0% found this document useful (0 votes)
122 views8 pages

Algebra Practice Questions for Defense Exams

1. The document contains 41 algebra word problems. The problems involve equations, exponents, radicals, and other algebraic expressions. 2. Many of the problems ask the reader to solve for a specific value based on given equations and expressions. 3. Common tasks include finding the value of an expression when given certain variables, solving for a variable in an equation, and determining relationships between algebraic terms.

Uploaded by

Ruchi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
122 views8 pages

Algebra Practice Questions for Defense Exams

1. The document contains 41 algebra word problems. The problems involve equations, exponents, radicals, and other algebraic expressions. 2. Many of the problems ask the reader to solve for a specific value based on given equations and expressions. 3. Common tasks include finding the value of an expression when given certain variables, solving for a variable in an equation, and determining relationships between algebraic terms.

Uploaded by

Ruchi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 8

Algebra | ETE-889022705

Algebra
1. If a3 + b3 = 1344 and a + b = 28, then (a + b)2 – 9. If 40√5x 3 − 3√3y 3 = (2√5x − √3y) (Ax 2 + Bxy +
3ab is equal to: Cy 2 ), then what is the value of √B 2 + C 2 − A ?
(A) 24 (B) 16 (A) 11 (B) 7
(C) 32 (D) 48 (C) 8 (D) 9

2. If x+y+z=19, XYZ =216 and xy + yz + zx =114 10. If x + 1/x = 7, then x³ + 1/x³ is equal to:
then the value of √x 3 + y 3 + z 3 + xyz is: (A) 300 (B) 322
(A) 32 (B) 30 (C) 364 (D) 343
(C) 28 (D) 35
11. If 250√2x 3 − 5√5y 3 − [5√2x − √5y][Ax 2 + Bxy +
3. If 8x + y² – 12x – 4xy + 9 = 0 then the value of
2
Cy 2 ], then the value of (A + C√10B) is:
(14x – 5y) is: (A) 10 (B) 5
(A) 9 (B) 6 (C) √52 (D) √25
(C) 5 (D) 3
12. If x ≠ – 1, 2 and 5, then the simplified value of
4. If a + b + c = 4 and ab + bc + ca = 1, then find (x2 −8) x2 +2x+1 x2 +2x+4
{2 × ÷ } is equal to :
the value of a³ + b³ + c³ – 3abc is: x2 −x−2 x2 −4x−5 3x−15

(A) 50 (B) 60 (A) 1/6 (B) 6


(C) 3/2 (D) 2/3
(C) 52 (D) 47

13. If a³ + b³ = 110 and a + b = 5, then (a + b)² – 3ab


5. If 24√3x 3 + 2√2y 3 = (2 √3x + √2y)
is equal to:
(Ax 2 + Bxy + Cy 2 ), to (2A + √6B − C) is equal to:
(A) 52 (B) 32
(A) 10 (B) 14
(C) 42 (D) 22
(C) 6 (D) 8

14. If x² + 1 = 3x, then the value of (x4+x–2)8/(x²+5x


6. If A³ + B³ = 110 and A + B = 5, then (A+ B)² – 3AB
+1) is:
is equal to:
(A) 2 1/3 (B) 214
(A) 52 (B) 32
(C) 4 /12 (D) 3 /12
(C) 42 (D) 22

15. If 40√5x 3 − 3√3y 3 = (2√5x − √3y) × (Ax 2 + Bxy +


7. If A + B + C = 5 and A2 + B2 + C2 = 33, then what
is the value of A3 + B3 + C3 – 3ABC cy 2 ) , then what is the value of √B 2 + C 2 − A ?
(A) 11 (B) 7
(A) 195 (B) 180
(C) 8 (D) 9
(C) 192 (D) 185

8. If x² + 1 = 3x, then the value of (x4+x-2)/(x²+5x +1) 16. If a + b + c = 5 and a2 + b2 + c2 = 33, then what is
is: the value of a3 + b3 + c3 – 3abc?
(A) 2 1/3 (B) 2 1/4 (A) 195 (B) 180
(C) 192 (D) 185
(C) 4 1/2 (D) 3 1/2

