Nptel Combined
Nptel Combined
e 111 10011(!
H,tll 0 NUNI
cum,c..noH•
so here maximum
. operat·1ng pressure 450 .1s
given. We will first convert that into gauge
(b) IS: 2041 -1962 20Mo55
f = 7.7 kgf/mm 2
tmin = 6.037 mm
tr,nal = 9.037 mm
tstandard : 10 mm
f=120 MN/~ D0 = 3 m --
J=1 _. C.A= 3mm
(a) tmin= 2;::p=26.022 mm --
trrna1=29.022 mm \./
Tstandard=30 mm v' Flat head having plates welded to the end of
the shell (no inside welding) C HOT LESS rttAN 1•2st,
De=3-0@*2 = 2.94 m
T min = 272.248 mm
No addition of
Tfinal = 272.248 If tmin > 30 mm corrosion
Tstandard = 273 mm allowance
Solution 120° apex angle (with sharp edges i.e. no knuckle part) both at and away
f rom junction .
~ 0-01 0·02 0·03 0·04 0·06 0·08 0·10 0·15 0·20 0·30 0·iO 0·50
10• 0·70 0·65 0·60 0·60 o·ss 0·55 0·SS 0·55 0·SS 0·55 0·55 0-55
20• 1·00 0·90 0·85 0·80 0·70 0-65 0·60 0·55 0·55 0·55 0·55 0·55
so· 1·35 1·2 l'l l ·0 0 ·90 o·as 0·80 0·70 0 ·55 o-,, 0·55 0·55
45• 2·05 1·85 1·65 1·5 1·3 1·2 J• l 0·95 0·90 0·70 0·55 O·S!
60• S·2 2·85 2·55 2·35 2·0 1•75 1·6 1·4 1·25 1·00 0·70 0-55
411\ ( NPIEL ONLINE 75• 6·8 S·8S !i·SS 4·75 S·85 S·S S· IS 2·7 2·4 l •65 l•OO 0·55
• IIT ROORKEE """ CERTIFICATIO
Solution 120° apex angle {with sharp edges i.e. no knuckle part) both at and away
from junction .
Actual thickness (at the junction)
Away from the junction
L=0.5 ~ -
✓~
L = 0.354965 m
Dk = D0 -2t S-2L sina
= 3 - 2 * 0.03 - 2 * 0.354965 sin 60 = 2.325183 m
O 1
t . =
min
P * - - = 41 .049
/i
2/J- P cosa
mm
= 41 .049 mm
t final
tstand = 45 mm
Solution 100° apex angle with ri=0.05 De and 4)=25°.
At the junction
ri/ De =0.05 4'=25° Now,
r;/ De =0.04 4'=200 C=0.8 r;/ De =0.06 4'=20° C=0.7
r;/ De=0 ..04 4):300 C=1 r;/ De=0.06 4'=30° C=0.9
ri/ De=0 . 04 4'=25° C=0.9 ri/ De=0.06 4'=25° C=0.8
D = 0 . 05
!J.. 4' = 25° C = 0.85
e
tmin=
( DC) = 22.3125mm
p2fj tfina1=25.3125 mm
;a06
-
0-01 0·02 0·03 - 0-08 0·10 O·l5 0·20 0•3() 0·40 0·SO
0·70 0·65 0·60 0·60 0·55 0·55 0·55 0·55 0·55 0·55 0·55 0-55
100° ape>
Solution ~
20•) 1·00 0·90 0·85 0·70 v 0-65 0·60 0-55 0•55 0-55 0·55 0·5.S
90• 1-, :; 1·2 I·I 1·0
~
0•90 ✓ 0·8$ 0·80 0·70 O·!,j o-,, O·,_, 0·3'
2 a =100° (apex angle) 45• 2·05 1·85 1·65 1·5 1·3 1·2 I· I 0-95 0·90 0·70 0·55 0·s.'
