
PE0
PB9
PB8
PB7
PB6
PB5
PB4
PB3
144
143
142
141
140
139
138
137
136
135
134
133
132
131
130
129
128
127
126
125
124
123
122
121
120
109
119
118
117
116
115
114
113
112
110
111
PE2 1 108 VDD
PE3 2 107 VSS
PE4 3 106 VDDUSB
PE5 4 105 PA13
PE6 5 104 PA12
VBAT 6 103 PA11
PC13 7 102 PA10
PC14-OSC32_IN 8 101 PA9
PC15-OSC32_OUT 9 100 PA8
PF0 10 99 PC9
PF1 11 98 PC8
PF2 12 97 PC7
PF3 13 96 PC6
PF4 14 95 VDDIO2
PF5 15 94 VSS
VSS 16 93 PG8
VDD 17 92 PG7
PF6 18 91 PG6
PF7 19 LQFP144 90 PG5
PF8 20 89 PG4
PF9 21 88 PG3
PF10 22 87 PG2
PH0-OSC_IN 23 86 PD15
PH1-OSC_OUT 24 85 PD14
NRST 25 84 VDD
PC0 26 83 VSS
PC1 27 82 PD13
PC2 28 81 PD12
PC3 29 80 PD11
VSSA/VREF- 30 79 PD10
VREF+ 31 78 PD9
VDDA 32 77 PD8
PA0 33 76 PB15
PA1 34 75 PB14
PA2 35 74 PB13
PA3 36 73 VDD
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
VSS
VDD
PB0
PB1
PB2
PF12
VSS
VDD
PF13
PF14
PF15
PG0
PG1
PE7
PE8
PE9
VSS
VDD
PE10
PE12
PE13
PE14
PE15
PB10
VDDSMPS
VLXSMPS
VSSSMPS
VSS
V15SMPS_1
PA4
PA5
PA6
PA7
PF11
PE11
PB11
MSv49320V1
Pin name Unless otherwise specified in brackets below the pin name, the pin function during and after reset is the same as the actual pin name
S Supply pin
Pin type I Input only pin
I/O Input / output pin
FT 5 V tolerant I/O
TT 3.6 V tolerant I/O
B Dedicated BOOT0 pin
RST Bidirectional reset pin with embedded weak pull-up resistor
Notes Unless otherwise specified by a note, all I/Os are set as analog inputs during and after reset.
Alternate
Functions selected through GPIOx_AFR registers
Pin functions
functions Additional
Functions directly selected/enabled through peripheral registers
functions
1. The related I/O structures in Table 21 are: FT_f, FT_fa.
STM32L552xx
2. The related I/O structures in Table 21 are: FT_u.
3. The related I/O structures in Table 21 are: FT_a, FT_fa, TT_a.
4. The analog switch for the TSC function is supplied by VDD.
5. The related I/O structures in Table 21 are: FT_s, FT_fs.
Table 21. STM32L552xx pin definitions
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TRACECK, TIM3_ETR,
SAI1_CK1,
TSC_G7_IO1,
- - - - - - 1 B3 1 - - - 1 B3 1 PE2 I/O FT - -
FMC_A23,
DS12737 Rev 6
SAI1_MCLK_A,
EVENTOUT
TRACED0, TIM3_CH1,
OCTOSPI1_DQS,
TSC_G7_IO2,
- - - - - - 2 A2 2 - - - 2 A2 2 PE3 I/O FT - -
FMC_A19,
SAI1_SD_B,
EVENTOUT
TRACED1, TIM3_CH2,
SAI1_D2,
DFSDM1_DATIN3,
- - - - - - 3 B2 3 - - - 3 B2 3 PE4 I/O FT - -
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
90/340
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TRACED3, TIM3_CH4,
WKUP3,
SAI1_D1, FMC_A22,
- - - - - - 5 C2 5 - - - 5 C2 5 PE6 I/O FT - TAMP_IN3/TAMP_
SAI1_SD_A,
OUT6
EVENTOUT
DS12737 Rev 6
1 1 1 B9 1 B9 6 B1 6 1 1 1 6 B1 6 VBAT S - - - -
WKUP2,
(1) RTC_TS/RTC_
2 2 2 B7 2 B7 7 C3 7 2 2 2 7 C3 7 PC13 I/O FT (2) EVENTOUT OUT1,
TAMP_IN1/TAMP_
OUT2
PC14-
(1)
OSC3
3 3 3 C9 3 C9 8 C1 8 3 3 3 8 C1 8 I/O FT (2) EVENTOUT OSC32_IN
2_IN
(PC14)
PC15-
(1)
OSC3
4 4 4 C8 4 C8 9 D1 9 4 4 4 9 D1 9 I/O FT (2) EVENTOUT OSC32_OUT
2_OUT
(PC15)
FT I2C2_SDA, FMC_A0,
- - - - - - - D2 10 - - - - D2 10 PF0 I/O - -
_f EVENTOUT
STM32L552xx
FT I2C2_SCL, FMC_A1,
- - - - - - - E2 11 - - - - E2 11 PF1 I/O - -
_f EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
I2C2_SMBA, FMC_A2,
- - - - - - - E1 12 - - - - E1 12 PF2 I/O FT - -
EVENTOUT
LPTIM3_IN1, FMC_A3,
- - - - - - - D3 13 - - - - D3 13 PF3 I/O FT - -
EVENTOUT
DS12737 Rev 6
LPTIM3_ETR,
- - - - - - - E3 14 - - - - E3 14 PF4 I/O FT - -
FMC_A4, EVENTOUT
LPTIM3_OUT,
- - - - - - - F2 15 - - - - F2 15 PF5 I/O FT - -
FMC_A5, EVENTOUT
- - - - - - 10 F6 16 - - - 10 F6 16 VSS S - - - -
- - - - - - 11 F7 17 - - - 11 F7 17 VDD S - - - -
TIM5_ETR, TIM5_CH1,
OCTOSPI1_IO3,
- - - - - - - - 18 - - - - - 18 PF6 I/O FT - -
SAI1_SD_B,
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
92/340
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM5_CH4,
OCTOSPI1_IO1,
TAMP_IN8/TAMP_
- - - - - - - - 21 - - - - - 21 PF9 I/O FT - SAI1_FS_B,
OUT7
TIM15_CH1,
DS12737 Rev 6
EVENTOUT
OCTOSPI1_CLK,
DFSDM1_CKOUT,
- - - - - - - - 22 - - - - - 22 PF10 I/O FT - -
SAI1_D3, TIM15_CH2,
EVENTOUT
PH0-
OSC_I
5 5 5 D9 5 D9 12 F1 23 5 5 5 12 F1 23 I/O FT - EVENTOUT OSC_IN
N
(PH0)
PH1-
OSC_
6 6 6 D8 6 D8 13 G1 24 6 6 6 13 G1 24 I/O FT - EVENTOUT OSC_OUT
OUT
(PH1)
RS
7 7 7 E9 7 E9 14 G2 25 7 7 7 14 G2 25 NRST I-O - - -
T
STM32L552xx
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
LPTIM1_IN1,
OCTOSPI1_IO7,
I2C3_SCL,
FT LPUART1_RX,
- - 8 E7 8 E7 15 H2 26 - - 8 15 H2 26 PC0 I/O - ADC12_IN1
DS12737 Rev 6
_fa SDMMC1_D5,
SAI2_FS_A,
LPTIM2_IN1,
EVENTOUT
TRACED0,
LPTIM1_OUT,
SPI2_MOSI,
FT I2C3_SDA,
- - 9 F8 9 F8 16 G3 27 - - 9 16 G3 27 PC1 I/O - ADC12_IN2
_fa LPUART1_TX,
OCTOSPI1_IO4,
SAI1_SD_A,
EVENTOUT
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
LPTIM1_ETR,
LPTIM3_OUT,
SAI1_D1, SPI2_MOSI,
FT
- - 11 G7 11 G7 18 F4 29 - - 11 18 F4 29 PC3 I/O - OCTOSPI1_IO6, ADC12_IN4
_a
DS12737 Rev 6
SAI1_SD_A,
LPTIM2_ETR,
EVENTOUT
- - - - - - - - - - - - 19 - 30 VSSA S - - - -
- - - - - - - - - - - - 20 - 31 VREF- S - - - -
VSSA/
8 8 12 G9 12 G9 19 H1 30 8 8 12 - H1 - S - - - -
VREF-
VREF
- - - G8 - G8 20 J1 31 - - - 21 J1 32 S - - - VREFBUF_OUT
+
- - - H9 - H9 21 K1 32 - - - 22 K1 33 VDDA S - - - -
VDDA/
9 9 13 - 13 - - - - 9 9 13 - - - VREF S - - - -
+
STM32L552xx
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM2_CH1, TIM5_CH1,
TIM8_ETR, OPAMP1_VINP,
USART2_CTS/USART ADC12_IN5,
FT
10 10 14 H8 14 H8 22 J2 33 10 10 14 23 J2 34 PA0 I/O - 2_NSS, UART4_TX, WKUP1,
_a
DS12737 Rev 6
SAI1_EXTCLK, TAMP_IN2/TAMP_
TIM2_ETR, OUT1
EVENTOUT
OPAM
- - - - - - - H3 - - - - - H3 - P1_VI I TT - - -
NM
TIM2_CH2, TIM5_CH2,
I2C1_SMBA,
SPI1_SCK, OPAMP1_VINM,
FT USART2_RTS/USART ADC12_IN6,
11 11 15 F6 15 F6 23 G4 34 11 11 15 24 G4 35 PA1 I/O -
_a 2_DE, UART4_RX, TAMP_IN5/TAMP_
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM2_CH3, TIM5_CH3,
USART2_TX,
LPUART1_TX,
ADC12_IN7,
FT OCTOSPI1_NCS,
12 12 16 G6 16 G6 24 K2 35 12 12 16 25 K2 36 PA2 I/O - WKUP4/LSCO,
DS12737 Rev 6
_a UCPD1_FRSTX1,
COMP1_INP
SAI2_EXTCLK,
TIM15_CH1,
EVENTOUT
TIM2_CH4, TIM5_CH4,
SAI1_CK1,
USART2_RX,
TT LPUART1_RX, OPAMP1_VOUT,
13 13 17 F5 17 F5 25 L1 36 13 13 17 26 L1 37 PA3 I/O -
_a OCTOSPI1_CLK, ADC12_IN8
SAI1_MCLK_A,
TIM15_CH2,
EVENTOUT
- - 18 H2 18 H2 26 G7 37 - - 18 27 G7 38 VSS S - - - -
- - 19 - 19 - 27 G6 38 - - 19 28 G6 39 VDD S - - - -
OCTOSPI1_NCS,
SPI1_NSS, SPI3_NSS,
STM32L552xx
TT USART2_CK, ADC12_IN9,
14 14 20 H7 20 H7 28 L3 39 14 14 20 29 L3 40 PA4 I/O -
_a SAI1_FS_B, DAC1_OUT1
LPTIM2_OUT,
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM2_CH1, TIM2_ETR,
TIM8_CH1N,
TT ADC12_IN10,
15 15 21 H6 21 H6 29 M1 40 15 15 21 30 M1 41 PA5 I/O - SPI1_SCK,
_a DAC1_OUT2
LPTIM2_ETR,
DS12737 Rev 6
EVENTOUT
TIM1_BKIN,
TIM3_CH1,
TIM8_BKIN,
SPI1_MISO,
FT USART3_CTS/USART OPAMP2_VINP,
16 16 22 G5 22 G5 30 L2 41 16 16 22 31 L2 42 PA6 I/O -
_a 3_NSS, ADC12_IN11
LPUART1_CTS,
OCTOSPI1_IO3,
TIM16_CH1,
EVENTOUT
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM1_CH1N,
TIM3_CH2,
TIM8_CH1N,
FT I2C3_SCL, OPAMP2_VINM,
17 17 23 J7 23 J7 31 K3 42 17 17 23 32 K3 43 PA7 I/O -
DS12737 Rev 6
STM32L552xx
_a ADC12_IN15
OCTOSPI1_IO1,
COMP1_OUT,
SAI1_EXTCLK,
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM1_CH3N,
TIM3_CH4,
TIM8_CH3N,
DFSDM1_DATIN0,
DS12737 Rev 6
USART3_RTS/USART
FT COMP1_INM,
19 19 26 H5 25 H5 33 L4 44 19 19 27 36 L4 47 PB1 I/O - 3_DE,
_a ADC12_IN16
LPUART1_RTS/LPUA
RT1_DE,
OCTOSPI1_IO0,
LPTIM2_IN1,
EVENTOUT
LPTIM1_OUT,
I2C3_SMBA,
FT DFSDM1_CKIN0, RTC_OUT2,
20 20 27 J5 26 J5 34 K4 45 20 20 28 37 K4 48 PB2 I/O -
_a OCTOSPI1_DQS, COMP1_INP
UCPD1_FRSTX1,
- - - - - - - M5 50 - - - - M5 53 PF13 I/O FT - -
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
100/340
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
I2C4_SCL,
FT
- - - - - - - J5 51 - - - - J5 54 PF14 I/O - TSC_G8_IO1, -
_f
FMC_A8, EVENTOUT
I2C4_SDA,
DS12737 Rev 6
FT
- - - - - - - L6 52 - - - - L6 55 PF15 I/O - TSC_G8_IO2, -
_f
FMC_A9, EVENTOUT
TSC_G8_IO3,
- - - - - - - M6 53 - - - - M6 56 PG0 I/O FT - -
FMC_A10, EVENTOUT
TSC_G8_IO4,
- - - - - - - K6 54 - - - - K6 57 PG1 I/O FT - -
FMC_A11, EVENTOUT
TIM1_ETR,
DFSDM1_DATIN2,
- - - - - - 35 K7 55 - - - 38 K7 58 PE7 I/O FT - -
FMC_D4, SAI1_SD_B,
EVENTOUT
TIM1_CH1N,
DFSDM1_CKIN2,
- - - - - - 36 J6 56 - - - 39 J6 59 PE8 I/O FT - FMC_D5, -
SAI1_SCK_B,
EVENTOUT
STM32L552xx
TIM1_CH1,
DFSDM1_CKOUT,
- - - - - - 37 M7 57 - - - 40 M7 60 PE9 I/O FT - OCTOSPI1_NCLK, -
FMC_D6, SAI1_FS_B,
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
- - - - - - - - 58 - - - - L10 61 VSS S - - - -
- - - H1 - H1 - J4 59 - - - - J4 62 VDD S - - - -
TIM1_CH2N,
DS12737 Rev 6
TSC_G5_IO1,
OCTOSPI1_CLK,
- - - - - - 38 J7 60 - - - 41 J7 63 PE10 I/O FT - -
FMC_D7,
SAI1_MCLK_B,
EVENTOUT
TIM1_CH2,
TSC_G5_IO2,
- - - - - - 39 L7 61 - - - 42 L7 64 PE11 I/O FT - -
OCTOSPI1_NCS,
FMC_D8, EVENTOUT
TIM1_CH3N,
SPI1_NSS,
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM1_CH4,
TIM1_BKIN2,
- - - H4 - - 42 K8 64 - - - 45 K8 67 PE14 I/O FT - SPI1_MISO, -
OCTOSPI1_IO2,
DS12737 Rev 6
FMC_D11, EVENTOUT
TIM1_BKIN,
SPI1_MOSI,
- - - H3 - - 43 L8 65 - - - 46 L8 68 PE15 I/O FT - -
OCTOSPI1_IO3,
FMC_D12, EVENTOUT
TIM2_CH3,
LPTIM3_OUT,
I2C4_SCL, I2C2_SCL,
SPI2_SCK,
USART3_TX,
FT
21 21 28 J3 27 J4 44 K9 66 21 21 29 47 K9 69 PB10 I/O - LPUART1_RX, -
_f
TSC_SYNC,
OCTOSPI1_CLK,
COMP1_OUT,
SAI1_SCK_A,
EVENTOUT
STM32L552xx
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM2_CH4, I2C4_SDA,
I2C2_SDA,
USART3_RX,
FT
- - 29 J2 - H4 45 L9 67 22 22 30 48 L9 70 PB11 I/O - LPUART1_TX, -
_f
DS12737 Rev 6
OCTOSPI1_NCS,
COMP2_OUT,
EVENTOUT
VDDS
- - - - 28 J3 46 M9 68 - - - - - - S - - - -
MPS
M1 VLXS
- - - - 29 H3 47 69 - - - - - - S - - - -
0 MPS
VSSS
- - - - 30 J2 48 L10 70 - - - - - - S - - - -
MPS
VDD12
22 22 30 J1 - - - - - - - - - - - S - - - -
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM1_BKIN,
I2C2_SMBA,
SPI2_NSS,
DFSDM1_DATIN1,
DS12737 Rev 6
USART3_CK,
LPUART1_RTS/LPUA
25 25 33 G2 - G2 - L11 - 25 25 33 51 L11 73 PB12 I/O FT - -
RT1_DE,
TSC_G1_IO1,
OCTOSPI1_NCLK,
SAI2_FS_A,
TIM15_BKIN,
EVENTOUT
TIM1_CH1N,
LPTIM3_IN1,
I2C2_SCL, SPI2_SCK,
DFSDM1_CKIN1,
USART3_CTS/USART
FT 3_NSS,
26 26 34 F2 34 F2 52 K10 74 26 26 34 52 K10 74 PB13 I/O - -
_f LPUART1_CTS,
TSC_G1_IO2,
UCPD1_FRSTX2,
SAI2_SCK_A,
STM32L552xx
TIM15_CH1N,
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM1_CH2N,
LPTIM3_ETR,
TIM8_CH2N,
I2C2_SDA,
DS12737 Rev 6
SPI2_MISO,
FT
27 27 35 G1 35 G1 53 K11 75 27 27 35 53 K11 75 PB14 I/O - DFSDM1_DATIN2, UCPD1_DB2
_fd
USART3_RTS/USART
3_DE, TSC_G1_IO3,
SAI2_MCLK_A,
TIM15_CH1,
EVENTOUT
RTC_REFIN,
TIM1_CH3N,
TIM8_CH3N,
FT SPI2_MOSI,
28 28 36 F1 36 F1 54 K12 76 28 28 36 54 K12 76 PB15 I/O - UCPD1_CC2
_c DFSDM1_CKIN2,
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
106/340
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
USART3_CK,
TSC_G6_IO1,
M1 M1
- - - - - - 57 79 - - - 57 79 PD10 I/O FT - FMC_D15, -
2 2
SAI2_SCK_A,
DS12737 Rev 6
EVENTOUT
I2C4_SMBA,
USART3_CTS/USART
3_NSS, TSC_G6_IO2,
- - - - - - 58 J11 80 - - - 58 J11 80 PD11 I/O FT - FMC_A16, -
SAI2_SD_A,
LPTIM2_ETR,
EVENTOUT
TIM4_CH1, I2C4_SCL,
USART3_RTS/USART
FT 3_DE, TSC_G6_IO3,
- - - - - - 59 J12 81 - - - 59 J12 81 PD12 I/O - -
_f FMC_A17, SAI2_FS_A,
LPTIM2_IN1,
EVENTOUT
TIM4_CH2, I2C4_SDA,
TSC_G6_IO4,
FT
- - - - - - 60 H11 82 - - - 60 H11 82 PD13 I/O - FMC_A18, -
STM32L552xx
_f
LPTIM2_OUT,
EVENTOUT
- - - - - - - - 83 - - - - - 83 VSS S - - - -
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
- - - - - - - - 84 - - - - - 84 VDD S - - - -
TIM4_CH3, FMC_D0,
- - - - - - 61 H10 85 - - - 61 H10 85 PD14 I/O FT - -
EVENTOUT
DS12737 Rev 6
TIM4_CH4, FMC_D1,
- - - - - - 62 H12 86 - - - 62 H12 86 PD15 I/O FT - -
EVENTOUT
SPI1_SCK, FMC_A12,
FT
- - - - - - - G10 87 - - - - G10 87 PG2 I/O - SAI2_SCK_B, -
_s
EVENTOUT
SPI1_MISO, FMC_A13,
FT
- - - - - - - G11 88 - - - - G11 88 PG3 I/O - SAI2_FS_B, -
_s
EVENTOUT
SPI1_MOSI, FMC_A14,
FT
- - - - - - - G9 89 - - - - G9 89 PG4 I/O - SAI2_MCLK_B, -
_s
EVENTOUT
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
OCTOSPI1_DQS,
I2C3_SMBA,
FT LPUART1_RTS/LPUA
- - - - - - - F9 91 - - - - F9 91 PG6 I/O - -
_s RT1_DE,
DS12737 Rev 6
UCPD1_FRSTX1,
EVENTOUT
SAI1_CK1, I2C3_SCL,
DFSDM1_CKOUT,
LPUART1_TX,
FT
- - - - - - - F10 92 - - - - F10 92 PG7 I/O - UCPD1_FRSTX2, -
_fs
FMC_INT,
SAI1_MCLK_A,
EVENTOUT
I2C3_SDA,
FT
- - - - - - - F12 93 - - - - F12 93 PG8 I/O - LPUART1_RX, -
_fs
EVENTOUT
- - - - - - - - 94 - - - - - 94 VSS S - - - -
VDDIO
- - - - - - - - 95 - - - - - 95 S - - - -
2
STM32L552xx
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM3_CH1, TIM8_CH1,
DFSDM1_CKIN3,
SDMMC1_D0DIR,
- - 37 E1 37 E1 63 F11 96 - - 37 63 F11 96 PC6 I/O FT - TSC_G4_IO1, -
DS12737 Rev 6
SDMMC1_D6,
SAI2_MCLK_A,
EVENTOUT
TIM3_CH2, TIM8_CH2,
DFSDM1_DATIN3,
SDMMC1_D123DIR,
- - 38 E2 38 E2 64 E10 97 - - 38 64 E10 97 PC7 I/O FT - TSC_G4_IO2, -
SDMMC1_D7,
SAI2_MCLK_B,
EVENTOUT
TIM3_CH3, TIM8_CH3,
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TRACED0,
TIM8_BKIN2,
TIM3_CH4, TIM8_CH4,
FT TSC_G4_IO4,
- - 40 G3 40 G3 66 E11 99 - - 40 66 E11 99 PC9 I/O - -
DS12737 Rev 6
_f USB_NOE,
SDMMC1_D1,
SAI2_EXTCLK,
EVENTOUT
MCO, TIM1_CH1,
SAI1_CK2,
FT USART1_CK,
29 29 41 F4 41 F4 67 D12 100 29 29 41 67 D12 100 PA8 I/O - -