Best Defence Institute for AFCAT , CDS , NDA , CAPF , ACC , TA Mob no :- 87-09-49-64-74 Page | 1
Algebra | ETE-889022705
17. If a² + b² = 88 and ab = 6, (a > 0, b > 0) then what 29. If x = √3 − √2 , then the value of x³ – x– 3 is:
is the value of (a³ + b³) ? (A) 22√3 (B) -22√2
(A) 980 (B) 1180 (C) 22√2 (D) -22√3
(C) 820 (D) 1000
30. If (x + 7)³ + (2x + 8)³ + (2x + 3)³ = 3(x + 7) (2x + 8)
18. If x – 1/x = 10, then x³ – 1/x³ is equal to: (2x + 3), then what is the value of x?
(A) 970 (B) 1000 (A) –3.6 (B) 3.6
(C) 1030 (D) 1100 (C) 2.4 (D) –2.4

19. If (x – 7)³ + (x – 8)³ +(x + 6)³ = 3 (x – 7) (x – 8) (x + 31. If x = 2 − √3 then the value of x3 – x–3 is
6), then what is the value of x? (A) -30√3 (B) 30√3
(A) 6 (B) 8 (C) -30 √2 (D) 30√2
(C) 10 (D) 3
32. If (2x – 7)³ + ( 2x – 8)³ + (2x –3)³ = 3 (2x –7) (2x – 8)
20. If x4 + x–4 = 2207, (x > 0) then the value of x + x– (2x –3), then what is the value of x?
1
is: (A) 4 (B) 2
(A) 19 (B) 7 (C) 1 (D) 3
(C) 11 (D) 9
33. If x4 + x–4 = 1442, (x > 0) then the value of x + x –1
21. If x + x = 1442, (x > 0) then the value of x - x is:
4 –4 –1
is:
(A) 7 (B) 8 (A) 2√10 (B) 3√10
(C) 6 (D) 15 (C) 4√10 (D) 15

22. If (3x –7)³ + (3x – 8)³ + (3x + 6)³ = 3(3x –7)(3x – 34. If a² + b² = 135 and ab = 7, (a > 0, b > 0) then the
8)(3x + 6), then what is the value of x ? value of (a³ – b³) is :
(A) 3 (B) 1 (A) 1562 (B) 1600
(C) 4 (D) 2 (C) 1680 (D) 1350

23. If x + 1/x = 10, then x³ + 1/x³ is equal to : 35. If x = 2 + √3, then the value of x3 – x–3 is:
(A) 970 (B) 1030 (A) –52 (B) -30√3
(C) 1000 (D) 1100 (C) 30√3 (D) 52

24. If a² + b² = 99 and ab = 11, (a > 0, b > 0) then the 36. If (x – 7)3 + (2x + 8)3 +(2x – 3)3 = 3(x – 7) (2x + 8)
value of (a³ + b³) is: (2x – 3), then what is the value x?
(A) 1250 (B) 968 (A) 1.6 (B) 2.4
(C) 1100 (D) 1080 (C) 1.2 (D) 0.4

25. If 8 (a + b)3 + (a – b)3 = (3a + b) (Aa2 + Bab + Cb2), 37. If a3 + b3 = 1344 and a + b = 28, then (a + b)2 –
then what is the value of (A + B – C) ? 3ab is equal to:
(A) 2 (B) 4 (A) 24 (B) 16
(C) 10 (D) 11 (C) 32 (D) 48