60• 5·2 2·85 2·55 2·35 2·0 1·75 1·6 1·4 1'25 1·00 0·70 0-55
a=5O°
75• 6·8 5·85 5•9.S 4·75 9·8S 3 ·S 9·15 2·7 2·♦ 1·5!i 1·00 O·.SS
r 1=O.O5 D0 '+'=25°
At the junction
r;/ De =0.05 '+'=25° Now,
v
✓r;/ De =0.04 4J=2Oo C=O.~ r;/De =0.06 4J=2O0 C=0 .7 v
v r;/ De=0.04 4):300 C=1 r;/ De=0.06 4):300 C=O.9 v
r;/De=0.04 '+'=25° C=O.9 V r;/ De=0.06 '+'=25° C=O.8 ~
t stand = 40 mm
Determine the thickness of the plate required to fabricate a dished head for
Solution
the vessel. Specification for the head are Ri= l.1D 0 ; ri=0.07D 0 ; St= 70 mm.
(d) Ri = 1.1D0
ri = 0.07D 0
St = 70 mm
;.= (:i)
=Ri =3.3 m
Take R0 rO = ri = 0.21 m
= 0.4921538 m
D5/4Ro = 0.681818 m
hi =minimum of the above 3 =h 0
= 0.492 1538 mm
•I .ll2.
Dete rmine the thickness of the plate requi red to fabricat e a dished head
Solution
for t he vessel. Speci fication for t he head are Ri=l.1D 0 ; ri=0.07D 0 ; Sr= 70mm .
..!....
Do
= (!!..£)
2[}
= 8.75*10·3 C
C = 1.85 (by interpolation)
t = 0.04856 mm
tmin= 48.56 mm
tfinal = 1.06*tmin=51 .4 76 mm
tstand = 56 mm
.00875
Determ ine the th ickness of the plate requ ired or
Solution .005
to fabricate a dished head for the vesse l. .3912
3.92 0.002 Specification for the head are Ri=l.1D0 ; .002091
2.3912 0.005 ri=0.07D 0 ; Sr= 70mm . or
1.954 0.01
1.7876 0.02 .005118
; =0.164
1.6296 0.04 () .02
1.7876
.011188
Without Opening or With Fully Compcosalcd Opcoings 6 .015
t!Do 1.8708
0.005 0.01 0.02
.008018
It.J D. 0.002
4. 55
--
2.66 2.15 1.95
-01.75
04
.016
0. 15
0.20 2.30 1.70 1.45 1.37 1.32 1.85416
0.25 1.38 1.14 1.00 1.00 1.00 .008629
0.30 0.92 0.77 0.77 0.77 0.77 .0162
0.40 0.59 0.59 0.59 0.59 0.59
0.55 0.55 0.55 0.55
1.850832
0.50 0.55
.008753
Det ermine the t hickness of the plat e requ ired t o fabricate a dished head
Solution
for the vessel. Specificat ion for the head are Ri=l.1 D0 ; ri=0.07D 0 ; Sf= 70mm .
~ E =0.164 v
0
✓
_t
Do
= (E.£)
2tJ
= 8.75*10· 3 C
'f-- 200fJ
pDoC with Uncompensated Openlog5
0.008235 d/yt Do
t/DOC =
hE/Do = 0.25 hs/Do 0.5 1.0 2.0 3.0 4.0
-.- -5.0
C= 2.016 0.15 1.67 l.86 2.15 2.65 3.1(, ·3.60
12.23529 0.20 1.28 1.45 1.85 2.30 2.15 3.25
d/sqrt(t* D0 ) = 2.924444 ·0.25 J.00 I.] 5 l.60 2.05 2.50 2.95
d = 0.942037 m 0.30 0.83 1.00 1.45 J. 88 2.28 2.70
0.50 0.60 0.80 I.IO 1.50 l.85 2.15
(c) Th ickness of flat formed head when flanged heads are butt welded
Solution
to the shell.
