EE3230
Lecture 3:
MOS Transistor Theory
Ping-Hsuan Hsieh ( )
Delta Building R908
EXT 42590
phsieh@ee.nthu.edu.tw
EE3230 Ping-Hsuan Hsieh
Outline
• IntroducAon
• Ideal I-V characterisDcs
• Nonideal Effects
• C-V characterisDcs
• DC transfer characterisDcs
• Switch-level RC delay models
EE3230 Ping-Hsuan Hsieh
2
MOS Transistor Symbols
EE3230 Ping-Hsuan Hsieh
3
MOS Structure
• DepleDon mode
• Inversion mode
EE3230 Ping-Hsuan Hsieh
4
MOS Structure
• AccumulaDon
mode
• DepleDon mode
• Inversion mode
EE3230 Ping-Hsuan Hsieh
5
NMOS OperaAng Regions (I, II)
• Cutoff
• Linear
EE3230 Ping-Hsuan Hsieh
6
NMOS OperaAng Regions (III)
• SaturaDon
EE3230 Ping-Hsuan Hsieh
7
Outline
• IntroducDon
• Ideal I-V characterisAcs
• Nonideal Effects
• C-V characterisDcs
• DC transfer characterisDcs
• Switch-level RC delay models
EE3230 Ping-Hsuan Hsieh
8
MOS Channel Charge
EE3230 Ping-Hsuan Hsieh
9
Ideal I-V EquaAons
EE3230 Ping-Hsuan Hsieh
10
Ideal I-V CharacterisAcs
EE3230 Ping-Hsuan Hsieh
11
Outline
• IntroducDon
• Ideal I-V characterisDcs
• Nonideal Effects
• C-V characterisDcs
• DC transfer characterisDcs
• Switch-level RC delay models
EE3230 Ping-Hsuan Hsieh
12
Nonideal I-V Effects
• Velocity saturaAon at high Vds é, the carrier velocity is no
longer proporDonal to lateral field. Ids decrease ê.
• Mobility degradaAon at high Vgs é, the carrier scaRer more
and mobility decreases. Ids decrease ê.
• Channel length modulaAon at high Vds é, depleDon of S/D é,
effecDve L ê, Ids increase é.
• Body effect threshold voltage Vth influenced by vbs (body-to-
source voltage).
• Subthreshold conducAon Vgs < Vth, Ids is exponenDally
dropoff instead of abruptly becoming zero
• Drain/source leakage reverse diode juncDon leakage
• Non-zero gate current Ig carriers tunneling effect
EE3230 Ping-Hsuan Hsieh
13
Velocity SaturaAon
• Carrier velocity nonlinearly proporDonal to lateral
electrical field before velocity saturaDon
• Ids will saturate to velocity saturaDon,
depending on channel length L and applied Vds
EE3230 Ping-Hsuan Hsieh
14
α-power Law Model
• Piecewise linear model to illustrate MOSFET’s I-V
characterisDc with velocity saturaDon
• Because μp < μn, PMOS experiences less velocity
saturaDon than NMOS à αp > αn
• Mobility degradaAon is modeled by a μeff < μ, and it can
be included in to the parameter α
EE3230 Ping-Hsuan Hsieh
15
Channel Length ModulaAon
• EffecAve channel length
reduced due to high Vds
• I-V equaDon at saturaDon region:
– λ’ empirical parameter
• With shorter L ê, λ é, resulDng in output resistance
ê, MOSFET intrinsic gain ê
EE3230 Ping-Hsuan Hsieh
16
Body Effect
• Threshold voltage Vth increased with posiDve Vsb
• Vsb < 0 à Vth ê, OFF leakage é (design trade-off)
𝑉↓𝑡0 : threshold voltage for Vsb = 0
𝜙↓𝑓 : process-dependent parameter
𝛾: body-effect coefficient (process-depedent)
𝑁↓𝐴 : doping concentraDon of p-substrate
𝜀↓𝑠 : permijvity of silicon = 11.7 𝜀↓0
EE3230 Ping-Hsuan Hsieh
17
Subthreshold ConducAon
• Leakage current at subthreshold region
– Vgs < Vth: weak inversion
• Id = 0 when Vds = 0
– Increase exponenDally with Vgs
• Drain-induced barrier lowering (DIBL)
– Vth will reduce with posiDve Vds
– Worsens leakage at subthreshold
– Like channel-length modulaDon at acDve mode
EE3230 Ping-Hsuan Hsieh
18
JuncAon Leakage
• S/D juncDon leakage from a reverse-biased diode
• JuncDon leakage used to be the limitaDon for storage
Dme. In modern processes, subthreshold leakage
becomes dominant
EE3230 Ping-Hsuan Hsieh
19
Tunneling Effect
• Gate leakage: from carriers’ tunneling through gate oxide.
