4.
6 Transformation Between Geographic
and UTM Coordinates
4.6.1 Conversion from Geographic to UTM Coordinates
Used for converting and on an ellipsoid of known f and a, to UTM
coordinates. Negative values are used for western longitudes.
These equations are accurate to about a centimeter at 7° of longitude
from the central meridian
Where o = 0 (latitude of the central meridian at the
origin of the x, y coordinates)
M = True distance along central meridian from
the equator to across from the point
Mo = 0 (M at o)
o = longitude of central meridian (for UTM zone)
ko = 0.9996 (scale factor at the central meridian)
110
4.6 Transformation Between Geographic
and UTM Coordinates
FROM EQUATION SHEET
Radius of Curvature in the plane of the meridian
1 e2
Rm a
1 e
3
2
sin
2 2
Radius of curvature on the plane of the prime vertical
a
N RN
1 e 2 sin 2
Rm
R
Radius of curvature at a given azimuth
R m RN
R
Rm sin 2 ( ) RN cos 2
RN
111
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.1 Conversion from Geographic to UTM Coordinates
T tan2
C e'2 cos 2
A ( o ) cos where and o are in radians
e 2 e 4
e 6 e2 e 4
e 6
1 3 5
3 3 45
sin 2
4 64 256 8 32 1024
M a
e 4
e 6 e 6
15 45 sin 4 35 sin 6
256
1024 3072
w here is in radians
112
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.1 Conversion from Geographic to UTM Coordinates
Northing and Easting
A3
5
x k o RN A 1 T C 5 18T T 72C 58e'
2 2 A
6 120
A2 6
4
2 A 2 A
y k o M M o RN tan
5 T 9C 4C
61 58T T 2
600C 330 e'
2 24 720
UTM Scale Factor
A2
4 6
k k o 1 1 C 2
5 4T 42C 13C 28e' 2 A
61 148T 16T 2 A
2 24 720
Or in terms of Latitude and Longitude
x2
k k o 1 1 e' cos 2 2
2 2
2 k o RN
113
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.2 Conversion from UTM to Geographic Coordinates
Used for converting UTM coordinates on an ellipsoid of known f and
a, to and . Negative values are used for western longitudes.
These equations are not as accurate as the geographic to UTM
conversion
Where 1 = footprint latitude which is the latitude at the
central meridian which has the same y
coordinate of the point
= the rectifying latitude
114
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.2 Conversion from UTM to Geographic Coordinates
y
M Mo
ko
M
e2 e 4
e 6
a1 3 5
4 64 256
1 1 e2
e1
1 1 e2
e1 3 e12 4
1 3 27 sin 2 21 55 sin 4
e1 e1
2 32 16 32
e 3 e 4
151 sin 6 1097
1 1 sin 8
96 512
where is in radians
C1 , T1 , RN1 , and R 1 are C, T, RN, and R m calculated at the footprint latitude (1 )
x
D
RN1k o
115
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.2 Conversion from UTM to Geographic Coordinates
D2
4
2 D
5 3T1 10C1 4C1 9e'
2
tan 1 2 24
1 RN1
6
R1
61 90T1 298C1 45T1 252e ' 3C1
2 2 2 D
720
3 5
D 1 2T1 C1 5 2C1 28T1 3C1 8e ' 24T 1
D 2 2 2 D
o 6 120
cos1
116
Elevation factor (Scale factor to sea level)
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.3 UTM Map Scale Factor
The elevation factor can be approximated using the average radius of
the earth (R=6,367,272m) and elevation above the geoid rather than the
elevation above the ellipsoid. This is done because of the relatively small
value of N in comparison to H, and because the geoid height is usually
used for elevation.
R RE
Elevation factor Approx. Elevation factor
R h RE H
(The UTM scale factor can also be approximated using
the average radius of the earth.)
x 2
Approximate UTM Scale factor k k o 1
2R 2
The grid scale factor for UTM maps can then be computed
using either the approximate or true values
Grid Factor (scale factor) X (Elevation factor)
Grid distance
Ground Distance
Grid factor 117
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.3 UTM Map Scale Factor
[Review] Central
Meridian Ground surface
H
h N Mean
sea level
Projection
Ellipsoid surface
surface
ko = 0.9996
118
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.4 EXAMPLE A
GIVEN:
Points on map from geodetic bench marks
Map: NAD27, 1:250,000 NTS map of 72H (Willow Bunch Lake)
= 49°15’N = 104°20’W
Approx. Elevation h = 2430 ft = 740.66m
FIND:
a) UTM coordinates for point A, where:
a = 6,378,206.4 m 1/f = 294.9786982
= 49°15’N = 49.25° = 0.859575 radians
= 104°20’W = -104.3333° = -1.82096 radians (UTM zone 13)
o = 105° W ko= 0.9996 o = 0°
119
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.4 EXAMPLE A
Example
120
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.4 EXAMPLE A
e 2 f f 0.00676865
2 2
2
e
e'
2
0.00681478
1 e
2
1 e
2
RM a 6,372,127.842 m
1 e2 sin 2 2
3
a
RN N 6,390,630.874 m N used in this equation is
2
1 e sin
2
not to be confused with
T tan 2 1.34689285 geiodal height.