_f SAI1_SCK_A,
LPTIM2_OUT,
EVENTOUT
TIM1_CH2, SPI2_SCK,
USART1_TX,
FT
30 30 42 D1 42 D1 68 D10 101 30 30 42 68 D10 101 PA9 I/O - SAI1_FS_A, -
_fu
TIM15_BKIN,
EVENTOUT
TIM1_CH3, SAI1_D1,
USART1_RX,
STM32L552xx
FT CRS_SYNC,
31 31 43 E3 43 E3 69 D11 102 31 31 43 69 D11 102 PA10 I/O - -
_fu SAI1_SD_A,
TIM17_BKIN,
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TIM1_CH4,
TIM1_BKIN2,
FT SPI1_MISO,
32 32 44 C1 44 C1 70 C12 103 32 32 44 70 C12 103 PA11 I/O - -
_u USART1_CTS/USART
DS12737 Rev 6
1_NSS, FDCAN1_RX,
USB_DM, EVENTOUT
TIM1_ETR,
SPI1_MOSI,
FT
33 33 45 C2 45 C2 71 B12 104 33 33 45 71 B12 104 PA12 I/O - USART1_RTS/USART -
_u
1_DE, FDCAN1_TX,
USB_DP, EVENTOUT
PA13 JTMS/SWDIO,
(JTMS/ (3) IR_OUT, USB_NOE,
34 34 46 D2 46 D2 72 C10 105 34 34 46 72 C10 105 I/O FT -
SWDI SAI1_SD_B,
O) EVENTOUT
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
JTCK/SWCLK,
PA14 LPTIM1_OUT,
(JTCK/ (3) I2C1_SMBA,
37 37 49 D3 49 D3 76 C11 109 37 37 49 76 C11 109 I/O FT -
SWCL I2C4_SMBA,
DS12737 Rev 6
K) SAI1_FS_B,
EVENTOUT
JTDI, TIM2_CH1,
TIM2_ETR,
USART2_RX,
SPI1_NSS, SPI3_NSS,
PA15 FT (3)
38 38 50 E4 50 E4 77 A11 110 38 38 50 77 A11 110 I/O USART3_RTS/USART UCPD1_CC1
(JTDI) _c
3_DE,
UART4_RTS/UART4_
DE, SAI2_FS_B,
EVENTOUT
TRACED1,
LPTIM3_ETR,
SPI3_SCK,
USART3_TX,
- - 51 A2 51 A2 78 B11 111 - - 51 78 B11 111 PC10 I/O FT - UART4_TX, -
TSC_G3_IO2,
STM32L552xx
SDMMC1_D2,
SAI2_SCK_B,
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
LPTIM3_IN1,
OCTOSPI1_NCS,
SPI3_MISO,
USART3_RX,
DS12737 Rev 6
UART4_RX,
- - 52 C3 52 C3 79 A10 112 - - 52 79 A10 112 PC11 I/O FT - -
TSC_G3_IO3,
UCPD1_FRSTX2,
SDMMC1_D3,
SAI2_MCLK_B,
EVENTOUT
TRACED3,
SPI3_MOSI,
USART3_CK,
UART5_TX,
- - 53 B3 53 B3 80 B10 113 - - 53 80 B10 113 PC12 I/O FT - -
TSC_G3_IO4,
SDMMC1_CK,
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
TRACED2, TIM3_ETR,
USART3_RTS/USART
3_DE, UART5_RX,
- - - A3 54 A3 83 A9 116 - - 54 83 A9 116 PD2 I/O FT - -
TSC_SYNC,
DS12737 Rev 6
SDMMC1_CMD,
EVENTOUT
SPI2_SCK,
SPI2_MISO,
DFSDM1_DATIN0,
- - - - - - 84 C8 117 - - - 84 C8 117 PD3 I/O FT - -
USART2_CTS/USART
2_NSS, FMC_CLK,
EVENTOUT
SPI2_MOSI,
DFSDM1_CKIN0,
USART2_RTS/USART
- - - - - - 85 B8 118 - - - 85 B8 118 PD4 I/O FT - -
2_DE, OCTOSPI1_IO4,
FMC_NOE,
EVENTOUT
USART2_TX,
OCTOSPI1_IO5,
- - - - - - 86 A8 119 - - - 86 A8 119 PD5 I/O FT - -
FMC_NWE,
STM32L552xx
EVENTOUT
- - - - - - - - 120 - - - - - 120 VSS S - - - -
- - - - - - - - 121 - - - - - 121 VDD S - - - -
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
SAI1_D1, SPI3_MOSI,
DFSDM1_DATIN1,
USART2_RX,
- - - - - - 87 A7 122 - - - 87 A7 122 PD6 I/O FT - OCTOSPI1_IO6, -
DS12737 Rev 6
FMC_NWAIT,
SAI1_SD_A,
EVENTOUT
DFSDM1_CKIN1,
USART2_CK,
- - - - - - 88 D7 123 - - - 88 D7 123 PD7 I/O FT - OCTOSPI1_IO7, -
FMC_NCE/FMC_NE1,
EVENTOUT
SPI3_SCK,
USART1_TX,
FT FMC_NCE/FMC_NE2,
- - - D4 - D4 - B7 124 - - - - B7 124 PG9 I/O - -
EVENTOUT
Table 21. STM32L552xx pin definitions (continued)
116/340
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
LPTIM1_IN2,
OCTOSPI1_IO5,
SPI3_MOSI,
FT USART1_CTS/USART
- - - E5 - E5 - - - - - - - M11 126 PG11 I/O - -
DS12737 Rev 6
_s 1_NSS,
SAI2_MCLK_A,
TIM15_CH2,
EVENTOUT
LPTIM1_ETR,
SPI3_NSS,
FT USART1_RTS/USART
- - - B4 - B4 - A6 126 - - - - A6 127 PG12 I/O - -
_s 1_DE, FMC_NE4,
SAI2_SD_A,
EVENTOUT
I2C1_SDA,
M1 FT
- - - A4 - A4 - - 127 - - - - 128 PG13 I/O - USART1_CK, -
0 _fs
FMC_A24, EVENTOUT
FT I2C1_SCL, FMC_A25,
- - - D5 - D5 - - 128 - - - - M9 129 PG14 I/O - -
_fs EVENTOUT
- - - B8 - B8 - H9 129 - - - - H9 130 VSS S - - - -
STM32L552xx
VDDIO
- - - A5 - A5 - D8 130 - - - - D8 131 S - - - -
2
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
LPTIM1_OUT,
FT
- - - C5 - C5 - - 131 - - - - B4 132 PG15 I/O - I2C1_SMBA, -
_s
EVENTOUT
JTDO/TRACESWO,
DS12737 Rev 6
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
LPTIM1_IN1,
TIM3_CH2,
OCTOSPI1_NCLK,
I2C1_SMBA,
DS12737 Rev 6
SPI1_MOSI,
SPI3_MOSI,
FT
41 41 56 A6 57 A6 91 D6 134 41 41 57 91 D6 135 PB5 I/O - USART1_CK, UCPD1_DB1
_d
UART5_CTS/UART5_
NSS, TSC_G2_IO2,
COMP2_OUT,
SAI1_SD_B,
TIM16_BKIN,
EVENTOUT
LPTIM1_ETR,
TIM4_CH1,
TIM8_BKIN2,
I2C1_SCL, I2C4_SCL,
FT
42 42 57 C6 58 C6 92 A5 135 42 42 58 92 A5 136 PB6 I/O - USART1_TX, COMP2_INP
_fa
TSC_G2_IO3,
SAI1_FS_B,
TIM16_CH1N,
EVENTOUT
STM32L552xx
Table 21. STM32L552xx pin definitions (continued)
STM32L552xx
Pin Number
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
LPTIM1_IN2,
TIM4_CH2,
TIM8_BKIN,
I2C1_SDA, I2C4_SDA,
DS12737 Rev 6
FT USART1_RX, COMP2_INM,
43 43 58 D6 59 D6 93 D5 136 43 43 59 93 D5 137 PB7 I/O -
_fa UART4_CTS, PVD_IN
TSC_G2_IO4,
FMC_NL,
TIM17_CH1N,
EVENTOUT
PH3-
44 44 59 D7 60 D7 94 B5 137 44 44 60 94 B5 138 BOOT I/O FT - EVENTOUT -
0
TIM4_CH3, SAI1_CK1,
I2C1_SCL,
I/O structure
WLCSP81_Ext-SMPS
Pin name
LQFP48_Ext-SMPS
LQFP64_Ext-SMPS
UFBGA132_SMPS
Pin type
WLCSP81_SMPS
LQFP100_SMPS
LQFP144_SMPS
UFQFPN48_Ext-
Notes
LQFP64_SMPS
Additional
Alternate functions
UFQFPN48
UFBGA132
functions
LQFP100
LQFP144
LQFP48
LQFP64
SMPS
IR_OUT, TIM4_CH4,
SAI1_D2, I2C1_SDA,
SPI2_NSS,
SDMMC1_CDIR,
FT
DS12737 Rev 6
STM32L552xx
- - - - 63 A8 99 B4 143 - - - - - - MPS_ S - - - -
2
48 48 64 F9 64 F9 100 J9 144 48 48 64 100 J9 144 VDD S - - - -
STM32L552xx
1. PC13, PC14 and PC15 are supplied through the power switch. Since the switch only sinks a limited amount of current (3 mA), the use of GPIOs PC13 to PC15 in output
mode is limited:
- The speed should not exceed 2 MHz with a maximum load of 30 pF
- These GPIOs must not be used as current sources (for example to drive a LED).
2. After a Backup domain power-up, PC13, PC14 and PC15 operate as GPIOs. Their function then depends on the content of the RTC registers which are not reset by the
system reset. For details on how to manage these GPIOs, refer to the Backup domain and RTC register descriptions in the RM0438 reference manual.
3. After reset, these pins are configured as JTAG/SW debug alternate functions, and the internal pull-up on PA15, PA13, PB4 pins and the internal pull-down on PA14 pin are
activated.
DS12737 Rev 6
USART2_CTS_
PA0 - TIM2_CH1 TIM5_CH1 TIM8_ETR - - -
NSS
USART2_RTS_
PA1 - TIM2_CH2 TIM5_CH2 - I2C1_SMBA SPI1_SCK -
DE
PA2 - TIM2_CH3 TIM5_CH3 - - - - USART2_TX
PA3 - TIM2_CH4 TIM5_CH4 SAI1_CK1 - - - USART2_RX
PA4 - - - OCTOSPI1_NCS - SPI1_NSS SPI3_NSS USART2_CK
PA5 - TIM2_CH1 TIM2_ETR TIM8_CH1N - SPI1_SCK - -
DS12737 Rev 6
USART3_CTS_
PA6 - TIM1_BKIN TIM3_CH1 TIM8_BKIN - SPI1_MISO -
NSS
STM32L552xx
PA15 JTDI TIM2_CH1 TIM2_ETR USART2_RX - SPI1_NSS SPI3_NSS
DE
Table 22. Alternate function AF0 to AF7(1) (continued)
STM32L552xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
N2
Table 22. Alternate function AF0 to AF7(1) (continued)
124/340
N3
Port DFSDM1_DATI
C PC7 - - TIM3_CH2 TIM8_CH2 - - -
N3
PC8 - - TIM3_CH3 TIM8_CH3 - - - -
PC9 TRACED0 TIM8_BKIN2 TIM3_CH4 TIM8_CH4 - - - -
PC10 TRACED1 - LPTIM3_ETR - - - SPI3_SCK USART3_TX
PC11 - - LPTIM3_IN1 - - OCTOSPI1_NCS SPI3_MISO USART3_RX
PC12 TRACED3 - - - - - SPI3_MOSI USART3_CK
PC13 - - - - - - - -
PC14 - - - - - - - -
PC15 - - - - - - - -
STM32L552xx
Table 22. Alternate function AF0 to AF7(1) (continued)
STM32L552xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PD0 - - - - - SPI2_NSS - -
PD1 - - - - - SPI2_SCK - -
USART3_RTS_
PD2 TRACED2 - TIM3_ETR - - - -
DE
DFSDM1_DATI USART2_CTS_
PD3 - - - SPI2_SCK - SPI2_MISO
N0 NSS
DFSDM1_CKI USART2_RTS_
PD4 - - - - - SPI2_MOSI
N0 DE
PD5 - - - - - - - USART2_TX
DS12737 Rev 6
DFSDM1_DATI
PD6 - - - SAI1_D1 - SPI3_MOSI USART2_RX
N1
Port DFSDM1_CKI
D PD7 - - - - - - USART2_CK
N1
PD8 - - - - - - - USART3_TX
PD9 - - - - - - - USART3_RX
PD10 - - - - - - - USART3_CK
USART3_CTS_
PD11 - - - - I2C4_SMBA - -
PE0 - - TIM4_ETR - - - - -
PE1 - - - - - - - -
PE2 TRACECK - TIM3_ETR SAI1_CK1 - - - -
PE3 TRACED0 - TIM3_CH1 OCTOSPI1_DQS - - - -
DFSDM1_DATI
PE4 TRACED1 - TIM3_CH2 SAI1_D2 - - -
N3
DFSDM1_CKI
PE5 TRACED2 - TIM3_CH3 SAI1_CK2 - - -
N3
DS12737 Rev 6
STM32L552xx
Table 22. Alternate function AF0 to AF7(1) (continued)
STM32L552xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
PF0 - - - - I2C2_SDA - - -
PF1 - - - - I2C2_SCL - - -
PF2 - - - - I2C2_SMBA - - -
PF3 - - LPTIM3_IN1 - - - - -
PF4 - - LPTIM3_ETR - - - - -
PF5 - - LPTIM3_OUT - - - - -
PF6 - TIM5_ETR TIM5_CH1 - - - - -
PF7 - - TIM5_CH2 - - - - -
DS12737 Rev 6
Port
F PF8 - - TIM5_CH3 - - - - -
PF9 - - TIM5_CH4 - - - - -
DFSDM1_CKO
PF10 - - - OCTOSPI1_CLK - - -
UT
PF11 - - - OCTOSPI1_NCLK - - - -
PF12 - - - - - - - -
PF13 - - - - I2C4_SMBA - - -
PF14 - - - - I2C4_SCL - - -
PG0 - - - - - - - -
PG1 - - - - - - - -
PG2 - - - - - SPI1_SCK - -
PG3 - - - - - SPI1_MISO - -
PG4 - - - - - SPI1_MOSI - -
PG5 - - - - - SPI1_NSS - -
PG6 - - - OCTOSPI1_DQS I2C3_SMBA - - -
DFSDM1_CKO
DS12737 Rev 6
STM32L552xx
PG1
- LPTIM1_OUT - - I2C1_SMBA - - -
5
Table 22. Alternate function AF0 to AF7(1) (continued)
STM32L552xx
AF0 AF1 AF2 AF3 AF4 AF5 AF6 AF7
Port PH0 - - - - - - - -
H
PH1 - - - - - - - -
-
- PH3 - - - - - - - -
STM32L552xx
Table 23. Alternate function AF8 to AF15(1) (continued)
STM32L552xx
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Port
UART4/5/LPUA FDCAN1/ SDMMC1/COMP1 TIM2/8/15/16/17/
USB/OCTOSPI1 UCPD1 SAI1/2/TIM8 EVENTOUT
RT1/SDMMC1 TSC /2/TIM1/8/FMC LPTIM2
TSC_G2_
PB6 - - - TIM8_BKIN2 SAI1_FS_B TIM16_CH1N EVENTOUT
IO3
UART4_CTS_N TSC_G2_
PB7 - - FMC_NL TIM8_BKIN TIM17_CH1N EVENTOUT
SS IO4
Port
B FDCAN1_
PB8 SDMMC1_CKIN - - SDMMC1_D4 SAI1_MCLK_A TIM16_CH1 EVENTOUT
RX
FDCAN1_
PB9 SDMMC1_CDIR - - SDMMC1_D5 SAI1_FS_A TIM17_CH1 EVENTOUT
TX
TSC_SY
PB10 LPUART1_RX OCTOSPI1_CLK - COMP1_OUT SAI1_SCK_A - EVENTOUT
NC
R IO1
SDMMC1_D123 TSC_G4_
PC7 - - SDMMC1_D7 SAI2_MCLK_B - EVENTOUT
DIR IO2
Port
C TSC_G4_
PC8 - - - SDMMC1_D0 - - EVENTOUT
IO3
TSC_G4_
PC9 - USB_NOE - SDMMC1_D1 SAI2_EXTCLK TIM8_BKIN2 EVENTOUT
IO4
TSC_G3_
PC10 UART4_TX - - SDMMC1_D2 SAI2_SCK_B - EVENTOUT
IO2
TSC_G3_
PC11 UART4_RX - UCPD1_FRSTX2 SDMMC1_D3 SAI2_MCLK_B - EVENTOUT
IO3
TSC_G3_
PC12 UART5_TX - - SDMMC1_CK SAI2_SD_B - EVENTOUT
IO4
PC13 - - - - - - - EVENTOUT
STM32L552xx
PC14 - - - - - - - EVENTOUT
PC15 - - - - - - - EVENTOUT
Table 23. Alternate function AF8 to AF15(1) (continued)
STM32L552xx
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Port
UART4/5/LPUA FDCAN1/ SDMMC1/COMP1 TIM2/8/15/16/17/
USB/OCTOSPI1 UCPD1 SAI1/2/TIM8 EVENTOUT
RT1/SDMMC1 TSC /2/TIM1/8/FMC LPTIM2
FDCAN1_
PD0 - - - FMC_D2 - - EVENTOUT
RX
FDCAN1_
PD1 - - - FMC_D3 - - EVENTOUT
TX
TSC_SY
PD2 UART5_RX - - SDMMC1_CMD - - EVENTOUT
NC
PD3 - - - - FMC_CLK - - EVENTOUT
PD4 - - OCTOSPI1_IO4 - FMC_NOE - - EVENTOUT
PD5 - - OCTOSPI1_IO5 - FMC_NWE - - EVENTOUT
DS12737 Rev 6
STM32L552xx
PE15 - - OCTOSPI1_IO3 - FMC_D12 - - EVENTOUT
Table 23. Alternate function AF8 to AF15(1) (continued)
STM32L552xx
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Port
UART4/5/LPUA FDCAN1/ SDMMC1/COMP1 TIM2/8/15/16/17/
USB/OCTOSPI1 UCPD1 SAI1/2/TIM8 EVENTOUT
RT1/SDMMC1 TSC /2/TIM1/8/FMC LPTIM2
TSC_G8_
PG0 - - - FMC_A10 - - EVENTOUT
IO3
TSC_G8_
PG1 - - - FMC_A11 - - EVENTOUT
IO4
PG2 - - - - FMC_A12 SAI2_SCK_B - EVENTOUT
PG3 - - - - FMC_A13 SAI2_FS_B - EVENTOUT
PG4 - - - - FMC_A14 SAI2_MCLK_B - EVENTOUT
LPUART1_CTS
PG5 - - - FMC_A15 SAI2_SD_B - EVENTOUT
_NSS
DS12737 Rev 6
LPUART1_RTS_
PG6 - - UCPD1_FRSTX1 - - - EVENTOUT
Port DE
G PG7 LPUART1_TX - - UCPD1_FRSTX2 FMC_INT SAI1_MCLK_A - EVENTOUT
PG8 LPUART1_RX - - - - - - EVENTOUT
FMC_NCE/FMC_
PG9 - - - - SAI2_SCK_A TIM15_CH1N EVENTOUT
NE2
PG10 - - - - FMC_NE3 SAI2_FS_A TIM15_CH1 EVENTOUT
PG11 - - - - - SAI2_MCLK_A TIM15_CH2 EVENTOUT
PG12 - - - - FMC_NE4 SAI2_SD_A - EVENTOUT
PG13 - - - - FMC_A24 - - EVENTOUT
PG14 - - - - FMC_A25 - - EVENTOUT
PG15 - - - - - - - EVENTOUT
STM32L552xx
Table 23. Alternate function AF8 to AF15(1) (continued)
STM32L552xx
AF8 AF9 AF10 AF11 AF12 AF13 AF14 AF15
Port
UART4/5/LPUA FDCAN1/ SDMMC1/COMP1 TIM2/8/15/16/17/
USB/OCTOSPI1 UCPD1 SAI1/2/TIM8 EVENTOUT
RT1/SDMMC1 TSC /2/TIM1/8/FMC LPTIM2
PH0 - - - - - - - EVENTOUT
Port
PH1 - - - - - - - EVENTOUT
H
PH3 - - - - - - - EVENTOUT
1. Refer to Table 22 for AF0 to AF7.
DS12737 Rev 6
5 Electrical characteristics
Figure 25. Pin loading conditions Figure 26. Pin input voltage
MS19210V1 MS19211V1
VBAT
Backup circuitry
(LSE, RTC,
1.55 – 3.6 V
Backup registers)
Power switch
VDD VCORE
n x VDD
Regulator
VDDIO1
OUT
Level shifter
Kernel logic
n x 100 nF IO (CPU, Digital
GPIOs logic
+1 x 4.7 μF IN & Memories)
n x VSS
VDDIO2
m x VDDIO2
VDDIO2
m x100 nF OUT
Level shifter
+4.7 μF IO
GPIOs logic
IN
m x VSS
VDDA
VDDA
VREF
ADCs/
10 nF VREF+ DACs/
+1 μF OPAMPs/
100 nF +1 μF VREF- COMPs/
VREFBUF
VSSA
MSv62917V1
Backup circuitry
(LSE, RTC,
1.55 – 3.6 V
Backup registers)
Power switch
2 x VDD12
1.05 – 1.32 V
VDD VCORE
n x VDD
Regulator
VDDIO1
OUT
Level shifter
Kernel logic
n x 100 nF IO (CPU, Digital
GPIOs logic
+1 x 4.7 μF IN & Memories)
n x VSS
VDDIO2
m x VDDIO2
VDDIO2
m x100 nF OUT
Level shifter
+4.7 μF IO
GPIOs logic
IN
m x VSS
VDDA
VDDA
VREF
ADCs/
10 nF VREF+ DACs/
+1 μF OPAMPs/
100 nF +1 μF VREF- COMPs/
VREFBUF
VSSA
MSv62918V1
Note: If the selected package has the external SMPS option but no external SMPS is used by the
application (the embedded LDO is used instead), the VDD12 pins are kept unconnected.