26. If x2 – 6x + 1 = 0, then the value of (x4+1/x2) ÷ 38. If x4 + x–4 = 47, (x > 0), then the value of (2x – 3)2 is:
(x2+1) is: (A) 2 (B) 3
(A) 39 (B) 33 (C) 5 (D) 4
(C) 35 (D) 36
27. If x + y + z = 3 and xy + yz + zx = – 18, then what 39. If x=2+√5 then the value of (x3–x–3) is:
is the value of x3 + y3 + z3 – 3xyz = ? (A) –52 (B) 52
(A) 187 (B) 217 (C) 76 (D) –76
(C) 191 (D) 189
40. If (x – 8)³ + (2x + 16)³ + (2x –13)³ = 3(x – 8)(2x +
28. If (2x + 7)³ + (2x + 8)³ + (2x + 3)³ = 3(2x + 7) (2x + 16)(2x –13), then what is the value of x?
8) (2x + 3), then what is the value of x ? (A) 0.7 (B) –1
(A) –2 (B) 3 (C) 1 (D) 0
(C) 2 (D) –3

Best Defence Institute for AFCAT , CDS , NDA , CAPF , ACC , TA Mob no :- 87-09-49-64-74 Page | 2
Algebra | ETE-889022705
41. If x=2+√3 then the value of x³ + x–3 is: 46. The value of the expression
(A) 52 (B) –52 1 1 2 1 2
{(a + ) − (a − ) }| is:
(C) -52√3 (D) 52√3 4 a a
(A) 1/2 (B) 1/4
42. If a3 – b3 = 899 and a – b = 29, then (a – b)2 + 3ab (C) 1 (D) 4
is equal to:
(A) 35 (B) 29 47. If a3 – b3 = 899 and a – b = 31, then (a – b)2 + 3ab
is equal to:
(C) 16 (D) 31
(A) 35 (B) 31
(C) 16 (D) 29
43. If x4 + x –4
= 1154, (x > 0), then the value of 2(x –
3)2 is:
(A) 16 (B) 12 48. If x4 + x –4 = 194, (x > 0), then the value of (2x – 4)2
(C) 20 (D) 15 is:
(A) 15 (B) 20
1 1 (C) 12 (D) 16
44. If x − = 7, then x 3 − is equal to
x x3
(A) 480 (B) 364
49. If x = 2+√5 then the value of x3+x–3 is:
(C) 376 (D) 500
(A) 40√5 (B) 34√5
(C) 46√5 (D) 36√5
45. If (3x + 1)3 + (x – 3)3 +(2x – 4)3 = 6(3x + 1) (x – 3) (x
– 2), then x is equal to:
50. What is the value of a - b when a2 + b2 - 6a - 6b +
(A) 3 (B) 1
18 = 0?
(C) 2 (D) –1/3
(A) 0 (B) 3
(C) 6 (D) 9

Best Defence Institute for AFCAT , CDS , NDA , CAPF , ACC , TA Mob no :- 87-09-49-64-74 Page | 3
Algebra | ETE-889022705
Algebra (Solution)

1. Answer:(D) 110 = 5 [a² + b² – ab]


a3 + b3 = [a + b] [a2 + b2 – ab] a² + b² – ab = 22
(a + b)2 – 3ab = a2 + b2 + 2ab – 3ab [a + b]² – 3ab = 22.
= a2 + b2 – ab 7. Answer: (D)
A.T.Q a+b+c=5
1344 = 28[a2 + b2 – ab] Squaring both sides,
a2 + b2 – ab = 48 a² + b² + c² + 2(ab + bc + ca) = 25
2. Answer: (D) 33 + 2(ab + bc + ca) = 25
x + y + z =19 ab + bc + ca = –4
x2 +y2 +z2 +2 (xy+y2+zx)=361 a³ + b³ + c³ – 3abc = [a + b + c] [a² + b² + c² – ab
x2 +y2 +z2 =361-2×114=133 – bc – ca]
x3 +y3 +z3-3xyz =[x + y + z][x2 + y2 + z2 − xy − a³ + b³ + c³ – 3abc = 5 [33 + 4]
yz − zx] a³ + b³ + c³ – 3abc = 185
Add 4xyz both sides 8. Answer: (B)
X3+y3+z3+xyz =[19][133 − 114] + 4 × 216 x2 +1=3x
X3+y3+z3+xyz =19×19+864 x+1/x=3
X3+y3+z3+xyz=1225 Cubing both sides, we get
√x3 + y3 + z3 + xyz = 35 x3 +
1
= 27 − 9
x3
3. Answer: (B) 1
8x2 + y² –12x – 4xy + 9 = 0 x3 + = 18
x3
[2x – y]² + [2x – 3]² = 0 Now,
x = 3/2 and y = 2x (X4 +X2 )
X2 +5X+1
y=3 1
X3 + 3
14 x – 5y = 1
X

