Sliding Mode Control
Sliding Mode Control
                                                   賣油翁       宋 歐陽修
                      Ouyang Show(1007~1072A.D.)
                                                陳康肅公堯咨善射,當世無雙,公亦以此
                                             自矜。嘗射於家圃,有賣油翁釋擔而立,睨之,
                                             久而不去。見其發矢十中八九,但微頷之。
                                                康肅問曰:﹁汝亦知射乎?吾射不亦精
                                             乎?﹂翁曰:﹁無他,但手熟爾。﹂康肅忿然曰:
                                             ﹁爾安敢輕吾射!﹂翁曰:﹁以我酌油知之。﹂
The Old Oil-Peddler
                                             乃取一葫蘆置於地,以錢覆其口,徐以杓酌油瀝
                                             之,自錢孔入,而錢不濕。因曰:﹁我亦無他,
                                                                                       http://baike.baidu.com/ 2008/11/17
                                             惟手熟爾。﹂康肅笑而遣之。
Sliding Mode: an illustration
         ⎧ x1 = x2
System: ⎨                                              x2
         ⎩ x2 = 2 x1 − 3 x2 + u
Target: ( x1 , x2 ) = (0, 0)
                                                                              x1
Funnel: x2 = − x1
y Singular Perturbations
y Distributed Parameter Systems
Funnel: x2 = − x1
                                                                                    x1
New target: s = x1 + x2 = 0
                                                                            s=0
                                         Princeton/Central Jersey Section of IEEE
                            2008/11/17   - Circuits and Systems Chapter Meeting     10
Introduction to Sliding mode
     - Variable Structure Systems
          ⎧ x1 = x2           (K. D.Young, 1978)
 System : ⎨
          ⎩ x2 = ax2 − bu
                                        ⎡ 0 1⎤
                    Structure II : x = ⎢     ⎥  x
                                        ⎣bα a ⎦
                             s 2 − as − bα = 0 : saddle point
Funnel: x2 = − x1
                                                                                    x1
New target: s = x1 + x2 = 0
                                                                            s=0
                                         Princeton/Central Jersey Section of IEEE
                            2008/11/17   - Circuits and Systems Chapter Meeting     18
VSS Design
          ⎧ x1 = x2           (K. D.Young, 1978)
 System : ⎨
          ⎩ x2 = ax2 − bu
                        +        Sliding Surface: s = 0
                    u
                            u−   2008/11/17
                                              Princeton/Central Jersey Section of IEEE
                                              - Circuits and Systems Chapter Meeting     20
VSS Design
Finite time reaching: s < −σ sgn( s), σ > 0
          Lyapunov function
             V = s2
             dV
                 = 2 ss = −2σ s < 0
              dt
             ∴ s( x) → 0
                      V (0)          s (0)
Reaching time    T<             =
                       σ               σ
                                                                       dt
                ⎡ 0     1      0 ⎤       ⎡0⎤         ⎡0⎤
         x = ⎢⎢ 0      0      1 ⎥⎥ x + ⎢⎢ 0 ⎥⎥ u + ⎢⎢0 ⎥⎥ f (t )
               ⎢⎣ − a1 − a2 − a3 ⎥⎦      ⎢⎣1 ⎥⎦      ⎢⎣1 ⎥⎦
         y = [b1 b2     b3 ] x
   (i) Sliding surface s ( x ) = x3 + c2 x2 + c1 x1 = 0
                 Sliding mode dynamics:
                   ⎧ x1 = x2
                   ⎨          , with x3 = −c1 x1 − c2 x2 .