VBAT
Backup circuitry
(LSE, RTC,
1.55 – 3.6 V
Backup registers)
Power switch
VDD
VDDSMPS
SMPS
VLXSMPS
2 x V15SMPS
VSSSMPS
VDD VCORE
n x VDD
Regulator
VDDIO1
OUT
Level shifter
Kernel logic
n x 100 nF IO (CPU, Digital
GPIOs logic
+1 x 4.7 μF IN & Memories)
n x VSS
VDDIO2
m x VDDIO2
VDDIO2
Level shifter
m x100 nF OUT
+4.7 μF IO
GPIOs logic
IN
m x VSS
VDDA
VDDA
VREF
ADCs/
10 nF VREF+ DACs/
+1 μF OPAMPs/
100 nF +1 μF VREF- COMPs/
VREFBUF
VSSA
MSv62919V1
1. Refer to Figure 3 for SMPS step down converter power supply scheme.
Note: If the selected package has the SMPS step down converter option but the application does
not ever use the SMPS, it is recommended to set the SMPS power supply pins as follows:
VDDSMPS and VLXSMPS connected to VSS
V15SMPSconnected to VDD.
Caution: Each power supply pair (VDD/VSS, VDDA/VSSA etc.) must be decoupled with filtering ceramic
capacitors as shown above. These capacitors must be placed as close as possible to, or
below, the appropriate pins on the underside of the PCB to ensure the good functionality of
the device.
IDD
VDD
VDDA
VDDUSB
VDDSMPS
VDDIO2
MSv62920V1
VREF+ - VDDA Allowed voltage difference for VREF+ > VDDA - 0.4 V
Variations between different VDDX power
|∆VDDx| - 50
pins of the same domain
mV
Variations between all the different ground
|VSSx-VSS| - 50
pins(5)
1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be
connected to the external power supply, in the permitted range.
2. VIN maximum must always be respected. Refer to Table 25: Current characteristics for the maximum
allowed injected current values.
3. This formula has to be applied only on the power supplies related to the IO structure described in the pin
definition table.
4. To sustain a voltage higher than 4 V the internal pull-up/pull-down resistors must be disabled.
5. Include VREF- pin.
∑IVDD Total current into sum of all VDD power lines (source)(1) (2) 160
∑IVSS Total current out of sum of all VSS ground lines (sink)(1) (2) 160
IVDD(PIN) Maximum current into each VDD power pin (source)(1) 100
IVSS(PIN) Maximum current out of each VSS ground pin (sink)(1) 100
Output current sunk by any I/O and control pin except FT_f 20
IIO(PIN) Output current sunk by any FT_f pin 20
mA
Output current sourced by any I/O and control pin 20
Total output current sunk by sum of all I/Os and control pins(3) 100
∑IIO(PIN)
(3)
Total output current sourced by sum of all I/Os and control pins 100
Injected current on FT_xxx, TT_xx, RST and B pins, except PA4, PA5 -5/+0(5)
IINJ(PIN)(4)
Injected current on PA4, PA5 -5/0
∑|IINJ(PIN)| (6)
Total injected current (sum of all I/Os and control pins) +/-25
1. All main power (VDD, VDDA, VDDIO2, VDDUSB, VBAT) and ground (VSS, VSSA) pins must always be
connected to the external power supplies, in the permitted range.
2. Valid also for VDD12 on SMPS package.
3. This current consumption must be correctly distributed over all I/Os and control pins. The total output
current must not be sunk/sourced between two consecutive power supply pins referring to high pin count
QFP packages.
4. Positive injection (when VIN > VDDIOx) is not possible on these I/Os and does not occur for input voltages
lower than the specified maximum value.
5. A negative injection is induced by VIN < VSS. IINJ(PIN) must never be exceeded. Refer also to Table 24:
Voltage characteristics for the minimum allowed input voltage values.
6. When several inputs are submitted to a current injection, the maximum ∑|IINJ(PIN)| is the absolute sum of
the negative injected currents (instantaneous values).
Maximum power
Ambient temperature for –40 85
dissipation
the suffix 6 version
Low-power dissipation(6) –40 105
TA °C
Maximum power
Ambient temperature for –40 125
dissipation
the suffix 3 version
Low-power dissipation(6) –40 130
Suffix 6 version –40 105
TJ Junction temperature range °C
Suffix 3 version –40 130
1. When RESET is released functionality is guaranteed down to VBOR0 Min.
2. For Flash erase and program operation, VDD12 min must be 1.08 V.
3. This formula has to be applied only on the power supplies related to the IO structure described by the pin
definition table. Maximum I/O input voltage is the smallest value between MIN(VDD, VDDA, VDDIO2,
VDDUSB)+3.6 V and 5.5V.
4. For operation with voltage higher than Min (VDD, VDDA, VDDIO2, VDDUSB) +0.3 V, the internal Pull-up and
Pull-Down resistors must be disabled.
5. If TA is lower, higher PD values are allowed as long as TJ does not exceed TJmax (see Section 7.7: Thermal
characteristics).
6. In low-power dissipation state, TA can be extended to this range as long as TJ does not exceed TJmax (see
Section 7.7: Thermal characteristics).
VDD
VDDSMPS SMPS Regulator VCORE
VLXSMPS
L = 4.7 μH typ
2 x V15SMPS
C = 4.7 μF typ
VSSSMPS
MSv62972V2
The following table summarizes the SMPS behavior depending on the main regulator range,
VDD and consumption.
HP mode
Automatic Bypass mode
Range 0 110 MHz 1.28 V Max current consumption = 120 mA
V15SMPS = VDD
V15SMPS = 1.6 V
HP mode
Automatic Bypass mode
Range 1 80 MHz 1.2 V Max current consumption = 80 mA
V15SMPS = VDD
V15SMPS = 1.5 V
LP mode or HP mode
Software Bypass mode(1)
Range 2 26 MHz 1.0 V Max current consumption = 30 mA
V15SMPS = VDD
V15SMPS = 1.3 V
1. There is no automatic SMPS bypass in Range 2. The user application should use PVD0 to monitor VDD supply and request
the SMPS Bypass mode.
Table 31. Embedded reset and power control block characteristics (continued)
Symbol Parameter Conditions(1) Min Typ Max Unit
IDD
PVM3 and PVM4
(PVM3/PVM4) - - 2 - µA
(2) consumption from VDD
1. Continuous mode means Run/Sleep modes, or temperature sensor enable in Low-power run/Low-power
sleep modes.
2. Guaranteed by design.
3. BOR0 is enabled in all modes (except shutdown) and its consumption is therefore included in the supply
current characteristics tables.
Internal reference
VREFINT –40 °C < TA < +130 °C 1.182 1.212 1.232 V
voltage
ADC sampling time
(1) when reading the
tS_vrefint - 4(2) - - µs
internal reference
voltage
Start time of reference
tstart_vrefint voltage buffer when - - 8 12(2) µs
ADC is enable
VREFINT buffer
consumption from VDD
- - 12.5 20(2) µA
IDD(VREFINTBUF) when converted by
ADC
Internal reference
∆VREFINT voltage spread over VDD = 3 V - 5 7.5(2) mV
the temperature range
Average temperature
TCoeff –40°C < TA < +130°C - 30 50(2) ppm/°C
coefficient
ACoeff Long term stability 1000 hours, T = 25°C - 300 1000(2) ppm
Average voltage
VDDCoeff 3.0 V < VDD < 3.6 V - 250 1200(2) ppm/V
coefficient
VREFINT_DIV1 1/4 reference voltage 24 25 26
%
VREFINT_DIV2 1/2 reference voltage - 49 50 51
VREFINT
VREFINT_DIV3 3/4 reference voltage 74 75 76
1. The shortest sampling time can be determined in the application by multiple iterations.
2. Guaranteed by design.
V
1.235
1.23
1.225
1.22
1.215
1.21
1.205
1.2
1.195
1.19
1.185
-40 -20 0 20 40 60 80 100 120 °C
Mean Min Max
MSv40169V2
26 MHz 3.20 3.54 4.47 5.80 8.10 4.38 6.84 12.12 18.82 29.63
16 MHz 2.05 2.38 3.31 4.62 6.92 3.24 5.69 10.95 17.63 28.39
8 MHz 1.14 1.45 2.38 3.68 5.97 2.33 4.77 10.02 16.68 27.42
Range 2 4 MHz 0.675 0.99 1.91 3.22 5.50 1.87 4.30 9.55 16.20 26.92
2 MHz 0.441 0.758 1.67 2.97 5.25 1.64 4.07 9.31 15.96 26.68
fHCLK = fHSE 1 MHz 0.326 0.639 1.54 2.86 5.14 1.59 4.01 9.26 15.90 26.62
up to 48 MHz
included, 100 KHz 0.223 0.533 1.45 2.74 5.03 1.43 3.85 9.09 15.73 26.56
DS12737 Rev 6
IDD Supply
bypass mode
current in Range 0 110 MHz 16.7 17.3 18.7 20.5 23.7 19.07 21.53 31.38 41.23 56.59 mA
(Run) PLL ON above
Run mode
48 MHz all 80 MHz 11.4 11.9 13.2 14.8 17.7 13.33 16.89 24.17 33.07 46.91
peripherals
disabled 72 MHz 10.3 10.8 12.0 13.7 16.6 12.22 15.76 23.03 31.92 45.75
64 MHz 9.20 9.68 10.9 12.6 15.4 11.10 14.64 21.89 30.78 44.60
Range 1 48 MHz 6.97 7.44 8.64 10.3 13.1 8.85 12.38 19.62 28.48 42.29
32 MHz 4.73 5.18 6.36 7.97 10.8 6.61 10.12 17.32 26.15 39.93
24 MHz 3.62 4.06 5.22 6.82 9.6 5.49 8.99 16.17 24.99 38.82
16 MHz 2.51 2.93 4.08 5.67 8.4 4.37 7.85 15.02 23.83 37.64
Electrical characteristics
2 MHz 424 779 1816 3274 5719 2026 5001 12861 20164 31407
Supply
IDD current in fHCLK = fMSI 1 MHz 296 648 1686 3124 5588 1905 4941 11969 18559 31355
µA
(LPRun) Low-power all peripherals disabled 400 KHz 192 561 1594 3047 5499 1832 4762 11881 18519 31266
run mode
100 KHz 163 528 1559 3012 5469 1799 4573 11877 18469 31247
153/340
Table 34. Current consumption in Run and Low-power run modes, code with data processing
154/340
Electrical characteristics
running from Flash in single Bank, ICACHE ON in 1-way
Conditions TYP MAX
Parame Voltag
Symbol Unit
ter
- e fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 3.10 3.44 4.37 5.69 8.01 4.28 6.74 12.02 18.70 29.46
16 MHz 2.00 2.32 3.23 4.55 6.86 3.18 5.63 10.89 17.55 28.30
8 MHz 1.11 1.42 2.33 3.64 5.93 2.30 4.73 9.99 16.64 27.37
Range
4 MHz 0.65 0.98 1.87 3.19 5.48 1.86 4.29 9.53 16.18 26.89
2
2 MHz 0.43 0.74 1.65 2.97 5.24 1.64 4.06 9.31 15.95 26.66
fHCLK =
fHSE up to 1 MHz 0.32 0.62 1.53 2.85 5.10 1.58 4.01 9.25 15.89 26.61
48 MHz
100 KHz 0.22 0.52 1.43 2.75 5.01 1.43 3.85 9.09 15.73 26.44
DS12737 Rev 6
Supply included,
IDD current bypass Range
110 MHz 16.1 16.7 18.2 20.0 23.2 18.54 22.63 30.86 40.70 56.07 mA
(Run) in Run mode PLL 0
mode ON above
80 MHz 11.0 11.5 12.8 14.5 17.3 12.97 16.53 23.82 32.71 46.57
48 MHz all
peripherals 72 MHz 10.0 10.5 11.7 13.4 16.2 11.89 15.44 22.72 31.60 45.46
disabled
64 MHz 8.90 9.38 10.6 12.3 15.1 10.81 14.35 21.62 30.48 44.30
Range
48 MHz 6.75 7.21 8.41 10.0 12.8 8.63 12.16 19.41 28.26 42.09
1
32 MHz 4.59 5.03 6.22 7.82 10.6 6.46 9.97 17.18 26.00 39.87
24 MHz 3.51 3.94 5.10 6.72 9.5 5.38 8.88 16.07 24.88 38.73
16 MHz 2.43 2.85 3.99 5.59 8.4 4.3 7.8 15.0 23.7 37.6
Supply 2 MHz 416 770 1781 3249 5708 2014 4968 12892 19856 31311
current
IDD fHCLK = fMSI 1 MHz 291 633 1659 3127 5575 1899 4930 11960 18568 31264
in Low-
all peripherals µA
(LPRun) power
STM32L552xx
400 KHz 194 557 1583 3043 5502 1827 4765 11905 18328 31256
disabled
run
mode 100 KHz 147 519 1542 3020 5462 1795 4584 11898 18312 31238
Table 35. Current consumption in Run and Low-power run modes, code with data processing
STM32L552xx
running from Flash in single Bank, ICACHE disabled
Conditions TYP MAX
Parame
Symbol Unit
ter Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 4.08 4.43 5.36 6.72 9.02 5.38 7.84 13.14 19.81 30.60
16 MHz 2.65 2.98 3.91 5.22 7.55 3.93 6.38 11.67 18.32 29.09
8 MHz 1.43 1.76 2.67 3.99 6.26 2.67 5.11 10.38 17.02 27.77
fHCLK = Range 2 4 MHz 0.82 1.14 2.05 3.36 5.65 2.04 4.48 9.73 16.36 27.11
fHSE up
to 2 MHz 0.51 0.82 1.75 3.05 5.31 1.73 4.16 9.41 16.04 26.78
48 MHz 1 MHz 0.36 0.68 1.59 2.89 5.16 1.65 4.08 9.33 15.96 26.70
included,
Supply bypass 100 KHz 0.22 0.53 1.45 2.76 5.00 1.43 3.86 9.11 15.73 26.47
IDD current mode
DS12737 Rev 6
Range 0 110 MHz 18.8 19.4 20.9 22.8 25.9 19.97 24.02 32.25 42.05 57.42 mA
(Run) in Run PLL ON
mode above 80 MHz 14.1 14.6 15.9 17.6 20.5 16.16 19.71 27.01 35.88 49.75
48 MHz
all 72 MHz 12.8 13.3 14.5 16.2 19.1 14.80 18.34 25.64 34.50 48.37
peripher 64 MHz 11.79 12.30 13.5 15.2 18.1 13.90 17.45 24.74 33.60 47.45
als
disabled Range 1 48 MHz 8.87 9.37 10.63 12.3 15.1 10.97 14.51 21.78 30.62 44.47
32 MHz 6.12 6.58 7.80 9.44 12.2 8.22 11.74 18.98 27.78 41.68
24 MHz 4.66 5.11 6.29 7.92 10.7 6.70 10.20 17.42 26.20 40.09
16 MHz 3.26 3.70 4.86 6.47 9.2 5.28 8.77 15.97 24.74 38.61
Supply 2 MHz 511 866 1890 3353 5834 2122 5256 12721 20681 31502
Electrical characteristics
current fHCLK = fMSI
IDD 1 MHz 344 692 1715 3168 5642 1949 5022 12001 18581 31161
in Low-
all peripherals µA
(LPRun) power 400 KHz 203 591 1603 3062 5505 1852 4828 11924 18580 31131
disabled
run
mode 100 KHz 159 531 1553 3018 5468 1802 4590 11905 18301 30947
155/340
Table 36. Current consumption in Run mode, code with data processing
156/340
Electrical characteristics
running from Flash in single bank, ICACHE ON in 2-way and power
supplied by internal SMPS step down converter
Conditions TYP MAX
Symbol Parameter Voltage Unit
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 1.87 1.95 2.41 3.09 5.03 1.92 2.72 4.63 7.11 11.08
16 MHz 1.23 1.33 1.78 2.45 4.33 1.31 2.09 3.99 6.46 10.42
fHCLK =
fHSE up to Range 2 8 MHz 0.72 0.83 1.28 1.95 3.79 0.81 1.59 3.47 5.93 9.88
48 MHz SMPS 4 MHz 0.46 0.58 1.03 1.69 3.52 0.56 1.33 3.22 5.67 9.62
included, LP
IDD Supply mode 2 MHz 0.33 0.46 0.91 1.55 3.38 0.44 1.21 3.09 5.54 9.48
bypass
current in
(Run) mode PLL 1 MHz 0.27 0.39 0.84 1.49 3.311 0.41 1.17 3.05 5.51 9.45
Run mode
ON above
100 KHz 0.21 0.34 0.78 1.44 3.25 0.32 1.08 2.96 5.42 9.35
DS12737 Rev 6
48 MHz all
peripherals Range 0
disabled
SMPS 110 MHz 11.21 11.76 12.72 13.98 17.58 11.49 13.03 16.3 20.32 26.73 mA
HP
mode
fHCLK = 80 MHz 7.00 7.28 8.37 9.41 11.92 7.52 8.94 11.84 15.22 20.62
fHSE up to 72 MHz 6.34 6.61 7.57 8.67 11.20 6.87 8.25 11.19 14.55 19.93
48MHz
included, Range 1 64 MHz 5.68 5.94 6.73 7.96 10.44 6.19 7.55 10.53 13.92 19.26
IDD Supply
bypass SMPS
current in 48 MHz 4.36 4.61 5.28 6.49 8.97 4.82 6.15 9.18 12.6 17.89
(Run) mode PLL HP
Run mode
ON above mode 32 MHz 3.03 3.25 3.91 4.86 7.48 3.43 4.73 7.7 11.29 16.52
48 MHz all
peripherals 24 MHz 2.36 2.57 3.21 4.13 6.73 2.73 4.01 6.98 10.63 15.82
disabled 16 MHz 1.69 1.90 2.53 3.43 5.97 2.03 3.3 6.24 9.95 15.14
STM32L552xx
Table 37. Current consumption in Run mode, code with data processing
STM32L552xx
running from Flash in single bank, ICACHE ON in 1-way and power
supplied by internal SMPS step down converter
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 1.82 1.90 2.36 3.03 4.96 1.88 2.67 4.58 7.06 11.03
16 MHz 1.20 1.30 1.75 2.41 4.31 1.28 2.06 3.96 6.43 10.39
fHCLK = fHSE up 8 MHz 0.70 0.82 1.27 1.93 3.75 0.8 1.57 3.46 5.92 9.87
Range 2
to 48MHz
included, SMPS 4 MHz 0.45 0.58 1.02 1.68 3.51 0.56 1.32 3.21 5.67 9.61
IDD Supply current in bypass mode LP mode
2 MHz 0.33 0.45 0.90 1.55 3.37 0.44 1.2 3.08 5.54 9.48
(Run) Run mode PLL ON above
48 MHz all 1 MHz 0.26 0.39 0.84 1.49 3.30 0.4 1.17 3.05 5.51 9.45
peripherals 100 KHz 0.21 0.33 0.78 1.43 3.24 0.32 1.08 2.96 5.42 9.35
