Mcqs On Fourier Series - Rtmnu Winter-2020
Mcqs On Fourier Series - Rtmnu Winter-2020
Ans : (b)
( | |
Ans : (b)
3)
d)
Ans : (c)
b) an even
d) trigonometric
Ans : (a)
b) an odd
d) logarithmic
Ans : (c)
(
( (
b) 0
( (
c) d) None of these
Ans : (b)
7) ( {
(
a) 0 b) 1 c) 2 d) 4
Ans : (a)
8) ( {
( (
a) 0, b) 0, c) 0,0 d) None of these
Ans : (c)
9)
Ans : (a)
10) ( {
( (
a)
Ans : (d )
Ans : (b)
a) Sine terms b) Cosine terms c) Both sine and cosine terms d) None of
these
Ans : (b)
Ans : (b)
Ans : (d )
Ans : (a)
16) The constant term in the Fourier series for function f(x) = - 2 in (-2, 2) is
a)
Ans : (d )
a) b) c) d)
Ans : (a)
Ans : (b)
( {
a) b) c) d)
Ans : (a)
20 W D ’
Ans : (d )
21 W D ’
c) [f( ) + f( ] d) [f( ) – f( ]
Ans : (b)
a) b) c) d)
Ans : (d )
4 Mathematics-Ganit Sangrah | Satish Tiwari
MCQs on Fourier Series | RTMNU Winter-2020
Ans : (c)
a) ∑ b) ∑ (
c) ∑ ( d) none of these
Ans : (c)
Ans : (c)
26) In the Half Range Fourier Cosine series of f(x) = xsin x in(0 is equal
to _______
a)
Ans : (b)
27) ( | |
( (
a) 0, b) 0, c) 0,0 d) None of these
Ans : (c)
28) In the Half Range Fourier Sine series of f(x) = lx- in(0 is equal to
_______
a)
Ans : (c)
5 Mathematics-Ganit Sangrah | Satish Tiwari
MCQs on Fourier Series | RTMNU Winter-2020
Q29) f(x)= { is
Ans : (b)
Ans : (b)
31) What is the Fourier series expansion of the function f(x) in the interval (c, c+2 ?
a) ∑ ∑ b) ∑ ∑
c) ∑ ∑ d) ∑ ∑
Ans : (a)
Ans : (d )
A)√ B) √ C) √ D) √
Ans : ( A)
A) 0 B) 1 C) 2π(W) D) π𝜹(W)
Ans : ( B)
A) ̅ ( ) B) ̅
(s) C) ̅
(a) D) (̅ )
Ans : ( D)
A)Fourier sine transforms B) Fourier cosine transform C) Fourier sine integral D) Fourier
cosine integral
Ans : ( D)
A) B) C) D) √
Ans : ( B)
A) B) C) s D) √
√ √
Ans : ( D)
1, x 1
Q.7) The Fourier integral of
0 x 1
Ans : ( A)
√ B) √ C) √ D) 1
Ans : (C )
A) B) C) D)
Ans : ( B)
A)√ B) √ C) √ D) √
Ans : ( B)
1, | x | 1
Q.11) Fourier sine transform of f ( x)
0, | x | 1
A)√ B) C) D) √
Ans : ( D)
2 2
A)
Fc (s) cos(sx)ds
0
B)
F (s) cos(sx)dx
0
c
2 2
C)
Fc (s) cos(sx)ds
D)
F (s) cos(sx)dx
c
Ans : ( A)
Ans : ( B)
1 j
A) F ( j ) B) F ( j ) j C) F ( j ) D) F ( j )
j j
Ans : ( A)
Q.15) If the Fourier transform of f (t ) is F ( j ) the what is the Fourier transform of f (t )
A) F ( j ) B) F ( j ) C) F ( j ) D) None of these
Ans : ( D)
Ans : ( D)
x sin mx
|x|
Q.17) If he Fourier transform e is √ then dx ?
0
1 x2
A) e m B) e 2 m C) 0 D) None of these
2
Ans : ( A)
cos xd
Q.18) The Fourier cosine integral of function e x the value of
0
1 2
A) ex B) ex C) ex D) ex
2 3 4 6
Ans : ( A)
Q. 2) L[ ] is
n 1 n n 1 n
A) n
B) n 1 C) n 1
D) n
s s s s
Ans : (C )
A) ( ) B) - ( ) C) ( ) C) ( )
Ans : ( B)
Q.5) , -n
A) B) C) D)
Ans : ( D)
Q.9) [ ] is
A) t B) C) D)
Ans : ( B)
Q.11) * +
Q.12) { }
A) B) t sint C) D) t sint
Ans : (C )
Q.14) *, - +
A)[1-cos2(t-1)]u(t-1) B) [1-cos2(t-1)] C) [1-cos2t]u(t-1) D) [1-cos2(t+1)]u(t+1)
Ans : ( A)
Q.17) , - is
A) sint u(t) B) sin (t+π) C) sin(t+π) u(t+π) D) sin (t-π) u(t-π)
Ans : ( D)
A√ B) √ C) √ D) √
Ans : ( B)
Q.22) ∫ * + =
A) B) -4 C) D)
Ans : (C )
Q.23) * + is
A) Sin(t-4)u(t-4) B) cos4(t-2)u(t-2) C) cos (t-2)u(t-2 ) D) sin4(t-2)u(t-2)
Ans : ( B)
Q.25) Given L[ √ ] = ⁄
then L * +=
√
A) B) C) D) None of these
√ √
Ans : ( A)
Q.26) L ,∫ -=
A) B) C) D)
Ans : (C )
Q.26) ∫ sin 2t dt =
A) L { } B) C), - D) All are Correct
Ans : ( D)
Q.27) * +
A) B) C) D) none of these
Ans : (C )
A) ∫ B) ∫
C) ∫ D) ∫
Ans : ( A)
Q.29) ∫
A)* + C)* + D)
Ans : (C )
Q.31) L* +=
A) cot-1s B) tan-1s C) -1
s D) none of these
Ans : ( A)
Q.32) * +
A) * ( )+ B) * ( )+ C)* ( )+ D)* ( )+
Ans : ( A)
Q.32) The inverse L.T. of is
A) [ ] B) A) [ ] C) [ ] D) [ ]
Ans : ( D)
Q.33) L[ sin2(t- ]=
A) B) C) D)
Ans : (C )
A) * + B) * + C) * + D) * +
Ans : ( A)
A) B) C) D)
Ans : ( D)
Q.36) L *∫ +=
A) ( ) B) ( ) C) ( ) D) None of these
Ans : ( A)
A) B) C) D)
Ans : ( B)
Q.38) Laplace transform of function ,where a and b are constant are given by
A) B) C) D)
Ans : ( D)
{ } { }
–
A) B) C) D) * +
Ans : ( A)
{ }
B) C) D)
Ans : ( A)
{ } , then L{ }
√
B) C) D)
√ √ √ √
Ans : (C )
[ ]
A) B) C) D)
Ans : (C )
C) ( ) [ ] ( ) D) None of these
Ans : ( B)
Q.45) * +
√ √ √ √ √
A) ( ) B) ( ) C) ( ) D) ( )
√ √
Ans : (C )
+y=0,
A) [ ] [ ] B) [ ] [ ]
C) [ ] [ ] D) None of these
Ans : ( B)
{ }
A) B)Zero C) D)1
Ans : ( A)
A) B) D)
Ans : ( A)
, -=
A) Cosh8t B) cos8t C) sinh8t D) sin8t
Ans : ( B)
[ ] { } , -
A) ∫ B) ∫
C) ∫ D) ∫
Ans : (C )
{ } ̅ { }
A) ̅ B) ∫ ̅ C) ̅ ̅
Ans : (C )
{ } ̅ { }
A) ̅ B) ∫ ̅ C) ̅ ̅
Ans : ( D)
{ } ∫
A) B) C) D) 0
Ans : (C )
is
A) B) C)
Ans : ( A)
{ }
A)sin u(t) B)sin (t+ C) D
Ans : ( D)
{∫ }
A) B) ⁄ D)
Ans : ( A)
∫ √
√
A)1/t B)1/2 C)1/3 D)1/u
Ans : ( B)
[ { }]
( ) ( ) ( ) ( )
A) B) C) D)
Ans : ( B)
{ }
A) B) C) D)
Ans : ( A)
{ }
A) B) C) D)
Ans : ( D)
( )[ ] ( )[ ]
( )[ ] ( )[ ]
Ans : (C )
( )[ ] ( )[ ]
( )[ ] ( )
Ans : (C )
( ) ( )
Ans : ( A)
Q.8) If the characteristic equation for the matrix A is 3 then the Eigen
value of the matrix A are
( ) ( )
( ) ( )
Ans : (C )
( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]
Ans : ( A)
( ) ( )
√ √ √ √ √
( ) ( )
√ √ √ √ √ √
Ans : ( A)
2 Mathematics-Ganit Sangrah | Satish Tiwari
MCQs on Matrix | RTMNU Winter-2020
Q.15) If [ ] is a non-singular square matrix and is the Eigen value of [ ] then the Eigen value
of is ____
( ) ( ) ( ) ( )
Ans : (C )
( ) ( )
( ) ( )
Ans : ( B)
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : ( A)
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : (C )
A) [ ]
B) [ ]
C) [ ]
D) None of these
Ans : (C )
A)
B)
C)
D)
Ans : ( A)
A)
B)
C)
D)
Ans : ( A)
Q.24) If [ ] then [ ]
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : ( D)
A) [ ]
√
B) [ ]
√
C) [ ]
√
D)
Ans : (C )
A)
B)
C)
D)
Ans : ( A)
Q.30) The set of vectors are said to be linearly dependent then there exists
scalars not all zeros, such that
A) True
B) False
C) Could be either
D) None
Ans : ( A)
Q.32) If A is the given matrix and be the eigen values of [ ] then the
Q.33) If 2,0,3 are Eigen values of a matrix [A] then the inverse of a A is exists
A) True
B) False
C) Could either
D) None
Ans : ( B)
A) -3,-3,5
B) 1,2,3
C) 2,2,8
D) 0,3,15
Ans : ( A)
A) 0,1,2
B) -1,0,2
C) -1,1,0
D) -1,1,2
Ans : ( D)
A)
B)
C)
D)
Ans : ( B)
[ ]
B)
[ ]
[ ]
C)
[ ]
D) None
Ans : (C )
A) 3,3,5
B) 1,2,3
C) 2,-2,8
D) 0,3,15
Ans : ( D)
) r n v u o m tr x [ ] th n
A) Determine of A B) Zero
C) Sum of the element of principle diagonal D) None
Ans : ( A)
) th v n m tr x n th n v lu s o n
x
y
[ ] th n th non l From is ________
z
A) B) x y z ) D) x y z
Ans : ( B)
) th v n s y th n =?