                   ⎩ x2 = x3                   Princeton/Central Jersey Section of IEEE
                                   2008/11/17   - Circuits and Systems Chapter Meeting     22
   VSS Design
       ds ( x) ∂s dx
(ii)          =
        dt      ∂x dt
        s = x3 + c2 x2 + c1 x1
          = −a1 x1 − a2 x2 − a3 x3 + u + f (t ) + c2 x3 + c1 x2
(iii) Discontinuous control
 u = a1 x1 + (a2 − c1 ) x2 + (a3 − c2 ) x3 − ( f max + σ ) sgn( s )
Discontinuous control
Continuous control
y Singular Perturbations
y Distributed Parameter Systems
   Rotor                      Stator
                          Princeton/Central Jersey Section of IEEE
             2008/11/17   - Circuits and Systems Chapter Meeting     33
Switched Reluctance Motors
                                                                            A
                                                                            A-
                                   1
                            2               6
                            3               5
                                   4
                            reluctance
                                   磁 阻force
                                       力
                                                                  Magnetic
                                                                       磁力線
                                                                           flux
         Reluctance磁force
                     阻力
L (θ )
                             θ
                                              Princeton/Central Jersey Section of IEEE
                                 2008/11/17   - Circuits and Systems Chapter Meeting     35
Switched Reluctance Motors
                                        (m H )
         R                                  La           Lb            Lc           Ld
                                      30
 a
 a'                                   10
                                                 7 .5 1 5 2 2 .5 3 0 3 7 .5 4 5 5 2 .5 6 0
                                                                                (D eg ree)
                  di j       dL j (θ )
 V j = L j (θ )          +               i j + R j i j , j = A, B, C , D
                  dt             dt
                           1 dL j (θ ) 2
        Torque ∝ i : T j =       2
                                      ij
                           2 dθ
 Pressure dynamics:
 ΔP = ψ 1 ( P1 , P2 , Y , X ) X +ψ 2 ( P1 , P2 , Y , Y , X )
Zoran Gajic, Plenary Lecture 2007 CACS International Automatic Control Conference
National Chung Hsing University, Taichung, Taiwan, November 9-11, 2007
                                                    Princeton/Central Jersey Section of IEEE
                                       2008/11/17   - Circuits and Systems Chapter Meeting     46
,   Wireless Network Power Control
    Signal-to-interference ratio (SIR) for the ith user
                 gii (t ) pi (t )        gii (t ) pi (t )
      γ i (t ) =                  =                               , i = 1, 2," , N .
                     I i (t )       ∑ gij (t ) p j (t ) + υi (t )
                                   j ≠i
Discrete-time representation
     si (k + 1) = si (k ) + Tui (k ) + d (k ) + v(k )
Discrete-time SMC (continuous)
                1         1
     ui (k ) = − si (k ) − (d (k − 1) + v(k − 1))
                T         T
Stability analysis
         +      ⎡ 1         T⎤
 ⎡ i
  s  ( k   1) ⎤ ⎢             ⎥ ⎡ si (k ) ⎤ − ⎡1 ⎤ 1 (d (k ) + v(k ))
 ⎢u (k + 1) ⎥ = ⎢ 1             ⎢         ⎥ ⎢ ⎥
 ⎣ i          ⎦ −           −1⎥ ⎣ui (k ) ⎦ ⎣ 2 ⎦ T
                ⎣ T           ⎦
               ⎡z −1    −T ⎤
           det ⎢ 1          ⎥ = z2 = 0
               ⎢       z + 1⎥                       Princeton/Central Jersey Section of IEEE
               ⎣ T          ⎦          2008/11/17   - Circuits and Systems Chapter Meeting     48
Contents (2/2)
y Minimum-Time Torque Control (SRM)
y Temperature Control (Plastic Extrusion P.)
y Rod-less Pneumatic Cylinder Servo
y Wireless Network Power Control
y Singular Perturbations
y Distributed Parameter Systems
u+
                                     −
                                         Sliding Surface: s = 0
                                 u
Singularly Perturbed Systems                                 VSS
Quasi-steady state (slow mode)             Sliding mode
Fast mode                                  Reaching phase
Continuous control                         Discontinuous control
Infinite-time reaching                     Finite-time reaching
 (boundary layer)
                                              Princeton/Central Jersey Section of IEEE
                                 2008/11/17   - Circuits and Systems Chapter Meeting     50
Extended Research Problems
y Distributed           Parameter Systems
   Heat Conduction System :
         U t ( x, t ) = αU xx ( x, t ) + βU ( x, t )
                                                                                        x=l
                       U (l , t ) = Q(t ) + f (t )
         Kernel function
         k ( x, y )
                                                wt = α wxx − cw
     U ( x, t )                w( x, t )        w(0, t ) = 0
                                                w(l , t ) = Q(t ) + f w (t )
                                             Princeton/Central Jersey Section of IEEE
                                2008/11/17   - Circuits and Systems Chapter Meeting       51
Extended Research Problems
y Distributed                  Parameter Systems
   Sliding surface:
   S (t ) = ω x (l , t ) = 0                              x=0                       x=l
Kernel function : k ( x, y ) = −λ y
                                          I1   (    λ ( x2 − y 2 )      )
                                                   λ ( x2 − y 2 )
                                                    wt = α wxx − cw
       U ( x, t )                 w( x, t )         w(0, t ) = 0
                                                    w(l , t ) = Q(t ) + f w (t )
                                               Princeton/Central Jersey Section of IEEE
                                  2008/11/17   - Circuits and Systems Chapter Meeting     52
    Extended Research Problems
     y Distributed                   Parameter Systems
Sliding surface: S (t ) = wx (l , t ) = 0
                                                l
S (t ) = U x (l , t ) − k (l , l )U (l , t ) − ∫ k x (l , y )U ( y, t ) dy
                                               0
                           http://www.chneic.sh.cn/
                 Princeton/Central Jersey Section of IEEE
    2008/11/17   - Circuits and Systems Chapter Meeting     56