DS12737 Rev 6
disabled
Range 0
SMPS 110 MHz 10.80 11.38 12.35 13.61 17.20 11.18 12.71 15.98 19.99 26.39 mA
HP mode
80 MHz 6.79 7.06 8.152 9.17 11.65 7.32 8.74 11.64 15.01 20.4
fHCLK = fHSE up 72 MHz 6.15 6.42 7.38 8.46 10.92 6.68 8.06 11.01 14.37 19.73
to 48 MHz
included, Range 1
64 MHz 5.51 5.77 6.62 7.77 10.22 6.02 7.38 10.36 13.75 19.09
IDD Supply current in bypass mode
SMPS 48 MHz 4.23 4.48 5.15 6.34 8.814 4.69 6.02 9.05 12.48 17.76
(Run) Run mode PLL ON above
48 MHz all HP mode
32 MHz 2.94 3.17 3.82 4.76 7.341 3.34 4.64 7.62 11.21 16.43
peripherals
disabled 24 MHz 2.29 2.51 3.15 4.06 6.62 2.66 3.95 6.91 10.56 15.76
Electrical characteristics
16 MHz 1.65 1.85 2.49 3.39 5.89 1.99 3.25 6.2 9.91 15.09
157/340
Table 38. Current consumption in Run mode, code with data processing
158/340
Electrical characteristics
running from Flash in single bank, ICACHE disabled and power
supplied by internal SMPS step down converter
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 2.38 2.44 2.91 3.60 5.55 2.43 3.23 5.15 7.63 11.61
16 MHz 1.57 1.66 2.11 2.79 4.68 1.64 2.43 4.34 6.8 10.77
8 MHz 0.89 0.99 1.45 2.11 3.97 0.98 1.76 3.65 6.11 10.06
Range 2
SMPS 4 MHz 0.54 0.67 1.11 1.77 3.59 0.65 1.41 3.3 5.76 9.7
LP mode
2 MHz 0.37 0.50 0.94 1.60 3.42 0.48 1.24 3.13 5.59 9.52
1 MHz 0.29 0.41 0.86 1.52 3.33 0.44 1.2 3.09 5.54 9.48
fHCLK = fHSE up
to 48 MHz 100 KHz 0.21 0.34 0.78 1.43 3.24 0.32 1.08 2.97 5.42 9.36
DS12737 Rev 6
included, Range 0
IDD Supply current in bypass mode
Run mode PLL ON above SMPS 110 MHz 12.87 13.29 14.25 15.62 18.91 13.02 14.59 17.89 21.92 28.32 mA
(Run)
48 MHz all HP mode
peripherals 80 MHz 8.69 9.01 10.21 11.24 13.82 9.35 10.76 13.6 17.02 22.47
disabled
72 MHz 7.88 8.23 9.30 10.34 12.83 8.53 9.98 12.77 16.15 21.57
64 MHz 7.28 7.56 8.67 9.70 12.17 7.86 9.27 12.16 15.54 20.94
Range 1
SMPS 48 MHz 5.56 5.81 6.66 7.79 10.30 6.1 7.44 10.46 13.82 19.16
HP mode
32 MHz 3.87 4.11 4.79 5.87 8.40 4.33 5.65 8.63 12.16 17.41
24 MHz 2.99 3.21 3.87 4.84 7.41 3.41 4.7 7.67 11.28 16.5
16 MHz 2.15 2.36 3.00 3.92 6.45 2.52 3.79 6.73 10.42 15.62
STM32L552xx
Table 39. Current consumption in Run and Low-power run modes, code with data processing
STM32L552xx
running from Flash in dual bank, ICACHE ON in 2-way
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 3.19 3.53 4.57 6.08 8.87 4.38 6.84 12.13 18.79 29.69
16 MHz 2.05 2.38 3.41 4.90 7.67 3.24 5.69 10.96 17.60 28.45
8 MHz 1.13 1.45 2.47 3.95 6.71 2.33 4.77 10.03 16.64 27.47
Range 2 4 MHz 0.67 0.99 1.98 3.48 6.22 1.87 4.30 9.56 16.16 26.97
fHCLK = 2 MHz 0.43 0.75 1.76 3.24 5.97 1.64 4.07 9.32 15.92 26.73
fHSE up to 1 MHz 0.32 0.63 1.63 3.13 5.85 1.59 4.02 9.26 15.86 26.66
48MHz
included, 100 KHz 0.22 0.53 1.53 3.00 5.75 1.43 3.85 9.10 15.70 26.48
IDD Supply
bypass
DS12737 Rev 6
current in Range 0 110 MHz 16.66 17.28 18.84 20.97 24.75 19.07 23.15 31.38 41.18 56.65 mA
(Run) mode PLL
Run mode
ON above 80 MHz 11.39 11.91 13.30 15.22 18.68 13.33 16.88 24.17 33.02 46.97
48 MHz all
peripherals 72 MHz 10.28 10.79 12.16 14.08 17.52 12.22 15.76 23.03 31.87 45.80
disabled 64 MHz 9.18 9.68 11.02 12.93 16.35 11.10 14.64 21.89 30.72 44.63
Range 1 48 MHz 6.95 7.43 8.76 10.63 14.02 8.85 12.38 19.62 28.43 42.33
32 MHz 4.72 5.17 6.48 8.33 11.68 6.61 10.12 17.32 26.10 39.96
24 MHz 3.61 4.05 5.35 7.20 10.50 5.49 8.98 16.17 24.94 38.85
16 MHz 2.50 2.92 4.20 6.04 9.33 4.37 7.85 15.02 23.77 37.67
2 MHz 402.64 785.95 1919 3558 6501 2025 4984 12805 20319 31556
Electrical characteristics
Supply
IDD current in fHCLK = fMSI 1 MHz 274.43 651.32 1775 3435 6367 1907 4958 11887 18764 31438
µA
(LPRun) Low-power all peripherals disabled 400 KHz 184.36 568.08 1697 3359 6278 1835 4759 11810 18426 31274
run mode
100 KHz 164.07 526.82 1660 3306 6238 1797 4578 11807 18139 30765
159/340
Table 40. Current consumption in Run and Low-power run modes, code with data processing
160/340
Electrical characteristics
running from Flash in dual bank, ICACHE ON in 1-way
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 3.10 3.44 4.45 5.99 8.76 4.28 6.74 12.01 18.65 29.47
16 MHz 1.99 2.32 3.33 4.84 7.60 3.18 5.63 10.88 17.51 28.31
8 MHz 1.10 1.42 2.43 3.93 6.67 2.30 4.73 9.97 16.59 27.37
Range 2 4 MHz 0.65 0.97 1.96 3.47 6.19 1.86 4.29 9.52 16.13 26.90
mA
fHCLK = 2 MHz 0.43 0.76 1.75 3.24 5.97 1.64 4.06 9.29 15.90 26.67
fHSE up to 1 MHz 0.31 0.63 1.63 3.14 5.84 1.58 4.01 9.24 15.85 26.61
48MHz
included, 100 KHz 0.21 0.53 1.52 3.01 5.75 1.43 3.85 9.08 15.69 26.45
IDD Supply
bypass
DS12737 Rev 6
current in Range 0 110 MHz 16.14 16.75 18.31 20.43 24.12 18.54 22.62 30.83 40.64 56.06
(Run) mode PLL
Run mode
ON above 80 MHz 11.03 11.54 12.91 14.83 18.22 12.97 16.52 23.79 32.65 46.57
48 MHz all
peripherals 72 MHz 9.96 10.46 11.81 13.73 17.10 11.89 15.44 22.69 31.54 45.44
disabled 64 MHz 8.89 9.39 10.72 12.62 16.00 10.81 14.35 21.59 30.43 44.31
Range 1 48 MHz 6.74 7.21 8.52 10.41 13.77 8.63 12.16 19.38 28.20 42.08 mA
32 MHz 4.58 5.04 6.31 8.19 11.47 6.46 9.97 17.16 25.95 39.86
24 MHz 3.50 3.94 5.22 7.07 10.36 5.38 8.87 16.04 24.82 38.72
16 MHz 2.42 2.85 4.10 5.93 9.21 4.30 7.78 14.93 23.69 37.57
395.2 772.8
2 MHz 1907 3571 6492 2013 4976 12833 20077 31507
8 3
STM32L552xx
run mode 400 KHz 1698 3343 6271 1823 4765 11840 18375 31356
8 3
165.5 523.3
100 KHz 1666 3299 6245 1799 4595 11826 18345 30923
4 3
Table 41. Current consumption in Run and Low-power run modes, code with data processing
STM32L552xx
running from Flash in dual bank, ICACHE disabled
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 4.17 4.52 5.55 7.10 9.86 5.38 7.84 13.11 19.77 30.58
16 MHz 2.73 3.07 4.09 5.63 8.40 3.93 6.38 11.64 18.28 29.07
8 MHz 1.47 1.80 2.81 4.32 7.05 2.67 5.11 10.35 16.98 27.75
Range 2 4 MHz 0.84 1.166 2.16 3.66 6.39 2.04 4.47 9.70 16.33 27.08
fHCLK = 2 MHz 0.52 0.84 1.84 3.33 6.05 1.73 4.16 9.38 16.00 26.76
fHSE up to 1 MHz 0.36 0.68 1.68 3.18 5.89 1.65 4.08 9.30 15.92 26.67
48MHz
included, 100 KHz 0.22 0.53 1.53 3.03 5.74 1.43 3.86 9.08 15.70 26.44
IDD Supply
bypass
DS12737 Rev 6
current in Run Range 0 110 MHz 17.20 17.81 19.35 21.47 25.17 19.96 24.02 32.20 42.00 57.39 mA
(Run) mode PLL
mode
ON above 80 MHz 13.93 14.47 15.86 17.80 21.23 16.17 19.70 26.96 35.83 49.73
48 MHz all
peripherals 72 MHz 12.60 13.12 14.51 16.45 19.86 14.80 18.34 25.59 34.46 48.34
disabled 64 MHz 11.82 12.34 13.73 15.65 19.05 13.90 17.45 24.69 33.55 47.42
Range 1 48 MHz 8.922 9.42 10.78 12.69 16.08 10.97 14.51 21.73 30.58 44.45
32 MHz 6.24 6.72 8.03 9.92 13.28 8.22 11.74 18.93 27.74 41.65
24 MHz 4.75 5.21 6.50 8.35 11.67 6.70 10.20 17.37 26.16 40.06
16 MHz 3.38 3.83 5.09 6.93 10.22 5.28 8.77 15.92 24.70 38.58
483.6 889.5
2 MHz 2022 3671 6622 2109 5283 12566 20777 31527
Electrical characteristics
4 6
1 0
Table 42. Current consumption in Run mode, code with data processing
162/340
Electrical characteristics
running from Flash in dual bank, ICACHE ON in 2-way and power
supplied by internal SMPS step down converter
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 1.85 1.94 2.41 3.14 4.40 1.93 2.73 4.65 7.13 11.13
16 MHz 1.21 1.33 1.79 2.48 3.76 1.31 2.09 3.99 6.46 10.43
8 MHz 0.70 0.83 1.29 1.98 3.25 0.81 1.59 3.47 5.94 9.89
Range 2
SMPS 4 MHz 0.45 0.58 1.03 1.77 3.00 0.56 1.33 3.22 5.68 9.62
LP mode
2 MHz 0.32 0.46 0.90 1.60 2.88 0.44 1.21 3.09 5.54 9.49
1 MHz 0.26 0.39 0.84 1.54 2.79 0.41 1.17 3.05 5.51 9.46
fHCLK = fHSE up 100 KHz 0.20 0.33 0.79 1.51 2.74 0.32 1.08 2.96 5.42 9.36
DS12737 Rev 6
to 48 MHz
included, Range 0
IDD Supply current in bypass mode SMPS 110 MHz 11.05 11.73 12.72 14.01 16.84 11.49 13.03 16.31 20.32 26.75 mA
(Run) Run mode PLL ON above HP
48 MHz all mode
peripherals
disabled 80 MHz 6.96 7.27 8.38 9.46 11.35 7.53 8.94 11.84 15.22 20.64
72 MHz 6.30 6.61 7.62 8.69 10.58 6.87 8.26 11.2 14.56 19.94
Range 1 64 MHz 5.65 5.94 6.80 8.00 9.88 6.19 7.55 10.53 13.92 19.27
SMPS 48 MHz 4.33 4.60 5.29 6.51 8.40 4.83 6.15 9.18 12.6 17.9
HP
mode 32 MHz 3.00 3.25 3.92 4.92 6.92 3.43 4.73 7.7 11.29 16.53
24 MHz 2.33 2.57 3.22 4.15 6.15 2.73 4.01 6.98 10.63 15.83
16 MHz 1.67 1.89 2.53 3.47 5.33 2.03 3.3 6.24 9.95 15.15
STM32L552xx
Table 43. Current consumption in Run mode, code with data processing
STM32L552xx
running from Flash in dual bank, ICACHE ON in 1-way and power
supplied by internal SMPS step down converter
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 1.80 1.89 2.37 3.07 4.35 1.88 2.67 4.58 7.06 11.04
16 MHz 1.18 1.30 1.76 2.46 3.72 1.28 2.06 3.96 6.43 10.39
8 MHz 0.69 0.82 1.27 1.98 3.23 0.8 1.57 3.46 5.92 9.87
Range 2
SMPS 4 MHz 0.44 0.58 1.02 1.72 2.98 0.56 1.32 3.21 5.67 9.61
LP mode
2 MHz 0.32 0.46 0.90 1.59 2.86 0.44 1.2 3.08 5.54 9.48
1 MHz 0.26 0.39 0.84 1.53 2.79 0.4 1.17 3.05 5.51 9.45
fHCLK = fHSE up
to 48 MHz 100 KHz 0.20 0.33 0.78 1.48 2.73 0.32 1.08 2.96 5.42 9.36
DS12737 Rev 6
included, Range 0
IDD Supply current bypass mode
in Run mode PLL ON above SMPS 110 MHz 10.51 11.37 12.33 13.63 16.26 11.18 12.72 15.98 20 26.4 mA
(Run)
48 MHz all HP mode
peripherals 80 MHz 6.75 7.06 8.15 9.21 11.07 7.33 8.74 11.64 15.01 20.41
disabled
72 MHz 6.12 6.41 7.39 8.50 10.37 6.68 8.06 11.01 14.37 19.75
64 MHz 5.48 5.77 6.65 7.82 9.68 6.02 7.38 10.37 13.75 19.1
Range 1
SMPS 48 MHz 4.20 4.48 5.15 6.38 8.25 4.69 6.02 9.06 12.48 17.77
HP mode
32 MHz 2.92 3.16 3.82 4.79 6.81 3.34 4.64 7.62 11.21 16.44
24 MHz 2.27 2.51 3.15 4.12 6.06 2.66 3.95 6.91 10.56 15.76
Electrical characteristics
16 MHz 1.63 1.85 2.49 3.44 5.26 1.99 3.25 6.2 9.91 15.1
163/340
Table 44. Current consumption in Run mode, code with data processing
164/340
Electrical characteristics
running from Flash in dual bank, ICACHE disabled and power
supplied by internal SMPS step down converter
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 2.40 2.49 2.97 3.67 4.94 2.47 3.28 5.2 7.68 11.67
16 MHz 1.61 1.71 2.17 2.87 4.16 1.68 2.48 4.39 6.86 10.83
Range 2 8 MHz 0.90 1.02 1.47 2.18 3.44 1 1.78 3.67 6.14 10.09
SMPS 4 MHz 0.55 0.67 1.12 1.82 3.07 0.66 1.43 3.31 5.77 9.72
LP
mode 2 MHz 0.37 0.51 0.95 1.64 2.89 0.49 1.25 3.14 5.59 9.54
1 MHz 0.286 0.42 0.87 1.55 2.81 0.44 1.21 3.09 5.55 9.49
fHCLK = fHSE up 100 KHz 0.20 0.34 0.79 1.48 2.74 0.32 1.08 2.97 5.42 9.36
DS12737 Rev 6
to 48 MHz
included, Range 0
IDD Supply current in bypass mode SMPS 110 MHz 11.59 12.15 13.24 14.24 16.59 11.99 13.58 16.92 20.93 27.3 mA
(Run) Run mode PLL ON above HP
48 MHz all mode
peripherals
disabled 80 MHz 8.53 8.95 10.06 11.12 13.07 9.31 10.7 13.49 16.89 22.35
72 MHz 7.74 8.07 9.20 10.26 12.17 8.47 9.9 12.69 16.07 21.5
Range 1 64 MHz 7.26 7.57 8.71 9.75 11.64 7.95 9.38 12.21 15.58 21
SMPS 48 MHz 5.54 5.82 6.66 7.87 9.74 6.15 7.51 10.51 13.86 19.2
HP
mode 32 MHz 3.92 4.18 4.85 5.98 7.91 4.42 5.74 8.74 12.24 17.5
24 MHz 3.03 3.27 3.92 4.91 6.93 3.48 4.78 7.75 11.33 16.55
16 MHz 2.20 2.43 3.07 4.03 5.95 2.59 3.87 6.81 10.49 15.69
STM32L552xx
Table 45. Current consumption in Run and Low-power run modes,
STM32L552xx
code with data processing running from SRAM1
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 3.25 3.59 4.62 6.12 8.92 4.44 6.89 12.15 18.80 29.60
16 MHz 2.08 2.41 3.43 4.93 7.69 3.27 5.72 10.96 17.61 28.38
8 MHz 1.15 1.47 2.47 3.97 6.73 2.35 4.78 10.01 16.64 27.40
Range 2 4 MHz 0.68 1.00 1.99 3.51 6.23 1.88 4.31 9.53 16.16 26.91
2 MHz 0.44 0.76 1.75 3.25 5.97 1.65 4.07 9.30 15.92 26.67
fHCLK = fHSE
up to 48MHz 1 MHz 0.32 0.64 1.64 3.14 5.86 1.59 4.01 9.24 15.86 26.61
included,
100 KHz 0.22 0.53 1.52 3.03 5.76 1.42 3.84 9.06 15.68 26.43
IDD Supply bypass
DS12737 Rev 6
current in mode PLL Range 0 110 MHz 16.99 17.57 19.10 21.22 24.94 19.40 23.45 31.63 41.44 56.82 mA
(Run) Run mode ON above 48
80 MHz 11.63 12.13 13.48 15.38 18.76 13.57 17.11 24.35 33.21 47.09
MHz all
peripherals 72 MHz 10.50 10.99 12.33 14.22 17.62 12.42 15.96 23.19 32.04 45.92
disabled
64 MHz 9.37 9.85 11.18 13.07 16.43 11.28 14.81 22.04 30.87 44.74
Range 1 48 MHz 7.10 7.56 8.87 10.74 14.10 8.99 12.51 19.71 28.54 42.40
32 MHz 4.826 5.27 6.55 8.40 11.70 6.70 10.20 17.38 26.18 40.08
24 MHz 3.68 4.11 5.37 7.23 10.54 5.55 9.05 16.21 24.99 38.88
16 MHz 2.54 2.97 4.22 6.05 9.34 4.41 7.89 15.04 23.81 37.68
2 MHz 385.23 772.80 1911 3545 6506 2010 4724 12895 21185 30901
Electrical characteristics
Supply fHCLK = fMSI
IDD current in 1 MHz 271.61 633.31 1776 3405 6382 1896 4686 12648 20905 30715
all peripherals disabled µA
(LPRun) Low-power 400 KHz 198.95 554.43 1694 3337 6298 1818 4633 10788 18052 30448
run mode FLASH in power-down
100 KHz 142.82 517.78 1638 3286 6267 1423 3848 9073 15687 26433
165/340
Table 46. Current consumption in Run mode, code with data processing running
166/340
Electrical characteristics
from SRAM1 and power supplied by internal SMPS step down converter
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 1.88 1.99 2.46 3.15 4.42 1.96 2.76 4.67 7.14 11.12
16 MHz 1.24 1.35 1.81 2.51 3.76 1.33 2.11 4.01 6.48 10.44
8 MHz 0.72 0.85 1.29 1.99 3.24 0.82 1.6 3.48 5.94 9.89
Range 2
SMPS 4 MHz 0.46 0.59 1.04 1.73 2.97 0.57 1.34 3.22 5.68 9.62
LP mode
2 MHz 0.32 0.46 0.91 1.60 2.85 0.44 1.21 3.09 5.54 9.48
1 MHz 0.26 0.40 0.84 1.53 2.77 0.41 1.18 3.06 5.51 9.45
fHCLK = fHSE up
to 48 MHz 100 KHz 0.20 0.34 0.78 1.48 2.71 0.32 1.08 2.96 5.41 9.34
included,
DS12737 Rev 6
Range 0
IDD Supply current bypass mode
in Run mode PLL ON above SMPS 110 MHz 11.28 12.01 12.99 14.29 17.00 12.06 14.37 19.01 24.79 33.4 mA
(Run)
48 MHz all HP mode
peripherals 80 MHz 7.10 7.42 8.55 9.55 11.47 8.33 10.16 13.97 18.72 26.04
disabled
72 MHz 6.44 6.74 7.80 8.84 10.70 7.52 9.42 13.31 18.02 25.3
64 MHz 5.76 6.05 6.89 8.10 9.95 6.8 8.74 12.64 17.33 24.58
Range 1
SMPS 48 MHz 4.42 4.69 5.37 6.60 8.46 5.34 7.29 11.35 15.96 23.16
HP mode
32 MHz 3.06 3.31 3.96 4.93 6.93 3.86 5.79 9.98 14.58 21.7
24 MHz 2.38 2.61 3.26 4.20 6.16 3.15 5.05 9.26 13.88 20.98
16 MHz 1.70 1.92 2.55 3.51 5.32 2.45 4.31 8.52 13.19 20.25
STM32L552xx
Table 47. Current consumption in Run and Low-power run modes, code with data processing
STM32L552xx
running from SRAM2
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 3.20 3.53 4.55 6.08 8.86 4.33 6.79 12.05 18.6 29.56