A) A=[ ] B) A=[ ] C) A=[ ] D) A=[ ]
Ans : ( A)
)Solv n th qu t on x y z x y z
y r m r s rul th v lu o x y and z are respectively
A)1,2,3 B)1,2,-2 C)1,2,2 D)1,-2,2
Ans : (C )
) Sp tr l r us o th m tr x [ ] is
A)2 B) 4 C) -6 D) 5
Ans : ( D)
) v tor o m tr x [ ]
) th or m n us to n
A) nv rs o m tr x B) Power of matrix
C) Any power of matrix D) All of the above
Ans : ( D)
)Eigen vectors of a real symmetric matrix A are orthogonal if the eigen values are ______
A Repeated B Non-Repeated
C Complex D None of these
Ans : ( B)
)If 1,2,3 are the eigen values of A, then the eigen values of are:
)If [ ] , then is
(a) [ ]
(b) [ ]
(c) [ ]
(d) [ ]
Ans : (c)
)If [ ] , then =?
(a) [ ]
(b) [ ]
(c) [ ]
(d) [ ]
Ans : (a)
(a)
(b)
(c)
(d)
Ans : (b)
(a) ( )
(b) ( )
(c) ( )
(d) ( )
Ans : (a)
Ans : (a)
a) 2 b) 1 c) -2 d) -1
Ans : (c)
) If A= [ ]
a)A+3I+2 b) (A+I)(A+2I) = 0 c) d) 0
Ans : (b)
) If [ ] th n non l orm o
A) B)
) )
Ans : ( A)
a) 5 b) 7 c) 4 d) none of these
Ans : (b)
)If A=[ ]
a) b) c) d)
Ans : (c)
) The trace & determinant of a 2*2 matrix is -2 & -35 respectively eigen values are
A) -30 & -5
B) -37 & -1
C) -7 & 5
D) 17.5 & -2
Ans : (c)
A)
B)
C)
D)
Ans : ( A)
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : ( D)
A)2 B) C)0 D)
Ans : ( A)
) [ ] th n s
A) 4A-5I B) 4A+2I C) 4A+5I D) 4A-2I
Ans : (C )
) s ny n n m tr x s s l r th n | | | |wh r s
(a)
(b)
(c)
(d)
Ans : (a)
6) If -2 and -3 are two roots of partial differential equation, then its C.F. is
(a)
(b)
(c)
(d)
Ans : (c)
(8) If 2,2,2 are three roots of partial differential equation, then its C.F. is
(a)
(b)
(c)
(d)
Ans : (b)
(b)
(c)
(d)
Ans : (a)
13) If 2,3,3 are three roots of the partial differential equation then its C.F. is
(a)
(b)
(c)
(d)
Ans : (b)
(b)
(c)
(d)
Ans : (b)
18) The CF of is
(a)
3 Mathematics-Ganit Sangrah | Satish Tiwari
MCQs on Partial Differential Equation | RTMNU Winter-2020
(b)
(c)
(d)
Ans : (b)
23) When solving one-dimensional heat equation using a variable separable method we
get the solution if:
(a) k is positive
(b) k is negative
(c) k is zero
(d) It can be anything
Ans : (b)
26) The solution of first order partial differential equation is given by:
(a)
(b)
(c)
(d) All of the above.
Ans : (d )
27) While solving a partial differential equation using a variable separable method, we
get the ratio to a constant, which:
(a) can be +ve/-ve integer or zero
(b) can be +ve/-ve rational or zero
(c) must be a +ve integer
(d) must be a -ve integer
Ans : (b)
Ans : (a)
33) P.I. of is
(a)
(b)
(c)
(d)
Ans : (b)
34) For a partial differential equation in a function and two variables ; what
is the form obtained after separation of variables is applied:
(a)
(b)
(c)
(d)
Ans : (d )
(c)
(d) None of the above
Ans : (c)
37) If 1,1,4 are the three roots of the partial differential equation, then its C.F. is :
(a)
(b)
(c)
(d)
Ans : (a)
39) If 2,3,4 are three roots of partial differential equation then its C.F. is:
(a)
(b)
(c)
(d)
Ans : (c)
Q. 2) L[ ] is
n 1 n n 1 n
A) n
B) n 1 C) n 1
D) n
s s s s
Ans : (C )
A) ( ) B) - ( ) C) ( ) C) ( )
Ans : ( B)
Q.5) , -n
A) B) C) D)
Ans : ( D)
Q.9) [ ] is
A) t B) C) D)
Ans : ( B)
Q.11) * +
Q.12) { }
A) B) t sint C) D) t sint
Ans : (C )
Q.14) *, - +
A)[1-cos2(t-1)]u(t-1) B) [1-cos2(t-1)] C) [1-cos2t]u(t-1) D) [1-cos2(t+1)]u(t+1)
Ans : ( A)
Q.17) , - is
A) sint u(t) B) sin (t+π) C) sin(t+π) u(t+π) D) sin (t-π) u(t-π)
Ans : ( D)
A√ B) √ C) √ D) √
Ans : ( B)
Q.22) ∫ * + =
A) B) -4 C) D)
Ans : (C )
Q.23) * + is
A) Sin(t-4)u(t-4) B) cos4(t-2)u(t-2) C) cos (t-2)u(t-2 ) D) sin4(t-2)u(t-2)
Ans : ( B)
Q.25) Given L[ √ ] = ⁄
then L * +=
√
A) B) C) D) None of these
√ √
Ans : ( A)
Q.26) L ,∫ -=
A) B) C) D)
Ans : (C )
Q.26) ∫ sin 2t dt =
A) L { } B) C), - D) All are Correct
Ans : ( D)
Q.27) * +
A) B) C) D) none of these
Ans : (C )
A) ∫ B) ∫
C) ∫ D) ∫
Ans : ( A)
Q.29) ∫
A)* + C)* + D)
Ans : (C )
Q.31) L* +=
A) cot-1s B) tan-1s C) -1
s D) none of these
Ans : ( A)
Q.32) * +
A) * ( )+ B) * ( )+ C)* ( )+ D)* ( )+
Ans : ( A)
Q.32) The inverse L.T. of is
A) [ ] B) A) [ ] C) [ ] D) [ ]
Ans : ( D)
Q.33) L[ sin2(t- ]=
A) B) C) D)
Ans : (C )
A) * + B) * + C) * + D) * +
Ans : ( A)
A) B) C) D)
Ans : ( D)
Q.36) L *∫ +=
A) ( ) B) ( ) C) ( ) D) None of these
Ans : ( A)
A) B) C) D)
Ans : ( B)
Q.38) Laplace transform of function ,where a and b are constant are given by
A) B) C) D)
Ans : ( D)
{ } { }
–
A) B) C) D) * +
Ans : ( A)
{ }
B) C) D)
Ans : ( A)
{ } , then L{ }
√
B) C) D)
√ √ √ √
Ans : (C )
[ ]
A) B) C) D)
Ans : (C )
C) ( ) [ ] ( ) D) None of these
Ans : ( B)
Q.45) * +
√ √ √ √ √
A) ( ) B) ( ) C) ( ) D) ( )
√ √
Ans : (C )
+y=0,
A) [ ] [ ] B) [ ] [ ]
C) [ ] [ ] D) None of these
Ans : ( B)
{ }
A) B)Zero C) D)1
Ans : ( A)
A) B) D)
Ans : ( A)
, -=
A) Cosh8t B) cos8t C) sinh8t D) sin8t
Ans : ( B)
[ ] { } , -
A) ∫ B) ∫
C) ∫ D) ∫
Ans : (C )
{ } ̅ { }
A) ̅ B) ∫ ̅ C) ̅ ̅
Ans : (C )
{ } ̅ { }
A) ̅ B) ∫ ̅ C) ̅ ̅
Ans : ( D)
{ } ∫
A) B) C) D) 0
Ans : (C )
is
A) B) C)
Ans : ( A)
{ }
A)sin u(t) B)sin (t+ C) D
Ans : ( D)
{∫ }
A) B) ⁄ D)
Ans : ( A)
∫ √
√
A)1/t B)1/2 C)1/3 D)1/u
Ans : ( B)
[ { }]
( ) ( ) ( ) ( )
A) B) C) D)
Ans : ( B)
{ }
A) B) C) D)
Ans : ( A)
{ }
A) B) C) D)
Ans : ( D)
A)√ B) √ C) √ D) √
Ans : ( A)
A) 0 B) 1 C) 2π(W) D) π𝜹(W)
Ans : ( B)
A) ̅ ( ) B) ̅
(s) C) ̅
(a) D) (̅ )
Ans : ( D)
A)Fourier sine transforms B) Fourier cosine transform C) Fourier sine integral D) Fourier
cosine integral
Ans : ( D)
A) B) C) D) √
Ans : ( B)
A) B) C) s D) √
√ √
Ans : ( D)
1, x 1
Q.7) The Fourier integral of
0 x 1
Ans : ( A)
√ B) √ C) √ D) 1
Ans : (C )
A) B) C) D)
Ans : ( B)
A)√ B) √ C) √ D) √
Ans : ( B)
1, | x | 1
Q.11) Fourier sine transform of f ( x)
0, | x | 1
A)√ B) C) D) √
Ans : ( D)
2 2
A)
Fc (s) cos(sx)ds
0
B)
F (s) cos(sx)dx
0
c
2 2
C)
Fc (s) cos(sx)ds
D)
F (s) cos(sx)dx
c
Ans : ( A)
Ans : ( B)
1 j
A) F ( j ) B) F ( j ) j C) F ( j ) D) F ( j )
j j
Ans : ( A)
Q.15) If the Fourier transform of f (t ) is F ( j ) the what is the Fourier transform of f (t )
A) F ( j ) B) F ( j ) C) F ( j ) D) None of these
Ans : ( D)
Ans : ( D)
x sin mx
|x|
Q.17) If he Fourier transform e is √ then dx ?
