Vibrational Spectroscopy Vibrational Spectroscopy and Imaging
Vibrational Spectroscopy Vibrational Spectroscopy and Imaging
Beckman Institute
at The University of Illinois
Vibrational Spectroscopy
and Imaging
Rohit Bhargava
Spectroscopy generalization
Compare the light that went in with the light that comes out
Spectroscopy (Radiation)
Long
UV
1
6/8/2009
120
2.5
0.06 0.06 12000
2
100
1.5
0.05 0.05 10000
1
80 0.5
0.04 0.04 8000
0
0.02 40
0.02 4000
0.01 0.01 20
2000
0 0 0
200 250 300 350 400 400 500 600 700 1000 1500 2000 250 0
4000 6000 8000 10000 12000 14000 16000
Wavelength (nm)
2
6/8/2009
Raman Scattering
: 0 2 0
: 0 2 0
: 0 2
: 0 0 … ….
0
1
0 0 2 0 0 0 2 0 2 0
2 0 0
:
Detector
785
785nm
Sample
UV-VIS
Absorption
http://en.wikipedia.org/wiki/File:Raman_energy_levels.jpg
3
6/8/2009
UV-VIS
Absorption
If light is not absorbed… the majority of the photons pass through the sample by
means of Rayleigh Scattering
http://en.wikipedia.org/wiki/File:Raman_energy_levels.jpg
UV-VIS
Absorption
Some of the photons (~1/10,000,000) that are not absorbed will pass through the
sample and undergo Stokes Raman Scattering
http://en.wikipedia.org/wiki/File:Raman_energy_levels.jpg
UV-VIS
Absorption
Even fewer photons (temperature dependant) that are not absorbed will pass
through the sample and undergo Anti-Stokes Raman Scattering
http://en.wikipedia.org/wiki/File:Raman_energy_levels.jpg
4
6/8/2009
…
…
780nm
781nm
782nm
783nm
785 nm Molecules in 784nm
…
…
1 400 750 2,500 16,000 1,000,000 nm Detector Array
780nm
781nm
782nm
783nm
Molecule in 784nm
the sample
786nm
787nm
788nm
789nm
790nm
791nm
792nm
793nm
93
794nm
795nm
Detector 796nm
797nm
798nm
785nm 799nm
Sample 800nm
801nm
802nm
803nm
Ultra violet Vis Infrared 804nm
805nm
806nm
Near Mid Far
…
…
780nm
Rayleigh Scatter 781nm
782nm
783nm
Molecules in 784nm
the sample
786nm
787nm
785 nm Light 788nm
Gets rejected 789nm
790nm
791nm
792nm
793nm
93
794nm
795nm
Detector 796nm
797nm
798nm
785nm 799nm
Sample 800nm
801nm
802nm
803nm
Ultra violet Vis Infrared 804nm
805nm
806nm
Near Mid Far
…
…
5
6/8/2009
…
…
780nm
781nm
782nm
783nm
785 nm Molecules in 784nm
…
…
1 400 750 2,500 16,000 1,000,000 nm Detector Array
780nm
781nm
782nm
783nm
Molecule in 784nm
the sample
786nm
787nm
788nm
789nm
790nm
791nm
792nm
793nm
93
794nm
795nm
Detector 796nm
797nm
798nm
785nm 799nm
Sample 800nm
801nm
802nm
803nm
Ultra violet Vis Infrared 804nm
805nm
806nm
Near Mid Far
…
…
780nm
Anti-stokes Raman 781nm
782nm
783nm
Molecules in 784nm
the sample
786nm
787nm
781 nm Light 788nm
Passed through 789nm
790nm
to the detector 791nm
792nm
793nm
93
794nm
795nm
Detector 796nm
797nm
798nm
785nm 799nm
Sample 800nm
801nm
802nm
803nm
Ultra violet Vis Infrared 804nm
805nm
806nm
Near Mid Far
…
…
6
6/8/2009
…
…
780nm
781nm
782nm
783nm
785 nm Molecules in 784nm
…
…
1 400 750 2,500 16,000 1,000,000 nm Detector Array
780nm
781nm
782nm
783nm
Molecule in 784nm
the sample
786nm
787nm
788nm
789nm
790nm
791nm
792nm
793nm
93
794nm
795nm
Detector 796nm
797nm
798nm
785nm 799nm
Sample 800nm
801nm
802nm
803nm
Ultra violet Vis Infrared 804nm
805nm
806nm
Near Mid Far
…
…
780nm
Stokes Raman 781nm
782nm
783nm
Molecules in 784nm
the sample
786nm
787nm
790 nm Light 788nm
Passed through 789nm
790nm
to the detector 791nm
792nm
793nm
93
794nm
795nm
Detector 796nm
797nm
798nm
785nm 799nm
Sample 800nm
801nm
802nm
803nm
Ultra violet Vis Infrared 804nm
805nm
806nm
Near Mid Far
…
…
7
6/8/2009
…
…
Soybean
Detector Array
Ultra violet Vis Infrared
Near Mid Far
786nm
787nm
788nm
9 789nm
790nm
791nm
792nm
ntensity (A.U.)