16 MHz 2.05 2.38 3.40 4.90 7.67 3.19 5.63 10.88 17.41 28.32
8 MHz 1.13 1.45 2.46 3.97 6.71 2.28 4.71 9.94 16.46 27.34
Range 2 4 MHz 0.67 0.99 1.99 3.47 6.21 1.82 4.25 9.47 15.98 26.84
fHCLK = 2 MHz 0.43 0.76 1.75 3.24 5.97 1.59 4.01 9.24 15.74 26.59
fHSE up to 1 MHz 0.32 0.63 1.63 3.13 5.86 1.53 3.96 9.18 15.68 26.52
48 MHz
included, 100 KHz 0.22 0.53 1.53 3.01 5.74 1.37 3.79 9 15.5 26.33
IDD Supply current bypass
DS12737 Rev 6
Range 0 110 MHz 16.71 17.32 18.86 20.97 24.66 19.04 23.09 31.27 40.87 56.41 mA
(Run) in Run mode mode PLL
ON above 80 MHz 11.43 11.94 13.30 15.21 18.64 13.29 16.83 24.07 32.71 46.77
48 MHz all
peripherals 72 MHz 10.32 10.82 12.16 14.07 17.48 12.17 15.71 22.94 31.55 45.6
disabled 64 MHz 9.219 9.70 11.03 12.94 16.31 11.05 14.58 21.79 30.39 44.44
Range 1 48 MHz 6.98 7.44 8.77 10.63 13.98 8.79 12.31 19.5 28.16 42.12
32 MHz 4.746 5.19 6.48 8.33 11.65 6.54 10.04 17.2 25.84 39.83
24 MHz 3.62 4.06 5.33 7.17 10.49 5.42 8.9 16.05 24.67 38.64
16 MHz 2.50 2.93 4.19 6.02 9.29 4.29 7.76 14.9 23.51 37.45
2 MHz 386.41 774.71 1901 3546 6475 1946 2886 7270 11761 20360
Electrical characteristics
Supply current fHCLK = fMSI 1 MHz 276.23 635.13 1767 3445 6360 1829 2796 6688 12192 20188
IDD(LPRu
in Low-power all peripherals disabled µA
n) 400 KHz 196.75 552.97 1679 3339 6278 1757 2749 6961 11520 19976
run mode FLASH in power-down
100 KHz 146.57 513.87 1644 3299 6249 1373 2313 5697 10033 17534
167/340
Table 48. Current consumption in Run mode, code with data processing
168/340
Electrical characteristics
running from SRAM2 and power supplied by internal SMPS step down converter
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 1.86 1.96 2.43 3.12 4.43 2.22 3.49 6.48 10.14 15.89
16 MHz 1.22 1.33 1.79 2.50 3.75 1.61 2.87 5.83 9.48 15.21
8 MHz 0.71 0.83 1.28 1.99 3.24 1.11 2.37 5.32 8.95 14.64
Range 2
SMPS LP 4 MHz 0.456 0.58 1.03 1.74 2.99 0.86 2.12 5.07 8.69 14.36
mode
2 MHz 0.32 0.46 0.90 1.60 2.86 0.74 1.99 4.94 8.56 14.22
1 MHz 0.26 0.40 0.84 1.54 2.79 0.71 1.96 4.9 8.52 14.18
fHCLK = fHSE up
to 48 MHz 100 KHz 0.20 0.34 0.78 1.49 2.73 0.62 1.87 4.81 8.43 14.07
included,
DS12737 Rev 6
Range 0
IDD Supply current bypass mode
in Run mode PLL ON above SMPS HP 110 MHz 11.04 11.78 12.75 14.05 16.87 12.16 14.52 19.77 25.94 35.47 mA
(Run)
48 MHz all mode
peripherals 80 MHz 7.00 7.29 8.40 9.44 11.33 8.23 10.44 14.63 19.73 27.8
disabled
72 MHz 6.34 6.62 7.64 8.72 10.59 7.49 9.79 13.98 19.05 27.08
64 MHz 5.68 5.95 6.82 8.00 9.86 6.8 8.97 13.41 18.39 26.39
Range 1
SMPS HP 48 MHz 4.35 4.61 5.30 6.51 8.38 5.39 7.53 12.27 17.03 24.99
mode
32 MHz 3.02 3.26 3.91 4.89 6.89 3.98 6.11 10.94 15.72 23.52
24 MHz 2.35 2.58 3.22 4.18 6.11 3.28 5.4 10.17 15.11 22.8
16 MHz 1.68 1.90 2.53 3.49 5.31 2.58 4.68 9.42 14.54 22.09
STM32L552xx
Table 49. Typical current consumption in Run and Low-power run modes,
STM32L552xx
with different codes running from Flash, ICACHE ON (2-way)
TYP TYP TYP TYP
Electrical characteristics
While 14.5 14.5 131 131
Reduced code 424 403 212 201
Coremark 447 415 224 207
IDD Supply current in fHCLK = fMSI = 2 MHz all peripherals
Dhrystone2.1 477 432 µA 239 216 µA/MHz
(LPRun) Low-power run disabled
Fibonacci 427 383 214 192
169/340
Electrical characteristics
with different codes running from Flash, ICACHE ON (2-way)
TYP TYP TYP TYP
Reduced
1.88 1.85 72 71
code
Range2, SMPS Coremark 2.00 1.98 77 76
LP mA µA/MHz
Dhrystone2.1 2.13 2.09 82 81
fHCLK=26 MHz
Fibonacci 1.79 1.77 69 68
While 1.65 1.64 64 63
DS12737 Rev 6
Reduced
7.0 7.0 88 87
code
fHCLK=fHSE up to
48 MHZ included, Range 1, SMPS Coremark 7.5 7.5 94 93
IDD Supply current in
bypass mode PLL ON HP mA µA/MHz
(Run) Run mode Dhrystone2.1 8.0 7.9 100 99
above 48 MHz all fHCLK=80 MHz
peripherals disabled Fibonacci 6.7 6.6 83 83
While 6.1 6.1 77 76
Reduced
11.2 11.1 102 101
code
Range 0, SMPS Coremark 12.2 12.1 111 110
HP mA µA/MHz
Dhrystone2.1 13.0 12.9 118 117
fHCLK= 110 MHz
Fibonacci 10.6 10.6 97 96
While 9.3 9.3 85 84
STM32L552xx
Table 51. Typical current consumption in Run and Low-power run modes,
STM32L552xx
with different codes running from Flash, ICACHE ON (1-way)
TYP TYP TYP
TYP
Conditions Dual Single Dual
Single Bank
Symbol Parameter Bank Unit Bank Bank Unit
Mode
Mode Mode Mode
Electrical characteristics
While 14.2 14.2 129 129
Reduced code 416 395 208 198
Electrical characteristics
with different codes running from Flash, ICACHE ON (1-way)
TYP TYP TYP TYP
Voltage
- Code 25°C 25°C 25°C 25°C
scaling
STM32L552xx
Table 53. Typical current consumption in Run and Low-power run modes,
STM32L552xx
with different codes running from Flash, ICACHE disabled
TYP TYP TYP TYP
Electrical characteristics
While 15.9 16.5 145 150
Reduced code 511 484 255 242
Coremark 577 550 289 275
IDD(LPR Supply current in fHCLK = fMSI = 2MHz all peripherals
Dhrystone2.1 599 551 µA 299 275 µA/MHz
un) Low-power run disabled
Fibonacci 470 462 235 231
173/340
Electrical characteristics
with different codes running from Flash, ICACHE disabled
TYP TYP TYP TYP
fHCLK=fHSE up to 48
Coremark 8.4 7.5 106 93
MHZ included, bypass Range 1, SMPS
IDD Supply current in Run
mode PLL ON above HP fHCLK=80 Dhrystone2.1 8.6 7.7 mA 107 96 µA/MHz
(Run) mode
48 MHz all peripherals MHz
Fibonacci 7.5 7.0 93 87
disabled
While 6.8 7.0 84 87
Reduced code 12.9 11.6 117 105
Coremark 11.9 10.1 109 92
Range 0, SMPS
HP Dhrystone2.1 12.0 10.4 mA 109 94 µA/MHz
fHCLK= 110 MHz
Fibonacci 11.3 10.1 102 92
While 10.7 11.1 97 101
STM32L552xx
Table 55. Typical current consumption in Run and Low-power run modes,
STM32L552xx
with different codes running from SRAM1
Conditions TYP TYP
Symbol Parameter Unit Unit
- Voltage scaling Code 25°C 25°C
Electrical characteristics
Supply current in
IDD(LPRun) fHCLK = fMSI = 2MHz all peripherals disabled Dhrystone2.1 384 µA 192 µA/MHz
Low-power run
Fibonacci 409 204
While 442 221
175/340
Table 56. Typical current consumption in Run mode with internal SMPS,
176/340
Electrical characteristics
with different codes running from SRAM1
Conditions TYP TYP
Symbol Parameter Unit Unit
- Voltage scaling Code 25°C 25°C
STM32L552xx
Table 57. Typical current consumption in Run and Low-power run modes,
STM32L552xx
with different codes running from SRAM2
Conditions TYP TYP
Symbol Parameter Unit Unit
- Voltage scaling Code 25°C 25°C
Electrical characteristics
IDD Supply current in Low-
fHCLK = fMSI = 2MHz all peripherals disabled Dhrystone2.1 373 µA 187 µA/MHz
(LPRun) power run
Fibonacci 393 196
While 436 218
177/340
Table 58. Typical current consumption in Run mode with internal SMPS,
178/340
Electrical characteristics
with different codes running from SRAM2
Conditions TYP TYP
Symbol Parameter Unit Unit
- Voltage scaling Code 25°C 25°C
STM32L552xx
Table 59. Current consumption in Sleep and Low-power sleep mode, Flash ON
STM32L552xx
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 1.04 1.37 2.36 3.88 6.62 2.25 4.69 9.93 16.57 27.36
16 MHz 0.72 1.04 2.04 3.55 6.30 1.93 4.36 9.60 16.23 27.00
8 MHz 0.46 0.79 1.78 3.29 6.01 1.67 4.10 9.33 15.95 26.70
Range 2 4 MHz 0.33 0.65 1.65 3.14 5.85 1.54 3.97 9.19 15.80 26.55
2 MHz 0.27 0.58 1.58 3.07 5.78 1.48 3.90 9.12 15.73 26.48
fHCLK = fHSE
up to 48MHz 1 MHz 0.24 0.55 1.55 3.03 5.73 1.46 3.88 9.11 15.72 26.46
included,
100 KHz 0.211 0.52 1.52 3.01 5.72 1.42 3.84 9.06 15.67 26.41
IDD Supply bypass mode
current in PLL ON Range 0 110 MHz 4.73 5.23 6.62 8.65 12.21 7.00 11.02 19.15 28.98 44.29 mA
(Sleep) above 48
DS12737 Rev 6
Sleep mode
80 MHz 3.31 3.74 5.01 6.88 10.19 5.20 8.71 15.92 24.74 38.70
MHz all
peripherals 72 MHz 3.01 3.44 4.71 6.56 9.86 4.90 8.40 15.61 24.42 38.36
disabled
64 MHz 2.71 3.14 4.41 6.26 9.56 4.60 8.10 15.29 24.10 38.03
Range 1 48 MHz 2.10 2.53 3.79 5.62 8.92 3.98 7.47 14.66 23.45 37.38
32 MHz 1.49 1.91 3.17 4.98 8.27 3.37 6.84 14.00 22.78 36.67
24 MHz 1.18 1.60 2.84 4.67 7.93 3.06 6.52 13.68 22.44 36.32
16 MHz 0.88 1.29 2.53 4.34 7.60 2.75 6.21 13.35 22.10 35.96
2 MHz 205.22 584.41 1712 3383 6283 1843 4745 12643 19003 31504
Supply
fHCLK = fMSI 1 MHz 192.80 547.20 1678 3343 6248 1815 4665 12037 18615 31391
Electrical characteristics
IDD(LPSl current in
µA
eep) Low-power all peripherals disabled 400 KHz 143.73 520.85 1655 3313 6222 1793 4567 11872 18346 30902
sleep mode
100 KHz 137.82 519.15 1650 3308 6219 1786 4554 11814 18206 30849
179/340
Table 60. Current consumption in Low-power sleep mode, Flash in power-down
180/340
Electrical characteristics
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
Supply 2 MHz 197.64 567.40 1699 3374 6136 1839 4641 12810 20855 31559
IDD current in fHCLK = fMSI 1 MHz 165.99 540.66 1672 3313 6109 1805 4599 12189 20334 31071
Low-power all peripherals µA
(LPSleep) sleep 400 KHz 145.78 510.80 1640 3312 6084 1785 4578 10816 17908 30945
disabled
mode 100 KHz 143.34 506.41 1629 3288 6062 1423 3848 9087 15694 26452
DS12737 Rev 6
STM32L552xx
Table 61. Current consumption in Sleep mode,
STM32L552xx
Flash ON and power supplied by internal SMPS step down converter
Conditions TYP MAX
Symbol Parameter Unit
Voltage
- fHCLK 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
scaling
26 MHz 0.69 0.82 1.27 1.99 3.22 0.8 1.57 3.47 5.93 9.88
16 MHz 0.50 0.64 1.09 1.80 3.05 0.62 1.39 3.27 5.73 9.67
8 MHz 0.35 0.48 0.93 1.65 2.88 0.47 1.23 3.11 5.57 9.5
Range 2
SMPS LP 4 MHz 0.27 0.40 0.85 1.55 2.81 0.39 1.16 3.03 5.48 9.42
mode
2 MHz 0.23 0.37 0.82 1.52 2.77 0.35 1.12 2.99 5.44 9.37
1 MHz 0.21 0.35 0.79 1.50 2.73 0.34 1.11 2.98 5.43 9.36
fHCLK = fHSE up
to 48MHz 100 KHz 0.20 0.33 0.78 1.48 2.73 0.32 1.08 2.95 5.4 9.33
included,
DS12737 Rev 6
Supply Range 0
IDD bypass mode
current in 110 MHz 3.22 3.49 4.24 5.40 7.70 3.81 5.39 9.01 12.92 19.03 mA
(Sleep) PLL ON above SMPS HP
Sleep mode mode
48 MHz all
peripherals 80 MHz 2.22 2.44 3.09 4.06 5.98 2.6 3.9 6.89 10.56 15.77
disabled
72 MHz 2.04 2.26 2.90 3.89 5.78 2.41 3.7 6.68 10.37 15.58
64 MHz 1.85 2.07 2.71 3.70 5.53 2.22 3.51 6.48 10.19 15.38
Range 1
SMPS HP 48 MHz 1.48 1.70 2.34 3.31 5.11 1.83 3.1 6.07 9.81 15
mode
32 MHz 1.10 1.32 1.94 2.91 4.62 1.44 2.69 5.64 9.39 14.58
24 MHz 0.91 1.12 1.74 2.71 4.40 1.24 2.48 5.42 9.18 14.38
16 MHz 0.72 0.93 1.55 2.52 4.18 1.04 2.28 5.2 8.97 14.17
Electrical characteristics
181/340
Table 62. Current consumption in Run mode, code with data processing running from Flash
182/340
Electrical characteristics
in single bank, ICACHE ON in 2-way and power supplied by external SMPS
Conditions(1) TYP
Symbol Parameter Unit
- VDD12 fHCLK 25°C 55°C 85°C 105°C 125°C
STM32L552xx
Table 63. Current consumption in Run mode, code with data processing running from Flash
STM32L552xx
in single bank, ICACHE ON in 1-way and power supplied by external SMPS
Conditions(1) TYP
Symbol Parameter Unit
- VDD12 fHCLK 25°C 55°C 85°C 105°C 125°C
Electrical characteristics
183/340
Table 64. Current consumption in Run mode, code with data processing running from Flash
184/340
Electrical characteristics
in single bank, ICACHE disabled and power supplied by external SMPS
Conditions(1) TYP
Symbol Parameter Unit
- VDD12 fHCLK 25°C 55°C 85°C 105°C 125°C
STM32L552xx
Table 65. Current consumption in Run mode, code with data processing running from Flash
STM32L552xx
in dual bank, ICACHE on in 2-way and power supplied by external SMPS
Conditions(1) TYP
Symbol Parameter Unit
- VDD12 fHCLK 25°C 55°C 85°C 105°C 125°C
Electrical characteristics
185/340
Table 66. Current consumption in Run mode, code with data processing running from Flash
186/340
Electrical characteristics
in dual bank, ICACHE on in 1-way and power supplied by external SMPS
Conditions(1) TYP
Symbol Parameter Unit
- VDD12 fHCLK 25°C 55°C 85°C 105°C 125°C
STM32L552xx
Table 67. Current consumption in Run mode, code with data processing running from Flash
STM32L552xx
in dual bank, ICACHE disabled and power supplied by external SMPS
Conditions(1) TYP
Symbol Parameter Unit
- VDD12 fHCLK 25°C 55°C 85°C 105°C 125°C
Electrical characteristics
187/340
Table 68. Current consumption in Run mode, code with data processing running from SRAM1,
188/340
Electrical characteristics
and power supplied by external SMPS
Conditions(1) TYP
Symbol Parameter Unit
- VDD12 fHCLK 25°C 55°C 85°C 105°C 125°C
STM32L552xx
Table 69. Current consumption in Run mode, code with data processing running from SRAM2,
STM32L552xx
and power supplied by external SMPS
Conditions(1) TYP
Symbol Parameter Unit
- VDD12 fHCLK 25°C 55°C 85°C 105°C 125°C
Electrical characteristics
189/340
Table 70. Current consumption in Sleep mode, Flash ON and power supplied by external SMPS
190/340
Electrical characteristics
Conditions(1) TYP
Symbol Parameter Unit
- VDD12 fHCLK 25°C 55°C 85°C 105°C 125°C
STM32L552xx
Table 71. Current consumption in Run mode, code with data processing running from Flash,
STM32L552xx
ICACHE on (2-way) and power supplied by external SMPS
TYP TYP TYP TYP
(1) single single single single
Conditions
bank bank bank bank
Symbol Parameter Unit Unit
mode mode mode mode
Electrical characteristics
Coremark 7.2 7.2 65.45 65.45
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency =
85%.
191/340
Table 72. Current consumption in Run mode, code with data processing running from Flash,
192/340
Electrical characteristics
ICACHE on (1-way) and power supplied by external SMPS
STM32L552xx
(1)
While 5.71 5.7 51.91 51.82
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency =
85%.
Table 73. Current consumption in Run mode, code with data processing running from Flash,
STM32L552xx
ICACHE disabled and power supplied by external SMPS
Electrical characteristics
Reduced code 7.55 6.9 68.64 62.73
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency =
193/340
85%.
Table 74. Current consumption in Run mode, code with data processing running from SRAM1,
194/340
Electrical characteristics
and power supplied by external SMPS
Conditions(1) TYP TYP
Symbol Parameter Unit Unit
- VDD12 fHCLK code 25°C 25°C
Coremark 2.97 27
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency =
STM32L552xx
85%.
