0% found this document useful (0 votes)
314 views68 pages

03 Ipaso 400-1000 Introduction 3

iPASOLINK uses adaptive modulation radio (AMR) technology which automatically selects modulation schemes and traffic capacity in accordance with path conditions to maintain high transmission efficiency. AMR allows the modulation to switch between schemes like QPSK, 16QAM, 32QAM etc. based on the quality of the link to maximize throughput within acceptable error thresholds. This provides robustness in packet transmission environments and allows operators to achieve higher throughput even over links designed for lower speeds.

Uploaded by

Wubie Nega
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
314 views68 pages

03 Ipaso 400-1000 Introduction 3

iPASOLINK uses adaptive modulation radio (AMR) technology which automatically selects modulation schemes and traffic capacity in accordance with path conditions to maintain high transmission efficiency. AMR allows the modulation to switch between schemes like QPSK, 16QAM, 32QAM etc. based on the quality of the link to maximize throughput within acceptable error thresholds. This provides robustness in packet transmission environments and allows operators to achieve higher throughput even over links designed for lower speeds.

Uploaded by

Wubie Nega
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 68

iPASOLINK SERIES

(Other Features)

F/W Ver.3.00.11 (1000)/ 3.02.15(400) /3.00.33(200)

iPASOLINK Introduction 85
Concept of Advanced AMR

 To
To keep
keep high
high transmission
transmission efficiency,
efficiency, Modulation
Modulation scheme
scheme and
and Traffic
Traffic capacity
capacity are
are automatically
automatically selected
selected in
in accordance
accordance with
with the
the path
path
condition
condition with
with QoS.
QoS. (LAN
(LAN Throughput
Throughput –in–in small
small packet
packet size:
size: 64
64 bytes)
bytes)

Critical Normal condition


condition
7MHz 7MHz 7MHz 7MHz 7MHz
QPSK 16QAM 32QAM 64QAM 128QAM
14 Mbps 28 Mbps 35 Mbps 42 Mbps 49 Mbps

14 MHz 14 MHz 14 MHz 14 MHz 14 MHz 14 MHz


QPSK 16QAM 32 QAM 64 QAM 128 QAM 256 QAM
28 Mbps 56 Mbps 71 Mbps 85 Mbps 99 Mbps 114 Mbps

28MHz 28MHz 28MHz 28MHz 28MHz 28MHz


QPSK 16QAM 32 QAM 64 QAM 128 QAM 256 QAM
57Mbps 114Mbps 143 Mbps 172 Mbps 200Mbps 229Mbps

56 MHz 56 MHz 56 MHz 56 MHz 56 MHz 56 MHz


QPSK 16QAM 32QAM 64QAM 128 QAM 256QAM
114 Mbps 229 Mbps 287 Mbps 345 Mbps 402 Mbps 460 Mbps

iPASOLINK Introduction 86
iPASOLINK – Adaptive Modulation Radio
CS
7 MHz 14 MHz 28 MHz 40 MHz 56 MHz
Modulation
Radio Max Packet Radio Max Packet Radio Max Packet Radio Max Packet Radio Max Packet
capacity Throughput capacity Throughput capacity Throughput capacity Throughput capacity Throughput
Mbps Mbps* Mbps Mbps* Mbps Mbps* Mbps Mbps* Mbps Mbps*

HC HC HC HSG HC HSG HC HSG

QPSK 10 14 22 28 45 40 57 56 91 81 114

16 QAM 22 28 45 56 91 81 114 113 183 163 229

32 QAM 27 35 56 71 113 101 143 141 228 204 287


64 QAM 33 42 67 85 136 121 172 170 274 245 345

128 QAM 39 49 79 99 159 142 200 198 320 286 402

256 QAM 45 56 90 114 182 162 229 226 366 327 460

512 QAM 204 184 257 254 410 370 515

1024 QAM 228 283 458

2048 QAM 250 311 504

Note: * Maximum throughput at 64 byte VLAN tagged frame passed rate base (L1 compression wire speed)

AMR is a technology to improve robustness mainly in the packet transmission environment by utilizing thermal threshold
difference between modulation hierarchy such as QPSK and 2048 QAM
On the fine day, the operator can get the 229Mbps throughput over the link which is designed for 57Mbps throughput as
illustrated in the figure. (QPSK to 256 QAM) (Figure previous page)
iPASOLINK support hitless modulation switchover from 2048QAM to QPSK as shown in table.
HSG- High System Gain HC- High Capacity

iPASOLINK Introduction 87
AMR Switching Procedure

1. Detection of quality degradation at Rx side


2. Feedback of the information to TX side over the OH
3. Rewriting of the header and changing of Mod scheme
4. Changing of control in DEM and DEC according to the header

Payload
Block Diagram Payload OH Payload OH Payload OH Payload OH OH Payload OH

256QAM 128QAM 64QAM 32 QAM 16QAM 4 PSK

Tx side Rx side
(3) Header Information (4) Header Information

IN OUT
Tx DPU MOD AGC DEM Rx DPU

AGC cont V Eye Pattern C/N


feedback using
(2)reverse path RFCOH
Quality Detector (1)

iPASOLINK Introduction 88
iPASOLINK – Adaptive Modulation Radio

256QAM

C/N 30 dB (256Q) 128QAM

C/N 27 dB (128Q)
64QAM

C/N 24 dB (64Q) 32QAM

16QAM
C/N 21 dB (32Q)
AMR Mode: CNR + RSL
Down CNR, Up RSL
C/N18 dB (16Q) QPSK

Modulation Up
QPSK C/N 33 dB+ No Error

AMR Mode: CNR


C/N 30 dB + No Error
(Under Interference)
Down & up both CNR
64QAM 256QAM
Modulation switching is done at BER=10-10.
128QAM
Equivalent C/N is shown

iPASOLINK Introduction 89
iPASOLINK – Adaptive Modulation Radio

“Reference modulation” is the word of definition in AMR operation, that is base condition in link budget calculation
and this is related to ATPC operation. The selection of reference modulation and TX power control (MTPC/ATPC)
relates to link budget of system gain and capacity. Please refer as follows.
dBm
24

23

22

21 Ref.256QAM
Ref.QPSK
20

19

18
QPSK 32QAM 128QAM Modulation

Reference modulation effects TX power range in order to avoid interference.


TX power is restricted in lower modulation scheme.
Ex. TX maximum power comparison by reference modulation at 18GHz 28MHz

iPASOLINK Introduction 90
Adaptive Modulation Radio (AMR)
Microwave links are designed to carry traffic at 99.999% availability under all path conditions with a approx. 30 dB
fade margin. With higher modulation for the same link 99.98% availability can be achieved with reduced fade margin
for higher throughput.

QPSK 16 QAM 32 QAM 64 QAM 128 QAM 256 QAM MODULATION SCHEME

14 Mbps 28 Mbps 35 Mbps 42 Mbps 49 Mbps 7 MHz CH BW

28 Mbps 56 Mbps 71 Mbps 85 Mbps 99 Mbps 114Mbps 14 MHz CH BW


Traffic
Capacity
57 Mbps 114 Mbps 143 Mbps 172 Mbps 200 Mbps 229 Mbps 28 MHz CH BW

114 Mbps 229 Mbps 287 Mbps 345 Mbps 402 Mbps 460 Mbps 56 MHz CH BW

99.999% 99.996% 99.994% 99.990% 99.975% Reliability

Critical Traffic Critical Traffic Voice Traffic


Less Critical Less critical Data (video)
System Outage Best Effort Internet / e-mail

5 min 364.91 Days


126.4 min

1 Year / (365 days)

iPASOLINK Introduction 91
Traffic Type Combinations

Traffic type convergence fixed modulation Traffic type convergence AMR modulation

STM-1 LAN OH STM-1 LAN OH

STM-1 LAN OH STM-1 LAN OH

E1 LAN OH E1 LAN OH

E1 OH E1 OH

STM-1 E1 LAN OH STM-1 E1 LAN OH

Priority traffic

iPASOLINK Introduction 92
Monitor & Control
Monitor & Control

200

400

1000
400

Back to back

LAN cable

WEB
browser Back to back

Local and remote monitor & control NEO

Cannot Monitor from Web LCT

PNMTj Cannot Monitor


iPASOLINK

iPASOLINK Introduction 93
iPASOLINK SERIES
(Synchronization)

iPASOLINK Introduction 94
Network Synchronization

Mobile
Mobile Network
Network isis synchronized
synchronized by
by the
the primary
primary clock.
clock.
IfIf there
there is
is no
no synchronization,
synchronization, BS BS
1)
1) Data
Data Buffer
Buffer slip
slip
2)
2) Bit
Bit error
error
3)
3) Signal
Signal hand-off
hand-off failure
failure between
between BTS
BTS ,, etc.
etc.