= 14×3/2–5×3 = 6 X+ +5
X
18 9 1
4. Answer: (C) = = =2
3+5 4 4
a+b+c=4 9. Answer: (B)
Squaring both sides, 40√5x3 − 3√3 y3 =[2√5x − √3y] × [Ax2 + Bxy +
a² + b² + c² + 2(ab + bc + ca) = 16
Cy2 ]
a² + b² + c² = 16 – 2 ×1 3 3
a² + b² + c² = 14 _____ (1) [(2√5 𝑥) − (√3 𝑦) ]
A.T.Q, = [2√5 x − √3y] × [Ax 2 + Bxy + Cy 2 ]
a³ + b³ + c³ – 3abc = [a + b + c] [a² + b² + c² – ab [2√5x − √3 𝑦] [20x2 + 2√15 𝑥𝑦 + 3y2 ]
– bc – ca] = [2√5 x − √3y] × [Ax 2 + Bxy + Cy 2 ]
a³ + b³ + c³ – 3abc = 4 [14 – 1] [20x2 + 3y2 + 2√15xy] = [Ax 2 + Bxy + Cy 2 ]
a³ + b³ + c³ – 3abc = 52 By comparing the coefficients
5. Answer: (A)
A = 20 , B = 2√15 , C = 3
24√3x3 + 2√2y3
∴ √B 2 + C 2 − A)
= (2√3x + √2y)(Ax2 + Bxy + Cy2 )
= √60 + 9 − 20
[(2√3x)3 + (√2y)3 ] =7
= [(2√3x) + (√2y)][Ax2 + Bxy + Cy3 ] 10. Answer: (B)
We know that a2 + b2 = [a + b][a2 + b2 − ab] 1
X+ =7
∴ [2√3 x + √2 𝑦][12x 2 + 2y 2 − 2√6xy] x