Table 75. Current consumption in Run mode, code with data processing running from SRAM2,
STM32L552xx
and power supplied by external SMPS
Conditions (1) TYP TYP
Symbol Parameter Unit Unit
- VDD12 fHCLK code 25°C 25°C
Reduced
1.20 46.15
code
Electrical characteristics
6.70 60.91
code
1. All values are obtained by calculation based on measurements done with internal voltage regulator and using following parameters: SMPS input = 3.3 V, SMPS efficiency =
85%.
Table 76. Current consumption in Stop 2 mode
196/340
Electrical characteristics
Conditions TYP MAX
Symbol Parameter Unit
- VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V 3.07 16.61 68.35 158.43 332.53 19.03 67.19 202.18 407.53 797.08
Supply current 2.4 V 3.09 16.86 69.13 160.32 335.88 19.08 67.43 201.94 409.7 802.29
IDD
in Stop 2 mode, -
(Stop 2) 3V 3.13 17.24 69.5 161.75 341.1 19.18 67.79 203.72 412.34 812.99
RTC disabled
3.6 V 3.2 17.42 71.15 164.99 349.3 19.39 68.67 205.04 415.22 816.69
1.8 V 3.66 17.32 68.52 159.57 333.56 19.7 67.81 202.19 408.09 797.2
2.4 V 3.88 17.74 69.73 160.86 338.16 20.07 68.34 202.52 410.27 802.48
RTC clocked by LSI
3V 4.2 17.94 70.57 163.39 342.82 20.37 68.62 205.35 413.58 813.45
3.6 V 4.42 18.71 72.31 166.43 348.19 20.79 69.72 205.83 416.46 818.3
1.8 V 3.5 17.14 69.36 159.76 332.52 - - - - -
DS12737 Rev 6
STM32L552xx
Table 76. Current consumption in Stop 2 mode (continued)
STM32L552xx
Conditions TYP MAX
Symbol Parameter Unit
- VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
Electrical characteristics
197/340
Table 77. Current consumption in Stop 1 mode
198/340
Electrical characteristics
Conditions TYP MAX
Symbol Parameter Unit
- VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
Supply 1.8 V 91.47 372.36 1243 2527 4611 1196 3403 8100 13853 22830
current in
2.4 V 91.94 375.16 1251 2531 4652 1199 3418 8133 13906 22920
IDD Stop 1
-
(Stop 1) mode, 3V 92.51 375.46 1249 2549 4675 1204 3427 8174 13988 23189
RTC
disabled 3.6 V 93.26 380.59 1270 2567 4721 1215 3433 8158 14083 23335
1.8 V 92.46 373.25 1248 2518 4617 1196 3405 8103 13874 22793
RTC clocked 2.4 V 92.48 372.19 1250 2528 4643 1201 3433 8135 13924 22927
by LSI 3V 93.34 374.54 1253 2541 4683 1206 3424 8185 13994 23140
3.6 V 93.38 378.64 1267 2559 4712 1213 3434 8176 14091 23336
µA
Supply
DS12737 Rev 6
STM32L552xx
Table 77. Current consumption in Stop 1 mode (continued)
STM32L552xx
Conditions TYP MAX
Symbol Parameter Unit
- VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
Wakeup clock
is MSI = 48
3V 2.02 - - - - - - - - -
MHz, voltage
Range 1
Supply
IDD current Wakeup clock
(wakeup during is MSI = 4
3V 0.58 - - - - - - - - - mA
from Stop wakeup MHz, voltage
1) from Stop Range 2
1 mode
Wakeup clock
is HSI = 16
3V 1.27 - - - - - - - - -
MHz, voltage
Range 1
DS12737 Rev 6
Supply - 1.8 V 192.69 494.92 1425 2797 5106 1395 3797 8974 15426 25827
current in
IDD - 2.4 V 194.69 495.31 1430 2804 5108 1396 3798 8953 15440 25851
Stop 0
mode, µA
(Stop 0) - 3V 196.09 495.47 1431 2812 5124 1397 3799 8996 15465 25967
RTC
disabled - 3.6 V 197.54 497.36 1434 2814 5155 1399 3802 8967 15488 26025
Electrical characteristics
199/340
Table 79. Current consumption in Standby mode
200/340
Electrical characteristics
Conditions TYP MAX
Symbol Parameter Unit
- VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V 108 382 2374 7132 19259 237 2269 6948 12467 31340
No 2.4 V 119 476 2795 8332 22151 361 2497 7770 14021 40505
independent
Supply current in watchdog 3V 134 591 3215 9665 26746 411 2716 8919 15987 45394
Standby mode 3.6 V 183 827 4232 12128 31763 558 3214 9577 17816 50551
IDD
(backup registers nA
(Standby) retained), 1.8 V 347 - - - - 572 2578 7079 12599 31388
RTC disabled With 2.4 V 405 - - - - 708 2832 7868 14061 39741
independent
watchdog 3V 483 - - - - 609 2913 8597 16110 44085
3.6 V 596 - - - - 999 3466 10069 18212 48579
DS12737 Rev 6
STM32L552xx
Table 79. Current consumption in Standby mode (continued)
STM32L552xx
Conditions TYP MAX
Symbol Parameter Unit
- VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V 717 971 2924 7693 19714 930 2760 7456 12882 31665
RTC clocked
by LSI, no 2.4 V 887 1266 3589 9054 22856 1224 3096 8393 14557 40166
independent 3V 1113 1584 4206 10666 27521 1303 3509 9212 16779 44936
watchdog
3.6 V 1394 2059 5515 13394 32693 1828 3889 10504 18898 48363
RTC clocked 1.8 V 457 779 3075 8179 20106 - - - - -
by LSI, no
2.4 V 582 1080 4082 9786 23298 - - - - -
independent
watchdog 3V 740 1425 5195 11380 28044 - - - - -
with
LPCAL = 1, 3.6 V 955 1905 6884 14210 33407 - - - - -
ULPEN = 1
DS12737 Rev 6
Electrical characteristics
by LSE
2.4 V 236 - - - - - - - - -
bypassed at
32768 Hz 3V 356 - - - - - - - - -
with
LPCAL = 1, 3.6 V 575 - - - - - - - - -
ULPEN = 1
201/340
Table 79. Current consumption in Standby mode (continued)
202/340
Electrical characteristics
Conditions TYP MAX
Symbol Parameter Unit
- VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
1.8 V 491 - - - - - - - - -
RTC clocked
by LSE 2.4 V 574 - - - - - - - - -
quartz in low 3V 696 - - - - - - - - -
Supply current in
drive mode
IDD Standby mode 3.6 V 870 - - - - - - - - -
(Standby (backup registers
retained), RTC clocked 1.8 V 222 - - - - - - - - -
with RTC)
by LSE
(continued) RTC enabled 2.4 V 250 - - - - - - - - -
quartz in low
(continued)
drive mode 3V 297 - - - - - - - - -
with
LPCAL = 1, 3.6 V 403 - - - - - - - - -
ULPEN = 1 nA
DS12737 Rev 6
Supply current to 1.8 V 668 3089 13834 34240 75362 1834 8192 28470 36317 135595
IDD be added in 2.4 V 704 3193 14412 35468 78515 1859 8376 28905 36890 140894
Standby mode -
(SRAM2) when Full SRAM2 3V 739 3283 14722 36843 82664 1907 8514 29857 37533 144576
(64KB) is retained 3.6 V 840 3571 15867 38708 88150 1973 8919 30509 38460 149487
Supply current to 1.8 V 164 658 3378 9485 23856 518 2685 8359 8164 39054
be added in
IDD 2.4 V 201 764 3853 10707 26844 585 2758 9134 8842 47739
Standby mode
-
(SRAM) when partial 3V 231 871 4319 12043 31160 606 3243 9975 9601 51857
SRAM2 (4 KB) is
retained 3.6 V 326 1128 5250 14470 36553 723 3570 10872 10707 55419
Supply current
IDD (wakeup Wakeup
during wakeup
from clock is 3V 1.11 - - - - - - - - - mA
from Standby
Standby) MSI = 4 MHz
mode
STM32L552xx
Table 80. Current consumption in Shutdown mode
STM32L552xx
Conditions TYP MAX
Symbol Parameter Unit
- VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
Supply 1.8 V 17.0 198 1533 5195 15336 99 590 3169 9252 26038
current in
2.4 V 18.0 269 1803 6166 17522 115 679 3610 10477 29468
Shutdown
IDD mode 3V 44.0 361 2314 7212 21381 141 800 4108 11860 32843
-
(Shutdown) (backup
registers
retained) 3.6 V 127.0 587 3159 9534 26115 196 990 4877 13734 37480
RTC disabled
RTC clocked 1.8 V 307 525 1905 5592 15801 - - - - -
by LSE
2.4 V 485 746 2363 6676 18041 - - - - -
bypassed at
32768 Hz 3V 689 1015 2905 7919 22214 - - - - -
with
DS12737 Rev 6
Electrical characteristics
LPCAL = 0 3.6 V 768 - - - - - - - - -
Electrical characteristics
Conditions TYP MAX
Symbol Parameter Unit
- VDD 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
IDD Supply
current during Wakeup clock
(wakeup
wakeup from is 3V 0.53 - - - - - - - - - mA
from Shutdown MSI = 4 MHz
Shutdown) mode
DS12737 Rev 6
STM32L552xx
Table 81. Current consumption in VBAT mode
STM32L552xx
Conditions TYP MAX
Symbol Parameter Unit
- VBAT 25°C 55°C 85°C 105°C 125°C 25°C 55°C 85°C 105°C 125°C
Backup
IDD clocked by LSE 2.4 V 183 406 738 1499 - - - - - -
domain
bypassed at nA
(VBAT) supply 3V 288 441 841 1761 - - - - - -
32768 Hz with
current
LPCAL=1 3.6 V 392 518 1163 2707 - - - - - -
1.8 V 387 - - - - - - - - -
RTC enabled and
clocked by LSE 2.4 V 461 - - - - - - - - -
quartz with 3V 568 - - - - - - - - -
LPCAL = 0
3.6 V 700 - - - - - - - - -
1.8 V 187 - - - - - - - - -
RTC enabled and
Electrical characteristics
clocked by LSE 2.4 V 202 - - - - - - - - -
quartz with 3V 229 - - - - - - - - -
LPCAL = 1
3.6 V 275 - - - - - - - - -
205/340
Electrical characteristics STM32L552xx
I SW = V DDIOx × f SW × C
where
ISW is the current sunk by a switching I/O to charge/discharge the capacitive load
VDDIOx is the I/O supply voltage
fSW is the I/O switching frequency
C is the total capacitance seen by the I/O pin: C = CINT+ CEXT + CS
CS is the PCB board capacitance including the pad pin.
The test pin is configured in push-pull output mode and is toggled by software at a fixed
frequency.
Wakeup time
from Sleep
- 14 17
mode to Run
mode
Wakeup time Number of
Sleep
from Low- Sleep Power Down CPU cycles
power sleep (SLEEP_PD=1
mode to Low- 14 17
in FLASH_ACR) and with clock
power MSI = 2 MHz
run mode
MSI48 5.83 6.26
Range 1
HSI16 5.23 5.46
Flash MSI24 18.48 18.96
Range 2 HSI16 17.56 17.94
MSI4 23.36 24.59
Stop 0
MSI48 1.79 2.16
Range 1
HSI16 2.79 3.01
SRAM1 MSI24 2.43 2.82
Range 2 HSI16 2.80 3.03
MSI4 9.66 10.88
MSI48 9.74 10.22
Range 1 µs
HSI16 9.22 9.67
Flash MSI24 21.84 22.63
Range 2 HSI16 20.98 21.81
MSI4 25.48 26.34
MSI48 5.58 5.95
Stop 1 Range 1
HSI16 6.68 7.06
SRAM1 MSI24 5.69 6.24
Range 2 HSI16 6.18 6.88
MSI4 11.04 11.99
Flash Low Power 81.2 82.5
MSI2
SRAM1 Run (LPR=1) 17.8 19
Voltage scaling
- 8 48
User external clock Range 0 and 1
fHSE_ext MHz
source frequency Voltage scaling
- 8 26
Range 2
OSC_IN input pin high
VHSEH - 0.7 VDDIOx - VDDIOx
level voltage
V
OSC_IN input pin low
VHSEL - VSS - 0.3 VDDIOx
level voltage
Voltage scaling
7 - -
tw(HSEH) Range 0 and 1
OSC_IN high or low time ns
tw(HSEL) Voltage scaling
18 - -
Range 2
1. Guaranteed by design.
tw(HSEH)
VHSEH
90%
10%
VHSEL
tr(HSE) t
tf(HSE) tw(HSEL)
THSE
MS19214V2
tw(LSEH)
VLSEH
90%
10%
VLSEL
tr(LSE) t
tf(LSE) tw(LSEL)
TLSE
MS19215V2
For CL1 and CL2, it is recommended to use high-quality external ceramic capacitors in the
5 pF to 20 pF range (typ.), designed for high-frequency applications, and selected to match
the requirements of the crystal or resonator (see Figure 35). CL1 and CL2 are usually the
same size. The crystal manufacturer typically specifies a load capacitance which is the
series combination of CL1 and CL2. PCB and MCU pin capacitance must be included (10 pF
can be used as a rough estimate of the combined pin and board capacitance) when sizing
CL1 and CL2.
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
OSC_IN fHSE
Bias
8 MHz controlled
resonator RF gain
MS19876V1
LSEDRV[1:0] = 00
- 250 -
Low drive capability
LSEDRV[1:0] = 01
- 315 -
Medium low drive capability
IDD(LSE) LSE current consumption nA
LSEDRV[1:0] = 10
- 500 -
Medium high drive capability
LSEDRV[1:0] = 11
- 630 -
High drive capability
LSEDRV[1:0] = 00
- - 0.5
Low drive capability
LSEDRV[1:0] = 01
- - 0.75
Maximum critical crystal Medium low drive capability
Gmcritmax µA/V
gm LSEDRV[1:0] = 10
- - 1.7
Medium high drive capability
LSEDRV[1:0] = 11
- - 2.7
High drive capability
tSU(LSE)(3) Startup time VDD is stabilized - 2 - s
1. Guaranteed by design.
2. Refer to the note and caution paragraphs below the table, and to the application note AN2867 “Oscillator
design guide for ST microcontrollers”.
3. tSU(LSE) is the startup time measured from the moment it is enabled (by software) to a stabilized
32.768 kHz oscillation is reached. This value is measured for a standard crystal and it can vary significantly
with the crystal manufacturer
Note: For information on selecting the crystal, refer to the application note AN2867 “Oscillator
design guide for ST microcontrollers” available from the ST website www.st.com.
OSC32_IN fLSE
OSC32_OUT
CL2
MS30253V2
Note: An external resistor is not required between OSC32_IN and OSC32_OUT and it is forbidden
to add one.
16.1
16
15.9
15.8 -1 %
-1.5 %
15.7
-2 %
15.6
-40 -20 0 20 40 60 80 100 120 °C
Mean min max
MSv39299V2
VDD=1.62 V
-1.2 -
to 3.6 V
Range 0 to 3 0.5
VDD=2.4 V
-0.5 -
to 3.6 V
MSI oscillator VDD=1.62 V
frequency drift -2.5 -
to 3.6 V
(2)
∆VDD(MSI) over VDD MSI mode Range 4 to 7 0.7 %
(reference is VDD=2.4 V
-0.8 -
3 V) to 3.6 V
VDD=1.62 V
-5 -
to 3.6 V
Range 8 to 11 1
VDD=2.4 V
-1.6 -
to 3.6 V
Frequency TA= -40 to 85 °C - 1 2
∆FSAMPLING variation in
MSI mode %
(MSI)(2)(4) sampling TA= -40 to 125 °C - 2 4
mode(3)
RMS cycle-to-
CC jitter(MSI)(4) PLL mode Range 11 - - 60 - ps
cycle jitter
P jitter(MSI)(4) RMS Period jitter PLL mode Range 11 - - 50 - ps
Range 0 - - 10 20
Range 1 - - 5 10
Range 0 - - 0.6 1
Range 1 - - 0.8 1.2
Range 2 - - 1.2 1.7
Range 3 - - 1.9 2.5
Range 4 - - 4.7 6
MSI oscillator Range 5 - - 6.5 9
MSI and
IDD(MSI)(4) power µA
PLL mode Range 6 - - 11 15
consumption
Range 7 - - 18.5 25
Range 8 - - 62 80
Range 9 - - 85 110
Range 10 - - 110 130
Range 11 - - 155 190
1. Guaranteed by characterization results.
2. This is a deviation for an individual part once the initial frequency has been measured.
3. Sampling mode means Low-power run/Low-power sleep modes with Temperature sensor disable.
4. Guaranteed by design.
-2
-4
-6
-50 -30 -10 10 30 50 70 90 110 130
°C
Avg min max
MSv40989V1
VDD = 3.0 V,
31.04 - 32.96
TA = 30 °C
fLSI LSI Frequency kHz
VDD = 1.62 to 3.6 V,
29.5 - 34
TA = -40 to 125 °C
LSI oscillator start-up
tSU(LSI)(2) - - 80 130 μs
time
LSI oscillator stabilization
tSTAB(LSI)(2) 5% of final frequency - 125 180 μs
time
LSI oscillator power
IDD(LSI)(2) - - 110 180 nA
consumption
1. Guaranteed by characterization results.
2. Guaranteed by design.
Prequalification trials
Most of the common failures (unexpected reset and program counter corruption) can be
reproduced by manually forcing a low state on the NRST pin or the Oscillator pins for 1
second.
To complete these trials, ESD stress can be applied directly on the device, over the range of
specification values. When unexpected behavior is detected, the software can be hardened
to prevent unrecoverable errors occurring (see application note AN1015).
Static latch-up
Two complementary static tests are required on three parts to assess the latch-up
performance:
• A supply overvoltage is applied to each power supply pin.
• A current injection is applied to each input, output and configurable I/O pin.
These tests are compliant with EIA/JESD 78E IC latch-up standard.
Electrical characteristics
General input/output characteristics
Unless otherwise specified, the parameters given in Table 102 are derived from tests performed under the conditions summarized
in Table 27: General operating conditions. All I/Os are designed as CMOS- and TTL-compliant.
I/O input low level 1.08 V < VDDIOx < 1.62 V - - 0.43×VDDIOx-0.1(2)
VIL(1) V
voltage 1.62 V < VDDIOx < 3.6 V - - 0.3×VDDIOX(2)
FT_c 1.62 V < VDDIOx < 3.6 V - - 0.25×VDDIOX(2)
DS12737 Rev 6
STM32L552xx
Table 102. I/O static characteristics (continued)
STM32L552xx
Sym
Parameter Conditions Min Typ Max Unit
bol
0 <VIN ≤ Max(VDDXXX)(3)
DS12737 Rev 6
- - 2000
FT_c
Max(VDDXXX) < VIN ≤ 5 V(3)(5)(6) - - 3000
0 <VIN ≤ Max(VDDXXX)(5) - - 4500
FT_d
Max(VDDXXX) < VIN ≤ 5.5 V(3)(4)(5) - - 9000
RPU Weak pull-up equivalent resistor VIN = VSS 25 40 55 kΩ
RPD Weak pull-down equivalent resistor VIN = VDDIOx 25 40 55 kΩ
CIO I/O pin capacitance - - 5 - pF
1. Refer to Figure 40: I/O input characteristics.
2. Guaranteed by design.
Electrical characteristics
3. All FT_xx IO except FT_u and FT_c.
4. This value represents the pad leakage of the IO itself. The total product pad leakage is provided by this formula: ITotal_Ileak_max = 10 μA + [number of IOs where VIN is
applied on the pad] × Ilkg(Max).
5. Max(VDDXXX) is the maximum value of all the I/O supplies. Refer to Table: Legend/Abbreviations used in the pinout table.
6. To sustain a voltage higher than MIN(VDD, VDDA, VDDIO2 and VDDUSB) +0.3 V, the internal Pull-up and Pull-Down resistors must be disabled.
7. Pull-up and pull-down resistors are designed with a true resistance in series with a switchable PMOS/NMOS. This PMOS/NMOS contribution to the series resistance is
minimal (~10% order).
231/340
8. Refer to Ibias in Table 119: OPAMP characteristics for the values of the OPAMP dedicated input leakage current.
Electrical characteristics STM32L552xx
All I/Os are CMOS- and TTL-compliant (no software configuration required). Their
characteristics cover more than the strict CMOS-technology or TTL parameters. The
coverage of these requirements is shown in Figure 40 for standard I/Os, and in Figure 40 for
5 V tolerant I/Os.
2
DIO
x
>1.6
0.7xV D V DD IOx
in = 6 for
ih m +0.2
DIOx
nt V 49xV D
ir eme or 0.
requ x<
1.62 .62
S DIO x>1
C MO r 1. 08<V D -0.06
for VDDIO
c tion 0.05 fo 9x VD DIOx
odu x+ or 0.3
di n pr .61 xV DDIO <1.62
este in = 0 1.08 <VDDIOx
T Vih m .1 for
u lation xVDDIO x-0
d on sim x =0.43 TTL requirement Vil max = 0.8V
Base Vil ma Vdd
simu lation x = 0.3x
ed on Vil ma
Bas irement
on CM OS requ
producti
T ested in
MSv62973V1
Input/output AC characteristics
The definition and values of input/output AC characteristics are given in Figure 41 and
Table 104, respectively.