C e'2 cos2 0.00290374
A o cos 0.0075952
e 2 e
4
e
6
e2 e
4
e
6
1 3 5
3 3 45 sin 2
4 64 256 8 32 1024
M a 5457211.606
e4 e 6
e 6
15 45 sin 4 35 sin 6
256 1024 3072
Mo 0
121
4.6 Transformation Between Geographic
and UTM Coordinates
4.6.4 EXAMPLE A
5
3
x ko N A 1 T C A
2
5 18T T 72C 58e '
2 A
48,518.5439 m
6 120
add a false easting of 500,000m
E = 548,518.544 m
A2 6
2 A
y ko M M o N tan 5 T 9C 4C 61 58T T 600C 330e'
4
2 A 2
2 24 720
N = 5,455,242.563 m 6o Zone UTM Coordinates
x
Meridian 3o East of
O m North Y Control Meridian
Central Meridian
500,000 m East
Equator
Meridian 3o West of
Control Meridian 122
4.7 Application of UTM Coordinates
http://www.geod.nrcan.gc.ca/apps/gsrug/geo_e.php
GSRUG - Geodetic Survey Routine: UTM and Geographic
This program will compute the conversion between Geographic coordinates, latitude and
longitude and Transverse Mercator Grid coordinates.
The user may choose this standard projection or may choose a 3 degree as defined for
Canada. The parameters of scale, central meridian, false easting and false northing may
define any TM projection and are already defined within the program for two standard
projections, UTM and 3 degree.
Geographic to UTM computation output
Input Geographic Coordinates
LATITUDE: 49 degrees 15 minutes 0 seconds NORTH
LONGITUDE: 104 degrees 20 minutes 0 seconds WEST
ELLIPSOID: CLARKE 1866
ZONE WIDTH: 6 Degree UTM
GSRUG UTM coordinates: Output- Calculated UTM coordinates:
UTM Zone: 13 UTM Zone: 13
Easting: 548518.573 meters EAST Easting: 548518.544 meters EAST
Northing: 5455242.533 meters NORTH Northing: 5455242.563 meters NORTH
123
4.7 Application of UTM Coordinates
4.7.1 EXAMPLE B
FIND:
b) Latitude, longitude and height of point A with respect to NAD 83
ellipsoid
a’ = 6378137m 1/f’ = 298.257
GIVEN
dx = 4m dy = 159m dz = 188m for Saskatchewan
Note: dx = x
124
4.7 Application of UTM Coordinates
a a ' a 6378137 6378206 .4 69.4 m EXAMPLE B
f f ' f 1 1 3.72587 10 5
298 .257 294 .979
a
RN 6390630 .874 m
1 e sin
2 2
1 e
2
RM a 6372127 .842 m
1 e 2
sin 2
3
2
RNe 2 sin cos RM
xsin cos ysin sin zcos a f RN 1- f sin cos
1- f
a
RM h
7.5149 10 7 rad 4.306 10 5 deg. = 0.155”
x sin y cos
RN h cos
8.5059 10 6 rad 0.0004874 = 1.75”
f 1 f RN sin 2 m
a
h x cos cos y cos sin z sin a
RN
h = - 25.704m
' 4915'0.155" = 49o 15’ 0.16” N
' 104 20' ( 1.75" ) = 104o 20’ 1.75 W
h ' h h 740 .66 m ( 25.704 m ) = 714.956m
125
4.7 Application of UTM Coordinates
http://www.geod.nrcan.gc.ca/apps/ntv2/ntv2_utm_e.php
4.7.1 EXAMPLE B con’t.
National Transformation: NAD27 - NAD83 (NTv2),
NTv2
Computation output
Input Coordinates
LATITUDE: 49 degrees 15 minutes 00.000000 seconds NORTH
LONGITUDE: 104 degrees 20 minutes 00.000000 seconds WEST
Transformation: NAD27 -> NAD83
NAD 83 Output data: Calculated Output data:
LATITUDE: 49o 15’ 0.11403“ N LATITUDE: 49o 15’ 0.155“ N
Shift: 0.11403 seconds
Standard deviation: 0.078m
LONGITUDE: 104o 20’ 1.87927” W LONGITUDE: 104o 20’ 1.75” W
Shift: 1.87927 seconds
Standard Deviation: 0.208m
126
4.7 Application of UTM Coordinates
4.7.1 EXAMPLE B con’t.
Works up to 50o N
In Western Canada
National Geodetic Survey
http://www.ngs.noaa.gov/cgi-bin/nadcon.prl
127
4.7 Application of UTM Coordinates
4.7.2 EXAMPLE C
FIND:
c) Latitude and longitude of point B with respect to NAD 27
E = 560,000m N = 5,470,000m
a = 6,378,206.4 1/f = 294.979
o= 105°W ko= 0.9996 Mo= 0°
128
4.7 Application of UTM Coordinates
4.7.2 EXAMPLE C
y
M Mo 5472188.876
ko
e 2 2 f f 2 0.00676865
e2
e'
2
0.00681478
1 e2
M
0.85940716 rad
e2 e4 e6
a1 3 5
4 64 256
1 1 e2
e1 0.00169791
1 1 e 2
e1 e13 e12 e14
1 3 27 sin 2 21 55 sin 4
2 32 16 32
e13 e14
151 sin 6 1097 sin 8 0.8619251 rad
96 512
1 e2
R1 a 6372278.77
1 e
3
2
sin 1 2 2
a
RN1 6390681.33
1 e sin 1
2 2
129
4.7 Application of UTM Coordinates
4.7.2 EXAMPLE C
T1 tan 2 1 1.35976
C1 e'2 cos 2 1 0.0028879
x X ( false easting ) 60,000
x
D 0.0093924
N1k o
D2
4
2 D
2
tan1 2
5 3 T 1 10 C1 4C1 9 e'
1 N1 24
R1
6
2 D
61 90 T 298 C 45 T 2
252 e ' 2
3C
720
1 1 1 1
0.8618735 rad 49.381713 49 22 ' 54.168 " N
5
D3
D 1 2T1 C1 5 2C1 28T1 3C12 8e'2 24T12
D
o 6 120
cos1
1.832596 rad 0.0144274 1.818168 rad -104.17337 104 10'24.134" W
130
4.7 Application of UTM Coordinates
4.7.2 EXAMPLE C
GSRUG - Geodetic Survey Routine: UTM and Geographic
UTM to Geographic computation output
Input Geographic Coordinates
UTM Zone: 13
Northing: 5470000 meters
Easting: 560000 meters
ELLIPSOID: CLARKE 1866
ZONE WIDTH: 6 Degree UTM
Output geographic coordinates: Calculated geographic coordinates:
LATITUDE: 49o 22’ 54.168061” N LATITUDE: 49o 22’ 54.168” N
LONGITUDE: 104o 10’ 24.134352” W LONGITUDE: 104o 10’ 24.134” W
131
4.8 Map Azimuth and Scale Factors of Line A
Given: = 49o 22’ 54” N
A-B has a calculated grid Azimuth = 37o 52’ 59.5” =104o 10’ 24” W
Find:
“True” Azimuth of line from A to B” (seconds)
Grid North
Central Meridian
Δα θ sin m sec ( ) 3 F B
2
Grid North
Δα θ 2688" sin 49.3158333 1 ( )
3
F m
1
F sin m cos m sin 1"
2 2
12
A
= 2038 “ = 0o 33’ 58” = 49o 15’ N
=105o W
=104o 20” W
Corrected (Astronomic) Azimuth A to B
= 37o 52’ 59.5 + 0o 33’ 58” = 38o 26’ 57.5”
132
4.8 Map Azimuth and Scale Factors of Line A
MAP AZIMUTH AND SCALE FACTORS OF LINE A - B
Corrected (Astronomic) Azimuth A to B
= 37o 52’ 59.5 + 0o 33’ 58” = 38o 26’ 57.5”
Precise scale Factor (S.F.)
UTM Scale factor
A4
A6
2
k k o 1 1 C 5 4T 42C 13C 28e'
A 2 2 61 148T 16T 2
24
2 720
k 0.99963
Precise Elevation Factor (E.F.)
RM RN
R R 6379250.925
RM sin 2 ( ) RN cos 2
From Geodetics Canada GPS - H v.2 software :
“A”
H 740.66m h 722.71m N -17.95m
R
Precise Elevation Factor (E.F.) 0.999887
R h
True grid factor = S.F. X E.F.
0.99963 0.999887 0.999517
133
4.8 Map Azimuth and Scale Factors of Line A
MAP AZIMUTH AND SCALE FACTORS OF LINE A - B
Approximate scale factors based on a spherical earth
UTM Scale Factor (S.F.)
x 2
48 ,548.5 2
M p ko 1 2 0.99961 0.99963
2
2R 2 6,367,272
Elevation Factor (E.F.)
6,367,272
0.999884
6,367,272 740
Approximate grid factor
0.99963 0.999884 0.999513
Rough Conversion
52.13d tan 52.13 48518.5 3.2808 tan4915'
5280
52.13 30.15 1.1606 1824.1" 030'24.1"
134
4.8 Map Azimuth and Scale Factors of Line A
MAP AZIMUTH AND SCALE FACTORS OF LINE A - B
More Precise Spherical Conversion
θ" " sin
φ A φ B
2
θ" 2688" sin
49.25 49.38166667 2038
2
Corrected (Astronomic) Azimuth A to B
= 37o 52’ 59.5 + 0o 33’ 58” = 38o 26’ 57.5”
135