0
1 x2
A) e m B) e 2 m C) 0 D) None of these
2
Ans : ( A)
cos xd
Q.18) The Fourier cosine integral of function e x the value of
0
1 2
A) ex B) ex C) ex D) ex
2 3 4 6
Ans : ( A)
( )[ ] ( )[ ]
( )[ ] ( )[ ]
Ans : (C )
( )[ ] ( )[ ]
( )[ ] ( )
Ans : (C )
( ) ( )
Ans : ( A)
Q.8) If the characteristic equation for the matrix A is 3 then the Eigen
value of the matrix A are
( ) ( )
( ) ( )
Ans : (C )
( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]
Ans : ( A)
( ) ( )
√ √ √ √ √
( ) ( )
√ √ √ √ √ √
Ans : ( A)
2 Mathematics-Ganit Sangrah | Satish Tiwari
MCQs on Matrix | RTMNU Winter-2020
Q.15) If [ ] is a non-singular square matrix and is the Eigen value of [ ] then the Eigen value
of is ____
( ) ( ) ( ) ( )
Ans : (C )
( ) ( )
( ) ( )
Ans : ( B)
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : ( A)
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : (C )
A) [ ]
B) [ ]
C) [ ]
D) None of these
Ans : (C )
A)
B)
C)
D)
Ans : ( A)
A)
B)
C)
D)
Ans : ( A)
Q.24) If [ ] then [ ]
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : ( D)
A) [ ]
√
B) [ ]
√
C) [ ]
√
D)
Ans : (C )
A)
B)
C)
D)
Ans : ( A)
Q.30) The set of vectors are said to be linearly dependent then there exists
scalars not all zeros, such that
A) True
B) False
C) Could be either
D) None
Ans : ( A)
Q.32) If A is the given matrix and be the eigen values of [ ] then the
Q.33) If 2,0,3 are Eigen values of a matrix [A] then the inverse of a A is exists
A) True
B) False
C) Could either
D) None
Ans : ( B)
A) -3,-3,5
B) 1,2,3
C) 2,2,8
D) 0,3,15
Ans : ( A)
A) 0,1,2
B) -1,0,2
C) -1,1,0
D) -1,1,2
Ans : ( D)
A)
B)
C)
D)
Ans : ( B)
[ ]
B)
[ ]
[ ]
C)
[ ]
D) None
Ans : (C )
A) 3,3,5
B) 1,2,3
C) 2,-2,8
D) 0,3,15
Ans : ( D)
) r n v u o m tr x [ ] th n
A) Determine of A B) Zero
C) Sum of the element of principle diagonal D) None
Ans : ( A)
) th v n m tr x n th n v lu s o n
x
y
[ ] th n th non l From is ________
z
A) B) x y z ) D) x y z
Ans : ( B)
) th v n s y th n =?
A) A=[ ] B) A=[ ] C) A=[ ] D) A=[ ]
Ans : ( A)
)Solv n th qu t on x y z x y z
y r m r s rul th v lu o x y and z are respectively
A)1,2,3 B)1,2,-2 C)1,2,2 D)1,-2,2
Ans : (C )
) Sp tr l r us o th m tr x [ ] is
A)2 B) 4 C) -6 D) 5
Ans : ( D)
) v tor o m tr x [ ]
) th or m n us to n
A) nv rs o m tr x B) Power of matrix
C) Any power of matrix D) All of the above
Ans : ( D)
)Eigen vectors of a real symmetric matrix A are orthogonal if the eigen values are ______
A Repeated B Non-Repeated
C Complex D None of these
Ans : ( B)
)If 1,2,3 are the eigen values of A, then the eigen values of are:
)If [ ] , then is
(a) [ ]
(b) [ ]
(c) [ ]
(d) [ ]
Ans : (c)
)If [ ] , then =?
(a) [ ]
(b) [ ]
(c) [ ]
(d) [ ]
Ans : (a)
(a)
(b)
(c)
(d)
Ans : (b)
(a) ( )
(b) ( )
(c) ( )
(d) ( )
Ans : (a)
Ans : (a)
a) 2 b) 1 c) -2 d) -1
Ans : (c)
) If A= [ ]
a)A+3I+2 b) (A+I)(A+2I) = 0 c) d) 0
Ans : (b)
) If [ ] th n non l orm o
A) B)
) )
Ans : ( A)
a) 5 b) 7 c) 4 d) none of these
Ans : (b)
)If A=[ ]
a) b) c) d)
Ans : (c)
) The trace & determinant of a 2*2 matrix is -2 & -35 respectively eigen values are
A) -30 & -5
B) -37 & -1
C) -7 & 5
D) 17.5 & -2
Ans : (c)
A)
B)
C)
D)
Ans : ( A)
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : ( D)
A)2 B) C)0 D)
Ans : ( A)
) [ ] th n s
A) 4A-5I B) 4A+2I C) 4A+5I D) 4A-2I
Ans : (C )
) s ny n n m tr x s s l r th n | | | |wh r s
MCQs on Z-Transform
Q1. The Z transform of is
( )
A)
( )
B)
( )
C)
( )
D)
Ans.(C )
A)
B)
C)
D)
Ans.(C )
Q4. Z* ( )+
A) ( ) ( )
B) ( )
C) ( )
D) None of these
Ans.(D)
Q5. 0 1 is
A)
B) ( )
C) ( )
D)
Ans.(C )
A) . /
B) . /
C) . /
D) . /
Ans.(A)
Q7. 2. / 3
A)
B)
C)
D)
Ans.(A)
Q10. For the difference equation + + with . Then Y(z) takes the
value
A) ( ) ( )
B) ( ) ( )
C) ( ) ( )
D) ( )( )
Ans.(A)
( )
Q11. If * ( )+ ( ) then ∫
A) * ( )+
( )
B) 2 3
( )
C) 2 3
( )
D) 2 3
Ans.(B)
A)
B)
C) ( )
( )
D)
Ans.(B)
( )
Q13. 2( )
3
A)
B)
C)
D)
Ans.(D)
Q14. 2( )( )
3
A)
. /
B) [ ]
. /
C)
D) Both A and B
Ans.(D)
Q15. 2 3
A)
B)
√
C)
√ ( √ )
D)
√ ( √ )
Ans.(A)
Q16. If * + then * +
A)
B) ( )
C) ( )
D) None of these
Ans.(B)
Q17. 2 3
A)
B)
C)
D)
Ans.(C )
A) ( )
B) ( )
C)
D) ( )
Ans.(B)
Q19. If * ( )+ ( ) then * ( )+
A) ( )
B) ( )
C) ( )
D) * ( )+
Ans.(B)
Q20. If ( ) then
A)
B)
C)
D)
Ans.(C )
A)
B)
C) ( )
( )
D)
Ans.(B)
Q22. What is the set of all values of z for which X(z) attains a finite value?
A) Radius of divergence
B) Radius of convergence
C) Feasible solution
D) None of these
Ans.(B)
Q23. Z transform of
A) ( )
B)
C)
D)
Ans.(C )
Q24. * ( )+
A)
B)
C)
D)
Ans.(A)
A) 2( )
B)
C)
D)
Ans.(A)
A) ( )
B) ( )
C)
D) ( )
Ans.(A)
A) ( )
B)
C) ( )
D) ( )
Ans.(D)
Q28. * +
A)
B)
C)
D)
Ans.(A)
A) ( )
B) ( )
C)
D)
Ans.(C )
A)
B)
C)
D)
Ans.(B)
Q32. * +
A)
B)
C)
D)
Ans.(A)
Q33. * +
A) ( )
B)
C)
D)
Ans.(A)
Q34. If * ( )+ ( ) then * ( ) ( )+
A) ( )
B) ( )
C) ( )
D) ( )
Ans.(A)
A)
B)
C)
D)
Ans.(A)
A)
B)
C)
D)
Ans.(C )
B) ,( )
*( ) ( )+-
C) ,( )
*( ) ( )+-
D) ,( )
*( ) ( )+-
Ans : ( A)
STATISTICAL TECHNIQUES
1. For two correlated variables x and y, if coefficient of correlation between x and y is 0.8014 ,
variance of x and y are 16 and 25 respectively. Then the covariance between x and y is
A) 39 B) 42 C) 32 D) 43
6. Which of the following divides a group of data into four equal parts ?
A) 2 B) 3 C) 4 D) 7
A) 20 B) 22 C) 25 D) 32
A) 0 B) 7 C) 2 D) 6
11. The value of third decile D 3 for 40 , 42 , 45 , 48 , 50 , 52 , 55 , 56 , 57 is
A) 42 B) 45 C) 48 D) 40
A) 2 B) 3 C) 4 D) None
13. What is the correct formula for mean deviation for ungrouped data ?
n n n n
xi 1
i x x
i 1
i x x
i 1
i x x
i 1
i x
A) B) C) D)
n n 1 n 1 n2
Numbers 8 10 15 20
Frequency 5 8 8 4
A) 30 B) 20 C) 25 D) 32
A) r
( x x) ( y y ) B) r
( x x) ( y y )
( x x) ( y y )
2 2
( x x) ( y y )
2 2
C) r
( x x) ( y y ) D) r
( x x) ( y y )
( x) ( y )
2 2
( x) ( y )