I
CD • /p
•7o 'VJ
C= 0.45
D= Di = ~
p/f = 0.014
t= 0.13045
0.13828
139 mm
An absorption tower is 5.2 m in outside diameter by 10 m in length from tangent
line to tangent line of closures. The tower is to be designed for full vacuum i.e.
p=0.1 MN/m 2 (g) at 400 °C. Assume a standard dished head at one end of the tube
and a flat head at the other end of the tower. Specification for the standard dished
'
head are ~ ;=~ ; ri=0.~ D0 ; S1=50 mm. The material of construction of the tower is
carbon steel having allowable stress value of 10 m 2 and E = 2 x 105 MN m 2•
(a) Determine the required thickness of the shel without stiffeners. L--""'
(b) Determine the required thickness of the shell with stiffeners located at 1 m
spacing. v
(c) Estimate the savings in shell material if a 18 cm channel is used as stiffeners
rjngs._Given: Weight of Channel=14.6 kg/m, Moment of Inertia of Channel =
~.9xl0·3 m4, U=l.5%, density of shell and stiffener material= 7850 kg/m 3 •
Solution
h;=R;-j(Ri - G')) • (Ri + (~;)- 2ri)
D0 =5.2m=D; R;=5.2m R;=D0 =5.2m r;=0.05*5.2=0.26m
St=0.05m ~~
- ~-
h;=0.8494m
L'=10+(1/3)*0.8494+0.05 = 10.333 m
D0 / L' =0.503
D0 / L' =0.4 k=0.246 m=2.43
D0 / L' =0.6 k=0.516 m=2.49
/ 0.4-0.503_ 0.246-/(
Do/ L =0.5o3 o.503-o.6 1<- 0.516
k=0.38506
m=2.4609
I\.
-0.733 -m-
3 00
0.1 0. 165 2.60
0.224 2.54
0 229 2.47
Solution l .246
1
2.43
0. 516 2.49
0.660 2.48
0 879 2.49
1. 572 2.52
2.364 2.54
5. 144 2.6 1 ·
4.0 9,037 2.62 ·
Plastic failure
t 1
Elastic failure 2
P= f( Do) (1.s( 1-0.2(%)))
P=KE (...£_)m 1+ 100(t)
-Do
Do
P=0.1 MN/m 2
tfina1=21 .08 mm =2*1 ooc!:·zi) ( 1
+ 1.5•1.S(:-0.2•0.503))
100•(21.08)
tstand=22 mm 5200
=0.1353 MN/m 2 >0.1
Therefore, the calculated thickness is safe
against plastic deformation also
t=22 mm (without stiffness)
Determine the required thickness of the shell with stiffeners located at
Solution
lm spacing
Do-5 2
L' =1 m L'- ~,._,,, \
.
k=10.623
m=2.588
Elastic failure
P=KE c;0
)m . tfina1=7.67 mm
tstand=8 mm
Plastic failure
Do=B >5
L'
P=2f(; ) = 0.295MN/m 2 >0.1 Therefore, the calculated thickness is safe
t=B mm (with stiffness) against plastic deformation also
Estimate t he savings in shell material if a 18 cm channel is used as
Solution
st iffeners rings.
1=8.9*1o-3 m~ ✓
Weight=14.6 kg/m f=100 MN/m 2
As.=1.84*10-3 m2
1 94 10 3
D5L(ts+(~))t . . 2
5.2 •1 (o.008+( · •1 - ))•100
le= L (t with stiffness)=
12•£ 12•2•10 5
= 1.056*10-5 m2
final t = 0.00464 m
100(- J 1
Do
5 mm
Examine the suitability of ISLC 175 steel channel stiffener for this
vessel
S,c1io,,o/ Dqtlt of Width of Tlt1ckMu Ctntrt of Momtnts of llltnlo
As 0.00224 m2 Dt1l1na1/on
Ortd ( A )
cm'
sttttan (It) /fllJtft (b) of ,.Yb (t, ) ,,a,tty (<..)