PRC
Synchronization by clock relay

Clock Distribution

E1 PDH Core
TDM Backhaul
(Sync Network)

Node-B/
BTS
RNC

PRC; Primary Reference Clock


or Synchronization by GPS receiver
( like WiMAX system , because of packet backhaul network)

iPASOLINK Introduction 95
Clock/Timing Recovery(1)

iPASOLINK Introduction 96
Clock/Timing Recovery(2)

iPASOLINK Introduction 97
G.8261 Synchronous Ethernet
SDH Sync Ether – G.8261
MAC Ethernet Ethernet MAC
PRC PRC
PHY PHY
Bit Stream Bit Stream
TX CLK TX CLK
Conventional Conventional SSM (ITU-T G.707) SSM (ITU-T G.707)
Ethernet line card Ethernet line card SDH Overhead OAMPDU
LO +/- 100PPM LO +/- 100PPM
8000/Sec 10 / Sec

Sync Ether clock performance is similar to what is available in SDH and PDH timing
Sync Ether clock distribution can be an extension of existing synchronization distribution system
Sync Ether does not impact existing IEEE 802.3 specification
Sync Ether use the physical layer of the Ethernet
Sync Ether module extract system clock and converts to Sync E clock
Sync Ether module converts Sync E clock to internal synchronous clock
Similar to SSM in SDH based networks Sync E provide SSM message (G.8264)

LO +/- 4.6 PPM LO +/- 4.6 PPM


MAC Ethernet Ethernet MAC
PHY PHY
G.8262 SyncE TX CLK TX CLK SyncE G.8262
EEC Timing Timing EEC
Synchronous Ethernet line card Synchronous Ethernet line card

iPASOLINK Introduction 98
Synchronization method
iPASOLINK can utilize multiple clock sources.
Synchronous Ethernet
Modem-1
Modem-2 SDHLine Transmit Clk
Timing Source 1 PLL
S
E1 Line CLK S PDHLine Transmit Clk
Timing Source 2 E
Option Line CLK(STM1) E
L
L Timing Source 3 Radio Clk Output
GbE Line CLK
G.703 External Clk Output

SEL

External CLK IN External CLK OUT

PTP Time
Recovery SSU Synchronize
external
IEEE1588 v2 Slave equipment

iPASOLINK Introduction 99
Synchronization method(1000)
iPASOLINK can utilize multiple clock sources.
Modem-1 Synchronous Ethernet

Modem-2 SDHLine Transmit Clk


Timing Source 1 PLL
E1 Line CLK S
S PDHLine Transmit Clk
Timing Source 2 E
Option Line CLK(STM1) E
L
L Timing Source 3 Radio Clk Output
GbE Line CLK
G.703 External Clk Output

SEL

External CLK OUT


1000 External Clock in 200/400 External Clock in

1 2
Synchronize
external
SSU
equipment
External CLK IN
Synchronization
Source Unit

1000 External Clock

iPASOLINK Introduction 100


REDUNDANCY SYSTEM
CONFIGURATIONS

iPASOLINK Introduction 101


Possible Configurations – Hot Standby
Single Antenna HS System

Two Antenna HS System

1'

1' 1

Space Diversity

iPASOLINK Introduction 102


Possible Configurations- Twin Path
Single Antenna Twin Path System

1'
2

2'

Two Antenna Twin Path System

Frequency Diversity

iPASOLINK Introduction 103


Possible Configurations
Hybrid Diversity System

(2+0) System using OMT

2 1'

2'

iPASOLINK Introduction 104


Principle of BB Linearlizer
IDU ODU

INTFC DPU BB LRZ MIX MIX AMP MIX AMP

Gain/Phase compensate AM-AM and AM-


PM of power amplifier Gain/Phase
AM-AM AM-PM

INPUT INPUT
AM-AM
AM-PM

improve Spectrum characteristic

iPASOLINK Introduction 105


AUTOMATIC TX POWER CONTROL
Automatic Transmit Power Control Operation
The Automatic Transmit Power Control (ATPC) function automatically varies the TX output power
according to path conditions. Fading exerts heavy influences on propagation, causing the receive signal
level at the opposite station to vary. The ATPC function operates by controlling the transmit output
power of the opposite station according to the variation of the received signal level at the local station.
The receive signal level variation at the opposite station is informed to the local station using the ATPC
bits in the overhead. To implement ATPC, the receiving level (RX IN LEV) is detected by the receiver
and passed on to the CPU in the CTRL circuit of the MODEM module. The CPU then determines
whether the transmit output power needs to be controlled. This is based on the transmit output power,
the minimum and maximum values of the output control range, and the receiving threshold level that
were previously specified using the LCT or PNMT.
The function of the control signal (POWER CONT), is to maintain the RX signal level by lowering or
raising the TX output power of the opposite station. This control signal is based on the result of
comparison between the current receiver input level and the preset receiving threshold level.
Transmission level control can be used not only for setting the same operation (ATPC-ATPC) between
own station and opposite station but also for operation in combination of stations with different
operation (MTPC-ATPC, ATPC-MTPC) between own station and opposite station. The station set in
MTPC mode is not controlled by the information from opposite station but is fixed in its transmitting
output level.
Even if the station is set in the MTPC mode, the opposite station is likely to be set in the ATPC mode.
Therefore setting of the RX Threshold (Receiving threshold level) is required for controlling the
transmission level of the opposite station. Between the stations that are respectively set in the MTPC
mode, however, the setting is disabled.

iPASOLINK Introduction 106


ATPC Operation

STN - A STN - B Station - A


ATPC MTPC ATPC TX MAX
RX Threshold = -60dBm

TX OUT
When RSL reaches -60dBm at STN –B STN-
ATPC TX MIN
A starts to increase the TX power in 1 dB
steps, this process continues until the ATPC deep shallow
TX MAX level is reached. Any RSL drop
below this point is not compensated. In the
UP Mode ATPC operation starts at -55dBm

RX Level
because of the fixed 5dB hysteresis. Up Mode
-55dBm

(5dB Fixed)
Hysteresis
The ATPC Control transmits the information
on the receiving level to the opposite station
and controls the transmission level of its RX Threshold
(-60dBm)
own station in accordance with the receiving Down Mode
level of the opposite station.
The ATPC Control can be used in several configurations:
Station - B
ATPC - ATPC
MTPC - ATPC Fading depth
deep shallow
ATPC - MTPC

iPASOLINK Introduction 107


Near End/Far End Traffic LOOPBACK Function

100/200/400/1000
IF LOOP-BACK

STM-1 NEAR-END LOOP-BACK 100/200/400/1000

100/200/400/1000
STM-1 FAR-END LOOP-BACK

100/200/400/1000
E1 NEAR-END LOOP-BACK

E1 FAR-END LOOP-BACK

Loopback Loopback control Msg

Link OAM Loopback


100E1/100/200/400/1000

iPASOLINK Introduction 108


AUTOMATIC PROTECTION SWITCHING (iPaso400 / 1000)