ExponenDally inversely proporDonal to gate oxide thickness.
• High-k (dielectric constant) gate insulator used
EE3230 Ping-Hsuan Hsieh
20
Temperature Dependence
• T é IOFF é ION
• Circuit performance improve with T ê: subthreshold
leakage ê, saturaDon velocity é, mobility é,
juncDon capacitance ê, but breakdown voltage ê.
EE3230 Ping-Hsuan Hsieh
21
Geometry Dependence
• EffecDve channel length and width
• Use idenDcal and same orientaDon for MOSFETs for
good matching – EX: differenDal pair, current mirror
EE3230 Ping-Hsuan Hsieh
22
Outline
• IntroducDon
• Ideal I-V characterisDcs
• Nonideal Effects
• C-V characterisAcs
• DC transfer characterisDcs
• Switch-level RC delay models
EE3230 Ping-Hsuan Hsieh
23
C-V CharacterisAcs
• Gate capacitance: with advanced technology, tox ê, L ê,
Cpermicron keeps constant
• ParasiAc capacitance: Cdb and Csb from reverse-biased p-n
juncDon and proporDonal to S/D area
EE3230 Ping-Hsuan Hsieh
24
MOS Gate Capacitance Model
• Gate capacitance: vary with channel behavior at different
operaDon regions
• S/D overlap capacitance: Cgs(overlap) and Cgd(overlap) from
S/D lateral diffusion
EE3230 Ping-Hsuan Hsieh
25
Cgc vs. Vgs and Vds
• Cgc vs. Vgs • Cgc vs. Vds
EE3230 Ping-Hsuan Hsieh
26
Gate Capacitance vs Vds
• Long-channel device: • Short-channel device:
Cgd becomes ~0 at saturaDon more Cgd(overlap) and Cgs(overlap)
factor
EE3230 Ping-Hsuan Hsieh
27
Data-Dependent Gate Capacitance
EE3230 Ping-Hsuan Hsieh
28
Outline
• IntroducDon
• Ideal I-V characterisDcs
• Nonideal Effects
• C-V characterisDcs
• DC transfer characterisAcs
• Switch-level RC delay models
EE3230 Ping-Hsuan Hsieh
29
CMOS Inverter DC CharacterisAcs (I)
EE3230 Ping-Hsuan Hsieh
30
CMOS Inverter DC CharacterisAcs (II)
• Ids vs. Vds for NMOS and PMOS
• For PMOS, Id, Vgs, Vds, Vth < 0
• PMOS I-V as load-line for NMOS
EE3230 Ping-Hsuan Hsieh
31
CMOS Inverter DC CharacterisAcs (III)
• Vin-Vout DC transfer curve • Vin-IDD DC transfer curve
• Rail-to-rail operaDon • Dynamic power
dissipaDon
EE3230 Ping-Hsuan Hsieh
32
DC Response
• DC response: Vout vs. Vin for a gate
• Ex: inverter
– Vin = 0 à Vout = VDD
– Vin = VDD à Vout = 0
– In between, Vout depends on
transistor sizes and currents
– By KCL must seRle such that Idsn = |Idsp|
– We could solve equaDons
– Graphical soluDon gives more insight
EE3230 Ping-Hsuan Hsieh
33
Transistor OperaAng Regions
• Transistor current depends on operaDng regions
• For what Vin and Vout are NMOS and PMOS in
– Cutoff?
– Linear?
– SaturaDon?
