Q1.
Add the following algebraic expressions: 3 MARKS
1. 2/3a, 3/5a, -6/5a
2. 11/2xy + 12/5y + 13/7x, -11/2y – 12/5x – 137xy
3. 7/2x3 – 1/2x2 + 5/3, 3/2x3 + 7/4x2 – x + 1/3, 3/2x2 -5/2x -2
Q2. Take away: 3 Marks
1. 7/4x3 + 3/5x2 + 1/2x + 9/2 from 7/2 – x/3 – x2/5
2. y3/3 + 7/3y2 + 1/2y + 1/2 from 1/3 – 5/3y2
3. 2/3ac – 5/7ab + 2/3bc from 3/2ab -7/4ac – 5/6bc
Q3. Subtract the sum of 3l – 4m – 7n2 and 2l + 3m – 4n2 from the sum of 9l + 2m – 3n2 and -
3l + m + 4n2…. (2 Marks)
Q4. Subtract the sum of 2x – x2 + 5 and -4x – 3 + 7x2 from 5. (2 Marks)
Q5. Simplify each of the following: (3 Marks)
1. 11/2x2y – 9/4xy2 + 1/4xy – 1/14y2x + 1/15yx2 + 1/2xy
2. (1/3y2 – 4/7y + 11) – (1/7y – 3 + 2y2) – (2/7y – 2/3y2 + 2)
3. -1/2a2b2c + 1/3ab2c – 1/4abc2 – 1/5cb2a2 + 1/6cb2a – 1/7c2ab + 1/8ca2b
Q6. Find each of the following products (5 marks)
1. (-24/25x3z) × (-15/16xz2y)
2. (-4x2) × (-6xy2) × (-3yz2)
3. (-2/7a4) × (-3/4a2b) × (-14/5b2)
4. (0.5x) × (1/3xy2z4) × (24x2yz)
5. (2.3xy) × (0.1x) × (0.16)
Q7. Using the formula for squaring a binomial, evaluate the following
1. (1001)2
2. (999)2
3. (703)2
Q8. Simplify the following using the formula: (a – b) (a + b) = a2 – b2
1. (467)2 – (33)2
2. (79)2 – (69)2
3. 9.8 × 10.2
Q9. Simplify the following using the identities:
1. (198 × 198 – 102 × 102)/96
2. 1.73 × 1.73 – 0.27 × 0.27
3. (8.63 × 8.63 – 1.37 × 1.37)/0.726
Q10. Find the value of x, if:
4x = (52)2 – (48)2
14x = (47)2 – (33)2
5x = (50)2 – (40)2
Q11. If x + y = 4 and xy = 2, find the value of x2 + y2
Q12. If 3x + 5y = 11 and xy = 2, find the value of 9x2 + 25y2
Q13. If x + 1/x = 12 find the value of x – 1/x.
Q14. If 2x + 3y = 14 and 2x – 3y = 2, find value of xy. [Hint: Use (2x+3y) 2 – (2x-3y) 2 = 24xy]
Q15. Show that:
1. (a – b) (a + b) + (b – c) (b + c) + (c – a) (c + a) = 0
2. (4m/3 – 3n/4)2 + 2mn = 16m2/9 + 9n2/16
3. (4pq + 3q)2 – (4pq – 3q)2 = 48pq2