0% found this document useful (0 votes)
228 views10 pages

Chem 142: Lecture 9: Reaction Classes

This document summarizes key topics from a lecture on precipitation reactions: 1) Precipitation reactions occur when aqueous solutions of certain ions are mixed, forming an insoluble solid precipitate. Selective precipitation can be used to separate ions based on their solubility. 2) Ions in solution can be represented using conventional, complete ionic, and net ionic equations. Spectator ions that appear on both sides of the reaction are canceled in the net ionic equation. 3) Stoichiometry can be applied to precipitation reactions to determine the amount of reactants needed to completely precipitate ions based on mole ratios in the balanced reaction. This allows selective precipitation to both separate and quantify ion concentrations.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
228 views10 pages

Chem 142: Lecture 9: Reaction Classes

This document summarizes key topics from a lecture on precipitation reactions: 1) Precipitation reactions occur when aqueous solutions of certain ions are mixed, forming an insoluble solid precipitate. Selective precipitation can be used to separate ions based on their solubility. 2) Ions in solution can be represented using conventional, complete ionic, and net ionic equations. Spectator ions that appear on both sides of the reaction are canceled in the net ionic equation. 3) Stoichiometry can be applied to precipitation reactions to determine the amount of reactants needed to completely precipitate ions based on mole ratios in the balanced reaction. This allows selective precipitation to both separate and quantify ion concentrations.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 10

12/28/2014

Chem 142:  Lecture 9
 Precipitation Reactions (4.4, 4.5)
 Ions in Solution (4.6)
 Selective Precipitation and 
Stoichiometry (4.7, 4.8)

Reaction Classes
• Precipitation: synthesis of an ionic solid
– a solid precipitate forms when aqueous solutions of 
certain ions are mixed

• Acid‐Base: proton transfer reactions
– acid donates a proton to a base, forming a molecule (water 
or another weak acid) and an aqueous salt
– Acid: proton‐donor; Base: proton‐acceptor

• Oxidation‐Reduction: electron transfer reactions
– electron transfer from one species to another, causing a 
change in the oxidation state of the two species
– OIL RIG: Oxidation Is Loss (of e‐), Reduction Is Gain (of e‐)
– includes combustion, the reaction of a substance with 
oxygen

1
12/28/2014

Precipitation Reactions
• Sometimes when we mix two solutions, an insoluble 
solid will form: 

AgNO3(aq)  +  NaCl(aq)       AgCl(s) +  NaNO3(aq)


K2CrO4(aq)   +   Ba(NO3)2(aq)    BaCrO4(s) +     KNO
2 3(aq)

• The solid, called a precipitate (or insoluble salt) is 
insoluble in water. 

• It is so insoluble that when its component ions find each 
other in solution, they very rapidly get locked together in 
large clumps, driving the rxn towards products.

P R (cont.)
• The main challenge in precipitation reaction is predicting 
what (if anything) will form. 

• Example:  Addition of potassium chromate to barium 
nitrate.

K2CrO4 (aq) + Ba(NO3)2

What is the precipitate?

2
12/28/2014

P R (cont.)
• One approach to understanding the chemistry is to 
consider the ions that are present in solution:

– K2CrO4 (aq)  consists of K+ (aq) and CrO42‐ (aq)


– Ba(NO3)2 (aq) consists of Ba2+ (aq) and NO3‐ (aq)

P R (cont.)
• When combining ions for see which precipitate could be 
formed, the precipitate must have a net charge of zero.

• Possible choices are BaCrO4 and KNO3.

• Answer:  BaCrO4.

3
12/28/2014

P R (cont.)
BaCl2(aq) AgNO3(aq) BaCl2(aq) + AgNO3(aq)

Cl- NO3- Cl- NO3-


Ba2+ Ag+ Ag+
Cl- Cl-
Cl- Ba2+ Ag+ -
Ag+
NO3
Cl- NO3- Ba2+ Cl- Ba2+
Cl-

BaCl2(aq) + 2AgNO3(aq)  2AgCl(s) + Ba(NO3)2(aq)


Barium and nitrate
Solid silver chloride
ions are left in
precipitates out of
aqueous solution.
solution.

P R (cont.)
• Notice in the previous example we know that Ba(NO3)2
isn’t the precipitate since in our first example this 
compound was soluble in water.

• Therefore, one way to determine if a precipitate will for 
is to simply study combinations of reactions where you 
know that one the potential precipitates is soluble.

• That’s exactly how precipitation or “solubility” rules have 
been determined.

4
12/28/2014

P R (cont.)

Concept Quiz
Two electrodes connected to a light bulb are immersed in a 0.1 M solution of KNO3.  
Which of the following pictures best represents the brightness of the bulb?

“bright” “dim” “dark”

5
12/28/2014

P R (cont.)

