AIAS
B.Tech., 1st Semester
Applied Mathematics-I [MATH144]
Module IV: Vector Calculus
Lecture 3: Curl and its properties
1
AIAS
Curl of a Vector Point Function: The curl of a Vector Point Function 𝐹 = F1 i + F2 j + F3 k
is written as curl 𝐹 and defined as
𝑐𝑢𝑟𝑙 𝐹 = ∇ × 𝐹
∂ф ∂ф ∂ф
𝑐𝑢𝑟𝑙 𝐹 = i +j +k × F1 i + F2 j + F3 k
∂x ∂y ∂z
𝑖 𝑗 𝑘
∂ ∂ ∂
=
∂x ∂y ∂z
F1 F2 F3
∂ ∂ ∂ ∂ ∂ ∂
= ∂y
F3 − ∂z F2 𝑖+ ∂z
F1 − ∂x F3 𝑗 + [∂x F2 − ∂y F1 ] 𝑘
There 𝑐𝑢𝑟𝑙 𝐹 is a vector quantity.
2
AIAS
Further, if 𝑐𝑢𝑟𝑙 𝐹 = ∇ × 𝐹 = 0
The field 𝐹 is said to be irrotational i.e. there is no rotational motion in the field.
Note: A field which is not irrotational is called rotational or vortex field.
Example: Calculate curl of a Vector Point function 𝐹 = xyzi + 3x 2 yj + (xz 2 − y 2 z)k.
Solution: here 𝐹 = xyzi + 3x 2 yj + (xz 2 − y 2 z)k
And we know that 𝑐𝑢𝑟𝑙 𝐹 = ∇ × 𝐹
∂ф ∂ф ∂ф
𝑐𝑢𝑟𝑙 𝐹 = i ∂x
+j ∂y
+k ∂z
× xyzi + 3x 2 yj + (xz 2 − y 2 z)k
𝑖 𝑗 𝑘
∂ ∂ ∂
= ∂x ∂y ∂z
2
xyz 3x y (xz 2 − y 2 z)
3
AIAS
= −2𝑦𝑧 𝑖 − 𝑧 2 − 𝑥𝑦 𝑗 + [6𝑥𝑦 − 𝑥𝑧] 𝑘
= −2𝑦𝑧 𝑖 + 𝑥𝑦 − 𝑧 2 𝑗 + [6𝑥𝑦 − 𝑥𝑧] 𝑘 Answer
4
AIAS
Example: Show that the field given by force:
𝐹 = (𝑦 2 cos x + z 3 ) i + (2y sin x − 4) j + (3xz 2 + 2)k is conservative and find its scalar
potential.
Solution: we know that 𝑐𝑢𝑟𝑙 𝐹 = ∇ × 𝐹
∂ ∂ ∂
𝑐𝑢𝑟𝑙 𝐹 = i +j +k × F1 i + F2 j + F3 k
∂x ∂y ∂z
∂ ∂ ∂
= i ∂x
+j ∂y
+k ∂z
× [(𝑦 2 cos x + z 3 ) i + (2y sin x − 4) j + (3xz 2 + 2)k]
𝑖 𝑗 𝑘
∂ ∂ ∂
= ∂x ∂y ∂z
(𝑦 2 cos x + z 3 ) (2y sin x − 4) 2
(3xz + 2)
= 𝑖 0 − 0 + 𝑗 0 + 3𝑧 2 − 3𝑧 2 + 𝑘(2𝑦 cos 𝑥 − 2𝑦 cos 𝑥 − 0)
=0 5
AIAS
Therefore, 𝐹 represents a conservative (or irrotational) field. The corresponding scalar
potential ф is given by ∇ф = 𝐹 = (𝑦 2 cos x + z 3 ) i + (2y sin x − 4) j + (3xz 2 + 2)k
Also we have total differential is given by
∂ф ∂ф ∂ф
dф = dx + dy + dz = ∇ф. 𝑑𝑟
∂x ∂y ∂z
Therefore, dф = (𝑦 2 cos x + z 3 ) dx + (2y sin x − 4) dy + (3xz 2 + 2)dz
= d(𝑦 2 sin x + xz 3 − 4y + 2z)
Hence ф = (𝑦 2 sin x + xz 3 − 4y + 2z + c) Answer
6
AIAS
7
AIAS
8
Practice Questions: AIAS
9
AIAS
Thank you!
10