2 2
A) 32 B) 64 C) 8 D) 16
x 6 7 8 9 10 11 12
f 3 6 9 13 8 5 4
A) 1.61 B) 1.43 C) 0 D) 2
21. In a negatively skewed distribution
A) Mean > Mode > Median B) Mode > Median > Mean
22. If for a distribution the difference of first quartile and median is greater than
23. If two regression coefficients are 0.1 and 0.9 then the value of coefficient
of correlation is
x on y is given by
26. The multiple correlation coefficient R3.12 is given by which of the following ?
A) R3.12
r
13 2 r23 2 2r12 r13 r23
1 r12
2
B) R3.12
r
13 2 r23 2 2r12 r13 r23
1 r12
2
C) R3.12
r
13 2 r23 2 2r12 r13 r23
1 r12
2
D) R3.12
r 13 2 r23 2 2r12 r13 r23
1 r12
2
27. If r12 0.25 , r13 0.35 , r23 0.45 then find R2.13
( x x) ( y y) ( x x) ( y y) 122
2
following data: 2
136 , 138 ,
x 1 2 3 4 5
y 2 5 3 8 7
y
30. If x 10 , y 22 and r 2.2738 then the equation of line of regression y on
x
x is equal to
Class Interval 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50
Frequency 5 10 12 15 18
A) 30 B) 35 C) 32 D) 40
Class Interval 45 - 50 50 - 55 55 - 60 60 - 65 65 - 70 70 - 75
Frequency 2 8 20 25 10 5
A) 50 B) 56.625 C) 60 D) 62.25
33. Find the value of 9th Decile D 9 from the following data :
A) 90 B) 98 C) 95 D) 92
38. If there is no skewness in the distribution then which of the following is true ?
39. If mean = 29.6 , mode = 27.52 and Standard deviation = 6.5 , then the value
Ans: B
(2)
Ans: A
(3)
Ans: A
(4)
Ans: B
(5)
Ans: B
(6)
Ans: C
(7)
Ans: D
(8)
Ans: B
(9)
If the mean of a random process {X(t)} is constant and the auto-correlation depends only on time
difference, then it is called
(A) Weakly Stationary Random Process
(B) Covariance Stationary Random Process
(C) Wide Sense Stationary Random Process
(D) All of The Above
Ans: D
(10)
4
The auto-correlation function of a stationary process is Rx (t ) 25 .
1 6 t 2
Then the mean is
(A) 2
(B) 3
(C) 4
(D) 5 Ans: D
(11)
If X(t) = A cos(w0t+x) is a random process, where A and w0 are constants and x is uniformly
distributed random variable over (0, 2 ) , then E{X(t)} is
(A) 0
(B) 1
(C) 2
(D) 3 Ans: A
(12)
(13)
(14)
(15)
A square matrix whose each row and column sums to one is called a
(A) Right Stochastic Matrix
(B) Left Stochastic Matrix
(C) Doubly Stochastic Matrix
(D) None of The Above Ans: C
(16)
Ans: A
(17)
1 / 2 1/ 4 1/ 4
Consider a Markov chain with 3 states whose transition matrix is given by P 1 / 3 0 2 / 3 .
1 / 2 1/ 2 0
If P(X1 = 1) = P(X1 = 2) = 1/4, then P(X1 = 3, X2 = 2, X3 = 1) is
(A) 1/4
(B) 1/6
(C) 1/12
(D) None of The Above
Ans: C
(18)
Ans: A
(19)
Ans: A
(20)
Ans: B
(21)
Ans: D
(23)
Ans: C
(24)
A non-probability sampling in which researchers rely on their own judgement while choosing
members of the population is called
(A) Purposive Sampling
(B) Random Sampling
(C) Stratified Sampling
(D) Systematic Sampling
Ans: A
(25)
A statistical method involving the selection of elements from an ordered sampling frame is called
(A) Purposive Sampling
(B) Random Sampling
(C) Stratified Sampling
(D) Systematic Sampling
Ans: D
(26)
Ans: A
(27)
A sample size of 25 is picked up at random from a population which is normally distributed with
mean 100 and variance 36. Then P{x 99} is
(A) 0.2033
(B) 0.4136
(C) 0.5837
(D) 0.6941
Ans: A
(28)
Ans: B
(29)
Ans: B
(30)
Ans: A
(31)
Ans: B
(32)
Ans: C
(33)
If is the significance level and C is the confidence level, then which of the following is true ?
(A) C 2 1
(B) C 2 1
(C) C 1
(D) C 1
Ans: D
(34)
Ans: D
(35)
Ans: D
(36)
Ans: D
(37)
If x1, x2, x3, ......, xn are the members of a random sample drawn from a population with mean , and
x is the mean of the sample, then the value of „t‟ is
(x ) n
(A) t
s
(x ) n
(B) t
s
( x x )2
(C) t
n 1
( x x )2
(D) t Ans: A
n 1
(38)
In the „t‟ test, if the calculated value of „t‟ is less than the tabulated value, then the null hypothesis is
(A) Accepted
(B) Rejected
(C) Further investigation required
(D) None of the above Ans: A
(39)
The mean life time of a sample of 100 LED bulbs produced by a company is 1570 hours with a
standard deviation of 120 hours. If the average life of bulbs is 1600 hours, then the value of „t‟ is
(A) 0.9
(B) 1.7
(C) 2.5
(D) 3.4
Ans: C
(40)
Ans: A
Probability MCQs | RTMNU Winter-2020
MCQs on Probalility
RTMNU Winter 2020
Q.1. Consider the experiment of throwing two dice. Let X denote the sum on two dice. Then
P(1<X<8) is.
Ans.(D)
Ans.(B)
1
;a x b
Q.3. The mean for the distribution f x b a
0 ; otherwise is
(A) a b (B)
a b (C)
b
(D)
a
2 2 2
Ans.(B)
x e x
(A) P X x (B) P X x
x! x!
Ans.(A)
C 2 x y , x 0,1,2, y 0,1,2,3
f x, y
0, otherwise
Ans.(A)
Ans.(B)
Ans.(A)
X 0 1 2 3 4
F(X) 1/9 2/9 3/9 2/9 1/9
Ans.(A)
Ans.(A)
Q.10. Three companies A,B and C supply 25%, 35% and 40% of the notebooks to a school. Past
experience shows that 5%, 4% and 2% of the notebooks produced by these copies are defective.
If a notebooks was found to be defective, what is the probability that the notebooks was supplied
by A?
44 25 13 11
(A) (B) (C) (D)
69 69 24 24
Ans.(B)
x 5 / 2, 0 x 1
Q.11. Find the mean of a random variable X if f(x)= 2 x, 1 x 2
0,
otherwise
Ans.(C )
Q.12. The probability that a student knows the correct answer to a multiple choice question is
2/3. If the student does not know the answer, then the student guesses the answer. The
probability of the guessed answer being correct is 1/4. Given that the student has answered the
question correctly, the conditional probability that the student knows the correct answer is
2 3 5 8
(A) (B) (C) (D)
3 4 6 9
Ans.(D)
Q.13. Suppose four coins are tossed, the values that of a random variable H (No. of heads) can
take are:
Ans.(B)
Q.14. If E and F are two events associated with the same sample space of a random experiment
then PE | F is given by
P E F P E F
(A) provided P F 0 (B) provided P F 0
P F P F
P E F P E F
(C) (D)
P F P E
Ans.(A)
Q.15. If an unbiased coin is tossed once, then the two events head and tail are
Ans.(D)
Q.16. A card is drawn from a pack of 52 cards. What is the probability of getting a king of a
black suit?
Ans.(A)
Q.17.The events when we have no reason to believe that one is more likely to occur than the
other is called:
Ans.(D)
Q.18. Let X and Y be two independent random variables. Which one of the relations between
expectation(E), variance(Var) and covariance(Cov) given below is FALSE?
Ans.(D)
1
2 ; probabilit y 3
1
Q.19. If X is a random variable defined by X 1 ; probabilit y then the expectation of X is
6
3 ; probabilit y 1
2
Ans.(D)
Ans.(B)
Q.21. In a simultaneous toss of two coins, the probability of getting no tail is:
1 1
(A) (B) (C) 2 (D) 1
4 2
Ans.(A)
Ans.(C )
Ans.(C )
(A) Xf ( X ), Xf ( X ) (B) X 2
f ( X ), X 2 f ( X )
(C) f ( X ), f ( X ) (D) Xf ( X ), Xf ( X
2 2
)
Ans.(A)
Q.25. A bag ‘A’ contains 2 white and 3 red balls and a bag ‘B’ contains 4 white and 5 red balls.
One ball is drawn at random from one of the bags is found to be red. The probability that it was
from bag B is:
27 3 25 5
(A) (B) (C) (D)
52 5 52 9
Ans.(C )
C 2 x y , x 0,1,2, y 0,1,2,3
f x, y
0, otherwise
Ans.(C )
Ans.(A)
Ans.(A) Ans.(B)
Q.29. An um contains five balls two balls are drawn and found to be white the probability that all
the balls are white is:
1 3 1 2
(A) (B) (C) (D)
2 10 10 5
Ans.(A)
Ans.(D)
Q.31. Each of three identical jewellary boxes have two drawers. In each drawer of the first box
there is a gold watch. In each drawer of the second box there is a silver watch. In one of the
drawers of the third box there is gold watch while in the other there is a silver watch. If we select
a box at random and open one of the drawers and find it to contain a silver watch, then the
probability that the other drawer has gold watch is
Ans.(A)
Ans.(B)
x 2 1 ;0 x 1
Q.33. Is the function F(x) = a distribution function ?
0 ; otherwise
Ans.(B)
Q.34. In a Poisson distribution, the mean and standard deviation are equal.
Ans.(B)
ex ; x 0
Q.35. The moment generating function f(x) = is
0 ; otherwise
Ans.(D)
kx if 0 x 2
Q.36. If the PDF of a continuous r.v. is given as f ( x) .