The Automatic Protection Switching (APS) function is Associated iPASOLINK


available for STM-1 optical interface as an unidirectional Equipment
Received Optical Failure
line protection against optical cable or Interface failure. WorkingX-1 1 2xSTM-1
(Work-1)
It is performed by detection of alarm condition or by Optical
operator control. (Prot-1) Working -2 2 (Slot 03)

The Optical interface monitor the line input signal


condition and when an alarm condition occurs, APS is (Work-2)
activated. Uni-directional APS is performed only in the Protection-1 1 2xSTM-1
receiving section of the local side when a failure or (Prot-2)
Optical
signal degradation of the received signal is detected Protection-2 2 (Slot 04)

APS function assigned between the two ports in the


same card or when two cards are mounted between two
cards

Received Optical Failure


Received Optical Failure
(Work) Working X 1 2xSTM-1
(Work-1) WorkingX-1 1 2xSTM-1
Optical
Optical
(Prot) Protection 2 (Slot 03)
(Prot-1) Working -2 2 (Slot 03)

Associated iPASOLINK
Equipment (Work-2)
X (Prot-2) Protection-1 1 2xSTM-1
(Work) Working 1 2xSTM-1
Optical
Optical
(Prot) Protection-2 2 (Slot 04)
Protection 2 (Slot 03)
Associated
Equipment
iPASOLINK
APS same card APS different card

iPASOLINK Introduction 109


AUTOMATIC LASER SHUTDOWN FUNCTION (ALS)

Automatic Reset
Manual
Reset
The STM-1 OPT Interface is provided with Automatic Laser Shutdown Function (ALS), if disable the
laser output is always ON even if the optical cable to RX2 is disconnected. When ALS function is set to
enable the OPT INTFC observe the loss of signal and start a timer (550ms) and generate a control signal to
interrupt the optical output from the TX2 to RX1 subsequently the ALS function in the MUX equipment will
switch OFF the laser output from TX1. When the fault at A is cleared the system can be retorted by
controlling the laser output from TX2 through one of the following methods.
 Automatic Control
 Manual Restart Short on time (2 sec) Control
 Manual Restart Long on time (90 sec) Control

iPASOLINK Introduction 110


USB Memory Utility (iPASOLINK 1000)
iPASOLINK System Configuration File Backup Procedure Configuration Upload Procedure (USB to IDU) IDU Power OFF
Configuration File Upload Procedure (IDU to USB) •IDU Power OFF
•Insert USB to Main Card •Insert USB to Main card
•Wait until USB is detected (observe USB LED) flash •Protect SW/ON (Up)
•Protect SW ON (Up) •IDU Power ON
•USB LED Blinks •Maint LEDs on the Main Card starts to blink
•Wait until USB LED Blinking stop •About 2m 40sec after IDU Power ON USB LED Blinks (iPaso1000)
•Protect SW OFF (Down) •Main Card Maint LED Steady
Remove USB from IDU •After few seconds put Protect SW Down
•IDU reboot start
•Main card Maint LED stop
The above process will take about 7minutes (Depends on configuration)
•Active card Maint LEDs starts to blink

USB Memory utility allows to see the


contents of the USB memory stick
plugged in to the USB slot. It show the
files inside folders named Config,
IDU,FPGA and Inventory created in
the USB stick

111
MS-AIS GENERATION
In the STM-1 configuration, when there is no STM-1 input or any fault in the radio section, or for any fault in the
PASOLINK equipment, MS-AIS is sent out to the MUX equipment.

This function is called the MS-AIS generation, and can be “enabled” or Disabled” (default enabled)

When this function is “disabled”, depending on the STM-1 INTFC type used, following actions will be carried
out. Electrical INTFC – output a non- frame (all “1”) signal

Optical INTFC – Shutdown the output optical signal


This function does not apply to the 10/100Base-T INTFC.

Status of this function is displayed under STM -1 INTFC ”output control” in the LCT and PNMT

STATION-A STATION-B

PASOLINK PLUS
MODEM STM-1
MODEM OUTPUT
STM-1 RFCOH RFCOH STM-1
MUX X INTFC MUX
ODU ODU FSYNC
DEMUX INTFC
MUX
INPUT
LOSS STM-1
STM-1
RLOS RLOS LOF
LOF OUTPUT
RLOF RLOF CONTROL
LOS
LOF

STATION-A STATION-B

EVENT LED LCT LED LCT STM-1 OUTPUT

STM-1 OUTPUT CONTROL

STM-1 Input Loss at station-A IDU ALM MAIN INTFC LOS -- UNDER EXECUTION AIS/SHUTDOWN

STM-1 L0ss of Frame at station-A IDU ALM MAIN INTFC LOF -- UNDER EXECUTION AIS/SHUTDOWN

RX Level down at station-B -- ODU ALM UNDER EXECUTION AIS/SHUTDOWN

Loss of radio frame at station-B -- IDU ALM UNDER EXECUTION AIS/SHUTDOWN

BER at station B (<= 1 E-4) -- IDU ALM NORMAL N/A

iPASOLINK Introduction 112


Block diagram of XPIC Configuration
RX signal

Intf. signal
MOD TX

A/D CRC
- DEC

Canceling
∼ ∼ LO ∼
Carrier
signal
IF OSC Recovery
ODU(V)

X-IF A/D EPS XPIC


Vertical
Error signal

Transmit Side Receive Side
ref OSC


Error signal
A/D EPS XPIC
X-IF

Horizontal ODU(H)
IF OSC
Canceling
Carrier
LO ∼ signal
MOD TX
Recovery

A/D CRC
- DEC

∼ ∼ Intf. signal

RX signal

iPASOLINK Introduction 113


XPIC Configuration ‒ (1+0)/(1+1) iPASOLINK400
Master Slave

Slot1 Slot2 Slot3 Slot4 Master Slave


One IDU Master
Slot1 Slot2 Slot3 Slot4 Slot1 Slot2 Slot3 Slot4
(1+0) XPIC
One IDU (1+0) XPIC
Master Slave Master Slave Two IDU

Slot1 Slot2 Slot3 Slot4 One IDU Slot1 Slot2 Slot3 Slot4
(1+0) XPIC (1+0) XPIC Slave
(1+0) XPIC

D
Master1 Master2 Slave1 Slave2

TE
Master1 Master2

Slot1 Slot2 Slot3 Slot4 SUPPORTED Slot1 Slot2 Slot3 Slot4

R
O
One IDU
Two IDU

PP
(1+1) XPIC
Slot1 Slot2 Slot3 Slot4

SU
Master1 Master2 Slave1 Slave2
(1+1) XPIC

T
Slot1 Slot2 Slot3 Slot4

O
Master1 Master2

N
Two IDU
Slot1 Slot2 Slot3 Slot4
Slot1 Slot2 Slot3 Slot4
Master1 Master2
Slave1 Slave2
(1+1) XPIC one system Slot1 Slot2 Slot3 Slot4
Master1 Master2 Master1 Master2 Slave1 Slave2
(1+1) XPIC
Slot1 Slot2 Slot3 Slot4

Two IDU Slot1 Slot2 Slot3 Slot4


Slave1 Slave2
Slot1 Slot2 Slot3 Slot4 Three IDU
(1+1) XPIC
Slave1 Slave2 Slave1 Slave2
(1+1) XPIC two systems

iPASOLINK Introduction 114


iPASOLINK 400 XPIC Configuration ‒ (1+0)
F1 (V)
Vertical

OMT Horizontal
F1 (H)

(1+0) XPIC

F1 (V) F1 (V)
Vertical Vertical

Horizontal
OMT Horizontal OMT
F1 (H) F1 (H)

iPASOLINK Introduction 115


iPASOLINK 400 XPIC Configuration (1+1)
Vertical

Vertical
F1 (V)

F1 (H) Horizontal
Horizontal

(1+1) Hot Standby

Vertical
F1 (V) F12(V)
Vertical

F1 (H) F2 (H)
Horizontal

Horizontal
(1+1) Twin Path

iPASOLINK Introduction 116


iPASOLINK 400 XPIC Configuration ‒ 2 IDU

Master-1 (V )