Unless otherwise specified, the parameters given are derived from tests performed under
the ambient temperature and supply voltage conditions summarized in Table 27: General
operating conditions.
50% 50%
10% 90%
t r(IO)out t f(IO)out
External
reset circuit(1) VDD
RPU
NRST(2) Internal reset
Filter
0.1 μF
MS19878V3
Analog supply
VDDA - 1.62 - 3.6 V
voltage
Positive VDDA ≥ 2 V 2 - VDDA V
VREF+ reference
voltage VDDA < 2 V VDDA V
Negative
VREF- reference - VSSA V
voltage
The maximum value of RAIN can be found in Table 110: Maximum ADC RAIN.
1. Guaranteed by design.
2. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the
SYSCFG_CFGR1 when VDDA < 2.4V). It is disable when VDDA ≥ 2.4 V.
3. Fast channels are: PC0, PC1, PC2, PC3, PA0.
4. Slow channels are: all ADC inputs except the fast channels.
ADC clock frequency ≤ Single Fast channel (max speed) - -74 -73
80 MHz, ended Slow channel (max speed) - -74 -73
Total Sampling rate ≤ 5.33 Msps,
THD harmonic VDDA = VREF+ = 3 V, Fast channel (max speed) - -79 -76 dB
distortion TA = 25 °C Differential
(ADC clock frequency ≤ Slow channel (max speed) - -79 -76
58 MHz for LQFP144)
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
ADC clock frequency ≤ Single Fast channel (max speed) - -74 -65
80 MHz, ended
Total Slow channel (max speed) - -74 -67
Sampling rate ≤ 5.33 Msps,
THD harmonic dB
2 V ≤ VDDA Fast channel (max speed) - -79 -70
distortion
(ADC clock frequency ≤ Differential
58 MHz for LQFP144) Slow channel (max speed) - -79 -71
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
ADC clock frequency ≤ Single Fast channel (max speed) - -69 -67
80 MHz, ended Slow channel (max speed) - -71 -67
Sampling rate ≤ 5.33 Msps,
Total Fast channel (max speed) - -72 -71
THD harmonic 1.65 V ≤ VDDA = VREF+ ≤ dB
3.6 V,
distortion
Voltage scaling Range 1 Differential
Slow channel (max speed) - -72 -71
(ADC clock frequency ≤
58 MHz for LQFP144)
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
ADC clock frequency ≤ Single Fast channel (max speed) - -71 -69
Total 26 MHz, ended Slow channel (max speed) - -71 -69
THD harmonic 1.65 V ≤ VDDA = VREF+ ≤ dB
distortion 3.6 V, Fast channel (max speed) - -73 -72
Differential
Voltage scaling Range 2 Slow channel (max speed) - -73 -72
1. Guaranteed by design.
2. ADC DC accuracy values are measured after internal calibration.
3. ADC accuracy vs. negative Injection Current: Injecting negative current on any analog input pins should be avoided as this
significantly reduces the accuracy of the conversion being performed on another analog input. It is recommended to add a
Schottky diode (pin to ground) to analog pins which may potentially inject negative current.
4. The I/O analog switch voltage booster is enable when VDDA < 2.4 V (BOOSTEN = 1 in the SYSCFG_CFGR1 when
VDDA < 2.4 V). It is disable when VDDA ≥ 2.4 V. No oversampling.
0
1 2 3 4 5 6 7 4093 4094 4095 4096 VDDA
MS19880V2
VDDA
MS33900V5
1. Refer to Table 109: ADC characteristics for the values of RAIN and CADC.
2. Cparasitic represents the capacitance of the PCB (dependent on soldering and PCB layout quality) plus the
pad capacitance (refer to Table 102: I/O static characteristics for the value of the pad capacitance). A high
Cparasitic value downgrades the conversion accuracy. To remedy this, fADC should be reduced.
3. Refer to Table 102: I/O static characteristics for the values of Ilkg.
Wakeup time from off state Normal mode DAC output buffer ON
- 4.2 7.5
(setting the ENx bit in the CL ≤ 50 pF, RL ≥ 5 kΩ
tWAKEUP(2) µs
DAC Control register) until Normal mode DAC output buffer
final value ±1 LSB - 2 5
OFF, CL ≤ 10 pF
Normal mode DAC output buffer ON
PSRR VDDA supply rejection ratio - -80 -28 dB
CL ≤ 50 pF, RL = 5 kΩ, DC
No load, middle
- 185 240
DAC output code (0x800)
buffer ON No load, worst code
- 340 400
(0xF1C)
DAC output No load, middle
- 155 205
buffer OFF code (0x800)
DAC consumption from
IDDV(DAC) 185 ₓ 400 ₓ µA
VREF+
Sample and hold mode, buffer ON, Ton/(Ton Ton/(Ton
-
CSH = 100 nF, worst case +Toff) +Toff)
(4) (4)
155 ₓ 205 ₓ
Sample and hold mode, buffer OFF, Ton/(Ton Ton/(Ton
-
CSH = 100 nF, worst case +Toff) +Toff)
(4) (4)
1. Guaranteed by design.
2. In buffered mode, the output can overshoot above the final value for low input code (starting from min value).
3. Refer to Table 102: I/O static characteristics.
4. Ton is the Refresh phase duration. Toff is the Hold phase duration. Refer to RM0351 reference manual for more details.
Buffered/non-buffered DAC
(1)
Buffer
RLOAD
12-bit
DACx_OUT
digital to
analog
converter
CLOAD
ai17157d
1. The DAC integrates an output buffer that can be used to reduce the output impedance and to drive external
loads directly without the use of an external operational amplifier. The buffer can be bypassed by
configuring the BOFFx bit in the DAC_CR register.
Power supply DC 40 55 -
PSRR dB
rejection 100 kHz 25 40 -
CL = 0.5 µF(3) - 300 350
(3)
tSTART Start-up time CL = 1.1 µF - 500 650 µs
CL = 1.5 µF(3) - 650 800
Control of
maximum DC
current drive
IINRUSH on VREFBUF_ - - - 8 - mA
OUT during
start-up phase
(4)
Iload = 0 µA - 16 25
VREFBUF
IDDA(VREF
consumption Iload = 500 µA - 18 30 µA
BUF)
from VDDA
Iload = 4 mA - 35 50
1. Guaranteed by design and characterization result, unless otherwise specified.
2. In degraded mode, the voltage reference buffer can not maintain accurately the output voltage which follows (VDDA - drop
voltage).
3. The capacitive load must include a 100 nF capacitor in order to cut-off the high frequency noise.
4. To correctly control the VREFBUF inrush current during start-up phase and scaling change, the VDDA voltage should be in
the range [2.4 V to 3.6 V] and [2.8 V to 3.6 V] respectively for VRS = 0 and VRS = 1.
2.06
2.055
2.05
2.045
2.04
2.035
2.03
2.025
-40 -20 0 20 40 60 80 100 120 °C
MSv62522V1
2.51
2.505
2.5
2.495
2.49
2.485
2.48
2.475
-40 -20 0 20 40 60 80 100 120 °C
MSv62523V1
Analog supply
VDDA - 1.8 - 3.6 V
voltage
Common mode
CMIR - 0 - VDDA V
input range
Normal mode - 13 -
GM Gain margin dB
Low-power mode - 20 -
CLOAD ≤ 50 pf,
RLOAD ≥ 4 kΩ
Normal mode - 5 10
follower
Wake up time configuration
tWAKEUP µs
from OFF state. CLOAD ≤ 50 pf,
RLOAD ≥ 20 kΩ
Low-power mode - 10 30
follower
configuration
General purpose input (all packages (3)
- -
except UFBGA132)
TJ ≤ 75 °C - - 1
OPAMP input
Ibias nA
bias current Dedicated input TJ ≤ 85 °C - - 3
(UFBGA132) TJ ≤ 105 °C - - 8
TJ ≤ 125 °C - - 15
- 2 -
Non inverting - 4 -
PGA gain(2) - -
gain value - 8 -
- 16 -
PGA Gain = 2 - 80/80 -
120/
R2/R1 internal PGA Gain = 4 - -
40
resistance
Rnetwork 140/ kΩ/kΩ
values in PGA PGA Gain = 8 - -
mode(4) 20
150/
PGA Gain = 16 - -
10
Resistance
Delta R variation (R1 or - -15 - 15 %
R2)
PGA gain error PGA gain error - -1 - 1 %
GBW/
Gain = 2 - - -
2
GBW/
PGA bandwidth Gain = 4 - -
4
-
PGA BW for different non MHz
inverting gain GBW/
Gain = 8 - - -
8
GBW/
Gain = 16 - - -
16
at 1 kHz, Output
Normal mode - 500 -
loaded with 4 kΩ
at 1 kHz, Output
Low-power mode - 600 -
Voltage noise loaded with 20 kΩ
en nV/√Hz
density at 10 kHz, Output
Normal mode - 180 -
loaded with 4 kΩ
at 10 kHz, Output
Low-power mode - 290 -
loaded with 20 kΩ
OPAMP Normal mode - 120 260
no Load, quiescent
IDDA(OPAMP)(2) consumption µA
Low-power mode mode - 45 100
from VDDA
1. Guaranteed by design, unless otherwise specified.
2. Guaranteed by characterization results.
3. Mostly I/O leakage, when used in analog mode. Refer to Ilkg parameter in Table 102: I/O static characteristics.
4. R2 is the internal resistance between OPAMP output and OPAMP inverting input. R1 is the internal resistance between
OPAMP inverting input and ground. The PGA gain =1+R2/R1
Battery VBRS = 0 - 5 -
RBC charging kΩ
resistor VBRS = 1 - 1.5 -
High temperature
TEMPhigh - 115 123(1) 130
threshold monitoring
°C
Low temperature (1)
TEMPlow - -45 -36 -30
threshold monitoring
High VDD supply
VDDhigh - 3.6 3.65(1) 3.7 V
monitoring
Minimum PWM ON
TPWMon time in case of - - 400(2) - μs
periodic monitoring
1. Guaranteed by characterization results.
2. Guaranteed by design.
DFSDM
fDFSDMCLK 1.71 < VDD < 3.6 V - - fSYSCLK
clock
SPI mode (SITP[1:0]=0,1),
External clock mode
- - 20
(SPICKSEL[1:0]=0),
1.71 < VDD < 3.6 V
SPI mode (SITP[1:0]=0,1),
External clock mode
- - 20
(SPICKSEL[1:0]=0),
fCKIN Input clock 2.7 < VDD < 3.6 V
(1/TCKIN) frequency SPI mode (SITP[1:0]=0,1), MHz
Internal clock mode
- - 20
(SPICKSEL[1:0]≠0),
1.71 < VDD < 3.6 V
SPI mode (SITP[1:0]=0,1),
Internal clock mode
- - 20
(SPICKSEL[1:0]≠0),
2.7 < VDD < 3.6 V
Output
fCKOUT clock 1.71 < VDD < 3.6 V - - 20
frequency
Output
clock
DuCyCKOUT 1.71 < VDD < 3.6 V 45 50 55 %
frequency
duty cycle
SPI mode (SITP[1:0]=0,1),
Input clock
twh(CKIN) External clock mode
high and TCKIN/2-0.5 TCKIN/2 -
twl(CKIN) (SPICKSEL[1:0]=0),
low time
1.71 < VDD < 3.6 V
SPI mode (SITP[1:0]=0,1),
Data input External clock mode
tsu 3 - -
setup time (SPICKSEL[1:0]=0),
1.71 < VDD < 3.6 V
SPI mode (SITP[1:0]=0,1), ns
Data input External clock mode
th 2.5 - -
hold time (SPICKSEL[1:0]=0),
1.71 < VDD < 3.6 V
Manchester Manchester mode
data period (SITP[1:0]=2,3), (CKOUTDIV (2*CKOUTDI
TManchester (recovered Internal clock mode +1) * - V) *
clock (SPICKSEL[1:0]≠0), TDFSDMCLK TDFSDMCLK
period) 1.71 < VDD < 3.6 V
1. Data based on characterization results, not tested in production.
')6'0B
&.,1,1\
63,WLPLQJ63,&.6(/
63,&.6(/
WVX WK
')6'0B'$7$,1\
6,73
WVX WK
6,73
63,&.6(/
')6'0B&.287
63,WLPLQJ63,&.6(/
63,&.6(/
WZO WZK WU WI
63,&.6(/
WVX WK
')6'0B'$7$,1\
6,73
WVX WK
6,73
')6'0B'$7$,1\
6,73
0DQFKHVWHUWLPLQJ
6,73
5HFRYHUHGFORFN
5HFRYHUHGGDWD
06Y9
- 1 - tTIMxCLK
tres(TIM) Timer resolution time
fTIMxCLK = 110 MHz 8.33 - ns
Timer external clock - 0 fTIMxCLK/2 MHz
fEXT frequency on CH1 to
CH4 fTIMxCLK = 110 MHz 0 55 MHz
/4 0 0.125 512
/8 1 0.250 1024
/16 2 0.500 2048
/32 3 1.0 4096 ms
/64 4 2.0 8192
/128 5 4.0 16384
/256 6 or 7 8.0 32768
1. The exact timings still depend on the phasing of the APB interface clock versus the LSI clock so that there
is always a full RC period of uncertainty.
1 0 0.037 2.368
2 1 0.074 4.736
ms
4 2 0.149 9.536
8 3 0.298 19.072
SPI characteristics
Unless otherwise specified, the parameters given in Table 129 for SPI are derived from tests
performed under the ambient temperature, fPCLKx frequency and supply voltage conditions
summarized in Table 27: General operating conditions.
• Output speed is set to OSPEEDRy[1:0] = 11
• Capacitive load C = 30 pF
• Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, SCK, MOSI, MISO for SPI).
Master mode
2.7<VDD<3.6 55
Voltage ranges 0/1
Master mode
1.71<VDD<3.6 44
Voltage ranges 0/1
Master transmitter mode
1.71<VDD<3.6 55
Voltage ranges 0/1
Slave receiver mode 1.71<VDD<3.6
55
fSCK Voltage ranges 0/1
SPI clock frequency - - MHz
1/tc(SCK) Slave mode transmitter/full duplex
2.7<VDD<3.6 36
Voltage ranges 0/1
Slave mode transmitter/full duplex
1.71<VDD<3.6 23
Voltage ranges 0/1
Slave mode transmitter/full duplex
1.71<VDD<3.6 20
Voltage range 2
Slave mode transmitter/full duplex
12
1.08<VDD<1.32(3)
tsu(NSS) NSS setup time Slave mode, SPI presc = 2 4×Tpclk - -
th(NSS) NSS hold time Slave mode, SPI presc = 2 2TTpclk - -
-
tw(SCKH) SCK high and low
Master mode Tpclk-1 Tpclk Tpclk+1
tw(SCKL) time
NSS input
tc(SCK) th(NSS)
CPOL=0
CPHA=0
CPOL=1
ta(SO) tw(SCKL) tv(SO) th(SO) tf(SCK) tdis(SO)
MISO output First bit OUT Next bits OUT Last bit OUT
th(SI)
tsu(SI)
MSv41658V1
NSS input
tc(SCK)
CPOL=0
CPHA=1
CPOL=1
ta(SO) tw(SCKL) tv(SO) th(SO) tr(SCK) tdis(SO)
MISO output First bit OUT Next bits OUT Last bit OUT
tsu(SI) th(SI)
MSv41659V1
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
High
NSS input
tc(SCK)
SCK Output
CPHA= 0
CPOL=0
CPHA= 0
CPOL=1
SCK Output
CPHA=1
CPOL=0
CPHA=1
CPOL=1
tw(SCKH) tr(SCK)
tsu(MI) tw(SCKL) tf(SCK)
MISO
INP UT MSB IN BIT6 IN LSB IN
th(MI)
MOSI
MSB OUT B I T1 OUT LSB OUT
OUTPUT
tv(MO) th(MO)
ai14136c
1. Measurement points are done at CMOS levels: 0.3 VDD and 0.7 VDD.
SAI characteristics
Unless otherwise specified, the parameters given in Table 130 for SAI are derived from
tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized inTable 27: General operating conditions, with the following configu-
ration:
• Output speed is set to OSPEEDRy[1:0] = 10
• Capacitive load C = 30 pF
• Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate
function characteristics (CK,SD,FS).
Master mode
- 21
2.7<=VDD<=3.6
tv(FS) FS valid time
Master mode
- 25
1.71<=VDD<=3.6
th(FS) FS hold time Master mode 10 -
tsu(FS) FS setup time Slave mode 1.5 -
th(FS) FS hold time Slave mode 2.5 -
tsu(SD_A_MR) Master receiver 1 -
Data input setup time
tsu(SD_B_SR) Slave receiver 1.5 -
th(SD_A_MR) Master receiver 5 -
Data input hold time
th(SD_B_SR) Slave receiver 0 - ns
SAI_SCK_X
th(FS)
SAI_FS_X
(output) tv(FS) tv(SD_MT) th(SD_MT)
SAI_SD_X
Slot n Slot n+2
(transmit)
tsu(SD_MR) th(SD_MR)
SAI_SD_X Slot n
(receive)
MS32771V1
1/fSCK
SAI_SCK_X
tw(CKH_X) tw(CKL_X) th(FS)
SAI_FS_X
(input) tsu(FS) tv(SD_ST) th(SD_ST)
SAI_SD_X
Slot n Slot n+2
(transmit)
tsu(SD_SR) th(SD_SR)
SAI_SD_X Slot n
(receive)
MS32772V1
USART characteristics
Unless otherwise specified, the parameters given in Table 131 for USART are derived from
tests performed under the ambient temperature, fPCLKx frequency and VDD supply voltage
conditions summarized in Table 27: General operating conditions, with the following
configuration:
• Output speed is set to OSPEEDRy[1:0] = 11
• Capacitive load C=30pF
• Measurement points are done at CMOS levels: 0.5VDD
Refer to Section 5.3.15: I/O port characteristics for more details on the input/output alternate
function characteristics (NSS, CK, TX, RX for USART).
Master mode
- - 13
1.71<VDD<3.6
Slave receiver mode
- - 36
1.71<VDD<3.6
fSCK SPI clock frequency MHz
Slave mode transmitter
- - 19
2.7<VDD<3.6
Slave mode transmitter
- - 26
1.71<VDD<3.6
CPHA=0
SCK input
CPOL=0
CPHA=0
CPOL=1
CPHA=1
SCK intput
CPOL=0
CPHA=1
CPOL=1
tw(SCKH) tr(SCK)
tsu(RX) tw(SCKL) tf(SCK)
RX LSB MSB
th(RX)
TX LSB MSB
tv(TX) th(TX)
MSv64015V1
SCK input
MOSI
MSB IN BIT1 IN LSB IN
INPUT
(SI)
tw(NE)
FMC_NE
FMC_NOE
FMC_NWE
tv(A_NE) t h(A_NOE)
FMC_A[25:0] Address
tv(BL_NE) t h(BL_NOE)
FMC_NBL[1:0]
t h(Data_NE)
t su(Data_NOE) th(Data_NOE)
t su(Data_NE)
FMC_D[15:0] Data
t v(NADV_NE)
tw(NADV)
FMC_NADV (1)
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32753V1
FMC_NEx
FMC_NOE
tv(NWE_NE) tw(NWE) t h(NE_NWE)
FMC_NWE
tv(A_NE) th(A_NWE)
FMC_A[25:0] Address
tv(BL_NE) th(BL_NWE)
FMC_NBL[1:0] NBL
tv(Data_NE) th(Data_NWE)
FMC_D[15:0] Data
t v(NADV_NE)
tw(NADV)
FMC_NADV (1)
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32754V1
FMC_ NE
tv(NOE_NE) t h(NE_NOE)
FMC_NOE
t w(NOE)
FMC_NWE
tv(A_NE) th(A_NOE)
t v(NADV_NE) th(AD_NADV)
tw(NADV)
FMC_NADV
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32755V1
4THCLK
tw(NE) FMC_NE low time 4THCLK-0.5
+1
2THCLK
tv(NOE_NE) FMC_NEx low to FMC_NOE low 2THCLK -0.5
+1
THCLK+
tw(NOE) FMC_NOE low time THCLK-0.5
0.5
FMC_NOE high to FMC_NE high
th(NE_NOE) THCLK-1 -
hold time
tv(A_NE) FMC_NEx low to FMC_A valid - 3
tv(NADV_NE) FMC_NEx low to FMC_NADV low 0.5 1.5
THCLK+
tw(NADV) FMC_NADV low time THCLK
1.5 Ns
FMC_AD(address) valid hold time
th(AD_NADV) THCLK-3 -
after FMC_NADV high)
Address hold time after Address holded until next
th(A_NOE) -
FMC_NOE high read operation
tsu(Data_NE) Data to FMC_NEx high setup time THCLK+14 -
Data to FMC_NOE high setup
tsu(Data_NOE) 14 -
time
Data hold time after FMC_NEx
th(Data_NE) 0 -
high
Data hold time after FMC_NOE
th(Data_NOE) 0 -
high
1. Guaranteed by characterization results, not tested in production.
tw(NE)
FMC_ NEx
FMC_NOE
tv(NWE_NE) tw(NWE) t h(NE_NWE)
FMC_NWE
tv(A_NE) th(A_NWE)
t v(NADV_NE) th(AD_NADV)
tw(NADV)
FMC_NADV
FMC_NWAIT
th(NE_NWAIT)
tsu(NWAIT_NE)
MS32756V1
FMC_CLK
Data latency = 0
td(CLKL-NExL) td(CLKH-NExH)
FMC_NEx
t d(CLKL-NADVL) td(CLKL-NADVH)
FMC_NADV
td(CLKL-AV) td(CLKH-AIV)
FMC_A[25:16]
td(CLKL-NOEL) td(CLKH-NOEH)
FMC_NOE
td(CLKL-ADIV) th(CLKH-ADV)
t d(CLKL-ADV) tsu(ADV-CLKH) tsu(ADV-CLKH) th(CLKH-ADV)
FMC_AD[15:0] AD[15:0] D1 D2
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
FMC_NWAIT
(WAITCFG = 1b,
WAITPOL + 0b)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b) tsu(NWAITV-CLKH) th(CLKH-NWAITV)
MS32757V1
)0&B&/.