0 otherwise
1 1
(A)1 (B) (C) (D) None of these
2 4
Ans.(A)
Q.37. For a continuous random variable X, the probability density function f(x) represents
(A) The probability at a given value of X, (B) The area under the curve at X,
(C) The area under the curve to the right of X, (D) The height of the function at X,
Ans.(B)
Q.38. Suppose you roll two dice. What is the probability the sum is 8?
Ans.(A)
Ans.(A)
x : 0 1 2
Q.40. Value of k in the following PMF is
f ( x) : k k 2k
1 3 1
(A) (B) (C) (D) None of these
2 2 4
Ans.(C )
x, 0 x 1
Q.41. Find the Moment Generating Function of f(x) = 2 x, 1 x 2
0, otherwise
2 2 2 2
et 1 e t 1 e 2t 1 e 2t 1
(A) (B) (C) (D) 2
t t t t
Ans.(A)
Ans.(C )
2e x2 y , x 0, y 0
f x, y
0, otherwise
Ans.(C )
Q.44. In a Poisson distribution, if ‘n’ is the number of trails and ‘p’ is the probability of success,
then the mean value is given by?
Ans.(A)
Q.45. An industrial firm uses three hotels for its clients. From the past experience it is known
that 20%,50%,30% of the clients are assigned rooms at hotel palace, hotel ganapati and hotel
kundan plaza respectively. If the fault in plumbing is 5%,4%,8% of the rooms at hotel palace,
hotel ganapati and hotel kundan respectively, then the probability that a person with a room
having fault plumbing was assigned accommodation at hotel kundan plaza is.
Ans.(A)
1
(C) F x f v dv (D) None of these
0
Ans.(A)
Ans.(B)
Ans.(A)
0 ;x 0
Q.49. If F(x) =
1 e
x
2
;x 0
is the distribution function, then the value of F(2) is
Ans.(A)
Q.50. If F(x) is the distribution function of random variable X then P(a X b) is the
distribution function, then the value of F(2) is
(A) F (a) F (b) (B) F (b) F (a) (C) a b (D) f (b) f (a)
Ans.(B)
1
(A) f (x) constant (B) f ( x) e ( x ) / 2 2
, x
2
2
1
(C) f ( x) e ( x ) / 2 2
, x
2
(D) None of these
Ans.(B)
Q.52. The mileage in thousands of miles which car owners get with a certain kind of type is a
random variable having probability density function
1 x / 20 ,x 0
e
f ( x) 20
0 ,x 0
The probability that one of these tyres will last atmsot 10,000 miles
Ans.(A)
Ans : (b)
( | |
Ans : (b)
3)
d)
Ans : (c)
b) an even
d) trigonometric
Ans : (a)
b) an odd
d) logarithmic
Ans : (c)
(
( (
b) 0
( (
c) d) None of these
Ans : (b)
7) ( {
(
a) 0 b) 1 c) 2 d) 4
Ans : (a)
8) ( {
( (
a) 0, b) 0, c) 0,0 d) None of these
Ans : (c)
9)
Ans : (a)
10) ( {
( (
a)
Ans : (d )
Ans : (b)
a) Sine terms b) Cosine terms c) Both sine and cosine terms d) None of
these
Ans : (b)
Ans : (b)
Ans : (d )
Ans : (a)
16) The constant term in the Fourier series for function f(x) = - 2 in (-2, 2) is
a)
Ans : (d )
a) b) c) d)
Ans : (a)
Ans : (b)
( {
a) b) c) d)
Ans : (a)
20 W D ’
Ans : (d )
21 W D ’
c) [f( ) + f( ] d) [f( ) – f( ]
Ans : (b)
a) b) c) d)
Ans : (d )
4 Mathematics-Ganit Sangrah | Satish Tiwari
MCQs on Fourier Series | RTMNU Winter-2020
Ans : (c)
a) ∑ b) ∑ (
c) ∑ ( d) none of these
Ans : (c)
Ans : (c)
26) In the Half Range Fourier Cosine series of f(x) = xsin x in(0 is equal
to _______
a)
Ans : (b)
27) ( | |
( (
a) 0, b) 0, c) 0,0 d) None of these
Ans : (c)
28) In the Half Range Fourier Sine series of f(x) = lx- in(0 is equal to
_______
a)
Ans : (c)
5 Mathematics-Ganit Sangrah | Satish Tiwari
MCQs on Fourier Series | RTMNU Winter-2020
Q29) f(x)= { is
Ans : (b)
Ans : (b)
31) What is the Fourier series expansion of the function f(x) in the interval (c, c+2 ?
a) ∑ ∑ b) ∑ ∑
c) ∑ ∑ d) ∑ ∑
Ans : (a)
Ans : (d )
A)√ B) √ C) √ D) √
Ans : ( A)
A) 0 B) 1 C) 2π(W) D) π𝜹(W)
Ans : ( B)
A) ̅ ( ) B) ̅
(s) C) ̅
(a) D) (̅ )
Ans : ( D)
A)Fourier sine transforms B) Fourier cosine transform C) Fourier sine integral D) Fourier
cosine integral
Ans : ( D)
A) B) C) D) √
Ans : ( B)
A) B) C) s D) √
√ √
Ans : ( D)
1, x 1
Q.7) The Fourier integral of
0 x 1
Ans : ( A)
√ B) √ C) √ D) 1
Ans : (C )
A) B) C) D)
Ans : ( B)
A)√ B) √ C) √ D) √
Ans : ( B)
1, | x | 1
Q.11) Fourier sine transform of f ( x)
0, | x | 1
A)√ B) C) D) √
Ans : ( D)
2 2
A)
Fc (s) cos(sx)ds
0
B)
F (s) cos(sx)dx
0
c
2 2
C)
Fc (s) cos(sx)ds
D)
F (s) cos(sx)dx
c
Ans : ( A)
Ans : ( B)
1 j
A) F ( j ) B) F ( j ) j C) F ( j ) D) F ( j )
j j
Ans : ( A)
Q.15) If the Fourier transform of f (t ) is F ( j ) the what is the Fourier transform of f (t )
A) F ( j ) B) F ( j ) C) F ( j ) D) None of these
Ans : ( D)
Ans : ( D)
x sin mx
|x|
Q.17) If he Fourier transform e is √ then dx ?
0
1 x2
A) e m B) e 2 m C) 0 D) None of these
2
Ans : ( A)
cos xd
Q.18) The Fourier cosine integral of function e x the value of
0
1 2
A) ex B) ex C) ex D) ex
2 3 4 6
Ans : ( A)
Q. 2) L[ ] is
n 1 n n 1 n
A) n
B) n 1 C) n 1
D) n
s s s s
Ans : (C )
A) ( ) B) - ( ) C) ( ) C) ( )
Ans : ( B)
Q.5) , -n
A) B) C) D)
Ans : ( D)
Q.9) [ ] is
A) t B) C) D)
Ans : ( B)
Q.11) * +
Q.12) { }
A) B) t sint C) D) t sint
Ans : (C )
Q.14) *, - +
A)[1-cos2(t-1)]u(t-1) B) [1-cos2(t-1)] C) [1-cos2t]u(t-1) D) [1-cos2(t+1)]u(t+1)
Ans : ( A)
Q.17) , - is
A) sint u(t) B) sin (t+π) C) sin(t+π) u(t+π) D) sin (t-π) u(t-π)
Ans : ( D)
A√ B) √ C) √ D) √
Ans : ( B)
Q.22) ∫ * + =
A) B) -4 C) D)
Ans : (C )
Q.23) * + is
A) Sin(t-4)u(t-4) B) cos4(t-2)u(t-2) C) cos (t-2)u(t-2 ) D) sin4(t-2)u(t-2)
Ans : ( B)
Q.25) Given L[ √ ] = ⁄
then L * +=
√
A) B) C) D) None of these
√ √
Ans : ( A)
Q.26) L ,∫ -=
A) B) C) D)
Ans : (C )
Q.26) ∫ sin 2t dt =
A) L { } B) C), - D) All are Correct
Ans : ( D)
Q.27) * +
A) B) C) D) none of these
Ans : (C )
A) ∫ B) ∫
C) ∫ D) ∫
Ans : ( A)
Q.29) ∫
A)* + C)* + D)
Ans : (C )
Q.31) L* +=
A) cot-1s B) tan-1s C) -1
s D) none of these
Ans : ( A)
Q.32) * +
A) * ( )+ B) * ( )+ C)* ( )+ D)* ( )+
Ans : ( A)
Q.32) The inverse L.T. of is
A) [ ] B) A) [ ] C) [ ] D) [ ]
Ans : ( D)
Q.33) L[ sin2(t- ]=
A) B) C) D)
Ans : (C )
A) * + B) * + C) * + D) * +
Ans : ( A)
A) B) C) D)
Ans : ( D)
Q.36) L *∫ +=
A) ( ) B) ( ) C) ( ) D) None of these
Ans : ( A)
A) B) C) D)
Ans : ( B)
Q.38) Laplace transform of function ,where a and b are constant are given by
A) B) C) D)
Ans : ( D)
{ } { }
–
A) B) C) D) * +
Ans : ( A)
{ }
B) C) D)
Ans : ( A)
{ } , then L{ }
√
B) C) D)
√ √ √ √
Ans : (C )
[ ]
A) B) C) D)
Ans : (C )
C) ( ) [ ] ( ) D) None of these
Ans : ( B)
Q.45) * +
√ √ √ √ √
A) ( ) B) ( ) C) ( ) D) ( )
√ √
Ans : (C )
+y=0,
A) [ ] [ ] B) [ ] [ ]
C) [ ] [ ] D) None of these
Ans : ( B)
{ }
A) B)Zero C) D)1
Ans : ( A)
A) B) D)
Ans : ( A)
, -=
A) Cosh8t B) cos8t C) sinh8t D) sin8t
Ans : ( B)
[ ] { } , -
