S4 Tutorial 1
S4 Tutorial 1
MA 2002D: Mathematics IV
Department of Mathematics
National Institute of Technology
Calicut
1 / 101
Question 1
2 / 101
Question 1(i)
R
c Re z dz where c is the straight line path from 1+i to 3+2i
R3
x(1+ 21 ) dx
R
c Re z dz = 1
2
=(1+ 2i )( x2 )31 = (1+ 2i )( 29 - 12 ) = 4+2i
3 / 101
Question 1(ii)
x
(a) Given y = 2 ⇒dx=2dy.
dz = dx + idy = 2dy + idy = (2 + i)dy .
R 2+i R 2+i
0 (x − iy )2 (dx + idy ) = 0 (x 2 − y 2 − i2xy )(dx + idy )
Substituting x = 2y and dz = (2 + i)dy , weget
R 2+i R1 10−i5
0 z̄dz = 0 (3y 2 − i4y 2 )(2 + i)dy = 2 .
4 / 101
(b) We have to integrate along the real axis to 2 and then vertically to
(2 + i)(that is from (0, 0) to (2, 0) then vertically to (2, 1)).
Split the integral into two parts, from (0, 0) to (2, 0) and from (2, 0)
to (2, 1),then find lines equation in both parts and integrate by
similar methods in part (a).
5 / 101
question 1(iii)
R 2
z dz where c is the parabola y = x 2 from (0, 0) to (2, 4).
z = x + iy = x + ix 2 =⇒ dz=(dx+i2xdx)=dx(1+i2x), then
" #2
x3 ix 6 (88+26i)
z dz = 02 (x + ix 2 )2 (1 + i2x )dx ) =
R 2
+ ix 4 − x 5 −
R
3 3 = 3
3
6 / 101
Question 1(iv)
(0,3).
Solution:
Let a = (0, 0), b = (3, 0), c = (3, 3), d = (0, 3).
R Rb Rc Rd Ra
c f (z)dz= a f (z)dz + b f (z)dz + c f (z)dz + d f (z)dz
Since C is a closed curve, and by cauchy theorem the integral will be equal
to zero.
7 / 101
question1(v)
z 2 + 2 dz
R
c
R2 R1 R0
= 0 (x 2 + 2)dx + 0 [(2 + iy )2 + 2]idy + 2 [(x + i x2 )2 + 2](1 + 2i )dx = 0
8 / 101
Question 1(vi)
Solution:
R Rb ′
We know that γ f (z)dz = a f (γ(t))γ (t)dt.
′
Parametrize C as γ(t) = 3e it , 0 ≤ t ≤ 2π. So γ (t) = 3ie it .
R 2π R 2π −it
z̄ 2 dz = 9e −2it 3ie it dt = 27i
R
c 0 0 e dt
= −27[e −it ]2π
0 = 27 − 27e
−2πi .
9 / 101
Question 2
10 / 101
Question 2(i)
(3z 2 − 2z + 4)dz where c is the boundary of the square with vertices
R
c
2 ± 2i, −2 ± 2i.
Solution:
Let ABCD be the square with vertices −2 − 2i, 2 − 2i, 2 + 2i, and −2 + 2i
respectively.
Z Z Z
(3z 2 − 2z + 4)dz = (3z 2 − 2z + 4)dz + (3z 2 − 2z + 4)dz+
c AB BC
Z Z
2
(3z − 2z + 4)dz + (3z 2 − 2z + 4)dz
CD DA
13 / 101
Question 2(ii)
2 − 2z
R
Varify Cauchy theorem for C (z + 3)dz where c is the circle | z |= 2 .
14 / 101
Solution
15 / 101
Question 2(iii)
16 / 101
Solution
Let ABC denote the triangle with vertices A(0,0), B(2,0), C(0,2).