mm mm Ctn ,.. (cm' )
Rodi/ of l)'ratlo11
(cm)
!!!.!!.' ~ .!!!_ !i•_
I= 1.27E-06 m4 ISJ C 100 7.4 1 100 4~ 3.0 1.40 113 8 14 9 4.09 1.42
125 10.00 12S so 3.0 1.64 2700 2S.7 S. 18 1.60
ISO l26S ISO ss 3.6 1.66
Requi red I 2.0lE-06 m 175 14.24 17S 60 3.6 1.75
47 1.1
719.9
37 9
so.s
610
7 II
1.73
1.88
2" '"
200 17.77 200 10 4. 1 1,97 I 161.l B-42 I 08 2. 18
> 1.27E-06 100 1002
7S
100
40
so
37
40
I.JS
1.62
66. 1
164.7
11.S
14 I
3 02
4.06
1.16
125 1367 12S 4,4 I.S7
6S 2.0. 3S6. S7.2 S. 11 2.0S
Not suitable ISO ~
115
ISO
· 175
75
7S
◄.8
S. I
2.38
l.◄O I
697.2
141.4
103 l
126 S
6.16
7. 16
2.37
2.38
200
225
2 .12 200 7S s.s 2.3S I 72S S 146 9 I . II 2 .37
30.S3 22S 90 5.1 2.46 2 S47.9
lSO 3s.6S 209.S 9. 14 2.62
lSO 100 6. 1 2.10 3 617.9 249.4 10. 17 2.89
300 41. 11 300 JOO 6.1 2 ss 6 047.9 346.0 11.98 287
3SO 49.47 lSO 100 7.4 2.41
400 ,n! 9 312.6 39~.6 13.72 2.82
400 100 ao 1.36 13 919 S 460 4 IS. SO 281
ISMC 7S 8.67 15 40 4.4 I.J I 16.0 12.6 2.96 1.21
100 11.70 100 so 4.7 I.Sl 186.7 2S.9 4.00 1.49
l 2S
ISO
16. 19 l2S 6S s.o 1.94 416.4 S9.9 S.07 1.92
20.&8 ISO 7> S.4 2.22 779 4 102 3
l7S 24.38 l7S 6. 11 2.21
1S S.7 2. 20 I 223 3 121 0 7.08 2.23
200 28.21 200 7S 6.1 2.17
2lS I 819, 3 140,4 8.03 2.23
33.0J 22.$ 80 6,4 2.30 2 61M.6
2SO 38.67 117 2 9.03 2.38
2SO 10 7. 1 2.30 3 SIU
300 219. 1 9.94 2.38
◄S.64 )00 90 7.6 2.36 6 362.6
JSO SJ.66 )SO 310 8 11.81 2.61
100 8. 1 2.44 10 008 0 4306
400 13.66 2.83
IITROOUH ( NPlfl ONUNE 62.93 400 100 u 2 42 IS 082,1 504.8 IS.48 2.IJ
Example-1
Design a loose- e flange with a plain face for a reactor shell with 1.8m outside
diameter and O.O18 1ckness (g0). Other specifications are: Design temperature
-
: 200°c; Design pressure =2.2 MN/m 2; Allowable stress of flange material =120
MN/m 2; Allowable stress of bolting material = 120 MN/m 2; gasket materiaf
Corrugated soft Al metal, asbestos filled [Min. design seating stress (y) = 20
MN/m 2; Gasket factor (m) =2.5; and Min. actual gasket width =10mm]. Ratio of
gasket internal diameter to shell outside diameter is 1.01 ; corrosion allowance =
zero; weld joint efficiency factor = 1.