A) ∫ B) ∫
C) ∫ D) ∫
Ans : (C )
{ } ̅ { }
A) ̅ B) ∫ ̅ C) ̅ ̅
Ans : (C )
{ } ̅ { }
A) ̅ B) ∫ ̅ C) ̅ ̅
Ans : ( D)
{ } ∫
A) B) C) D) 0
Ans : (C )
is
A) B) C)
Ans : ( A)
{ }
A)sin u(t) B)sin (t+ C) D
Ans : ( D)
{∫ }
A) B) ⁄ D)
Ans : ( A)
∫ √
√
A)1/t B)1/2 C)1/3 D)1/u
Ans : ( B)
[ { }]
( ) ( ) ( ) ( )
A) B) C) D)
Ans : ( B)
{ }
A) B) C) D)
Ans : ( A)
{ }
A) B) C) D)
Ans : ( D)
( )[ ] ( )[ ]
( )[ ] ( )[ ]
Ans : (C )
( )[ ] ( )[ ]
( )[ ] ( )
Ans : (C )
( ) ( )
Ans : ( A)
Q.8) If the characteristic equation for the matrix A is 3 then the Eigen
value of the matrix A are
( ) ( )
( ) ( )
Ans : (C )
( ) [ ] ( ) [ ]
( ) [ ] ( ) [ ]
Ans : ( A)
( ) ( )
√ √ √ √ √
( ) ( )
√ √ √ √ √ √
Ans : ( A)
2 Mathematics-Ganit Sangrah | Satish Tiwari
MCQs on Matrix | RTMNU Winter-2020
Q.15) If [ ] is a non-singular square matrix and is the Eigen value of [ ] then the Eigen value
of is ____
( ) ( ) ( ) ( )
Ans : (C )
( ) ( )
( ) ( )
Ans : ( B)
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : ( A)
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : (C )
A) [ ]
B) [ ]
C) [ ]
D) None of these
Ans : (C )
A)
B)
C)
D)
Ans : ( A)
A)
B)
C)
D)
Ans : ( A)
Q.24) If [ ] then [ ]
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : ( D)
A) [ ]
√
B) [ ]
√
C) [ ]
√
D)
Ans : (C )
A)
B)
C)
D)
Ans : ( A)
Q.30) The set of vectors are said to be linearly dependent then there exists
scalars not all zeros, such that
A) True
B) False
C) Could be either
D) None
Ans : ( A)
Q.32) If A is the given matrix and be the eigen values of [ ] then the
Q.33) If 2,0,3 are Eigen values of a matrix [A] then the inverse of a A is exists
A) True
B) False
C) Could either
D) None
Ans : ( B)
A) -3,-3,5
B) 1,2,3
C) 2,2,8
D) 0,3,15
Ans : ( A)
A) 0,1,2
B) -1,0,2
C) -1,1,0
D) -1,1,2
Ans : ( D)
A)
B)
C)
D)
Ans : ( B)
[ ]
B)
[ ]
[ ]
C)
[ ]
D) None
Ans : (C )
A) 3,3,5
B) 1,2,3
C) 2,-2,8
D) 0,3,15
Ans : ( D)
) r n v u o m tr x [ ] th n
A) Determine of A B) Zero
C) Sum of the element of principle diagonal D) None
Ans : ( A)
) th v n m tr x n th n v lu s o n
x
y
[ ] th n th non l From is ________
z
A) B) x y z ) D) x y z
Ans : ( B)
) th v n s y th n =?
A) A=[ ] B) A=[ ] C) A=[ ] D) A=[ ]
Ans : ( A)
)Solv n th qu t on x y z x y z
y r m r s rul th v lu o x y and z are respectively
A)1,2,3 B)1,2,-2 C)1,2,2 D)1,-2,2
Ans : (C )
) Sp tr l r us o th m tr x [ ] is
A)2 B) 4 C) -6 D) 5
Ans : ( D)
) v tor o m tr x [ ]
) th or m n us to n
A) nv rs o m tr x B) Power of matrix
C) Any power of matrix D) All of the above
Ans : ( D)
)Eigen vectors of a real symmetric matrix A are orthogonal if the eigen values are ______
A Repeated B Non-Repeated
C Complex D None of these
Ans : ( B)
)If 1,2,3 are the eigen values of A, then the eigen values of are:
)If [ ] , then is
(a) [ ]
(b) [ ]
(c) [ ]
(d) [ ]
Ans : (c)
)If [ ] , then =?
(a) [ ]
(b) [ ]
(c) [ ]
(d) [ ]
Ans : (a)
(a)
(b)
(c)
(d)
Ans : (b)
(a) ( )
(b) ( )
(c) ( )
(d) ( )
Ans : (a)
Ans : (a)
a) 2 b) 1 c) -2 d) -1
Ans : (c)
) If A= [ ]
a)A+3I+2 b) (A+I)(A+2I) = 0 c) d) 0
Ans : (b)
) If [ ] th n non l orm o
A) B)
) )
Ans : ( A)
a) 5 b) 7 c) 4 d) none of these
Ans : (b)
)If A=[ ]
a) b) c) d)
Ans : (c)
) The trace & determinant of a 2*2 matrix is -2 & -35 respectively eigen values are
A) -30 & -5
B) -37 & -1
C) -7 & 5
D) 17.5 & -2
Ans : (c)
A)
B)
C)
D)
Ans : ( A)
A) [ ]
B) [ ]
C) [ ]
D) [ ]
Ans : ( D)
A)2 B) C)0 D)
Ans : ( A)
) [ ] th n s
A) 4A-5I B) 4A+2I C) 4A+5I D) 4A-2I
Ans : (C )
) s ny n n m tr x s s l r th n | | | |wh r s
(a)
(b)
(c)
(d)
Ans : (a)
6) If -2 and -3 are two roots of partial differential equation, then its C.F. is
(a)
(b)
(c)
(d)
Ans : (c)
(8) If 2,2,2 are three roots of partial differential equation, then its C.F. is
(a)
(b)
(c)
(d)
Ans : (b)
(b)
(c)
(d)
Ans : (a)
13) If 2,3,3 are three roots of the partial differential equation then its C.F. is
(a)
(b)
(c)
(d)
Ans : (b)
(b)
(c)
(d)
Ans : (b)
18) The CF of is
(a)
3 Mathematics-Ganit Sangrah | Satish Tiwari
MCQs on Partial Differential Equation | RTMNU Winter-2020
(b)
(c)
(d)
Ans : (b)
23) When solving one-dimensional heat equation using a variable separable method we
get the solution if:
(a) k is positive
(b) k is negative
(c) k is zero
(d) It can be anything
Ans : (b)
26) The solution of first order partial differential equation is given by:
(a)
(b)
(c)
(d) All of the above.
Ans : (d )
27) While solving a partial differential equation using a variable separable method, we
get the ratio to a constant, which:
(a) can be +ve/-ve integer or zero
(b) can be +ve/-ve rational or zero
(c) must be a +ve integer
(d) must be a -ve integer
Ans : (b)
Ans : (a)
33) P.I. of is
(a)
(b)
(c)
(d)
Ans : (b)
34) For a partial differential equation in a function and two variables ; what
is the form obtained after separation of variables is applied:
(a)
(b)
(c)
(d)
Ans : (d )
(c)
(d) None of the above
Ans : (c)
37) If 1,1,4 are the three roots of the partial differential equation, then its C.F. is :
(a)
(b)
(c)
(d)
Ans : (a)
39) If 2,3,4 are three roots of partial differential equation then its C.F. is:
(a)
(b)
(c)
(d)
Ans : (c)
dz
3. The value of z 2dz , where C is a circle given by | z 2 | 1
c
A) 0
B)
C)
D)
Ans : ( B)
z2
4. The value of c z 4 1dz using Cauchy’s Integral around the circle
where is
A) B)
C) D)
Ans : ( B)
1
6. The value of 1 z
c
2
dz where C is the contour |z - = 1 is
A). B)
C) D)
Ans : ( B)
B)
C)
D)
Ans : (C )
10. Using Cauchy’s Integral theorem, the value of the integral (integration being taken in
z3 6
contour clock-wise direction) c 3z i dz ,C is is
A)
B)
C)
D)
Ans : ( A)
1
11. The value of the contour integral 2
| z i| 2
z 4
dz in the positive sence is
A)
B)
C)
D)
Ans : ( B)
B)
C)
D)
Ans : ( D)
3z 4
14. The value of the integral z
c
2
4z 5
dz where C is the circle is given by
A) 0
B) ⁄
C) ⁄
D) 1
Ans : ( A)
Ans : ( B)
z4
18. The value of z
c
2
2z 5
dz , where C is a circle given by is
A) 0
B)
C)
D)
Ans : ( A)
20. If is analytic inside and on the boundary of a closed curve C, except at some poles,
then
A) f ( z)dz 0
c
B) f ( z)dz 0
c
Ans : (C )
23. If is a pole of order I is an Analytic function inside & on the closed curve C,
‘a’ is any point within C then the Cauchy’s Integral For ula is given by
f ( z) 2i ( n )
A) ( z a)
c
n 1
dz
n!
f (a)
f ( z) 2i ( n )
B) ( z a)
c
n 1
dz
n!
f (a)
f ( z) 2i ( n )
C) ( z a)
c
n 1
dz
n!
f (a)
f ( z) 2i
D) ( z a)
c
n 1
dz
(n 1)!