8
793nm
794nm
7 795nm
796nm
6 797nm
798nm
799nm
5 800nm
801
801nm
Raman In
802nm
4 803nm
804nm
805nm
3 806nm
Detector Array
…
…
… 2
Detector Array
803nm
801nm
800nm
799nm
798nm
797nm
796nm
795nm
794nm
793nm
792nm
791nm
790nm
789nm
788nm
787nm
786nm
806nm
805nm
804nm
802nm
… 1
0
400 600 800 1000 1200 1400 1600 1800
Excitation Frequency
9
Soybean 785nm = 0.0000785cm
1
8 = 12738.9 cm-1
0.0000785cm
7
2
***The Raman shift is independent of
1 excitation frequency… the spectral
band positions will be the same
0
400 600 800 1000 1200 1400 1600 1800
whether you excite with a 785nm
laser or a 532 nm laser
810nm Raman Shift (cm-1) 915nm
8
6/8/2009
Important advantage of
Raman… wavelength
select ability to avoid
light absorption and
fluorescence… however
the higher the
wavelength the lower the
Raman efficiency
(Raman Cross Section).
NIR Spectra
9 Raman Spectrum
n Intensity (A.U.)
4
Raman
IR Spectrum 3
0
400 600 800 1000 1200 1400 1600 1800
2500nm 11,000nm
9
6/8/2009
CCD
Las
ser
Kaiser Optical
Kaiser Optical
Spectral Dimension
10
6/8/2009
Raman Spectroscopy:
Advantages and Disadvantages
Advantages:
Raman Spectroscopy:
Advantages and Disadvantages
Disadvantages
Raman Microscopy
785 nm Laser
Microscope
0.8
0.6
0.4
0.2
0
1034
1068
1103
1138
1172
1207
307
342
376
411
446
480
515
549
584
619
653
688
722
757
792
826
861
895
930
965
999
Wavelengh (nm)
Wavelength (nm)
11
6/8/2009
PhAT Probe
Microscope
Spectrograph
& CCD
785 nm Laser
Fiber
~~~~ 1
Launcher
50
Bone
50μm
PMMA
Raman map
49
Raman Intensity (A.U.)
1
33
Raman Intensity (A.U.)
14
9
34
23
10
13
21
3
41
29
8
17
16
39
35
18
26
47
32
7
24
44
30
5
36
27
42
31
11
12
22
28
46
4
45
2
37
20
6
25
19
40
38
48
50
43
15
12
6/8/2009
OD
ID
Spectrograph
35 3
14
22 44 18 21 33
13
& CCD
20 11 5 39 49
16 34
37 12 24 1
48
7 8 23
38 45 31
36 26 41 9
43 2
40 27
4 32 17 10
15 25
Probe
785 nm Laser
46 42 47 29
50 19
6 28 30
Spacing
Fiber
Illumination
Converging
ring
g
Collection
launcher
lens
Fibers
Collection
Dichroic Fibers
mirror
Illumination
Axicon
collimator
Fiber
lens
Converging
lens(es)
Diverging
Sample/
Collection
Specimen
Transcutaneous
Exposed bone
Bone factor
Raman Inte
Water cooling
Anesthesia
Raman Shift (cm-1)
-Raman tomography
-Raman imaging
13
6/8/2009
Infrared Spectroscopy
14
6/8/2009
Infrared Spectra
• Vibrational frequencies are directly resonant with optical
frequencies – vibrational transition is energy matching
Infrared Spectroscopy
• IR was discovered in 1801 by William Herschel who split the EM spectrum
using a prism – noted increase in temperature beyond the red part of visible
spectrum
• 1930’s began to be exploited for spectroscopy studies
15
6/8/2009
IR Spectroscopy: Theory
Retardation (cm)
-0.05 0.05 0.1 0.15 0.2 0.25
3
1
1
2 Cb
1 2.2 2.5
2.0 W 2.0
4
Detector 2 and 2’
∞ 1.8
Focusing mirror I0 1.5
0.5 1 2 BD,0
∞ 1.6
1.0
3 3 1.4
∞
0.5
1 2 Sample 0 0.5 1 2 1.2
∞
0.0
∞ or 4000 3200 2400 1600 800 0
Fixed mirror 0.5 1 2 Wavenumber (cm-11)
∞ Cb:Centerburst, W:Wings
FTIR Microscope
A popular
commercial
instrument
combining the
FTIR spectrometer
with a microscope
In fact, Imaging is even quicker and allows for diffraction limit measurements
16
6/8/2009
1.6
0.4
100 μm
a.u.)
y 0.6
Absorbance (a
0.4
z 0.2
x 0.0
3200 2800 2400 2000 1600
Wavenumber (cm -1)
• Typical characteristics
– Wavelengths (2048 elements over 2.5 – 12.5 μm), x, y typically ~1024
• Computation is essential to recover data
– Manual examination is prohibitive
• Trade-offs: spatial coverage vs. resolution, spectral resolution vs.
signal-to-noise ratio, time vs. data quality/size vs. information
10 5 A 1
CCD Visible Detector
10 4
MAPPING 3
10 3 2 4
Time (hrs)
10 2 7a
5
Aperture 10
Sample 6 7b
Stage 1
8
Aperture
10 -1 9
10 -2 10
10 -3 11
Mirror
10 -4
Rapid-Scan
Interferometer
Visible Light 1992 1996 2000 2004 2008
Source Year
Microscope
1. E.N. Lewis et al. Anal. Chem. 67, 3377-3386 (1995) ; 2. Snively et al. Appl. Spectrosc. (1998); 3. Bhargava et al. Appl. Spectrosc. 53, 1313-
1322 (1999); 4. Snively et al. Opt. Lett., 24; 1841-1843 (1999); 5. Bhargava et al. Appl. Spectrosc. 54, 486-495 (2000); 6. Perkin-Elmer Inc.; 7a.