On AB, y = 0, z = x , 0 ≤ x ≤ 2,
On BC, x + y = 2, 2 ≤ x ≤ 0
On CA, x = 0, 2 ≤ y ≤ 0
Z Z Z Z
2 2 2
z dz = z dz + z dz + z 2 dz
C AB BC CA
Z 2 Z 0 Z 0
2 2
= x dx + (x + i(2 − x )) (1 − i)dx + (iy )2 idy
0 2 2
=0
R dz
Using the integral C z+2 where C : |z| = 1. Prove that
Z 2π
1 + 2cosθ
dθ = 0.
0 5 + 4cosθ
18 / 101
Solution
By Cauchy’s Theorem
dz
Z
=0
C z +2
Therefore it is enough to prove that
Z 2π
dz 1 + 2cosθ
Z
= dθ
C z +2 0 5 + 4cosθ
Take z = e iθ , then dz = ie iθ .
We have e iθ = cos(θ) + isin(θ)
19 / 101
Z 2π
dz cosθ + isinθ
Z
=i
C z +2 0 cosθ + 2 + isinθ
Z 2π
(cosθ + isinθ)(cosθ + 2 − isinθ)
=i
0 (cosθ + 2)2 + sin2 θ
On Simplification,
Z 2π
dz i(1 + 2cosθ) − 2sinθ
Z
= dθ
C z +2 0 5 + 4cosθ
20 / 101
Question 3(i)
R (z 2 +1
Evaluate C z(2z+1) dz ; C: |z| = 1
21 / 101
Solution
(z 2 +1 R (z 2 +1) 2 +1)
dz − C 2(z
R R
C z(2z+1) dz= C z 2z+1 dz
2 2 +1)
= C (z z+1) dz − C 12 2(z
R R
(z+ 1 )
dz
2
=2πi(0 + 1) − 2πi(( −1 2
2 ) + 1) ( By Cauchy’s integral formula)
=- πi2
22 / 101
Question 3(ii)
R 2z+1
Evaluate C z(z+2)(z−3) dz
23 / 101
Solution
2z+1 A B C
Expressing as sum of partial fractions we get, z(z+2)(z−3) = z + z+2 + z+2
−1 −1 7
and on solving, we have A = 6 , B= 2 and C = 15 .
24 / 101
Question 3(iii)
Evaluate
dz
Z
, c : |z − 1| = 1
c (z − 3)3 (z− 3)(z − 4)
25 / 101
Solution
26 / 101
Question 3(iv)
Evaluate:
e −2z
Z
dz, C : |z| = 4
C (z + 3)4
27 / 101
Solution
28 / 101
Question 3(v)
Evaluate:
5z 2 + 2z
Z
dz, C : |z| = 3
C (z − 2)3 (z − 1)(z + 4)
29 / 101
Solution
5z 2 + 2z
The integrand dz has a pole of order 3 at z = 2
(z − 2)3 (z − 1)(z + 4)
and a simple poles at z = 1 and z = −4. Here z = 2 and z = 1 lie inside
|z| = 3.
Residue at z = 2
1 d2 3 5z 2 + 2z 4
= limz→2 2
(z − 2) 3
=
(3 − 1)! dz (z − 2) (z − 1)(z + 4) 3
Residue at z = 1
5z 2 + 2z −7
= limz→1 (z − 1) 3
=
(z − 2) (z − 1)(z + 4) 5
5z 2 + 2z −7
dz = 2πi( 43 +
R
Hence by Residue theorem, C 5 )
(z − 2)3 (z − 1)(z + 4)
30 / 101
3(vi)
dz
Z
, c : |z − 1| = 1
c (z + 1)(z − 1)2
31 / 101
Solution
dz
The integrand (z+1)(z−1)2
has a pole of order 2 at z = 1 and a simple pole
at z = −1. Here z = 1 lie inside |z − 1| = 1.
Residue at z = 1
d 1 −1
= limz→1 dz z+1 = limz→1 z2
= −1
R dz
Hence by Residue theorem, c (z+1)(z−1)2 = 2πi(−1) = −2πi
32 / 101
Question 3(vii)(a)
z+1
: |z − 21 | = 1
R
Evaluate C z(z−1)(z−2) dz, C 4
z +1 1 2 3
= − +
z(z − 1)(z − 2) 2z z − 1 2(z − 2)
z +1 1 1 1 3 1
Z Z Z Z
=⇒ dz = dz − 2 dz + dz
C z(z − 1)(z − 2) 2 Cz C z −1 2 C z −2
=0
33 / 101
Question 3(vii)(b)
R z+1 1
Evaluate C z(z−1)(z−2) dz, C : |z − 2| = 2
z+1
The integrand z(z−1)(z−2) has a simple pole at z = 2.