f ( n ) (a)
Ans : (C )
25. If then which of the poles will lies inside the region
A) only
B) only ⁄
C) ⁄
D) ⁄
Ans : ( B)
can be represented as
A)
B)
C)
D)
Ans : ( D)
A)
B)
C)
D)
Ans : (C )
A)
B)
C)
D)
Ans : ( A)
C)
D) 1
Ans : ( B)
37. The value of the integral ∫ evaluated around the circle is _______
A)
B)
C)
D)
Ans : ( B)
D) All of these
Ans : ( D)
40. If then which of the poles will lies inside the region
A)
B)
C)
D)
Ans : ( D)
A)
B)
C)
D)
Ans : ( A)
A)
B)
C)
D)
Ans : ( A)
44. If is analytic inside and on the boundary of a closed curve C, then f ( z)dz ...
c
A)
B)
C) 1
D) 0
Ans : ( D)
A) 0 B) 2 C) 2 D) 2
Ans : ( B)
𝑑𝑦
1) If 𝑑𝑥 = 𝑓(𝑥, 𝑦) 𝑎𝑡 𝑦(𝑥0 ) = 𝑦0 , then the first approximate value of 𝑦1 by Euler’s method is
A) 𝑦1 = 𝑦0 + ℎ𝑓(𝑥0 , 𝑦0 ) B) 𝑦1 = 𝑦0 + 4ℎ𝑓(𝑥0 , 𝑦0 )
C) 𝑦1 = 𝑦0 − ℎ𝑓 (𝑥0 , 𝑦0 ) D) 𝑦1 = 𝑦0 + 2ℎ𝑓(𝑥0 , 𝑦0 )
Ans: A
𝑑𝑦
2) If 𝑑𝑥 = 𝑓(𝑥, 𝑦) 𝑎𝑡 𝑦(𝑥0 ) = 𝑦0 then the first approximate value of 𝑦1 by Euler’s modified method is
(1) 3ℎ (1) ℎ
A) 𝑦1 = 𝑦0 + [𝑓 (𝑥0 , 𝑦0 ) + 𝑓(𝑥0 + ℎ , 𝑦1 )] B) 𝑦1 = 𝑦0 + 2 [𝑓(𝑥0 , 𝑦0 ) + 𝑓(𝑥0 + ℎ , 𝑦1 )]
2
(1) ℎ (1) ℎ
C) 𝑦1 = 𝑦0 + 2 [𝑓(𝑥0 , 𝑦0 ) + 𝑓(𝑥0 , 𝑦1 )] D) 𝑦1 = 𝑦0 + 2 [𝑓(𝑥0 , 𝑦0 ) + 𝑓(𝑥0 , 𝑦1 )]
Ans: B
Ans: B
𝑑𝑦
4) If 𝑑𝑥 = 𝑥 2 𝑦 − 1 , 𝑦(0) = 1 then the value of 𝑦 ′′′ (0) is
A) -1 B) -2
C) 2 D) 3
Ans: C
5) In which of the following method, we approximate the curve of solution by the tangent in each interval?
A) Picard’s method B) Euler’s method
C) Newton’s method D) Runge-Kutta method
Ans: B
𝑑𝑦
6) Using Euler’s method for = 𝑙𝑜𝑔10 (𝑥 + 𝑦) , 𝑦(1) = 2 , the value of 𝑦(1.2) is
𝑑𝑥
A) 2.0854 B) 2.384
C) 2.0954 D) 1.288
Ans: C
𝑑𝑦
7) Using Euler’s method for = 𝑥 + √𝑦 , 𝑦(0) = 1 , the value of 𝑦(0.2) is
𝑑𝑥
A) 0.4 B) 0.2
C) 1.2 D) 0.2421
Ans: C
8) Taylor series method will be very useful to give some ______ for powerful numerical methods.
A) Initial value B) Final value
C) Initial starting value D) Middle value
Ans: C
𝑑𝑦
11) Using Euler’s method for = 𝑦, 𝑦(0) = 1 the value of 𝑦(0.1) is
𝑑𝑥
A) 1.125 B) 1.105
C)1.128 D) 2.235
Ans: B
𝑑𝑦
12) Using Euler’s method for = 𝑦 + 𝑒 𝑥 , 𝑦(0) = 0 , the value of 𝑦(0.2) is
𝑑𝑥
A) 0.4 B) 0.2421
C) 1.2 D) 0.2
Ans: D
13) Which of the following methods is not used to find the solution of first order D.E.?
A) Euler’s Method B) Euler’s Modified Method
C) Taylor’s Series Method D) Regula Falsi Method
Ans: D
***
MCQ U-I Numerical Methods
1. If the root of the equation x log 10 x 1.2 0 lying between 2.7 and 2.8 then
first approximation to root using Regulafalsi Method is given by
Ans. (b)
2.The formula used for solving the equation using Regula Falsi method is
𝑎𝑓(𝑏)−𝑏𝑓(𝑎)
𝑥= 𝑓(𝑏)−𝑓(𝑎)
a)True b) False
c) None of above d) 0
Ans (a)
3. Find the positive root of the equation 3x-cosx-1=0 using Regula Falsi method and
correct up to 4 decimal places.
Ans(c)
4. Newton – Raphson formula of successive approximation to find the approximate value of a root
of the equation f ( x) 0 is
f ( xn ) f ( xn )
(a) Xn-1 = xn (b) Xn-1 = xn
f ( xn ) f ( xn )
f ( xn ) f ( xn )
(c) Xn-1 = xn (d) Xn-1 = xn
f ( xn ) f ( xn )
Ans. (a)
Ans. (d)
Ans. (b)
Ans. (a)
Ans(b)
9 . Solve the following equations using Crout’s Method to find the value of x.
a) 3 b) 7 c) 0 d) 1
Ans( d)
10. Which is correct Lower triangular matrix for
3x 2 y 7 z 4, 2 x 3 y z 5, 3x 4 y z 7 using Crout’s Method.
2 7 2 7 2 7
1 3 3 1 3 3 3 0 0 1 3 3
11 11 5 11
(a) 0 1 (b) 0 1 (c) 2 0 (d) 0 1
5 5 3 5
0 0 1 0 0 1 3 2
8 0 0 1
5
Ans. (c)
𝑑𝑦
11. Taylor series for the differential equation 𝑑𝑥 = 𝑥 2 − 𝑦, 𝑔𝑖𝑣𝑒𝑛𝑦(0) = 1 𝑖𝑠
𝑥3 𝑥4 𝑥3 𝑥4
(a) 𝑦 = 1 − 𝑥 + − + − − − (b) 𝑦 = 1 + 𝑥 + + + −−−
3 4 3 4
𝑥3 𝑥4 𝑥3 𝑥4
(c) 𝑦 = 1 − 𝑥 − − − − − − (d) 𝑦 = 𝑥 + − + −−−
3 4 3 4
Ans(a)
𝑥2 𝑥2
c) 𝑦(𝑥 ) = 𝑥𝑦 ′ (0) + 𝑦 ′′ (0) + ⋯d) 𝑦(𝑥 ) = 1 + 𝑥𝑦 ′ (0) + 𝑦 ′′ (0) + ⋯
2! 2!
Ans(b)
𝑑𝑦
13. If = 𝑥 2 𝑦 − 1 , 𝑦(0) = 1 then the value of 𝑦 ′′′ (0) is
𝑑𝑥
a) -1 b) -2 c) 2 d) 3
Ans(c)
𝑑𝑦
14. Eular’s modified method for the differential equation 𝑑𝑥 = 𝑓(𝑥, 𝑦), 𝑔𝑖𝑣𝑒𝑛𝑦(𝑥0 ) = 𝑦0
is given by
ℎ
(a)𝑦𝑛+1 = 2 {𝑓 (𝑥𝑛 , 𝑦𝑛 ) + 𝑓 (𝑥𝑛+1 , 𝑦𝑛+1 )
Ans c
𝑑𝑦
15. If 𝑑𝑥 = 𝑓 (𝑥, 𝑦) 𝑎𝑡 𝑦(𝑥0 ) = 𝑦0 then the first approximate value of 𝑦1
(1) ℎ
b) 𝑦1 = 𝑦0 + 2 [𝑓(𝑥0 , 𝑦0 ) + 𝑓(𝑥0 + ℎ , 𝑦1 )]
(1) ℎ
c) 𝑦1 = 𝑦0 + 2 [𝑓(𝑥0 , 𝑦0 ) + 𝑓(𝑥0 , 𝑦1 )]
(1) ℎ
d) 𝑦1 = 𝑦0 + 2 [𝑓(𝑥0 , 𝑦0 ) + 𝑓(𝑥0 , 𝑦1 )]
Ans(b)
𝑑𝑦
16. To solve the ordinary differential equation 3𝑑𝑥 + 5𝑦 2 = 𝑠𝑖𝑛𝑥 , 𝑦(0) = 5
𝑑𝑦 1 𝑑𝑦 1
c) = 5 (𝑠𝑖𝑛𝑥 − 5𝑦 2 ) , 𝑦(0) = 5 d)𝑑𝑥 = 3 (𝑐𝑜𝑠𝑥 − 5𝑦 2 ) , 𝑦(0) = 5
𝑑𝑥
Ans(b)
𝑑𝑦
17. Using Euler’s method for𝑑𝑥 = 𝑙𝑜𝑔10 (𝑥 + 𝑦) , 𝑦(1) = 2 , the value of 𝑦(1.2) is
a) 2.0854 b) 2.384 c) 2.0954 d) 1.288
Ans(c)
𝑑𝑦
18. Using Euler’s method for𝑑𝑥 = 𝑥 + √𝑦 , 𝑦(0) = 1 , the value of 𝑦(0.2) is
a) 0.4 b) 0.2 c) 1.2 d) 0.2421
Ans(c)
Ans(c)
𝑑𝑦
22. If = 𝑥𝑦 + 𝑦 2 𝑎𝑡𝑦(0) = 1 and 𝑘1 = 0.1, 𝑘2 = 0.1155, 𝑘3 = 0.1172, 𝑘4 = 0.13598,
𝑑𝑥
then the first approximate value of 𝑦 at x=0.1 by Rungekutta forth order formula is
a) 1.277 b) 1.1359 c) 1.1168 d) 1.1270
Ans(c)
𝑑𝑦
23. If𝑑𝑥 = 𝑓 (𝑥, 𝑦) 𝑎𝑡 𝑦(𝑥0 ) = 𝑦0 , then the first approximate value of 𝑦4
Ans(b)
dy 1
24. Given (1 x 2 ) y 2 , given y (0) 1, y (0.1) 1.06, y (0.2) 1.12, y (0.3) 1.21,
dx 2
f (0,1) 0.5, f (0.1,1.06) 0.5674, f (0.2,1.12) 0.6522, f (0.3,1.21) 0.7980,
then by Milne’s predictor method y (0.4) is to be obtained as
(a) 1.2772 (b) 1.2798 (c) 1.3808 (d) 1.4043
Ans.(a)
𝑑𝑦
25. If = 𝑓 (𝑥, 𝑦)and y (𝑥0 ) =𝑦0 , then the value of 𝑦4 at x = 𝑥4 by Milnes Predictor formula is:
𝑑𝑥
4ℎ ℎ
a) 𝑦4 = 𝑦0 + (2𝑓1 − 𝑓2 + 2𝑓3 )b) 𝑦4 = 𝑦0 + (2𝑓1 − 𝑓2 + 2𝑓3 )
3 3
4ℎ ℎ
c) 𝑦4 = 𝑦0 − (2𝑓1 − 𝑓2 + 2𝑓3 )d)𝑦4 = 𝑦0 − 3 (2𝑓1 − 𝑓2 + 2𝑓3 )
3
Ans(a)
26. Using Milnes predictor-corrector method solve the following differential equation
𝑑𝑦
= 2𝑒 𝑥 − 𝑦𝑎𝑡𝑥 = 0.4 𝑔𝑖𝑣𝑒𝑛𝑦(0) = 2 , 𝑦(0.1) = 2010, 𝑦(0.2)
𝑑𝑥
= 2.040, 𝑦(0.3) = 2.090, 𝑦(0.4) =
(a)2.1621 (b)2.1001 (c)2.0010 (d)2
Ans(a)
−4 5
27. Largest eigen value of the matrix A=[ ] is
1 2
(a) 3, (b) 0 (c) -3 (d) 2
Ans (c)
Multiple Choice Questions on U-VI Probability Distribution
1. In a Binomial distribution , if ' n ' is the is the number of trials and ' p ' is the
probability of success, then the mean value is given by ___________
A) n p B) n C) p D) n p 1 p
2. In a Binomial Distribution, if p , q and n are probability of success, failure
and number of trials respectively then variance is given by __________
A) n p B) n p q C) n p 2 q D) n p q 2
3. The probability of getting between 2 heads to 4 heads in 10 tosses of fair
coin using Binomial distribution is
A) 2.215 B) 1.587 C) 0.366 D) 0.712
4. Out of 800 families with 5 children each , how many would you expect to
have 3 boys using Binomial distribution if equal probabilities for boys and
girls is assumed ?
