Summative Assessment#2
IT2623
Ryle Ibañez 3/07/2022
2ITB Mrs. Maria Lourdes Edang
1. A certain Jose Velarde owns binary slot machine at CASINO FILIPINO. The slot machine is
composed of 4 slots. The jackpot is won whenever 3 adjacent slots consisting of alternating 0's
and l's come up. Determine the equation of this slot machine used to award the jackpot.
Simplify the function and implement it using NAND gates only.
Truth Table
A B C D S
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 0
0 1 0 0 1
0 1 0 1 1
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 1
1 0 1 1 1
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 0
K-MAP
SOP
Circuit Diagram
S = B’CD’ + A’BC’ + BC’D + AB’C
2. Design a circuit that accepts the binary code of decimal numbers 0 to IS and it outputs a 1 when
the input decimal is divisible by 2 or 3 (except 0). Simplify the function and implement it using
NOR gates only.
Truth Table
A B C D S
0 0 0 0 0
0 0 0 1 0
0 0 1 0 1
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 1
1 0 1 0 1
1 0 1 1 0
1 1 0 0 1
1 1 0 1 0
1 1 1 0 1
1 1 1 1 1
K-MAP
POS
Circuit Diagram
S = (A’+B+C’+D’)(A+B+C)(A+B’+D’)(B’+C+D’)
3. Simplify the following Boolean function F together with the don't care condition d. Construct the
circuit using NOR-NOR, NOR-AND, and OR-AND networks.
A. F(A,B,C,D) = Σ (0,6,8,14)| D = (A,B,C,D) = Σ(2,4,10)
TRUTH TABLE
A B C D F
0 0 0 0 1
0 0 0 1 0
0 0 1 0 X
0 0 1 1 0
0 1 0 0 X
0 1 0 1 0
0 1 1 0 1
0 1 1 1 0
1 0 0 0 1
1 0 0 1 0
1 0 1 0 X
1 0 1 1 0
1 1 0 0 0
1 1 0 1 0
1 1 1 0 1
1 1 1 1 0
K-MAP
POS
F = (B’+C)(D’)
LOGIC CIRCUITS
A. NOR-NOR
B. NOR-AND
C. OR – AND
B. F(w,x,y,z) = Σ (0,1,2,3,7,8,10) | D = (w,x,y,z) = Σ(5,6,11,15)
Truth Table
W X Y Z F
0 0 0 0 1
0 0 0 1 1
0 0 1 0 1
0 0 1 1 1
0 1 0 0 0
0 1 0 1 X
0 1 1 0 X
0 1 1 1 1
1 0 0 0 1
1 0 0 1 0
1 0 1 0 1
1 0 1 1 X
1 1 0 0 0
1 1 0 1 0
1 1 1 0 0
1 1 1 1 X
K-MAP
POS
F = (W’+Z’)(X’+Z)
LOGIC CIRCUITS
1. NOR-NOR
2. NOR-AND
3. OR-AND
4. Simplify the following Boolean function F together with the don’t care condition d. Construct the
circuit using AND-OR, NAND-OR, and NAND-NAND networks.
a. F(A, B, C, D) = Σ(1, 3, 5, 7, 9, 15); d(A, B, C, D) = Σ(4, 6, 13)
Truth Table
A B C D F
0 0 0 0 0
0 0 0 1 1
0 0 1 0 0
0 0 1 1 1
0 1 0 0 X
0 1 0 1 1
0 1 1 0 X
0 1 1 1 1
1 0 0 0 0
1 0 0 1 1
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 X
1 1 1 0 0
1 1 1 1 1
K-MAP
F = A’D + C’D + BD
LOGIC CIRCUIT
A. NAND-NAND
F
A. AND-OR
B. NAND-OR
F
b. F(A, B, C, D) = Σ(3, 4, 13, 15)
Truth Table
A B C D F
0 0 0 0 0
0 0 0 1 0
0 0 1 0 0
0 0 1 1 1
0 1 0 0 1
0 1 0 1 0
0 1 1 0 0
0 1 1 1 0
1 0 0 0 0
1 0 0 1 0
1 0 1 0 0
1 0 1 1 0
1 1 0 0 0
1 1 0 1 1
1 1 1 0 0
1 1 1 1 1
K-MAP
F = A’BC’D’ + A’B’CD + ABD
Logic Circuits
A. NAND - NAND
B. AND-OR
F
C. NAND-OR