EE3230 Ping-Hsuan Hsieh
34
NMOS OperaAng Regions
Cutoff
Linear
SaturaAon
EE3230 Ping-Hsuan Hsieh
35
PMOS OperaAng Regions
Cutoff
Linear
SaturaAon
EE3230 Ping-Hsuan Hsieh
36
I-V CharacterisAcs
• Make PMOS wider than NMOS so that βp = βn
EE3230 Ping-Hsuan Hsieh
37
Currents vs. Vin and Vout
EE3230 Ping-Hsuan Hsieh
38
Load Line Analysis (I)
• For a given Vin
– Plot Idsn, Idsp vs. Vout
– Vout must be where KCL is saDsfied (currents are equal)
EE3230 Ping-Hsuan Hsieh
39
Load Line Analysis (II)
• Vin = 0
EE3230 Ping-Hsuan Hsieh
40
Load Line Analysis (III)
• Vin = 0.2 VDD
EE3230 Ping-Hsuan Hsieh
41
Load Line Analysis (IV)
• Vin = 0.4 VDD
EE3230 Ping-Hsuan Hsieh
42
Load Line Analysis (V)
• Vin = 0.6 VDD
EE3230 Ping-Hsuan Hsieh
43
Load Line Analysis (VI)
• Vin = 0.8 VDD
EE3230 Ping-Hsuan Hsieh
44
Load Line Analysis Summary
• Vin = 1.0 VDD
EE3230 Ping-Hsuan Hsieh
45
DC Transfer Curve
• Transcribe points onto Vin vs. Vout plot
EE3230 Ping-Hsuan Hsieh
46
Transistor OperaAng Regions
NMOS
PMOS
EE3230 Ping-Hsuan Hsieh
47
CMOS Inverter OperaAon Summary
EE3230 Ping-Hsuan Hsieh
48
Beta RaAo Effect
• β raDo and parameters
• β raDo = 1 à largest noise margin
– μn > μp, choose (W/L)p > (W/L)n to make β raDo = 1
• β raDo > 1 à HI-skewed inverter, switching
threshold > 0.5 VDD
• β raDo < 1 à LO-skewed inverter, switching
threshold < 0.5 VDD
EE3230 Ping-Hsuan Hsieh
49
Noise Margin (I)
• The allowable noise voltage on the input that the
output won’t be corrupted
EE3230 Ping-Hsuan Hsieh
50
Noise Margin (II)
• Indeterminate region (forbidden zone)
– VIL < Vin < VIH à Vout = unknown logic level
EE3230 Ping-Hsuan Hsieh
51
Beta RaAo and Noise Margin
• β raDo > 1
– Switching threshold > 0.5 VDD
– VIH é NMH ê
– VIL é NML é
• β raDo < 1
– Switching threshold < 0.5 VDD
– VIH ê NMH é
– VIL ê NML ê
• Noise tend to scale with VDD
– As VDD ê
smaller NM is acceptable
EE3230 Ping-Hsuan Hsieh
52
RaAoed Inverter Transfer FuncAon (I)
• NMOS inverters with resisDve or constant current-
source load
– Transfer funcDon depends on the raDo of pull-down to the
pull-up transistor (staDc load)
EE3230 Ping-Hsuan Hsieh
53
RaAoed Inverter Transfer FuncAon (II)
• NMOS inverters with turn-ON PMOS as load
– Turn-ON PMOS is made by a depleDon
mode NMOS in pure NMOS process
– DissipaDng staDc power when Vout = LOW
– Poor NM but smaller area
and input capacitance loading
EE3230 Ping-Hsuan Hsieh
54
Pass Transistor DC CharacterisAcs
• Due to Vth • ON-resistance depends on Vin
– NMOS cannot pass “1” – Need to boost gate voltage
– PMOS cannot pass “0” with small VDD
– Need to consider body effect
EE3230 Ping-Hsuan Hsieh
55
Tri-state Inverter
• Inverter + transmission gate
– Approximately half the speed of CMOS inverter for the
same n and p device sizes
– The structure in (d) suffer from A’s toggling in tristate
– Need to consider body effect
EE3230 Ping-Hsuan Hsieh
56
Outline
• IntroducDon
• Ideal I-V characterisDcs
• Nonideal Effects
• C-V characterisDcs
• DC transfer characterisDcs
• Switch-level RC delay models
EE3230 Ping-Hsuan Hsieh
57
EffecAve Resistance R
• R: effecAve resistance of unit NMOS (Wmin and Lmin)
– Unit PMOS has 2R (or 3R) due to lower mobility
– In linear region, inversely proporDonal to W/L and Vgs
• C: gate capacitance of unit transistor (NMOS and
PMOS)
– ProporDonal to gate area W*L
• C: S/D juncAon capacitance of unit transistor
– ProporDonal to gate width W
EE3230 Ping-Hsuan Hsieh
58
RC Circuit Model
• NMOS of k Dmes unit width has resistance of R/k,
gate capacitance of kC, and S/D capacitance of kC
– NMOS parasiDc capacitance referenced to GND (p-sub)
• PMOS of k Dmes unit width has resistance of 2R/k,
gate capacitance of kC, and S/D capacitance of kC
– PMOS parasiDc capacitance referenced to VDD (n-well)
EE3230 Ping-Hsuan Hsieh
59
Inverter PropagaAon Delay
• Fanout-of-1 inverter
– Choose PMOS width to be 2x~3x of NMOS width
– tpd = R(6C) = 6RC
EE3230 Ping-Hsuan Hsieh
60
R of Transmission Gate
• Parallel combinaDon of NMOS and PMOS
– Depend on signal to pass
– PMOS pass 0 weakly with larger resistance 4R
– NMOS pass 1 weakly with larger resistance 2R
– Usually the same size for NMOS and PMOS
– Increase size à R ê C é à need to check the trade-off
EE3230 Ping-Hsuan Hsieh
61