Hence by Residue theorem
z +1
Z
= 2πi Res(f , 2)
C z(z − 1)(z − 2)
z +1
= 2πi lim
z→2 z(z − 1)
= 3πi
34 / 101
Question 3(viii)
R (3z 2 +2z−4)dz
c (z 3 −4z)
, c : |z − i| = 3
Solution:
c : |z − i| = 3
Here z=0, z=2 and z=-2 lies inside c.
35 / 101
By Cauchy’s residue theorem,
n
(3z 2 + 2z − 4)
Z X
dz = 2πi Resz=zk f (z)
c z(z + 2)(z − 2) k=1
(3z 2 + 2z − 4) −4
Resz=0 f (z) = limz→0 z dz = =1
z(z + 2)(z − 2) −4
(3z 2 + 2z − 4) 12 + 4 − 4 3
Resz=2 f (z) = limz→2 (z − 2) dz = =
z(z + 2)(z − 2) 2×4 2
(3z 2 + 2z − 4) 12 − 4 − 4 1
Resz=−2 f (z) = limz→−2 (z + 2) dz = =
z(z + 2)(z − 2) −2 × −4 2
3 1
Z
f (z)dz = 2πi[1 + + ] = 6πi
2 2
36 / 101
Question 3(ix)
R z 3 +1
Evaluate the integral C (3z+1)3 dz, C : |z| = 1.
z 3 +1 1 z 3 +1
(3z+1)3
= 27 (z+1/3)3
−1
z= 3 is a singularity of f(z) which lies inside |z| = 1.
−1 z 3 +1
Therefore, z = 3 is pole of order 3 of f (z) = (3z+1)3
.
d 2 ((z+1/3)3 f (z))
Res(f (z), −1
3 )=
1
2 limz→ −1 dz 2
= −1
3
R z 3 +1 1 −2πi
Therefore, C (3z+1)3 dz = 2πi × 27 × −1 = 27 .
37 / 101
Question 3(x)
R (z 2 +2z+5)dz
(x) c (2z−1)(z−1)2 (z−2) c : |z| = 2.5
Resz=1 f (z) = 4
13
Resz=2 f (z) = 3
2
R ez
Evaluate the integral C (z−i)4 dz, C : |z| = 2.
Solution:
z = i is the only singularity and is a pole of order 4 which lies inside
|z| = 2.
1 d3 z2 1 2 2
Res(f (z), i) = 6 limz→i dz 3
e = 6 limz→i 8z 3 e z + 12ze z
2i −4π
= =
3e 3
2
R ez 2i −4π
So by residue theorem C (z−i)4 dz = 2πi( 3e )= 3e
39 / 101
Question 3(xii)(a)
R (z 2 −3)dz
c (z 2 +2z+5) , where C is |z| = 1
Here the singularities and −1 − 2i are 1 + 2i which is lie out side of
|z| = 1. So the function we need to integrate is analytic inside he region.
So by Cauchy’s theorem
z 2 − 3 dz
Z
=0
c (z 2 + 2z + 5)
40 / 101
Question 3(xii)(b)
R (z 2 −3)
Evaluate the integral C (z 2 +2z+5) dz, where C is the circle |z + 1 − i| = 2.
Solution:
√
(z 2 −3) −2± 4−20
The singularities of f (z) = (z 2 +2z+5)
are z = 2 = −1 ± 2i. Here
−1 + 2i only lies inside the circle C , which is also a simple pole of f .
Therefore Res(f (z); −1 + 2i) = limz→−1+2i (z − (−1 + 2i))f (z) =
−3) 2
limz→1 (z − (−1 + 2i)) (z (z
2 +2z+5) = −1 +
3i
2.