= [2√3 x + √2y][Ax 2 + Bxy + Cy 2 ] Cube both side


1 1 1
By comparing the coefficients, we get x3 + + 3x × x [x + ] = 343
x3 x x
A = 12, B = -2√6, C = 2 x3 +
1
= 343- 21
x3
A. T. Q 1
x +
3
= 322
2A + √6 B − C x3
2 × 12 − √6,× 2√6 − 2 11. Answer: (B)
=10 250√2x3 − 5√5y3 − [5√2x − √5y][Ax2 + Bxy +
6. Answer: (D) Cy2 ]
a² + b³ = [a + b] [a² + b² – ab]
Best Defence Institute for AFCAT , CDS , NDA , CAPF , ACC , TA Mob no :- 87-09-49-64-74 Page | 4
Algebra | ETE-889022705
[(5√2 𝑥) − (5√5 𝑦) ]
3 3
16. Answer: (D)
a+b+c=5
= [5√2x − √5y][Ax 2 + Bxy + Cy 2 ]
Squaring both sides,
[a3 − b3 ] = [a − b][a2 + b2 + ab]
a² + b² + c² + 2(ab + bc + ca) = 25
[5√2x − √5 𝑦][50x2 + 5y2 + 5√10 xy] 33 + 2(ab + bc + ca) = 25
= [5√2x − √5y][Ax 2 + Bxy + Cy 2 ] ab + bc + ca = –4
[50x2 + 5y2 + 5√10xy] a³ + b³ + c³ – 3abc = [a + b + c] [a² + b² + c² – ab
= [Ax 2 + Bxy + Cy 2 ] – bc – ca]
A = 50 , B = 5√10 , C=5 a³ + b³ + c³ – 3abc = 5 [33 + 4]
A.T.Q a³ + b³ + c³ – 3abc = 185
= A + C − √10B 17. Answer: (C)
= 50 + 5 - 5 √10 × √10 a3 + b3 = [a + b] [a2 + b2 – ab]
=5 [a + b]2 = a2 + b2 + 2ab
12. Answer: (B) [a + b]2 = 88 + 2 × 6
2(x2 − 8) x2 + 2x + 1 x2 + 2x + 4 [a + b]2 = 100
( 2 )× 2 ÷ a + b = 10
x −x−2 x − 4x − 5 3x − 15
2(x−2)(x2 +4+2x)(x2 +2x+1) x2 +2x+4 a3 + b3 = [a + b] [a2 + b2 – ab]
=( ÷ ) = 10[88 –6]
(x2 −x−2)×(x2 −4x−5) 3(x−5)
2(x−2)(x2 +4+2x)(x2 +2x+1) x2 +2x+4 = 10 × 82
= ( ( )( )( )( ) ÷ ( ) )
x+1 x−2 x+1 x−5 3 x−5 = 820
2(x−2)(x2 +4+2x)(x2 +2x+1) ×3(x−5)
= ( (x+1)(x−2)(x+1)(x−5)(x2 +2x+4) ) 18. Answer: (C)
x – 1/x = 10
= 2× 3
Cube both side
=6
x³ – 1/x³ – 3(x – 1/x) = 1000
13. Answer: (D)
x³ – 1/x³ = 1030
a3 + b³ = [a + b] [a² + b² – ab]
19. Answer: (D)
110 = 5 [a² + b² – ab]
(x – 7)3 + (x – 8)3 +(x – 6)3 = 3 (x – 7) (x – 8) (x + 6)
a² + b² – ab = 22
In these type of question go through options.
[a + b]² – 3ab = 22.
x=3
14. Answer: (B)
(3 – 7)3 + (3 – 8)3 +(3 + 6)3 = 3 (3 – 7) (3 – 8) (3 +
x2 +1=3x
6)
x+1/x=3
– 64 –125 + 729 = 3 (–4)(–5)(9)
Cubing both sides, we get
1 540 = 540
x3 + = 27 − 9
x3 Value of x = 3 satisfied.
1
x3 + = 18 20. Answer: (B)
x3
Now, x4+1/x4=2207
(X4 +X2 ) Add 2 both side
X2 +5X+1 x4+1/x4+2=2209,x2+1/x2=47
1
X3 + 3 Add 2 again in both side
= X
x2+1/x2 + 2 = 49
1
X+ +5
X