, Calculate effective gasket seating width
, Calculate minimum bolting area
, Which amongst the following bolts will be u ed for bolting the flange: M
36x3, M39x3, M42x3and M45x3? Give g1 1.41 g0~
, Estimate bolt-circle diameter. v
, Estimate flan e outside diameter after addition of 2 cm assumed gap
between end of bo c1rc ean e dof the fla~-9s
, Estimate various loads and moments under operating as well as bolting-
up conditions
, Estimate flange thickness (Poison'sratio =0.3)
Solution Calculate effective gasket seating width ~
di
00 =
( y - pm
y - p(m +
)½
1)
:. Nnnal = 78 mm; b 0 =
N
2 = 39 mm
Effective gasket width, b
20 - 2.2 X 2.5
do = ( 20 - 2.2(2.5 1) +
)½ x 1.818
b = b 0 ifb 0 < 63mm
g0 = 0.078 m
n= Actual No. of bolts = 92
= 0.02547 m
n8 5 92 x 80
For M 36x 3 C1 = - = 2.343 m
TI TI
Root Area = n (36 - 6) 2 C2 = ID+ 2(g1 + R)
4
For~ 4~3
Root Area= 1T ( 42 - 6) 2 = 1017.876 mm~
4
NPlfl ONLINE
• IITROORKEE CERTIFICAIION COURSE
Which amongst the following bolts will be used for bolting the flange:
M 36 x3, M 39 x3, M 42 x3 and M 45x3?
For~
Root area =1194.59 mm 2
Minimum No. of bolts =52. 74
Actua l No. of bolts =56 ✓-
56 X 96
C1 = - - - = 1.711 m
TT
NPIEl ONLINE
• IITROORKH CER1IflCAIION COURSE
Solution Which amongst the following bolts will be used for bolting the flange:
M 36 x3, M 39 x3, M 42 x3 and M 45 x3?
Bolt
M 36 x3 2.343 1.951 0.392
M 39 x3 2.0805 1.9549
M 42 x3 1.854 1.961 -0.107
M 45 x3 1.711 1.965 -0.254
NPIEl O NLI NE
• IITROORKH CERIIF IC AIION COURSE
Solution Estimate bolt-circle diameter and Flange Outside Diameter
NPIEl ONLINE
• llfROORKEE CERIIFICAIION COURSE
Estimate various loads and moments under operating as
well as bolting-up condition_s_
- (C - 8)
nB 2 V al=
W1 = 4 P = 5.598 MN 2
1.9 549 - 1.8
TT
W2 =H- W1 = -4 ( G2 - B2 ) P 2
= 0.07745 m 9,--i I -:-rt
= 6.522 - 5.598 = 0.924 MN -f
~ (C-G) Wo
h
W 3 = Hp = 1.048 MN a3 =
2 _J_
WO = W2 + W3 + W3
= 7.57 MN -
(C - G)
2
= 0.00606 m e
~L
C
a, -
Solution Estimate various loads and moments under operating as
well as bolting-up conditions
0.080809
(0.078 + 0.1877) = 0 ·w~55133
k =A= 2.0339 = 1.13
8 1.8
0.955 k 2 log k
t = 0.139382463
Y= k-l [(1 - µ) + (1 + µ)4.605 k2 _
1
] CF = 0.609548193
t = 0.14655 7037
y = 0.955 [0.7 + (1.3 X 4.605) 1.132 log 1.1 3] CF = 0.599731647
0. 13 1. 1 32_ 1
t = 0 .145372124
= 15.9066 CF = 0.60132023
nC TT x 1.9549 t = 0.145564529
Bs = -;- = = 80.509 mm CF = 0.601061418
76
0.1455332
A loose type flange is used toloin two parts of a shell with OD as 0.8 m. Design this
flange for following specifications: ----·
Flange face: Plain face; Design pressure (g)=2.S MN/m 2; Design temperature=400°C;
Allowable stress of shell material=120 MN/m 2 ; Allowable stress of flange material
at design temperature=130 MN/m 2; Bolts are made with IS:2002-1962 2A material;
Gasket material: soft aluminum solid flat metal; Ratio of gasket internal dia. to Shell
outside dia.=1.02; Corrosion allowance=0; Weld joint efficiency factor=l;
gn=0.0lSm; g 1 =1.415 gn, µ=0.3.
a. Calculate effective gasket seating width.
b. Select the suitable bolt for the flange: M 33x2, M 36x3, M 4Sx3, M 24x2?