41 / 101
Question 3(xii)(c)
R (z 2 −3)
Evaluate the integral c (z 2 +2z+5) dz, where c is the circle |z − 1 + i| = 2.
Solution:
√
(z 2 −3) −2± 4−20
The singularities of (z 2 +2z+5)
are z = 2 = −1 ± 2i. Both these
points lie outside the circle c.
(z 2 −3)
Thus, (z 2 +2z+5)
is analytic inside and on the circle c.
By Cauchy-Goursat theorem, the integral becomes zero.
42 / 101
Question 4(i)
R 3z+2
Using Residue theorem, evaluate the integral c z(z−1)(z−2) dz where
C : |z| = 3
43 / 101
Solution
3z+2
Let f (z) = z(z−1)(z−2) . The singularities of f (z) are 0, 1 and 2. All are
simple poles inside the cicle | z |= 3.
3z+2
Res(f (z), 0) = limz→0 zf (z) = limz→1 z z(z−1)(z−2) =1
3z+2
Res(f (z), 1) = limz→1 (z − 1)f (z) = limz→1 (z − 1) z(z−1)(z−2) = −5
3z+2
Res(f (z), 2) = limz→2 (z − 2)f (z) = limz→2 (z − 2) z(z−1)(z−2) =4
By Cauchy’s Residue theorem,
R 3z+2
C z(z−1)(z−2) = 2πi(1 − 5 + 4) = 0
44 / 101
Question 4(ii)
R z 2 +3z+2
Using Residue theorem, evaluate the integral c z 2 (z−1) where
C : |z| = 1.5
45 / 101
Solution
z 2 +3z+2
Let f (z) = z 2 (z−1)
. The singularities of f (z) are 0 and 1. Also, z = 1 is a
simple pole and z = 0 is a double pole.
z 2 + 3z + 2
Res(f (z), 1) = lim (z − 1)f (z) = lim (z − 1) =6
z→1 z→1 z 2 (z − 1)
d(z 2 f (z))
Res(f (z), 0) = lim
z→0 dz
d z 2 (z 2 + 3z + 2)
= lim ( )
z→0 dz z 2 (z − 1)
d z 2 + 3z + 2
= lim ( ) = −5
z→0 dz z −1
By Cauchy’s Residue theorem,
R z 2 +3z+2
C z 2 (z−1) = 2πi(6 − 5) = 2πi
46 / 101
Question 4(iii)
(4z 3 + 2z)
Z
dz, C : |z| = 2
C z4 − z3
47 / 101
Solution
4z 3 + 2z 4z 2 + 2z
=
z4 − z3 z 2 (z − 1)
− a (z − a)f (z)
Resz=a f (z) = limz →
48 / 101
Therefore,
Resz=1 f (z) = 6
1 d n−1
Resz=a f (z) = ((z − a)n f (z))
n! dz n−1
Therefore,
Resz=0 f (z) = 2
Hence,
(4z 3 + 2z)
Z
dz = 16πi
C z4 − z3
49 / 101
Question iv
50 / 101
Solution
z
Let f(z)= z 3e+z . The singularities of f(z) are 0 ,-i and i (simple poles), lies
inside the C.
e z
Res(f(z),0)=limz →
− 0 z z(z−i)(z+i) = 1
e z
−e i
− i (z − i) z(z−i)(z+i) = 2
Res(f(z),i)=limz →
e z −e −i
Res(f(z),-i)=limz →
− −i (z + i) z(z−i)(z+i) = 2
By Residue theorem
R ez
C z 3 +z dz=2πi[ Res(f;0)+Res(f;-i)+Res(f;i)]
−e −i −e i cos1
=2πi[1 + 2 + 2 ] =2πi(1 − 2 )
51 / 101
Question (v)
R sin z
Using Residue theorem, evaluate the following integral C (z−1)2 (z 2 +9)
52 / 101
Solution
sin z sin z
f (z) = (z−1)2 (z 2 +9)
= (z−1)2 (z+3i)(z−3i)
sin z
Z
dz = 2πi Res (f , 3i)
C (z − 1)2 (z 2 + 9) z=3i
π sinh 3
= 2πi lim (z − 3i)f (z) = 6i(4+3i) .
z→3i
53 / 101
5(i)
z
Obtain Taylor series expansion of z−3 about z = 1. What is the region of
convergence?