=
18 9
= =2
1
x+1/x=7
3+5 4 4
15. Answer: (B) 21. Answer: (C)
x4+1/x4=1442
40√5x3 − 3√3y3
Add 2 from both side
=[2√5 x − √3y] × [Ax2 + Bxy + Cy2 ]
3 3 x4+1/x4+2=1444
[(2√5 𝑥) − (√3 𝑦) ] x2+1/x2 =38
= [2√5 x − √3y] × [Ax 2 + Bxy + Cy 2 ] Subtract 2 from both side
[2√5 x − √3 𝑦] [20x2 + 2√15 𝑥𝑦] x2+1/x2–2=36
= [2√5 x − √3y] × [Ax 2 + Bxy + Cy 2 ] x–1/x=6
[20x2 + 3y2 + 2√15xy] = [Ax 2 + Bxy + Cy 2 ] 22. Answer: (B)
By comparing the coefficients If (3x –7)3 + (3x – 8)3 + (3x + 6)3 = 3(3x –7) (3x –
8)(3x + 6)
A = 20 , B = 2√15 , C = 3
In these type of question go through option
∴ √B 2 + C 2 − A)
x=1
= √60 + 9 − 20 (3 –7)3 + (3 – 8)3 + (3 + 6)3 = 3(3 –7) (3 –8)(3 + 6)
=7 540 = 540
Best Defence Institute for AFCAT , CDS , NDA , CAPF , ACC , TA Mob no :- 87-09-49-64-74 Page | 5
Algebra | ETE-889022705
Value for x = 1 satisfied. Let x = –3
23. Answer: (A) [2x – 3 + 7]3 + [2x – 3 + 8]3 + [2x – 3 + 3]3 +3[2x –
x + 1/x = 10 3 + 7] [2x – 3 + 8] [2x – 3 + 3]
Cube both side [1]3 + [2]3 + [–3]3 = 3 × 1 × 2 × (–3)
x³ – 1/x³ + 3(x – 1/x) = 1000 1 + 8 – 27 = –18
x³ – 1/x³ = 970 –18 = –18
24. Answer: (B) the value of x = –3 is satisfied
a3+b3=[a +b][a2+b2–ab] ________ (1) 29. Answer: (B)
[a + b]2 = a2 + b2 + 2ab x = √3 − √2 − − − − − (1)
[a + b]2 = 99 +2 ×11 1
= √3 + √2-----------(2)
x
a + b = 11 1
a3+b3=[a +b][a2+b2–ab] x − = √3 − √2 − √3 − √2
x
a3 + b3 = [11] [99 – 11] 1
x − = −2√2
a3 + b3 = 968 x
25. Answer: (C) Cube both side
1 1 1
8[a + b]3 + [a – b]3 = [3a + b] [Aa2 + Bab + Cb2] x3 − 3 − 3 × x × [x − ] = −16√2
[2(a + b)]3 + [a – b]3 = [3a + b] [Aa2 + Bab + Cb2] x x x
1
= [3a + b] [Aa2 + Bab + Cb2] 3
x 3 = −22√2
x
[2a + 2b + a – b] [2(a + b)]2+ [a – b] + (a + b) – (a
30. Answer: (A)
– b)]
We know that
= [3a + b] [Aa2 + Bab + Cb2]
If a3 + b3 + c3 = 3abc
[3a + b] [4a² + 4b² + 8ab + a² + b² – 2ab + 2a² –
⟹a+b+c=0
2b²] = [3a + b] [Aa2 + Bab + Cb2]
So here, (x + 7)³ + (2x + 8)³ + (2x + 3)³ = 3(x + 7)
[7a² + 3b² + 6ab] = [Aa2 + Bab + Cb2]
(2x + 8) (2x + 3)
By comparing
⟹ (x + 7) + (2x + 8) + (2x + 3) = 0
A = 7, B = 6 C = 3
⟹ 5x + 18 = 0
=A+B–C
⟹ x = –18/ 5 = –3.6
=7+6–3
31. Answer: (A)
= 10
x = 2 − √3
26. Answer: (B) 1
Now, x − = −2√3
x² - 6x + 1 = 0 x