Master-2 (V )

F1 ( V )
Vertical

F2 ( V )
Horizontal

Slave-1 (H )

Slave-2 (H )

Two IDU ( 1 + 1 ) XPIC

iPASOLINK Introduction 117


CROSS-CONNECTION
Modem Modem Modem Modem
Slot 01 Slot 02 Slot 03 Slot 04 Slot 01 Slot 02 Slot 03 Slot 04

Main Board Main Board


16xE1 16xE1

Modem Modem Modem Modem


Slot 01 Slot 02 Slot 03 Slot 04
Slot 01 Slot 02 Slot 03 Slot 04

SNCP

Main Board Main Board


16xE1 16xE1

Modem 16xE1 Card

iPASOLINK Introduction 118


CROSS-CONNECTION
Modem Modem 2 x STM-1 Modem Modem 2 x STM-1
Slot 01 Slot 02 Slot 03 Slot 04 Slot 01 Slot 02 Slot 03 Slot 04

63xE1

STM-1 Through mode STM-1 Channelized mode

Main Board Main Board


16xE1 16xE1

Modem Modem MSE Modem Modem 2 x STM-1


Slot 01 Slot 02 Slot 03 Slot 04
Slot 01 Slot 02 Slot 03 Slot 04

STM-1
SNCP Channelized
mode

Main Board Main Board


16xE1 16xE1

Modem MSE 2 x STM-1 Card

iPASOLINK Introduction 119


Circuit Emulation – Pseudo Wire

iPASOLINK Introduction 120


Pseudo Wire Emulation (PWE)

ETH
E1
TDM SAToP/
E1
TDM -> CES CESoPSN
E1
TDM

TDM Data over E1 TDM


Node Node
ATM ATM
TDM(PDH/SDH)

Circuit Emulation
/Pseudo Wire Emulation
Data over Packet

TDM Node PWE TDM


PWE Node
ATM Packet Network ATM

PWE3 (Pseudo Wire Emulation Edge to Edge)

121
iPASOLINK Introduction 121
PWE-SAToP
RFC4553 - Structure-Agnostic Time Division Multiplexing (TDM)over Packet
(SAToP)
- whole E1/T1 Frame based packetization (Unstructured)
E1 Payload Transport
(IP/VLAN/MPLS)
Packet Header
Ch32 ch0 Ch32 ch0 Ch32 ch0
… … …

TDM CESoP
CES Frame/Packet
Ch32 ch0 Ch32 ch0 Ch32 ch0 Header
… … …

…..………… …..………… …..…………

PW PAYLOAD PW PAYLOAD PW PAYLOAD

SUITABLE FOR UNSTRUCTURED TDM, IGNORE IF THERE IS A STRUCTURE


SAToP ENCAPSULATED N BYTES OF TDM STREAM IN EACH PACKET IGNORING ANY TDM FRAME ALIGNMENT
THE ENTIRE E1 IS PACKETIZED INCLUDING ALL TIME SLOTS WHETHER USED OR NOT.,
THE E1 STREAM IS SLICED INTO FIXED SIZE BLOCKS OF EQUAL SIZE FOR PACKETIZATION. THE SLICE POSITION IS
RANDOM AND NOT RELATED TO THE E1 FRAMING BITS (TS0)
PSEUDO WIRE REQUIRE AN OVERHEAD TYPICALLY 10 TO 20 % OVER THE NATIVE TDM BANDWIDTH.

iPASOLINK Introduction 122


PWE-CESoPSN (Not Supported)
RFC5086 - Structure-aware TDM Circuit Emulation Service over Packet Switched Network (CESoPSN)
- N×DS0 based packetization (structured)

E1 Transport
Payload (IP/VLAN/MPLS)Packet Header
Ch32 ch0 Ch32 Ch2 Ch1 Ch32 Ch2 Ch1 Header
… … …

CESoP
CES
Ch32 ch0 Ch32 Ch2 Ch32 Ch2 Header
… … …

…..………… …..………… …..…………

PW PAYLOAD PW PAYLOAD PW PAYLOAD

CESoPSN IS STRUCTURE –AWARE TRANSPORT CONSIDER THE TDM STRUCTURE INTO ACCOUNT

THE FRAME ALIGNMENT SIGNAL (FAS) IS MAINTAINED AT PSN EGRESS POINT.

ENTIRE E1 STREAM CAN BE PACKETIZED, INCLUDING ALL TIME SLOTS USED OR NOT USED

IT IS ALSO POSSIBLE NOT TRANSPORT UNUSED TIME SLOTS IN THE PAYLOAD SAVING BANDWIDTH

iPASOLINK Introduction 123


About ACR (Adaptive Clock Recovery)

• Inserts clock information to packet header (Control Word or RTP)


• Recover clock information at clock slave node

Central Customer
Office Carrier PSN Premises
Master Node Slave Node
TDM TDM
Equipment In-Band Equipment

E1 T1/E1
TDM to Time Packet
Queue
Packet Stamp to TDM

Primary Time
Reference Stamp
Source

Clock
Encode Filter
 Service  Service
fReference

E1 Line sync or NE clock (require Clock module) ACR is used at slave node
is used at master node

iPASOLINK Introduction 124


iPASOLINK PWE configuration

Modem-1 Modem-2

TDM Bus
Ethernet BUS
E1
Modem

XC
PWE CH1
VLAN #
MB
16E1 MSE L2SW
PWE CH64

STM-1 -Chanellized FE / GbE Ports

iPASOLINK Introduction 125


SOFTWARE KEY FUNCTION - iPASOLINK 200

TITLE PARAMETER
Radio Redundancy 1+0/1+1 usage
Radio Traffic aggregation @ N+0 radio Not available/Available
Radio Bit rate (Initial key) fixed/free/AMR
Radio Bit rate (upgrade Key) Fixed>Free/Fixed>AMR/Free>AMR
Radio Capacity1 (initial Key) 10/20/50/100/150/200/300/400 Mbps
Radio Capacity2(Initial Key) parameter Radio Capacity1
Radio Capacity1 (upgrade Key) 10>20/50/100/150/200/300/400
20>50/100/150/200/300/400
50>100/150/200/300/400
100>150/200/300/400
150>200/300/400
200>300/400
300>400
Radio Capacity2 parameter Radio Capacity1
XPIC Function Not available/Available
NEO ODU Compatibility Not available/Available
Advance Header Compression Not available/Available

iPASOLINK Introduction 126


Capacity, Modulation & Bandwidth
Available Bandwidth and Modulation according to the Capacity key

256 256
256 128 128 50
128 64 64 50
64 32 32 50 50
32 16 20 16 20 50
16 QPSK 10 20 QPSK 10 20 50
QPSK 10 7MHz 14MHz 28MHz 56MHz 7MHz 14MHz 28MHz 56MHz
7MHz 14MHz 28MHz 56MHz Capacity key 20 Capacity key 50
Capacity key 10

256 100 200


256 100 128 50 100 150
128 50 100 150 64 50 100 150
256 100 64 50 100 150 32 50 50 100 200
128 50 100 32 50 50 100 16 20 50 100 200
64 50 100 16 20 50 100 QPSK 10 20 50 100
32 50 50 100 QPSK 10 20 50 100 7MHz 14MHz 28MHz 56MHz
16 20 50 100 7MHz 14MHz 28MHz 56MHz
QPSK 10 20 50 100 Capacity key 200
7MHz 14MHz 28MHz 56MHz Capacity key 150
Capacity key 100