54 / 101
Solution
Note that f has a singularity at z=3
z z
f (z) = =
z −3 z −1−2
z
= z−1
2( 2 − 1)
−z z − 1 −1
= [1 − ( )]
2 2
It has a convergent geometric series representation when |z − 1| < 2, ie,
inside the disk centered at z = 1 with radius 2.
Hence the Taylor series expansion of f(z) in this region of convergence is
−z z −1 z −1 2
f (z) = 1+ +( ) + ...
2 2 2
55 / 101
Question 5(ii)
π
Find the Taylor series expansion of sin z about z = . Also find the
4
Maclaurin series expansion of sin z
56 / 101
Solution
sin z = !
1 π 1 π 2 1 π 3 1 π 4
√ 1+ z − − z− − z− + z− + ...
2 4 2! 4 3! 4 4! 4
57 / 101
Solution 5(ii)
z3 z5
sin z = z − + − ...
3! 5!
58 / 101
Question 5(iii)
z +3
Find the Taylor or Laurent series expansion of when
z(z 2− z − 2)
(a) |z| < 1
59 / 101
Solution
z +3
Resolving f (z) = into partial fraction we get
z(z 2
− z − 2)
3 5 2
f (z) = − + +
2z 6(Z − 2) 3(z + 1)
(a) When |z| < 1 we have
3 5 2
f (z) = − + (1 − z2 )−1 + (z + 1)−1
2z 12 3
3 5 P∞ z n 2 P∞
=− + + (−1)n z n which is the required
2z 12 n=0 2 3 n=0
expansion.
61 / 101
5(iv)
z 2 −z+5
Find Taylor or Laurent series expansions of (z+2)(z+3) that are valid when
(a) |z| < 2 (b) 2 < |z| < 3 and (c) |z| > 2.
62 / 101
Solution I
z 2 −z+5 7/5 11/5
Resolving f (z) = (z+2)(z+3) into partial fraction we get f (z) = z+2 + z+3
63 / 101
Solution II
64 / 101
Question 5(v)
7z 2 −2 1 5 13
f (z) = z(z+1)(z−2) = z + 3(z+1) + 3(z−2)
a)|z + 1|< 1
1 1
z = − 1−(z+1) = −(1 + (z + 1) + (z + 1)2 + ...), |z + 1| < 1
1 1 (z+1)2
z−2 =− (z+1) = − 31 (1 + z+1
3 + 9 + ...), | z+1
3 |<1
3(1− 3 )
Substituting in f (z), we get the required series expansion with respect to
z +1
1 3
b)|z + 1| > 3 =⇒ | z+1 | < | z+1 |<1
Hence the series expansion wrt z + 1 can be found similarly as (a).
65 / 101
5 (vi)
(z 2 − 1) 5z + 7
2
=1−
(z + 5z + 6) (z + 2)(z + 3)
−3 8
=1− +
z +2 z +3
−3 h 2 i−1 8 h z i−1
=1− 1+ + 1+
z z 3 3
66 / 101
Question 5(vii)
1+z
Find the Laurent series expansion of f (z) = (z 2 −2z 4 )
about z=0 and hence
find the residue at z=0.
67 / 101
Question 6(i)
68 / 101
Solution
Resz= −1 f (z) = 38 .
3
R 2π
Then 0
dθ
3cosθ+5 = ( −2i
3 )2πi ×
3
8 = π2 .
69 / 101
6(ii)
prove the integral
R 2π cos 2θdθ π
0 5−4 cos θ = 6
71 / 101
6(iv)
prove the integral
R 2π dθ π
0 15 sin2 θ+1
= 2
find the residue of the function inside the integral and use Cauchy’s
residue theorem you can find the result.
q q
3 −3
sigularities are z = 5 and z = 5 .