Take x common Also, x+1/x=4 => x2+1/x2=16-2=14


1 1 1
x+1/x=6 ______ (1) So, x3 –x–3 = x3 − = (x − ) (x2 + + 1)
x3 x x2
A.T.Q = (–2√3) (14+1)
= (x4+1/x²)/(x²+1) =–30√3
Multiply by x and divide is domination 32. Answer: (D)
(x3+1/x3)/(x+1/x) (2x – 7)3 + (2x – 8)3 + (2x –3)3 = 3 (2x –7) (2x – 8)
From (1) (2x –3)
x3+1/x3 = 198 _____ (2) In these type of question it is better to go through
From (2) option.
= 198/6 = 33 Let x = 3
27. Answer: (D) (2×3 – 7)3 + (2×3 – 8)3 + (2×3 –3)3 = 3 (2×3 –7)
x+y+z=3 (2×3 – 8) (2×3 –3)
S.B.S (–1)3 + (–2)3 + (3)3 = 3 (–1) (–2) (3)
x2 + y2 + z2 + 2 (xy + yz + zx) = 9 18 = 18
x2 + y2 + z2 – 36 = 9 So, the value of x = 3
x2 + y2 + z2 = 45 _______ (1) 33. Answer: (A)
x3 + y3 + z3 – 3xyz = (x + y + z)(x² + y² + z² –xy - x4+ 1/x4 =1442
yz - zx ) add 2 both side
x3 + y3 + z3 – 3xyz = 3(45 + 18) x4 +1/x4+2=1442
x3 + y3 + z3 – 3xyz = 189 x2 +1/x2=38
add 2 both side
28. Answer: (D) x2 +1/x2+2=40
[2x + 7]3 + [2x + 8]3 + [2x + 3]3 = 3[2x + 7] (2x + 1 2
8] [2x + 3] [x + ] = 40
x
In these types of questions go through option
X+1/x=2√10
Best Defence Institute for AFCAT , CDS , NDA , CAPF , ACC , TA Mob no :- 87-09-49-64-74 Page | 6
Algebra | ETE-889022705
34. Answer: (A) multiply by 4 both side
a3 – b3 = [a – b] [a2 + b2 + ab] ________ (1) 4x2 + 4 = 12x _______ (1)
A.T.Q A.T.Q
a2 + b2 = 135 = [2x – 3]2
subtract 2ab from both side. = 4x2 + 9 – 12x
a2 + b2 –2ab= 135 – 2 × 7 Put the value of 12x from (1)
[a – b]2 = 121 = 4x2 + 9 – 4x2 – 4
a – b = 11 =5
from (1) 39. Answer: (C)
a3 – b3 = [a – b] [a2 + b2 + ab] x = 2 + √5 − − − − − −(1)
= 11 [135 + 7] 1
= √5 − 2 − − − − − −(2)
x
= 11 × 142
From (1) and (2)
= 1562 1
x − = 2 + √5 − √5 + 2
35. Answer: (C) x
1
x = 2 + √3 x− =4
x
1/x=2-√3 Cube both side
1 1 1
Then x3 − − 3 × x × [x − ] = 64
x3 x x
1 3 1
x − = 2√3 x − = 64 + 3 × 4 = 76
x x3
Cube both side 40. Answer: (C)
3
x −
1 1 1
− 3 × x × [x − ] = 24√3 (x – 8)³ + (2x + 16)³ + (2x –13)³ = 3(x – 8)(2x +
x3
16)(2x –13)
x x
3 1
x − = 24√3 + 3 × 2√3
x3 a3 + b3 + c3 – 3abc = 0
1
3
x − = 30√3 a+b+c=0
x3
36. Answer: (D) [x – 8]³ + [2x + 16]³ + [2x –13]³ – 3(x – 8)(2x +
(x – 7)3 + (2x + 8)3 +(2x – 3)3 = 3(x – 7) (2x + 16)(2x –13) = 0
8) (2x – 3) A.T.Q
(x – 7)3 + (2x + 8)3 +(2x – 3)3 – 3(x – 7) (2x + x – 8 + 2x + 16 + 2x – 13 = 0
8) (2x – 3) = 0 5x – 5 = 0
a+b+c=0 5x = 5
a3 + b3 + c3 – 3abc = 0 x=1
then 41. Answer: (A)
x – 7 + 2x + 8 + 2x – 3 = 0 x=2+√3
5x = 2 1
= 2 − √3
x = 0.4 x
1
37. Answer: (D) x+ =4
x
a3 + b3 = [a + b] [a2 + b2 – ab] Cube both side
(a + b)2 – 3ab = a2 + b2 + 2ab – 3ab 1
= a2 + b2 – ab x3 + 3 = 64 − 3 × 4
x
A.T.Q 3
1
x + 3 = 52
1344 = 28[a2 + b2 – ab] x
a2 + b2 – ab = 48 42. Answer: (D)
38. Answer: (C) a3 – b3 = [a – b] [a2 + b2 + ab]
1 [a – b]2 + 3ab = a2 + b2 – 2ab + 3ab
x4 + 4 = 47
x [a – b]2 + 3ab = a2 + b2 + ab
add 2 both side then
1 A.T.Q
x4 + 4 + 2 = 49
x a3 + b3 = 899
Then from (i)
1
[x2 + 2 ] = 7 [a – b][a2 + b2 + ab] = 899
x 29[a2 + b2 + ab] = 899
Add 2 both side
1 [a2 + b2 + ab] = 31
x2 + 2 + 2 = 9 [a – b]2 + 3ab = 31
x
1 43. Answer: (A)
x+ =3 1
x x4 + =1154
x4
x2 +1=3x
add 2 both side
Best Defence Institute for AFCAT , CDS , NDA , CAPF , ACC , TA Mob no :- 87-09-49-64-74 Page | 7
Algebra | ETE-889022705
x4 +
1
+2=1156 Add 2 both side
x4 1
1
x2 + =34 x2 + 2 + 2 = 16
x2 x
again add 2 both side 1
1 x + = 4 − − − − − (1)
x2 + +2=36 x
x2
1
x2 +1=4x
x + =6 multiply by 4 both side
x
x + 1 = 6x ______ (1)
2
4x2 + 4 = 16x _______ (2)
A.T.Q A.T.Q
= 2[x – 3]2 = (2x – 4)2
= 2[x2 + 9 –6x] = 4x2 + 16 – 16x
Put the value of 6x from (1) = 4x2 + 16 – 4x2 – 4
= 2[x2 + 9 –x2 – 1] = 12
= 16 49. Answer: (B)
44. Answer: (B) x=2+√5 --------- (1)
1 1
x− =7 = √5 − 2--------- (2)
x x