C. Estimate flange outside diameter.
d. Estimate flange thickness.
NPTH O NLI NE
• IIT ROORK EE CERTIIIC AIION COURSE
Do -- 0.8 ·m
Design pressure (g) - 2.5 MN/ m 2
Allowable stress of shell _.. -- 120 MN/ m 2 67 MN
Allowable stress of fl ange = 130 MN/ m2
Allowable stress of bolt at atm temp Q
Allowable stress of bolt at des t emp --
96.10510N/ m 2
72.56921 MN/ m 2
9.8
7.4
,/j ~ "'-
')11N'I
y - 61 MN/ m 2
m -- 4
di/Do -- l .02
J - 1
go -- 0.015 m
~l - 0.3
NPlfl ONLINE
• IITROORKIEE CERIIFICAIION COURSE
?lJl~U~ffl
Calculate effective gasket seating width
di
do/di
-
--
0.816
1.025449361
m d0 ( y- pm
d, = y - p(m + l)
r
do - 0.836766678 m
Min gasket w idth -- 0.010383339 >6mm
Min gasket width - 0.010383339 m
Actua l gasket width (N) - 0.010383339 m
Act ual do=di+2N -- 0.836766678 m
Basic gasket width (b0 ) -- 0.00519167
Effective gasket width (b) -- 0.00519167 m b=b0 if b0 $ 6.3 mm
G= d.+N
I
- 0.826383339 m
NPIEl ONLINE
• IITROORKH CERIIFI C AIION COURSE
.Solution Select the suitable bolt for the flange: M 33x2, M 36x3, M '- .x ,
M 24x2?
H - 1.34021 MN
Hp -- 0.26943 MN ✓
Wo=H+Hp -- 1.60964 MN Ao -- 72.569
W g=pGby - 0.82177 MN Ag -- 96.105
Am =M ax(Ao, Ag) -- 0.022 181 m2
.
.,,
I/Size Root area, m 2 Min. bolt Act. bolt R Bs C, c., C1 -C.,
I 33
36
"
2\ 0.000660185
3 0.0007065
33.6)
31.4 l,
36
32 '7
0.047
0.05
0.077
0.08
0.882356 0.93645 -0.05409
0.814874 0.94245 -0.12758
45 3 0.001193985 18.6 20 0.057 0.096 0.611155 0.95645 -0.34529
\ ~ 24 2/ 0.000314 70.6 72 0.035 0.075 1.718875 0.91245 0.806425
.....,_ /
✓ /
NPTEl O NLI NE
• IITROOIK EE CERTIF IC ATION COURSE
Estimate flange outside diameter
NPIEL ONLINE
• llfROORKH CERIIFICAIION COURSE
Solution Estimate flange thickness
B=Do -- 0 .8 m
Wl -- 1.256
W 2=H-W 1 -- 0.084209743 K=A/ B - 1.1955625
W 3 =W 0 -H - 0 .269431423 y -- 10.96771161
a1=(C- B)/ 2 -- 0 .056225 --
CF 1
a3 =(C-G)/ 2 -- 0.04303333 t - 0.098829541 m
a 2=(a 1+a3 )/ 2 -- 0.049629165 -- 0.089534156
Bs
M o=W i a1+W 2a2+w3a3 -- 0.086392391 - - CF - 0.723957189
Ab - 0 .022608 t -- 0.084089781 m
w -- 2.152216317
M g=Wa 3 -- 0 .092617036 _,/
Controlling M -- @:092617030 MNm
NPIEl ONLINE
• IITROORKEE CERIIFICAIION COURSE
- -
Example-1
,/
A cylindrical vessel of 3 m outside diameter and 8 m length is supported by 4 lugs. The vessel is
filled with fluid having denslty870 kg/m 3 up to 5 m height and is being operated at 1.5 MN/m 2
pressure (g}. It is covered with flat heads from both ends having weight of 12 kN for each head.