−15
residue at both singularities is 32 .
72 / 101
Question 6(v)
R∞ dx π
Prove that −∞ (x 2 +1)(x 2 +4) = 6
Solution:
Let γ be the part of the circle |z| = R > 0 in the upper half plane and the
CR = [−R, R] ∪ γ.
R dz RR dx R dz
Then, CR (z 2 +1)(z 2 +4) = −R (x 2 +1)(x 2 +4) + γ (z 2 +1)(z 2 +4)
R dz
So that, when R → ∞, γ (z 2 +1)(z 2 +4) → 0 and we obtain
R∞ dx
−∞ (x 2 +1)(x 2 +4) .
73 / 101
R∞ dx R dz
Therefore −∞ (x 2 +1)(x 2 +4) = limR→∞ CR (z 2 +1)(z 2 +4)
R dz
CR (z 2 +1)(z 2 +4) = 2πi[Res(f ; i) + Res(f ; 2i)].
1 −i
Res(f ; i) = limz→i (z+i)(z 2 +4)
= 6 .
1 i
Res(f ; 2i) = limz→2i (z 2 +1)(z+2i)
= 12 .
dz
= 2πi[ −i i
= π6 .
R
Therefore CR (z 2 +1)(z 2 +4) 6 + 12 ]
74 / 101
Question 6(vi)
R∞ x2 π
Prove that 0 (x 2 +16)2
= 16
Solution:
Let γ be the part of the circle |z| = R > 0 in the upper half plane and the
CR = [−R, R] ∪ γ.
R z2 RR x2 R z2
Then, CR (z 2 +16)2 dz = −R (x 2 +16)2 dx + γ (z 2 +16)2 dz
R z2 R∞ x2
So that, when R → ∞, γ (z 2 +16)2 dz → 0 and we obtain −∞ (x 2 +16)2 .
R∞ dx π
Prove that −∞ (x 2 +1)(x 2 +4) = 9
Similar to 6(v).
The integral will be equal to π6 , not π
9.
76 / 101
z2 2
= 2πiResz=4i (z+4i)z2 (z−4i)2
R
(z 2 +16)2
dz
d z2 π
=2πi limz→4i dz (z+4i)2 = 8
R∞ x2 1 R∞ x2 π
Therefore, 0 (x 2 +16)2
= 2 −∞ (x 2 +16)2 = 16
77 / 101
Question 6(viii)
R∞ 2x 2 +3 7π
Prove that −∞ (x 2 +9)2 dx = 18
78 / 101
Solution
Let CR denote the region in the complex plane consisting of the real axis
axis from −R to R and the semicircle γ of radius R in the upper half
plane.
2z 2 + 3 2x 2 + 3 2z 2 + 3
Z Z R Z
dz = dx + dz (1)
CR (z 2 + 9)2 −R (x 2 + 9)2 γ (z 2 + 9)2
R 2z 2 +3
As R → ∞, by ML theorem, γ (z 2 +9)2 dz =0
R 2z 2 +3 R 2z 2 +3
Now, CR (z 2 +9)2 dz = CR (z+3i)2 (z−3i)2 dz
Since the singularities z = 3i lies inside CR and z = −3i lies outside CR ,
therefore by residue theorem,
R 2z 2 +3
CR (z 2 +9)2 dz = 2πiRes(f (z), 3i)
d 2z 2 +3 −7i
Res(f (z), 3i) = limz→3i 2 = 79 / 101
Question 6(ix)
80 / 101
Solution
ze iz
Let f(z) = z 2 +4
z 2 + 4 = (z + 2i)(z − 2i)
f is analytic inside and on the contour except at z=2i and z=-2i
f has simple pole at z=2i and z=-2i
Z Z R Z
f (z)dz = f (x )dx + f (z)dz
CR −R r
ze iz
Z Z
f (z)dz =
CR CR z2 + 4
X
= 2πi Resf (z)
81 / 101
ze z
Res f (z) = lim (z − 2i)
z→2i z→2i (z − 2i)(z + 2i)
(2i)e i(2i)
=
4i
e −2
=
2
z=-2i is outside the curve therefore no need to consider it.