2048 100 300 400 500


1024 100 200 300 500
512 100 200 400
512 100 200 300 400
256 100 200 256 100 200 400
256 100 200 300 400
128 50 100 150 300 128 50 100 150 300 128 50 100 150 200 300
64 50 100 150 300 64 50 100 150 300 64 50 100 150 150 300
32 50 50 100 200 32 50 50 100 200 32 50 50 100 150 200
16 20 50 100 200 16 20 50 100 200 16 20 50 100 100 200
QPSK 10 20 50 100 QPSK 10 20 50 100 QPSK 10 20 50 50 100
7MHz 14MHz 28MHz 56MHz 7MHz 14MHz 28MHz 56MHz
7MHz 14MHz 28MHz 40MHz 56MHz
Capacity key 300 Capacity key 400
Capacity key 500

iPASOLINK Introduction 127


SOFTWARE KEY FUNCTION – iPASOLINK 200
TITLE PARAMETER
ETH
RJ45 port usage (main) 2xFE available
2xFE+2xGBE available
4xGBE available
RJ45 port usage (upgrade Key) 2xFE>2xFE+2xGBE
2xFE>4xGBE
2xFE+2GBE.>4xGBE
SFP Port Usage (main) not available/ 2xGBE available
QoS Classify 4 lev Classify / 8 lev Classify
ETH Ring Protection not available/available
LAG/LACP (line) not available/available
Ether-OAM(CC/LT/LB) not available/available
Ether-OAM(DM/LM) not available/available
Ether OAM (Link) not available/available
MSTP not available/available
TDM
E1 SNCP not available/available
STM-1 MUX/DEMUX not available/available
Extension Function
SYNC ETH Clock not available/available
DHCP Server / Relay not available/available
iPASOLINK Introduction 128
SOFTWARE KEY FUNCTION – iPASOLINK-400
TITLE PARAMETER
Radio Redundancy (initial key) 1+0/1+1 usage(1 pair) / (1+1) usage (2pair)
Upgrade key 1+0  1+1 usage(1 pair)
1+0  (1+1) usage (2 pair)
1+1 usage(1 pair)  (1+1) usage (2pair)
Radio Traffic aggregation @ N+0 radio Not available/Available
Radio Bit rate (Initial key) fixed/free/AMR
Radio Bit rate (upgrade Key) Fixed>Free / Fixed>AMR / Free>AMR
High Modulation Not Available / 512 QAM
Radio Capacity1 (initial Key) 10/20/50/100/150/200/300/400 Mbps
Radio Capacity2(Initial Key) parameter Radio Capacity1
Radio Capacity3(Initial Key) parameter Radio Capacity1
Radio Capacity4(Initial Key) parameter Radio Capacity1
Radio Capacity1 (upgrade Key) 10>20/50/100/150/200/300/400
20>50/100/150/200/300/400
50>100/150/200/300/400
100>150/200/300/400, 150>200/300/400
200>300/400, 300>400
Radio Capacity2 , 3, 4 parameter Radio Capacity1
High Modulation Not available/ 512/ 1024/2048 QAM

iPASOLINK Introduction 129


SOFTWARE KEY FUNCTION – iPASOLINK-400

TITLE PARAMETER
XPIC function not available/available (1pair)/ available (2pair)
Not available -> 1pair /Not available -> 2pair
1 pair -> 2 pair
NEO ODU Compatibility not available/available
Advance Header Compression not available/available
ETH FUNCTIONS
RJ45 port usage (main) 2xFE available / 2 GbE available
SFP Port Usage (main) Not available / 2 GbE available
SFP Port Usage (option 1) Not available / 2 GbE available
SFP Port Usage (option 2) Not available / 2 GbE available
SFP Port Usage (option 3) Not available / 2 GbE available
SFP Port Usage (option 4) Not available / 2 GbE available
Additional VLAN Table 256 Table / 4094 Table
QoS Classify 4 lev Classify / 8 lev Classify
LAG / LACP ( line) not available/available
Ethernet Ring Protection not available/available
ETH-OAM (CC/LT /LB) not available/available
ETH-OAM (LM / DM) not available/available
ETH-OAM (Link) not available/available
MSTP not available/available
iPASOLINK Introduction 130
SOFTWARE KEY FUNCTION – iPASOLINK-400

TITLE PARAMETER
TDM
E1 SNCP not available/available
STM-1 APS Protection not available/available
STM-1 MUX/DEMUX not available/available
EXTENSION FUNCTIONS
SYNC ETH Clock not available/available
Additional MSE E1 16 E1 (regular Support) / 32 E1 / 64 E1
16 E1 > 32 E1 / 16 E1 > 48 E1 / 16 E1 > 64 E1
32 E1 > 48 E1 / 32 E1 > 64 E1
48 E1 > 64 E1
DHCP Server / Relay not available/available
IEEE 1588v2 PTP clock (new Module) not available/available (Future)

iPASOLINK Introduction 131


SOFTWARE KEY FUNCTION – iPASOLINK-1000
TITLE PARAMETER
Radio Redundancy (initial key) 1+0/1+1 usage(1 pair) / (1+1) usage (n-pair)
Upgrade key 1+0  1+1 usage (n-pair) (n = 1-6)
1+1 usage(1 pair)  (1+1) usage (n-pair)
Radio Traffic aggregation @ N+0 radio Not available/Available
Radio Bit rate (Initial key) fixed/free/AMR
Radio Bit rate (upgrade Key) Fixed>Free / Fixed>AMR / Free>AMR
Radio Capacity1 (initial Key) 10/20/50/100/150/200/300/400 Mbps
Radio Capacity-n (Initial Key) parameter Radio Capacity1
n = 1-12 parameter Radio Capacity-n
10>20/50/100/150/200/300/400
20>50/100/150/200/300/400
50>100/150/200/300/400, 100>150/200/300/400
150>200/300/400, 200>300/400, 300>400
Radio Capacity2 , 3, 4…….12 parameter Radio Capacity1
XPIC function not available/available (1pair)/ available (n-pair)
Not available -> 1pair /Not available -> n-pair
n = 1-6
High Modulation (512 QAM) Not available/Available
NEO ODU Compatibility Not available/Available

iPASOLINK Introduction 132


SOFTWARE KEY FUNCTION – iPASOLINK-1000

iPASOLINK Introduction 133


SOFTWARE KEY FUNCTION – iPASOLINK-1000

TITLE PARAMETER
ETH
RJ45 port usage (main) 2xFE available / 2 GbE available
SFP Port Usage (main) Not available / 2 GbE available
SFP Port Usage (Slot 09) Not available / 2 GbE available
SFP Port Usage (slot 10) Not available / 2 GbE available
Additional VLAN Table 256 Table / 4094 Table
QoS Classify 4 lev Classify / 8 lev Classify
LAG / LACP ( line) not available/available
Ethernet Ring Protection not available/available
ETH-OAM (CC /LT /LB ) not available/available
ETH-OAM (LM / DM ) not available/available
MSTP not available/available

iPASOLINK Introduction 134


SOFTWARE KEY FUNCTION – iPASOLINK-1000

TITLE PARAMETER
TDM
E1 SNCP not available/available
STM-1 APS Protection not available/available
STM-1 MUX/DEMUX not available/available
High Capacity XC not available/available
Extension Functions
SYNC ETH Clock not available/available
Additional MSE E1 16 E1 (regular Support) / 32 E1 / 64 E1
16 E1 > 32 E1 / 16 E1 > 48 E1 / 16 E1 > 64 E1
32 E1 > 48 E1 / 32 E1 > 64 E1
48 E1 > 64 E1
(For second MSE-A card in Slot 12) 128E1
Main Card Redundancy Not Available / Standard /
CWDM not available/available
DHCP Server/Relay not available/available (Future)
IEEE 1588v2 PTP clock (new module) not available/available (Future)

iPASOLINK Introduction 135


Alarm & Status

iPASOLINK Introduction 136


ODU Alarm and Status
Indication Category Descriptions Severity
TXPWR ALM Alarm The TX PWR is lower than 3 dB. MJ
TX INPUT ALM Alarm The TX IF signal become out of range from MJ
-29 dBm ± 5 dB.
RXLEV ALM Alarm The reception level become lower than -72dBm ~ -94dBm level.(It MJ
depends on the modulation system and bit rates).
ODU CPU / Cable CPU of ODU is faulty or IF CABLE between IDU - ODU of ODU is broken MJ
Alarm
Open or is not connected.
Indicates the control status of the ODU TX power output. When the TX
MUTE STATUS Status -
power is set to Mute, Status is issued.
LO REF Alarm Loss of Ref LO signal of ODU. MN
TX SW Status Status Radio interface TX SW usage state in 1+1 HS Redundant configuration -