Varian Inc. ; 8. NIH-FBI camera; 9. Reddy et al (To be submitted); 10 & 11 – under development.
17
6/8/2009
Sample preparation
• Transmission or reflection
Signal to noise
• It is important to get high quality noise-free data –
This can involve multiple strategies;
– Better sample preparation (more or less sample)
– More scans and averaging
– Reduce Michelson mirror speed
• Spectral resolution is important,
important this is the number of
points within a spectra, the fewer the faster the scans
but potential for loss of information
• Spatial resolution is also important, the higher the
spatial resolution, the lower the signal.
Take home message; Many factors must be adapted depending on what
you are interested in
Body oils
0.005
0.000
1 mm
18
6/8/2009
An example of imaging…..
1.25
Absorbance (a.u.)
• Polymer crystallization…. 1.00
0.75
Crystalline
0.50
0.90 0.25 Difference
0.00
0.75
-0.25
0.60
Amorphous
-0.50
9s 21 s 24 s 27 s
0.45 900 1000 1100 1200 1300 1400 1500
Wavenumber (cm-1)
0.30
0.15
30 s 36 s 45 s 75 s 1.0
A
B
0.090 70 0.8 C
Absorbance (a.u.)
D
Average
0.075 60
0.6
0.060 50
0.4
0.045 40 D
C
0.030 30 0.2 B
A
0.015 20
0.0
Motivation
DIAGNOSTIC
• Cancer pathology
– Prostate cancer as a paradigm – 1 Screening
in 6 men
Is it suspicious?
– Biopsies: >1 million annually with
disease ~20% Biopsy
– Diagnoses: >200, 000 annually Is it cancer?
with lethal ~20%
– Grading
G di iis subjective,
bj ti variable,
i bl Diagnosis
leads to conflicting therapy routes What is the grade? Stage?
– Prognosis tools are not perfect – Will it metastasize?
97% undergo therapy
Therapy
– “Holy Grail” of oncologic pathology
Is adjuvant therapy needed?
– Primary evaluative standard for
research
Follow-up
• Manual recognition in Has cancer recurred?
stained tissue
RESEARCH
Biopsy
Epithelium Benign
Grade 3
Stroma
Grade 4
19
6/8/2009
Information
y
z
x
■ Model based design of experiments
■ Hypothesis driven analysis – supervised data analysis
■ Biologically inspired statistical pattern recognition of spectra
■ Approach – Model, Train algorithm, Classify, Validate
Analytical Approaches
The types of analysis available to spectroscopists can be
divided into two groups;
Analytical Approaches
Which MVA approach?
Bayesian PLS
PCA
SIMCA HCA
FUZZY
LDA
KNN ANN
Important to determine which are best for analysis of point spectra and which for images
20
6/8/2009
Prostate Histology
Acquired Data
Blood
Nerve
Epithelium
Ganglion
Stone
Endothelium
Fib. Stroma
Smooth Muscle
Pale Stroma
Lymphocytes
Model
Algorithm
(Modified Bayesian)
Optimization
Calibration/Validation
Statistics Optimized Prediction
Sensitivity Analysis Algorithm
Gold Standard
patients
1 6 3 4 5 6 7 8 9 10 11 12 16 15 13 14 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38
1
2
3
4
5
6
metrics
7
8
9
10
11
12
13
14
15
16
17
18
Apoptosis
Fundamental biological Necrosis
Stem cell differentiation
processes Toxicology
Disease initiation and pprogression
g
21
6/8/2009
FTIR-Biomedical Applications
Biopsy
Statistical Validation
Fernandez et al. Nat. Biotechnol. 23, 469-474 (2005).
Prognosis Bhargava et al. Nat. Biotechnol. 25, 31-33 (2007).
Bhargava Anal. Bioanal. Chem. 389, 1155-1169 (2007).
22
6/8/2009
EPITHELIUM
FIBROUS STROMA
MIXED STROMA
SMOOTH MUSCLE
NERVE
GANGLION CELLS
BLOOD
LYMPHOCYTES
CORPORA AMYLACEA
ENDOTHELIUM
1.3 mm
Fernandez, Bhargava, Hewitt and Levin Nat. Biotechnol., 23, 469-474 (2005)
Whats in store?
• Label-free methods
– Talks on Monday focus on applications
• Lab tours
Theory
• More information
Applications
Instrumentation
Data Analysis
Sampling
23