A) 100 B) 200 C) 300 D) 250
5. If the random variable X has the probability function
x e
f ( x) P( X x) , x 0 ,1, 2 , .... where is given positive constant ,
x!
then X is said to be
A) Binomially distributed B) Normally distributed
C) Poisson distributed D) None of these
A) 1 e B) e 2 C) e 2 D) e
11. In a normal distribution ,the highest point on the curve occurs at the mean
, which is also the
18. For a Binomial distribution the relation between mean and variance is
A) Mean < Variance B) Mean> Variance
C) Mean = Variance D) None of these
19. The shape of the normal curve depends on its ________
A) Mean deviation B) Standard deviation
A) 2 B) 1 2 C) 1 D) 3
23. The normal probability density function curve is symmetrical about the
mean i.e. the area to the right of the mean is the same as the area to
the left of the mean. This means P X P X is equal to
A) 0 B) 1 C) 0.5 D) 0.25
e x , x 0
30. A continuous random variable having density function f ( x)
0 , x 0
is said to be
A) Exponentially distributed
B) Binomially distributed
C)Normally distributed
D) None of these
31. Assume that, you usually get 2 phone calls per hour , calculate the
probability, that a phone call will come within the next hour.
A) 0.3935 B) 1 C) 0.01 D) 2.413
32. Which of the following statements are true about exponential
distribution ?
A) Exponential distribution is a continuous probability distribution that
often concerns the amount of time until some specific event happens.
B)The key property of the exponential distribution is memoryless as the
past has no impact on its future behavior.
C) The mean of the exponential distribution is 1/λ and the variance of the
exponential distribution is 1/λ2.
D) All of above statements are true.
33. If X is a normally normally distributed variable with mean μ = 30 and
standard deviation σ = 4 then P(x < 40) is
A) 0.9938 B) 0.3944 C) 0.2345 D) 0.5
34. If only 3 students came to attend class today, find the probability for
exactly 4 students to attend the classes tomorrow using Poisson
distribution for e = 2.71828 (approximately)
A)0.16803 B) 0.73452 C) 1.25789 D) 4.56850
35. If a coin is tossed 10 times then what is the chances of getting exactly 6 heads
using Binomial distribution ?
A)0.362144 B)0.205078 C)0.360678 D) None
1. For two correlated variables x and y , if coefficient of correlation between x
and y is 0.8014 , variance of x and y are 16 and 25 respectively. Then the
covariance between x and y is
A) 162.08 B) 16.028 C) 160.28 D) 16.208
2. If two regression lines are 5 y − 8 x + 17 = 0 and 2 y − 5 x + 14 = 0 then the mean
values of x and y i.e. x , y are
A) x = 4 , y = 3 B) x = 3 , y = 4
C) x = 1 , y = 2 D) x = 2 , y = 3
A) 39 B) 42 C) 32 D) 43
6. Which of the following divides a group of data into four equal parts ?
A) 2 B) 3 C) 4 D) 7
8. The first quartile Q 1 for the data 20 , 30 , 25 , 23 , 22 , 32 , 36 is
A) 20 B) 22 C) 25 D) 32
A) 0 B) 7 C) 2 D) 6
A) 42 B) 45 C) 48 D) 40
A) 2 B) 3 C) 4 D) None
13. What is the correct formula for mean deviation for ungrouped data ?
n n n n
x
i =1
i −x xi =1
i −x x
i =1
i −x x
i =1
i −x
A) B) C) D)
n n +1 n −1 n+2
Numbers 8 10 15 20
Frequency 5 8 8 4
A) r = ( x − x) ( y − y ) B) r = ( x + x) ( y + y )
( x − x) ( y − y )
2 2
( x + x) ( y + y )
2 2
C) r = D) r =
( x − x) ( y − y ) ( x − x) ( y − y )
( x) ( y )
2 2
( x) ( y )
2 2
A) 32 B) 64 C) 8 D) 16
x 6 7 8 9 10 11 12
f 3 6 9 13 8 5 4
A) 1.61 B) 1.43 C) 0 D) 2
A) Mean > Mode > Median B) Mode > Median > Mean
22. If for a distribution the difference of first quartile and median is greater than
23. If two regression coefficients are − 0.1 and − 0.9 then the value of coefficient
of correlation is
x on y is given by
C) x = −8 + 0.2 y D) y = −8 + 0.2 x
26. The multiple correlation coefficient R3.12 is given by which of the following ?
A) R3.12 =
(r
13 )2 + (r23 )2 − 2(r12 )(r13 )(r23 )
1 − (r12 )
2
B) R3.12 =
(r
13 )2 + (r23 )2 + 2(r12 )(r13 )(r23 )
1 − (r12 )
2
C) R3.12 =
(r
13 )2 + (r23 )2 + 2(r12 )(r13 )(r23 )
1 + (r12 )
2
D) R3.12 =
(r 13 )2 − (r23 )2 + 2(r12 )(r13 )(r23 )
1 − (r12 )
2
27. If r12 = 0.25 , r13 = 0.35 , r23 = 0.45 then find R2.13
28. Calculate the coefficient of correlation between x and y series from the
( x − x) ( y − y) ( x − x) ( y − y) = 122
2
following data: 2
= 136 , = 138 ,
A) 0.98 B) 0.89 C) − 0.98 D) − 0.89
x 1 2 3 4 5
y 2 5 3 8 7
y
30. If x = 10 , y = 22 and r = −2.2738 then the equation of line of regression y on
x
x is equal to
Class Interval 0 - 10 10 - 20 20 - 30 30 - 40 40 - 50
Frequency 5 10 12 15 18
A) 30 B) 35 C) 32 D) 40
Class Interval 45 - 50 50 - 55 55 - 60 60 - 65 65 - 70 70 - 75
Frequency 2 8 20 25 10 5
A) 50 B) 56.625 C) 60 D) 62.25
33. Find the value of 9th Decile D 9 from the following data :
A) 90 B) 98 C) 95 D) 92
35. The first four moments about origin for a distribution are 1 ' = −1.5 , 2 ' = 17
38. If there is no skewness in the distribution then which of the following is true ?
39. If mean = 29.6 , mode = 27.52 and Standard deviation = 6.5 , then the value
40. If two regression equations of the variables x and y are x = 19.13 + 087 y and
(1) If 𝜆1 , 𝜆2 , 𝜆3 , … … … . . 𝜆𝑛 are the Eigen values of matrix A, then the Eigen values of 𝐴−1
are
(A) 𝜆1 , 𝜆1 , 𝜆1 … … … … . . 𝜆1
1 2 3 𝑛
(B) 𝜆1 , 𝜆2 , 𝜆3 , … … … . . 𝜆𝑛
(C)𝜆1 1 1
+ 1, 𝜆 + 1, 𝜆 + 1 … … … … . . 𝜆 + 1.
1
1 2 3 𝑛
(D) 𝜆1 1 1
− 1, 𝜆 − 1, 𝜆 − 1 … … … … . . 𝜆 − 1.
1
1 2 3 𝑛
(C) 𝐵−1 𝐴𝐵 = [0 5
] (D) 𝐵−1 𝐴𝐵 = [−5 0
]
1 0 0 −1
(15) If the characteristic equation of matrix A is 3 − 18 2 + 45 = 0 then A = ?
n n
P ( r )
(C) P( A) = P(r ) − Z (r ) (D) P( A) =
r =1 r =1 Z ( r )
(19) If B is the non-singular modal matrix for given square matrix A then the
Matrix B −1 AB is always a ------
(A) Square Matrix (B) Null Matrix
(C) Diagonal Matrix (D) Upper Triangular Matrix
(20) In Sylvester’s theorem the eigen value of matrix A are always
(A) Zero (B) Equal (C) Unity (D) Distinct