Indicates one of the TXPWR ALM, ODU PS ALM, APC ALM, TPC ALM,
ODU ALM Alarm MJ
ODU SELF CHECK ALM occurrence
Highest
Indicates one of the TXPWR ALM, TX INPUT ALM, RX Level ALM, ODU
ODU TOTAL ALM Alarm severity will
CPU/CABLE OPEN ALM, LOREF, ODU ALM occurrence.
be displayed
ATPC Power ATPC control signal fault (90sec) as well as MAX Power continuation
Status -
Mode 90sec
ODU TYPE Indicate connected ODU type is not supported at iPASOLINK system, or
Alarm MJ
MISMATCH ODU type cannot use in provisioned modulation setting.
ODU PS ALM Alarm ALM in a case of Power supply interruption to ODU. MJ
ODUPS SET Status Status indication of the protection switch for ODU power supplies -
STATUS

iPASOLINK Introduction 137


Modem Alarm and Status
Indication Category Descriptions Severity

Unequipped (MODEM-A) Alarm Reserved and installed optional package is removed from optional slot. MJ
Type Mismatch(MODEM-A) Alarm The equipped type of interface is different from configured type. MJ
Communication FAIL(MODEM-A) Alarm Communication failure of equipment internal control communication. MJ

Module(MODEM-A) Alarm Equipment fault MJ


BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card. MJ

BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card. MJ
RXSW STATUS Status Radio interface RX SW usage state in Redundant configuration -

LOSS OF FRAME Alarm Loss of Frame at radio side. MJ

FRAME ID Alarm Frame ID (route differentiation ID) MJ


HIBER ALM Alarm Radio signal degradation (High BER threshold detection). (Threshold :1E-3/1E-4/1E-5) MJ
LOBER ALM Alarm Radio signal degradation (Low BER threshold detection). (Threshold. :1E-6/1E-7/1E-8/1E-9) MN

EARLY WARNING Alarm Radio signal degradation (Early Warning threshold detection). (Threshold :1E-9) MN

MOD Alarm Indicates the operating status of the MOD. When any failure occurs in the modulator section, “Alarm” is issued. MJ
IF CABLE SHORT Alarm IF cable between IDU - ODU is in short condition. MJ
INPHASE. Status In - Phase indicates the received signal DADE status between No.1 and No.2 MODEM interfaces are in Phase -
condition. In this condition, hitless switch over is available.
L2SYNC LOSS Alarm Loss of frame synchronization of GFP frames on MODEM port. MJ
RDI Alarm RDI indication reception alarm on MODEM port MJ

UAE. Alarm UAE alarm. Indicates the occurrence of an Unavailable state. MN


TDM/AMR Range Mismatch Alarm Mismatch condition when the mapping number of E1 channels are different between TX and RX modem ports or MJ
mismatch condition of selected RX AMR modulation range and TX AMR modulation range.
TX SW Reverse Request Status TXSW request signal receiving condition from the opposite station: -
TX SW Lock in Status Status TXSW Lockin state -

Unlocked Alarm Wireless synchronization status of the local side. MJ


MODEM PS OFF Status Indicate power off condition of power switch which is in front of MODEM-A card. -

iPASOLINK Introduction 138


STM-1 Alarm and Status
Indication Category Descriptions Severity

Unequipped (STM1-A) Alarm Reserved and installed optional package is removed from optional slot. MJ
Type Mismatch(STM1-A) Alarm The equipped type of interface is different from configured type. MJ
Communication
Alarm Communication failure of equipment internal control communication. MJ
FAIL(STM1-A)
Module(STM1-A) Alarm Equipment fault MJ

BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card. MJ
BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card. MJ

SNCP PPS-FAIL Alarm. SNCP Path Protection Failure MJ

SNCP Protection Status Status SNCP Path Protection Status indication which indicates [FS, SF, SD, MS, NR] condition. -
APS Protection Status Status APS Line Protection Status indication which indicates {FS,SF,SD,MS,NR} condition. -
APS Lock-in Status Status APS protection Lock-in Condition. -
SFP_Type Mismatch
Alarm Mismatch between SFP on LCT and installed SFP. MJ
(STM1)
SFP Unequipped (STM1) Alarm A SFP is removed. MJ
STM-1LOS Alarm LOS detection on STM-1 Optical port. MJ

STM-1 TF Alarm Transmit Failure detection on STM-1 optical port. MJ


RS LOF Alarm SDH Frame synchronization lost in RS (Regenerator Section) on STM-1 port. MJ

RS TIM Alarm Trace Identifier Mismatch detected in RS (Regenerator Section) on STM-1 port. MJ
RS EXC Alarm B1 Byte error occurrence in RS (Regenerator Section) on STM-1 port. MJ

RS DEG Alarm B1 byte error in RS (Regenerator Section) (RS - Degraded) on STM-1 port. MN
MS AIS Alarm AIS detection in MS (Multiplex Section) on STM-1 port. MJ

MS RDI Alarm Remote Defect Indication reception in MS (Multiplex Section) on STM-1 port. MJ
AU AIS Alarm AIS detection in AU (Administrative Unit) on STM-1 port. MJ

iPASOLINK Introduction 139


STM-1 Alarm and Status
Indication Category Descriptions Severity

AU LOP Alarm Loss of AU pointer happens on STM-1 port. MJ


HP UNEQ Alarm HOP (Higher Order Path) Unequipped occurrence on STM-1 port. MJ
HP TIM Alarm HOP (Higher Order Path) Trace Identifier mismatch occurrence on STM-1 port. MJ

HP-PLM Alarm Payload Label Mismatch occurrence in HOP (Higher Order Path) on STM-1 port. MJ

HP-RDI Alarm RDI (Remote Defect Indication) reception in HOP (Higher Order Path) on STM-1 port. MJ
HP-LOM Alarm Loss of Multi-Frame on STM-1 port. MJ
TU -AIS Alarm In TU (Tributary Unit), AIS detection on STM-1 port. MJ

TU -LOP Alarm Loss of TU Pointer on STM-1 port. MJ

LP -UNEQ. Alarm LP (Lower Order Path) Unequipped occurrence on STM-1 port. MJ


LP – RDI Alarm Remote Defect Indicate reception by an LP (Lower Order Path) on STM-1 port. MJ
LP – PLM Alarm Payload Label Mismatch Failure occurrence by an LP (Lower Order Path) on STM-1 port. MJ

ALS Status Indication of automatic laser shutdown condition at STM-1 optical port. -

RS UAS Status Status UAS status indication on STM port (Repeater Section) -
STM-1 AIS Generated Status AIS generation condition on STM port. -

PJE Status Pointer justification Event indication at STM port. -

iPASOLINK Introduction 140


16E1 alarm and Status

Indication Category Descriptions Severity

Unequipped (16E1) Alarm Reserved and installed optional package is removed from optional slot. MJ
Type Mismatch(16E1) Alarm The equipped type of interface is different from configured type. MJ
Communication FAIL(16E1) Alarm Communication failure of equipment internal control communication. MJ

Module(16E1) Alarm Equipment fault MJ

BUS ERROR TX Alarm Data communication BUS failure condition in TX direction from STM-1 Card. MJ
BUS ERROR RX Alarm Data communication BUS failure condition in RX direction from STM-1 Card. MJ
E1 LOS Alarm No signal input on E1 port MJ

E1 AIS Status ALARM/Status category can change according to " AIS Received Condition MJ / -
Setting
Usage Error Alarm Unused E1 CH input signal detection. MN

E1 AIS Generated Status AIS generation condition on every E1 Channels. -

iPASOLINK Introduction 141


AUX-A Option Card

Indication Category Descriptions Severity

Unequipped (AUX-A) Alarm Reserved and installed optional package is removed MJ


from optional slot.