• Predict the outcome of the following reactions:

• KNO3 (aq) + BaCl2 (aq) KCl and Ba(NO3)2


Both are soluble

• Na2SO4 (aq) + Pb(NO3)2 (aq) PbSO4 and NaNO3


PbSO4 precipitates

• KOH (aq) + Fe(NO3)3 (aq) Fe(OH)3 and KNO3


Fe(OH)3  precipitates

Ions in Solution
• Conventional Equation: a bookkeeping of all species 
present, and arranged for charge neutrality.
Ba(NO3)2(aq) + Na2SO4(aq) BaSO4(s) + 2NaNO3(aq)

• Complete Ionic Equation: all aqueous species are split up into 
their component ions.
Ba2+(aq) + 2NO3-(aq) + BaSO4(s) + 2Na+(aq) + 2NO3-(aq)
2Na+(aq) + SO42-(aq)

• Net Ionic Equation: indicates exactly the chemical change that 
occurs, and nothing more.

Ba2+(aq) + SO42-(aq) BaSO4(s)

6
12/28/2014

IiS (cont.)
• Notice in the previous example that some ions appears as 
solvated species on both the reactant and product sides of 
the chemical equation:
Ba2+(aq) + 2NO3-(aq) + BaSO4(s) + 2Na+(aq) + 2NO3-(aq)
2Na+(aq) + SO42-(aq)

• Ions that appear on both the reactant and product side are 
referred to as spectator ions.
• Identifying spectator ions allows for one to focus on the 
chemistry of interest.
• Consistent with this focus, precipitation reactions are generally 
written as the Net Ionic Equation.

IiS (cont.)
• Example:  Write the balanced chemical equation, complete, 
and net ionic equation for the reaction of potassium chloride 
and silver nitrate.
• First:  Remember nomenclature and write the chemical 
reaction.
KCl (aq)  AgNO3 (aq) 
 AgCl (s)  KNO3 (aq)
• Next:  Using solubility rules write the ionic equation.

K  (aq)  Cl (aq)  Ag  (aq) + NO3 (aq) 



AgCl (s)  K  (aq)  NO3 (aq)

7
12/28/2014

IiS (cont.)
• Last:  Cancel spectator ions for either side of the complete 
ionic equation to obtained the net ionic equation

K  (aq)  Cl (aq)  Ag  (aq) + NO3 (aq) 



AgCl (s)  K  (aq)  NO3 (aq)

Cl (aq)  Ag  (aq) 


 AgCl (s)

Selective Precipitation and Stoich.
• We’ve seen that some ionic 
compounds are soluble, and other 
are not.
• Can use this behavior to remove 
species selectively.
• Example:  Separating Ag+ from Ba2+
from Fe3+
• Notice that selective precipitation is 
nothing more than an application of 
the solubility rules.

8
12/28/2014

S P & S (cont.)
• We can apply the mathematic of stoichiometry to 
precipitation reactions.
• Example:  What mass of NaCl must be added to 1.50 L of a 
0.100 M AgNO3 solution to precipitate all the Ag+?
• First step:  Determine the moles of Ag+ in solution.

0.100 mol AgNO3


1.50 L solution   0.150 mol AgNO3
1 L of solution

1 mol Ag 
0.150 mol AgNO3   0.150 mol Ag 
1 mol AgNO3

S P & S (cont.)
• Next:  Look at the stoichiometry of the precipitation reaction 
to determine the moles of Cl‐ needed.

Ag + (aq)  Cl- (aq) 


 AgCl (s)
1 mol Cl

0.150 mol Ag  
 0.150 mol Cl
1 mol Ag
• Finally, determine the mass of NaCl:
1 mol NaCl
0.150 mol Cl   0.150 mol NaCl
1 mol Cl
58.4 g NaCl
0.150 mol NaCl   8.76 g NaCl
1 mol NaCl

9
12/28/2014

S P & S (cont.)
• Of course, we can also think about limiting reactants in 
precipitation reactions.
• Example:  Calculate the mass of BaSO4 formed with 0.500 L of 
1.20 M Na2SO4 is mixed with 0.250 L of 0.350 M Ba(NO3)2.
• First, determine the moles of Ba2+ and SO42‐

1.20 mol Na 2SO 4


0.500 L solution   0.600 mol Na 2SO 4
1 L of solution
 0.600 mol SO 24

0.350 mol Ba  NO3 2


0.250 L solution   0.0875 mol Ba  NO3 2
1 L of solution
 0.0875 mol Ba 2 limiting

S P & S (cont.)
• Once the limiting reagent is identified, you know the moles of 
precipitate that will be formed.  All that’s left is to determine 
the mass:

233.43 g BaSO 4
0.0875 mol BaSO 4   20.4 g BaSO 4
1 mol BaSO 4
• One can use this limiting reagent approach to determine the 
amount of one ion is a sample by adding the other reactant in 
the precipitation reaction in excess.
• For example, you could figure out the amount of Ag+ in a 
sample by adding a NaCl solution until precipitation was 
complete.  The amount of AgCl formed is entirely dependent 
on the amount of Ag+ initially present.

10

You might also like