Corrosion allowance is 2mm. It is Class 2 vessel having double welded butt joint with full
penetration for all joints. The vessel is made of IS: 2041-1962 20Mo55 and its design
-
temperature is 450°C.. The wind pressure on the vessel is 0.9 kN/m 2 • The height of vessel from
foundation i~Height of bracket from foundation is Sm and end diameter of anchor bolt
circle is 3.1 m. The steel channels are used to support lugs.
Given: Allowable stress of horizontal base and gusset plate: 100 MN/m 2; Allowable stress of
channel= 150 MN/m 2; Density of shell material and µ is 7600 ke/m 3 and 0.3, respectively.
a. Standard thickness of shell
b. Compute the minimum thickness of horizontal and gusset plates for I = b = h = 150 mm and
0 = 60 degree.
c. Determine the area of cross-section of channel column for section modulus of column as
'
200cm 3 • Also suggest the suitable size of column.
a
~ 11T ROORKEE
(
""'
NPIEL ONLINE
CERTIRCATION COURSE l (J
-- - - - -
Solution
Do = 3 m
L = 8 m
Height of vessel from foundation = 1 m
Operating pressure(g) = 1.5 MN/m 2
Wt of each head = 12 kN
Corrosion = 0 .002 m
J = 0.85
Anchor bolt circle dia
Wind pressure, p
=
=
3 .1
0.9
m
kN/m 2
H Er a
No . of lugs = 4
z = 0.0002 m3
Height of lug from foundation = 5 m
I = 0.15 m
b = 0.15 m L
h = 0.15 ·m H,
th eta = 60 Degree
a
~ IIT ROORKEE
("'"
NPIEL ONLINE
CERTIRCATION COURSE
- -
Lug:
.
Support' y
~~
c- D p = p H
wmax - 663.89467 14 kN (I = 0
"'' bl
2
p -- 209.870442 kN
a -- 0.05
-- 9327.575202 kN/m 2
P av
t hp - 0.000734 54 7 3P a L
f - - - -2x - - -
- 0.0271025 19 m tgh cos 0
tg -- 0.027982726 m
a
~ IIT ROORKEE
(
"'"
NPIEL ONLINE
CERTlflCATION COURSE
Determine th_g_ area of cross-section of channel column for section
Solution ....
modulus of column as 200cm~. Also suggest the suitable size of column.
Check if the following assumed saddle design data [A/R=0.6 and B=0.5m]
satisfy all design stress conditions. If not, find the new values of A/R and B,
which satisfy all design stress conditions.
Solution
A
L=15 m -R =0.6
.
H=0.4 m A=0.72 m
Ri=1 .2 m B=0.5 m
=20.656 MN/m 2
f{ = (::) + (n:~t) = 128.28 MN/m 2
k sw, ks=0.76
f3 t(B+lOt)
=94 _1OB MN/m2 < 0.5 yield stress
< 0.5*240
< 120 MN/m2
Horizontal component of all radial load
F=kgW1 V - -~Q•
- I0!1 0 I
- -
k9 = 0.204 ✓
F=0.204*1.4*106
=0.2856 MN
a
V, m ROORKEE
(
_,.,_
NPIEL ONLINE
CERTIACATION COURSE
.,
1·
Example-1
A pressure vessel is being operated at maximum pressure of 2 MN/m 2 (g). It
has outer diameter of 2.5m and length of Gm. The allow~e stress at
working temperature and corrosion allowance is 150 MN/m2 and 3mm,
respectively. The vessel is of Class 2 where double welded butt joint with
full penetration is used for all joints.:. 21d +2
d
Determine thickness of ring pad (up to next
integer value) if it is required to compensate
opening of 0.2m diameter in shell. Use f
following details for calculations: ✓
Allowable stresses for nozzle and ring are 150
MN/m 2 • Nozzle wall thickness is 10 mm. Inside
protrusion of nozzle i~ and nozzl; length
above surface is 0.0Sm.