Type Mismatch(AUX-A) Alarm The equipped type of interface is different from MJ


configured type.

Communication Alarm Communication failure of equipment internal control MJ


FAIL(AUX-A) communication.

Module(AUX-A) Alarm Equipment fault MJ

BUS ERROR TX Alarm Data communication BUS failure condition in TX MJ


direction from STM-1 Card.

BUS ERROR RX Alarm Data communication BUS failure condition in RX MJ


direction from STM-1 Card.

Item Name (Input-x) Status/ HKA Status Indication {Alarm, Normal} for every - or
Item Name (Cluster-x) Alarm HKA input. Severity selectable

Item Name (Output-x) Status HKC Status {Alarm, Normal} for every HKC output. -

iPASOLINK Introduction 142


GbE-A option card

Indication Category Descriptions Severity

Unequipped (GBE-A) Alarm Reserved and installed optional package is MJ


removed from optional slot.

Type Mismatch(GBE- Alarm The equipped type of interface is different MJ


A) from configured type.

Communication Alarm Communication failure of equipment MJ


FAIL(GBE-A) internal control communication.

Module(GBE-A) Alarm Equipment fault MJ

BUS ERROR TX Alarm Data communication BUS failure condition MJ


in TX direction from STM-1 Card..

BUS ERROR RX Alarm Data communication BUS failure condition MJ


in RX direction from STM-1 Card..

SFP_Type Mismatch Alarm Mismatch between SFP on LCT and MJ


(ETH) installed SFP.

SFP Unequipped Alarm A SFP is removed. MJ


(ETH)

LAN LINK Alarm LINK of the LAN Port is disconnected. MJ

Speed & Duplex Status LAN Port setting (Speed&Duplex) -

iPASOLINK Introduction 143


Equipment Common alarm and Status-1

Indication Category Descriptions Severity

MODULE (Main Board) Alarm Equipment fault MJ


BUS ERROR Alarm Data communication BUS failure condition. MJ
Unequipped (PS) Alarm Installed Power Supply Module is removed from PS slot. MJ

Power Supply Alarm Alarm in case of power failure. MJ

FAN Fail Alarm FAN failure MJ


Unequipped (FAN) Alarm Installed FAN Module is removed from FAN slot. MJ
Unequipped (CLK2M) Alarm Installed CLK2M Module is removed from Main Card. MJ

Type Mismatch (CLK2M) Alarm The equipped type of interface is different from configured type. MJ

IDU CPU Alarm Alarm. IDU CPU Alarm MN


Memory Failure Alarm Detection of memory failure MJ
USB Failure Alarm USB memory failure indication MJ

Temperature Alarm The temperature is over the threshold MN

Maintenance Status Maintenance declaration. -


CLK FAIL Alarm Reference Clock Failed. MN

CLK Drift Alarm Reference Clock source Frequency drift condition MN


LTI Alarm Loss of all incoming timing source MJ

CLK Status Changed Status Reference clock change status -


(1) (Locked Ref1)
(2) (Locked Ref2)
(3) (Locked Ref3)
(4) Holdover
(5) Freerun

SSM FAIL Alarm Received Sync Status Message value is in unstable condition. MN
Quality Level Status Received quality level condition of each timing source. -
Squelch Status The condition of External CLK Output is in squelch condition. -

iPASOLINK Introduction 144


Equipment common Alarm and Status -2
Indication Category Descriptions Severity

EXT CLK Condition Status Condition level of External CLK output. -


EXT CLK LOS Alarm Loss of Signal condition of External clock input. MN
EXT CLK AIS Alarm AIS (Alarm Indication Signal) condition of External Clock input. MN

EXT CLK LOF Alarm Loss of frame condition of External Clock input. MN

EXT CLK Loop Alarm Indication of EXTERNAL clock input is used as EXTERNAL clock output. MJ
Item Name (Input-x) Status/ - or Severity
Item Name (Cluster-x) Alarm HKA Status Indication {Alarm, Normal} for every HKA input. selectable

Item Name (Output-x) Status HKC Status {Alarm, Normal} for every HKC output. -

E1 LOS Alarm No signal input on E1 port MJ


PDH – AIS
E1 AIS Status ALARM/Status category can change according to " AIS Received Condition Setting MJ / -
Usage Error Alarm Unused E1 CH input signal detection. MN
E1 AIS Generated Status AIS generation condition on every E1 Channels. -

ETH LOS Alarm LOS detection at Optical Ethernet port. MJ

ETH TF Alarm Transmit Fail detection at Optical Ethernet port. MJ

SFP_Type Mismatch (ETH) Alarm Mismatch between SFP on LCT and installed SFP. MJ
SFP Unequipped (ETH) Alarm A SFP is removed. MJ

LAN LINK Alarm LINK of the LAN Port is disconnected. MJ


Speed & Duplex Status LAN Port setting (Speed&Duplex) -

ETH-OAM LOC Alarm MJ


ETH-OAM Mismerge Alarm Ether OAM Mismatch Detection notice. MN

ETH-OAM Unexpected Period Alarm Ether OAM Unexpected MEP and Ether OAM Unexpected Period detection notice MN
ETH-OAM RDI Alarm Ether OAM RDI reception detection notice MJ

iPASOLINK Introduction 145


Equipment common Alarm and Status -3
Indication Category Descriptions Severity

RSTP New Root Bridge Detect Status The notice in which new RootBridge was detected at the time of SpanningTree processing -
RSTP Topology Changed Status The notice in which a Topology change was detected at the time of SpanningTree processing -
The notice which received a Bridge protocol Data Units different in classification of RSTP/STP at the
RSTP Protocol Migration Status time of SpanningTree processing -

RSTP Invalid BPDU Received Status Invalid BPDU message at the time of SpanningTree processing -
Loss of a conditional signaling in which the LLF control signal should be received continuously from
LLF Message Timeout Status the opposite radio equipment.

LLF Status LLF force a LINKDOWN status. The Ethernet port under "edge" mode becomes LINKDOWN. -
The highest
Severity will
IDU TOTAL ALM Alarm IDU TOTAL ALM be reported

Total FDB Full Status The number of DynamicEntryDynamic Entry in L2Switch has reached the maximum number.

FDB Full Status FDB Full indication specified per VLAN basis.

iPASOLINK Introduction 146


Abbreviations

iPASOLINK Introduction 147


ABBREVIATIONS-1
ACAP Adjacent Channel Alternate CIR Committed Information Rate DMM Delay Measurement Message
Polarization CKT Circuit DMR Delay Measurement Reply
ACCP Adjacent Channel Co-Polarization CLK Clock DO Data-out
ACK Acknowledgement CMF Channel Mismatch Failure DSCP Differentiated Services Code Point
AGC Automatic Gain Control CMI Coded Mark Inversion DUP Duplexer
AIS Alarm Indication Signal CONV Converter DXC Digital Cross Connect
ALM Alarm CORBA Common Object Request Broker E1 E-carrier level 1
ALS Auto Laser Shutdown Architecture EBS Express Burst Size
AMR Adaptive Modulation Radio CoS Class of Service EIR Excess Information Rate
ANT, Ant. Antenna CPU Central Processing Unit EMC Electro Magnetic Compatibility
APS Automatic Protection Switch CR Critical EML Element Management Layer
ATT Attenuator CRC Cyclic Redundancy Check EMS Element Management System
ATPC Automatic Transmitter Power Control CS Channel Separation EOW C Order Wire
AU Administrative Unit CTRL Control EPS ETH-Protection Switch
AUX Auxiliary CV near end Code Violation EQL Equalizer
Ave Average CW Carrier Wave ERP ETH-Ring Protection Switch
BBE Background Block Error DA Destination Address ES Errored Seconds
BER Bit Error Rate DADE Differential Absolute Delay Equalizer ETH-CC ETH-Continuity Check function
BPF Band Pass Filter DB Database ETH-LB ETH-Loopback function
BS Base Station DC Direct Current ETH-LBM ETH-Loopback Message
BSC Base Station Controller DCN Data Communication Network ETH-LBR ETH-Loopback Reply
BTS Base Transceiver Station DEG Degraded ETH-LB ETH-Loopback function
CAPEX Capital Expenditure DEI Drop Eligible Indicator ETH-LT ETH- Link Trace function
CBS Committed Burst Size DEM Demodulator ETH-LTM ETH-Link Trace Message
CCDP Co-Channel Dual Polarization Des(Dest) Destination ETH-LTR ETH-Link Trace Reply
CCM Continuity Check Message DI Data-in ETH-OAM Ethernet Operations, Administration
CEPT Conference of European Postal & DL Download and Maintenance
Telecommunication Administration DM Delay Measurement