Cube both side Then


1 1 1
x3 − 3 − 3 × x × = 343 x + = 2√5
x x x
1 Cube both side
3
x − 3 − 3 × 7 = 343 1
x x3 + = 40√5-6√5
x3
3
1 1
x − 3 = 343 x3 + = 34√5
x x3
45. Answer: (B) 50. Answer:(A)
(3x + 1)3 + (x – 3)3 +(2x – 4)3 = 6(3x + 1) (x – 3) (x – a2 + b2 - 6a - 6b + 18 = 0
2) ⇒ a2 - 2 × a × 3 + 32 + b2 - 2 × b × 3 + 32 =0
⇒ (3x + 1)3 + (x – 3)3 +(2x – 4)3 = 3(3x + 1) (x – ⇒ (a - 3)2 + (b - 3)2 = 0
3) (2x – 4) ⇒ (a - 3)2 = 0 & (b - 3)2 = 0
Clearly the above equation is in the form of ⇒a-3=0&b-3=0
a3 + b3 + c3 = 3abc ⇒a=3&b=3
⇒ a+b+c=0 ∴a-b=0
So, (3x + 1) + (x – 3) + (2x – 4) = 0
⇒ 6x – 6 = 0
⇒ x=1
46. Answer: (C)
We know that, (a + b)2 – (a – b)2 = 4ab
So,
1 1 2 1 2
4
[(a + a) − (a − a) ]
1 1 1
= × [4 × a × ] = × 4 = 1
4 a 4
47. Answer: (D)
a3 – b3 = [a – b] [a2 + b2 + ab]
[a – b]2 + 3ab =a2 + b2 + 2ab + 3ab
= a2 + b2 + ab
A.T.Q
a3 – b3 = [a – b][a2 + b2 + ab]
899 = 31 [a2 + b2 + ab]
a2 + b2 + ab = 29
[a - b]2 + 3ab = 29
48. Answer: (C)
1
x4 + 4 = 194
x
add 2 both side
1
x4 + 4 + 2 = 196
x
2
1
[x + 2 ] = 14
x
Best Defence Institute for AFCAT , CDS , NDA , CAPF , ACC , TA Mob no :- 87-09-49-64-74 Page | 8

You might also like