a
~ IIT ROORKEE
(
_,.,,
NPTEL ONLINE
CERTIFICATION COURSE Protruded nozzle
Comge_
nsationifo_r Opening
Solution M.P = 2 MN/m 2 ✓
P = Design Pressure= 2 x 1.05 = 2.1 MN/m 2
f = 150 MN/m 2 \_./
J = 0.85 v
D = 2.Sm v
20.42 mm= tr
tfin al = 23.42 mm v
t sta nd ard = 25mm
K'= PDo -0874 V
l.82f(t 5 - c) - ·
D0 = 0.2 1n ( outside dia)
On x-axis @x t 5 = 62500
Maximum opening =159 mm
Requirement of compensation as we
have 200 mm opening
d = insi.de dia of nozzle
= d 2tn = 180 mm
0 -
A
\1!(1 IIT ROORKEE
(_,.,. NPTEL ONLINE
CERTIRCATION COURSE
.
Il
Solution A0 = 2H 1 (tn - tr' - c)
tn = 10 mm H1 = J(d + 2c)(t c) 0 -
- 11T ROORKEE
( NPTfl ONLINE
CERTIACATION COURSE 19
Solution Thickness of ring pad if allowable stress of nozzle and ring pad are
140 MN/m 2 and 130 MN/m 2, respectively.
An= Ao+ Ai
= 387.27 + 218.21
= 605.48 mm 2
fn = 140 MN/m 2
A5 = (d + 2c)(t5 - tr - c)
fr = 130 MN/m 2
= 293.88 mm 2 A'= 0.000858986
2
A=r 0.003391323
A= 3798.12 mm tp = 0.01972 m
20 mm
Example-2
A pressure vessel with outer diameter of 4m and length of 10m is to be
operated at maximum working pressure of 2 MN/m 2 (g) . The allowable
stress of shell material is 150 MN/m 2 at maximum design temperature .
Corrosion allowance is 2mm . It is Class 2 vessel having single welded butt
joint with backing strip for all joints. Vessel has opening of 0.22m.
2(d +2
Compute the thickness of ring pad if
d
compensation of opening is required .
Given : Allowable stresses for nozzle and
ring are 150 MN/m 2 • Inside protrusion
of nozzle is zero and nozzle length
t As
HI
j_
A
above surface is 0.02m.
( Nl'IEL ONLINE
ls --.-fc
~ I
tr'+c = 0 .003908
tn = 5 mm
A
'9' IIT ROORKEE
(_,.,. NPTfl ONLINE
CERTIRCATION COURSE 1)
.Cq_mp_ .·fo.r Opem1
e.os.a~ion1 rr1g _:,
Solution
✓
Inside diamete r of nozzle d= 0.21
✓
Area to be compensated A= 0.0074 25 m2 A = (d + 2c)t,.
As= 0.000279 m2 A5 = (d + 2c)(t5 - tr - c)
(no corrosio n allowance)
H1-
- 0.000642 H, = ✓(d + 2c) (1 11
- c)
0.025338 m > 0.02 so H 1 is 0.02
A 0 = 4.37E-05 m2
A n = 4.37E-05 m2
A'= 0.000323 m2
A=
r
0.007102 m2
tp = 0.034146 m 0.036 m
a~ IIT ROORKEE
(
_..,.
NPTEL ONLINE
CERTIRCATION COURSE 23