iPASOLINK Introduction 148


ABBREVIATIONS-2
ETH-OAM LB ETH-OAM Loopback ID Identification LMM Loss Measurement Message
ETH-OAM LT ETH-OAM Link Trace LNA Low Noise Amplifier
IDU Indoor Unit
ETH-RDI ETH-Remote Defect Indication function LO Local Oscillator
IE Internet Explorer
ETSI European Telecommunications LOC Loss of Continuity
IEC International Electro technical
Standards Institute LOF Loss of Frame
Commission
EXC Electrical Cross Connect LOM Loss of Multiframe
IEEE Institute of Electrical and Electronics
E-to-E. End-to-End LOP Loss of Pointer
Engineers
Fail Failure LO REF Local Reference Signal Loss
I/F Interface
F/B Front Back Ratio LOS Loss of Signal
IF Intermediate Frequency
FCS Frame Check Sequence LP Lower order Path
IHG iPASOLINK High Grade
FDB Forwarding Database LPM Link Performance Monitor
IN Input
FE Fast Ethernet LT Link Trace
INTFC Interface
FEC Forward Error Correction LTI Loss of incoming Timing Input
I/O Input/Output
FEBBE Far End Background Block Error LTM Link Trace Message
IP Internet Protocol
FEES Far End Errored Seconds MAC Media Access Control
ITU International Telecommunication Union
FESES Far End Severely Errored Seconds MAIN Main
ITU-R Radio Communication Sector of ITU
FEUAS Far End Unavailable Seconds MAINT Maintenance
ITU-T Telecommunication Sector of ITU
FPGA Field Programmable Gate Array MAX Maximum
L2SW Layer2-Switch
F/W Firmware Mdev Mean Deviation
LAN Local Area Network
GbE, GBE Gigabit Ethernet MDCPU MODEM CPU
LB Loopback
3GPP Third Generation Partnership Project MDI Medium Dependent Interface
LBM Loopback Message
GUI Graphical User Interface MDIX Medium Dependent Interface
LCD Loss of Cell Delineation
H Horizontal Crossover
LCT Local Craft Terminal
HDB High Density Bipolar MD4 Message Digest Algorithm 4
LDPC Low Density Parity Check
HK House Keeping MD5 Message Digest Algorithm 5
LED Light Emitting Diode
HP Higher order Path MEG Maintenance Entity Group
Lev. Level
HYB Hybrid MEM Memory
LLF Link Loss Forwarding
H/W Hardware MEP MEG End Point
LM Loss Measurement

iPASOLINK Introduction 149


ABBREVIATIONS-3
MIN Minimum Octs Octets PMC PASOLINK Management Card
MIP Maintenance Intermediate Point ODU Out-Door Unit PMON Performance Monitor
MIX Mixer OFS Out of Frame Second PNMSj PASOLINK Network Management
MJ Major OMT Ortho-Mode Transducer System Java Version
MMC Multi Media Card OPEX Operational expenditure PPI PDH PHY Interface
MME Mobility Management Entity OPP Opposite ppm parts per million
MMG Mismerge OPR Operation PPP Point-to-Point Protocol
MN Minor OPT Optical PPS Path Protection Switch
MOD Modulator OSPF Open Shortest Path First PQ Priority Queuing
MODEM Modulator Demodulator OSS Operation Support System PRM Parameter
MON Monitor OUT Output PROT Protection
MPX Multiplexer OW Oder Wire PS Power Supply
MS Multiplex Section PA Power Amplifier PSC Protection Switching Counts
MSC Mobile Switching Center PBR Pressurizable Type B, flange profile PSD Protection Switching Duration
MSDU MAC Service Data Unit square Rectangular PWR Power
MSP Multiplex Section Protection PCP Priority Code Point QAM Quadrature Amplitude Modulation
MTBF Mean Time Between Failure PDH Plesiochronous Digital Hierarchy QoS Quality of Service
MTPC Manual Transmitter Power Control PDU Protocol Data Unit QPSK Quadrature Phase Shift Keying
MUX Multiplexing Equipment PGM Program RCVR Recover
N/A Not Applicable PHY Physical REF Reference
NBI Northbound Interface PIR Peak Information Rate REM Remote
NE Network Element PJE Pointer Justification Event RDI Remote Defect Indication
NML Network Management Layer PJE-N Pointer Justification Event Negative Stuff RF Radio Frequency
NMS Network Management System PJE-P Pointer Justification Event Positive Stuff RFS Radio Frequency Systems
OAM Operation Administration and PKG Package RL Relay
Maintenance Pkts Packets RMON Remote Network Monitoring
OCR Occur PLM Payload Label Mismatch RNC Radio Network Controller

iPASOLINK Introduction 150


ABBREVIATIONS-4

RPL Ring Protection Link SUB Substitute UNEXP Unexpected


RS Regenerator Section SW Switch Unicast DMR Unicast Delay Measurement Reply
RS-232 Recommended Standard 232 S/W Software UNM Unexpected MEP
RSL Received Signal Level SWG Switch Group UNP Unexpected Period
RST Regenerator Section Termination SYNC Synchronous USB Universal Serial Bus
RSTP Rapid Spanning Tree Protocol TCI Tag Control Information V Vertical
RX Receiver TCN Threshold Crossing Notification V Volt
SC Service Channel TDM Time Division Multiplex VC Virtual Channel
SD Space Diversity TDMoP TDM over Packet VLAN Virtual LAN
SDH Synchronous Digital Hierarchy TEMP Temperature VP Virtual Path
SEG Segment TERM Terminal VPN Virtual Private Network
SEP Severely Errored Period TF Transmit Fail VSWR Voltage Standing Wave Ratio
SES Severely Errored Seconds TIM Trace Identifier Mismatch WDM Wavelength Division Multiplexing
SFP Small Form factor Pluggable TLV Type Length Value Web World Wide Web
SGMI Security Gateway Management TM Through Mode WG Waveguide
Interface TNC Threaded Neil Councilman WR Warning
SMS Synchronous Multiplexing System ToS Type of Service WRR Weighted Round Robin
SMU Source Measure Unit TPID Tag Protocol Identifier WS Wayside
SNCP Sub-network Connection Protection TQC Total Quality Control XCTRL XPIC Control
SNMP Simple Network Management Protocol TTL Time To Live X-DEM XPIC Demodulator
SP Strict Priority TU Tributary Unit XFP 10(X) Gigabit Small Form Factor
SPD Speed TX Transmitter Pluggable
SRC Source MAC Address UAE UAS Event XIF XPIC IF
STAT Status UAS Unavailable Seconds XPD Cross Polarization Discrimination Ratio
STD Standard UL Upload XPIC Cross Polarization Interference
STM Synchronous Transport Module UNEQ Unequipped Canceller
STP Spanning Tree Protocol XREF XPIC Reference

iPASOLINK Introduction 151


End of
Presentation

iPASOLINK Introduction 152

You might also like