'DWDODWHQF\
WG&/./1([/ WG&/.+1([+
)0&B1([
WG&/./1$'9/ WG&/./1$'9+
)0&B1$'9
WG&/./$9 WG&/.+$,9
)0&B$>@
WG&/./1:(/ WG&/.+1:(+
)0&B1:(
WG&/./$',9 WG&/./'DWD
WG&/./$'9 WG&/./'DWD
)0&B1:$,7
:$,7&)* E
:$,732/E WVX1:$,79&/.+ WK&/.+1:$,79
WG&/.+1%/+
)0&B1%/
06Y9
tw(CLK) tw(CLK)
FMC_CLK
td(CLKL-NExL) td(CLKH-NExH)
Data latency = 0
FMC_NEx
td(CLKL-NADVL) td(CLKL-NADVH)
FMC_NADV
td(CLKL-AV) td(CLKH-AIV)
FMC_A[25:0]
td(CLKL-NOEL) td(CLKH-NOEH)
FMC_NOE
tsu(DV-CLKH) th(CLKH-DV)
tsu(DV-CLKH) th(CLKH-DV)
FMC_D[15:0] D1 D2
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
FMC_NWAIT
(WAITCFG = 1b,
WAITPOL + 0b)
tsu(NWAITV-CLKH) t h(CLKH-NWAITV)
FMC_NWAIT
(WAITCFG = 0b,
WAITPOL + 0b)
tsu(NWAITV-CLKH) th(CLKH-NWAITV)
MS32759V1
)0&B&/.
WG&/./1([/ WG&/.+1([+
'DWDODWHQF\
)0&B1([
WG&/./1$'9/ WG&/./1$'9+
)0&B1$'9
WG&/./$9 WG&/.+$,9
)0&B$>@
WG&/./1:(/ WG&/.+1:(+
)0&B1:(
WG&/./'DWD WG&/./'DWD
)0&B1:$,7
:$,7&)* E:$,732/E WVX1:$,79&/.+ WG&/.+1%/+
WK&/.+1:$,79
)0&B1%/
06Y9
Figure 63 through Figure 66 represent synchronous waveforms, and Table 144 and
Table 145 provide the corresponding timings. The results shown in these tables are
obtained with the following FMC configuration:
• COM.FMC_SetupTime = 0x01
• COM.FMC_WaitSetupTime = 0x03
• COM.FMC_HoldSetupTime = 0x02
• COM.FMC_HiZSetupTime = 0x01
• ATT.FMC_SetupTime = 0x01
• ATT.FMC_WaitSetupTime = 0x03
• ATT.FMC_HoldSetupTime = 0x02
• ATT.FMC_HiZSetupTime = 0x01
• Bank = FMC_Bank_NAND
• MemoryDataWidth = FMC_MemoryDataWidth_16b
• ECC = FMC_ECC_Enable
• ECCPageSize = FMC_ECCPageSize_512Bytes
• TCLRSetupTime = 0
• TARSetupTime = 0
FMC_NCEx
ALE (FMC_A17)
CLE (FMC_A16)
FMC_NWE
td(NCE-NOE) th(NOE-ALE)
FMC_NOE (NRE)
tsu(D-NOE) th(NOE-D)
FMC_D[15:0]
MSv38003V1
FMC_NCEx
ALE (FMC_A17)
CLE (FMC_A16)
td(NCE-NWE) th(NWE-ALE)
FMC_NWE
FMC_NOE (NRE)
tv(NWE-D) th(NWE-D)
FMC_D[15:0]
MSv38004V1
Figure 65. NAND controller waveforms for common memory read access
FMC_NCEx
ALE (FMC_A17)
CLE (FMC_A16)
td(NCE-NOE) th(NOE-ALE)
FMC_NWE
tw(NOE)
FMC_NOE
tsu(D-NOE) th(NOE-D)
FMC_D[15:0]
MSv38005V1
Figure 66. NAND controller waveforms for common memory write access
FMC_NCEx
ALE (FMC_A17)
CLE (FMC_A16)
td(NCE-NWE) tw(NWE) th(NOE-ALE)
FMC_NWE
FMC_NOE
td(D-NWE)
tv(NWE-D) th(NWE-D)
FMC_D[15:0]
MSv38006V1
1.71<VDD<3.6
Voltage ranges 0/1 - - 54
20 pF
2.7<VDD<3.6
Voltage ranges 0/1 - - 90
OCTOSPI clock 20pF
F(CLK) MHz
frequency 1.71<VDD<3.6
Voltage ranges 0/1 - - 56
15pF
1.71<VDD<3.6
Voltage range 2 - - 26
CL=20pF
tw(CKH) OCTOSPI clock high PRESCALER[7:0] = t(CK)/2 - 0.5 - t(CK)/2
tw(CKL) and low time n = 0,1,3,5 t(CK)/2 -0.5 - t(CK)/2
(n/2)×t(CK)/ (n/2)×t(CK)
tw(CKH) OCTOSPI clock high -
PRESCALER[7:0] = (n+1)- 0.5 /(n+1)
and low time
n = 2,4,6,8 (n/2+1)×t(CK)/ (n/2+1)×
tw(CKL) Odd division -
(n+1) -0.5 t(CK)/(n+1)
Voltage ranges 0/1 1.5 - -
ts(IN) Data input setup time
Voltage range 2 2 - - ns
The following table summarizes the parameters measured in DTR mode (no DQS).
1.71<VDD<3.6
Voltage ranges 0/1 - - 56
20 pF
2.7<VDD<3.6
Voltage ranges 0/1 - - 60
OCTOSPI clock 20 pF
F(CLK) MHz
frequency
1.71<VDD<3.6
Voltage ranges 0/1 - - 60
15 pF
1.71<VDD<3.6
- - 26
Voltage range 2
t(CK)/2
tw(CKH) - t(CK)/2+0.5
OCTOSPI clock PRESCALER[7:0] = -0.5
high and low time n = 0,1,3,5 t(CK)/2
tw(CKL) - t(CK)/2+0.5
-0.5
(n/2)×t(CK)/(n+1)- (n/2)×t(CK)/(n+1)+
tw(CKH) OCTOSPI clock -
PRESCALER[7:0] = 0.5 0.5
high and low time
n = 2,4,6,8 (n/2+1)×t(CK)/ (n/2+1)×t(CK)/
tw(CKL) Odd division -
(n+1) -0.5 (n+1)+0.5
The following table summarizes the parameters measured in DTR mode (with DQS) /
HyperBus.
Table 148. OCTOSPI characteristics in DTR mode (with DQS)(1)/Octal and HyperBus
Symbol Parameter Conditions Min Typ Max Unit
1.71<VDD<3.6
Voltage ranges 0/1 - - 58(2)
20 pF
OCTOSPI 2.7<VDD<3.6
F(CLK) clock Voltage ranges 0/1 - - 76(2) MHz
frequency 20 pF
1.71<VDD<3.6
Voltage range 2 - - 26(2)
20 pF
Table 148. OCTOSPI characteristics in DTR mode (with DQS)(1)/Octal and HyperBus (continued)
Symbol Parameter Conditions Min Typ Max Unit
Chip select
tw(CS) - 3×t(CK) - -
high time
Data input
tv(DQ) 0
valid time
- - -
Data strobe
tv(DS)
input valid time
Data strobe
th(DS) - 0 - -
input hold time
Data strobe
tv(RWDS) output valid - - - 3×t(CK)
time
t(CK)/2
Voltage ranges 0/1 -0.75 -
Data input -5.75(4)
tsr(DQ),tsf(DQ)
setup time t(CK)/2
Voltage range 2 -2.25 -
-8(4)
Clock
tv(OUT) th(OUT)
Data output D0 D1 D2
ts(IN) th(IN)
Data input D0 D1 D2
MSv36878V1
Clock
tvf(OUT) thr(OUT) tvr(OUT) thf(OUT)
CK#
VOD(CK)
CK
MSv47732V1
CS#
CK, CK#
RWDS
Command-Address
Memory drives DQ[7:0] and RWDS
Host drives DQ[7:0] and Memory drives RWDS
MSv47733V1
CS#
CK, CK#
tCKDS
RWDS High = 2x Latency Count
Low = 1x Latency Count
RWDS and Data
are edge aligned
DQ[7:0] 47:40 39:32 31:24 23:16 15:8 7:0 Dn Dn Dn+1 Dn+1
A B A B
CS#
CK, CK#
Latency Count
tv(OUT) th(OUT) tv(OUT) th(OUT)
Dn Dn Dn+1 Dn+1
DQ[7:0] 47:40 39:32 31:24 23:16 15:8 7:0
A B A B
Delay block
Unless otherwise specified, the parameters given in Table 149 for delay block are derived
from tests performed under the ambient temperature, fPCLKx frequency and VDD supply
voltage conditions summarized in Table 27: General operating conditions with the
configuration shown in the figure below.
See the different SDMMC diagrams in Figure 73, Figure 74 and Figure 75 below.
CK
tOVD tOHD
D, CMD
(output)
ai14888
Clock
tvf(OUT) thr(OUT) tvr(OUT) thf(OUT)
6 Package information
SEATING
PLANE
C
A2
A
A1
c
0.25 mm
GAUGE PLANE
ccc C
D K
A1
L
D1 L1
D3
36 25
37 24
b
E1
E3
48 13
PIN 1
IDENTIFICATION 1 12
e 5B_ME_V2
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
0.30
36 25
37 24
0.20
7.30
9.70 5.80
7.30
48 13
1 12
1.20
5.80
9.70
ai14911d
STM32L552
Product identification(1)
CET6P
Y WW Date code
Pin 1 identifier
R Revision code
MSv60472V2
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
A
E E
T Seating
plane
ddd A1
e b
Detail Y
D
Y
Exposed pad
area D2
1
L
48
C 0.500x45°
pin1 corner R 0.125 typ.
E2 Detail Z
48
Z
A0B9_ME_V3
7.30
6.20
48 37
1 36
0.20 5.60
7.30
5.80
6.20
5.60
0.30
12 25
13 24
0.50 0.75
0.55
5.80
A0B9_FP_V2
STM32L552
Product identification(1)
CEU6P
Y WW Date code
Pin 1 identifier
R Revision code
MSv60473V2
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
SEATING PLANE
C
A2
A
0.25 mm
GAUGE PLANE
A1
c
ccc C
A1
D K
D1 L
D3 L1
48 33
32
49
E1
E3
64 17 E
PIN 1 1 16
IDENTIFICATION e
5W_ME_V3
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D - 12.000 - - 0.4724 -
D1 - 10.000 - - 0.3937 -
D3 - 7.500 - - 0.2953 -
E - 12.000 - - 0.4724 -
E1 - 10.000 - - 0.3937 -
E3 - 7.500 - - 0.2953 -
e - 0.500 - - 0.0197 -
K 0° 3.5° 7° 0° 3.5° 7°
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
48 33
0.3
49 0.5 32
12.7
10.3
10.3
64 17
1.2
1 16
7.8
12.7
ai14909c
STM32L552
Product identification(1)
RET6P
Y WW Date code
Pin 1 identifier
R Revision code
MSv60474V2
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
bbb Z
A1 BALL LOCATION A1
F e1
aaa
(4x)
G
DETAIL A
e2 E
e A
D A2
BOTTOM VIEW TOP VIEW SIDE VIEW
A2
A3 BUMP
b eee Z
FRONT VIEW
b(81x) Z
ccc Z X Y
ddd Z SEATING PLANE
DETAIL A
ROTATED 90
B01H_WLCSP81_ME_V1
e - 0.40 - - 0.016 -
e1 - 3.20 - - 0.126 -
e2 - 3.20 - - 0.126 -
(4)
F - 0.580 - - 0.023 -
G(4) - 0.435 - - 0.017 -
aaa - 0.10 - - 0.004 -
bbb - 0.10 - - 0.004 -
ccc - 0.10 - - 0.004 -
ddd - 0.05 - - 0.002 -
eee - 0.05 - - 0.002 -
1. Values in inches are converted from mm and rounded to 4 decimal digits.
2. The maximum total package height is calculated by the RSS method (Root Sum Square) using nominal
and tolerances values of A1 and A2.
3. Back side coating. Nominal dimension is rounded to the 3rd decimal place resulting from process
capability.
4. Calculated dimensions are rounded to the 3rd decimal place.
Dpad
Dsm
BGA_WLCSP_FT_V1
Pitch 0.4 mm
Dpad 0,225 mm
Dsm 0.290 mm typ. (depends on soldermask registration tolerance)
Stencil opening 0.250 mm
Stencil thickness 0.100 mm
Y WW R Additional information
MSv60475V2
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
SEATING PLANE
C
0.25 mm
A2
A
A1
c
GAUGE PLANE
ccc C
A1
K
L
D1
L1
D3
75 51
76 50
b
E1
E3
100 26 E
PIN 1 1 25
IDENTIFICATION
e 1L_ME_V5
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 15.800 16.000 16.200 0.6220 0.6299 0.6378
D1 13.800 14.000 14.200 0.5433 0.5512 0.5591
D3 - 12.000 - - 0.4724 -
E 15.800 16.000 16.200 0.6220 0.6299 0.6378
76 50
0.5
0.3
16.7 14.3
100 26
1.2
1 25
12.3
16.7
ai14906c
STM32L552
(1)
Product identification
VET6Q
R
YWW Date code
Pin 1 identifier
MSv60476V2
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
E1 B A
e E
Z
D1 D
12 1
BOTTOM VIEW Øb (132 balls) TOP VIEW
Øeee M C A B
Ø fff M C
A4
ddd C
A2 A3
b A1 A
SEATING
PLANE
UFBGA132_A0G8_ME_V2
A - - 0.600 - - 0.0236
A1 - - 0.110 - - 0.0043
A2 - 0.450 - - 0.0177 -
A3 - 0.130 - - 0.0051 -
A4 - 0.320 - - 0.0126 -
b 0.240 0.290 0.340 0.0094 0.0114 0.0134
D 6.850 7.000 7.150 0.2697 0.2756 0.2815
D1 - 5.500 - - 0.2165 -
E 6.850 7.000 7.150 0.2697 0.2756 0.2815
E1 - 5.500 - - 0.2165 -
e - 0.500 - - 0.0197 -
Z - 0.750 - - 0.0295 -
ddd - 0.080 - - 0.0031 -
eee - 0.150 - - 0.0059 -
fff - 0.050 - - 0.0020 -
1. Values in inches are converted from mm and rounded to 4 decimal digits.
Dpad
Dsm
UFBGA132_A0G8_FP_V1
Table 160. UFBGA132 recommended PCB design rules (0.5 mm pitch BGA)
Dimension Recommended values
Pitch 0.5 mm
Dpad 0.280 mm
0.370 mm typ. (depends on the soldermask reg-
Dsm
istration tolerance)
Stencil opening 0.280 mm
Stencil thickness Between 0.100 mm and 0.125 mm
Pad trace width 0.100 mm
Ball diameter 0.280 mm
STM32L
Product identification(1)
552QEI6Q
Y WW Date code
R Additional
information
MSv60480V2
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
A1
A2
c
0.25 mm
ccc C GAUGE PLANE
A1
D
L
K
D1
L1
D3
108 73
109
72
b
E1
E3
37
144
PIN 1 1 36
IDENTIFICATION
e
1A_ME_V4
A - - 1.600 - - 0.0630
A1 0.050 - 0.150 0.0020 - 0.0059
A2 1.350 1.400 1.450 0.0531 0.0551 0.0571
b 0.170 0.220 0.270 0.0067 0.0087 0.0106
c 0.090 - 0.200 0.0035 - 0.0079
D 21.800 22.000 22.200 0.8583 0.8661 0.8740
D1 19.800 20.000 20.200 0.7795 0.7874 0.7953
D3 - 17.500 - - 0.6890 -
E 21.800 22.000 22.200 0.8583 0.8661 0.8740
E1 19.800 20.000 20.200 0.7795 0.7874 0.7953
E3 - 17.500 - - 0.6890 -
e - 0.500 - - 0.0197 -
L 0.450 0.600 0.750 0.0177 0.0236 0.0295
L1 - 1.000 - - 0.0394 -
k 0° 3.5° 7° 0° 3.5° 7°
ccc - - 0.080 - - 0.0031
1. Values in inches are converted from mm and rounded to 4 decimal digits.
1.35
108 73
109 0.35 72
0.5
19.9 17.85
22.6
144 37
1 36
19.9
22.6
ai14905e
Additional
R information
Y WW Date code
Pin 1 identifier
MSv60479V2
1. Parts marked as ES or E or accompanied by an Engineering Sample notification letter are not yet qualified
and therefore not approved for use in production. ST is not responsible for any consequences resulting
from such use. In no event will ST be liable for the customer using any of these engineering samples in
production. ST’s Quality department must be contacted prior to any decision to use these engineering
samples to run a qualification activity.
7 Ordering information
Product type
L = ultra-low-power
Device subfamily
552 = STM32L552xx
Pin count
C = 48 pins
R = 64 pins
M = 81 pins
V = 100 pins
Q = 132 balls
Z = 144 pins
Package
T = LQFP
I = UFBGA
U = UFQFPN
Y = WLCSP
Temperature range
6 = Industrial temperature range, -40 to 85 °C (105 °C junction)
3 = Industrial temperature range, -40 to 125 °C (130°C junction)
Dedicated pinout
Q = Dedicated pinout supporting SMPS step down converter
P = Dedicated pinout supporting external SMPS
Packing
TR = tape and reel
xxx = programmed parts
1. All packages are ECOPACK2 (RoHS compliant and free of brominated, chlorinated and antimony-oxide
flame retardants).
2. For a list of available options (speed, package, etc.) or for further information on any aspect of this device,
please contact your nearest ST sales office.
8 Revision history
Added:
– Table 28: SMPS modes summary
– Table 29: SMPS characteristics
– Table 62: Current consumption in Run mode, code
with data processing running from Flash in single
bank, ICACHE ON in 2-way and power supplied by
external SMPS.
– Table 63: Current consumption in Run mode, code
with data processing running from Flash in single
bank, ICACHE ON in 1-way and power supplied by
external SMPS.
– Table 64: Current consumption in Run mode, code
with data processing running from Flash in single
bank, ICACHE disabled and power supplied by
external SMPS.
– Table 65: Current consumption in Run mode, code
with data processing running from Flash in dual bank,
ICACHE on in 2-way and power supplied by external
SMPS.
– Table 66: Current consumption in Run mode, code
with data processing running from Flash in dual bank,
ICACHE on in 1-way and power supplied by external
SMPS.
– Table 67: Current consumption in Run mode, code
with data processing running from Flash in dual bank,
14-May-2020 4 (continued)
ICACHE disabled and power supplied by external
SMPS.
– Table 68: Current consumption in Run mode, code
with data processing running from SRAM1, and power
supplied by external SMPS.
– Table 69: Current consumption in Run mode, code
with data processing running from SRAM2, and power
supplied by external SMPS.
– Table 70: Current consumption in Sleep mode, Flash
ON and power supplied by external SMPS.
– Table 71: Current consumption in Run mode, code
with data processing running from Flash, ICACHE on
(2-way) and power supplied by external SMPS.
– Table 72: Current consumption in Run mode, code
with data processing running from Flash, ICACHE on
(1-way) and power supplied by external SMPS.
– Table 73: Current consumption in Run mode, code
with data processing running from Flash, ICACHE
disabled and power supplied by external SMPS.
– Table 74: Current consumption in Run mode, code
with data processing running from SRAM1, and power
supplied by external SMPS.
– Table 75: Current consumption in Run mode, code
with data processing running from SRAM2, and power
supplied by external SMPS.
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. For additional information about ST trademarks, please refer to www.st.com/trademarks. All other
product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.