e −2
Z
f (z)dz = 2πi
CR 2
πi
=
e2
82 / 101
By ML Theorem,
ze iz dz |ze iz dz|
Z Z
| |≤ → 0 as R → ∞
r z2 + 4 r |z 2 + 4|
Z Z R
f (z)dz = f (x )dx
CR −R
πi
Z
f (z)dz =
CR e2
Z R
πi
lim f (x )dx = 2
R→∞ −R e
xe ix
Z ∞
πi
2
dx = 2
−∞ x + 4 e
Z ∞
x (cosx + isinx ) πi
2
= 2
−∞ x +4 e
Equating imaginary part,
Z ∞
xsinx π
=
−∞ x2 +4 e2
83 / 101
Question 6(x)
Prove
Z ∞
cos2x πcos2
dx =
−∞ x2 + 2x + 2 e2
84 / 101
Solution
i2z
e e i2z
Let f(z)= z 2 +2Z +2
= (z−(−1+i))(z−(−1−i))
Z Z R Z
f (z)dz = f (x )dx + f (z)dz
CR −R γ
e i2z
Z Z
f (z)dz = dz
CR CR (z − (−1 + i))(z − (−1 − i))
X
= 2πi Resf (z)
85 / 101
e i2z
Res f (z) = lim (z − (−1 + i))
z→−1+i z→−1+i (z − (−1 + i))(z − (−1 − i))
e −2(i+1)
=
2i
e −2i
=
2ie 2
z=-1-i is outside the curve therefore no need to consider it.
−2(i+1)
f (z)dz = 2πi e = πe −2(i+1)
R
Thus, CR 2i
86 / 101
By ML Theorem,
e 2iz |e 2iz |
Z Z
| |≤ → 0 as R → ∞
γ z 2 + 2z + 2 γ |z 2 + 2z + 2|
Z Z R
f (z)dz = f (x )dx
CR −R
Z
f (z)dz = πe −2(i+1)
CR
Z R
lim f (x )dx = πe −2(i+1)
R→∞ −R
∞ e 2ix e −2i
Z
dx = π
−∞ x2
+ 2x + 2 e2
Z ∞
(cos2x + isin2x ) π(cos(−2) + i sin(−2))
2
dx =
−∞ x + 2x + 2 e2
Equating real part,
Z ∞
cos2x π cos 2
dx =
−∞ x2 + 2x + 2 e2
87 / 101
Question 6(xi)
Prove
Z ∞
cos x π cos 1
dx =
−∞ x2 − 2x + 5 2e 2
88 / 101
Solution
e iz e iz
Here, f (z) = z 2 −2z+5
= (z−(1+2i))(z−(1−2i))
Z Z R Z
f (z)dz = f (x )dx + f (z)dz
CR −R γ
e iz
Z Z
f (z)dz = dz
CR CR (z − (1 + 2i))(z − (1 − 2i))
X
= 2πi Resf (z)
89 / 101
e iz
Res f (z) = lim (z − (1 + 2i))
z→1+2i z→1+2i (z − (1 + 2i))(z − (1 − 2i))
e i−2
=
4i
ei
=
4ie 2
z=1-2i is outside the curve therefore no need to consider it.
R e i πe i
Thus, CR f (z)dz = 2πi 4ie 2 = 2e 2
90 / 101
By ML Theorem,
e iz |e iz |
Z Z
| |≤ → 0 as R → ∞
γ z 2 − 2z + 5 γ |z 2 − 2z + 5|
Z Z R
f (z)dz = f (x )dx
CR −R
πe i
Z
f (z)dz =
CR 2e 2
πe i
Z R
lim f (x )dx = 2
R→∞ −R 2e
Z ∞
e ix πe i
2
dx =
−∞ x − 2x + 5 2e 2
Z ∞
(cosx + isinx ) π(cos 1 + i sin 1)
2
dx =
−∞ x − 2x + 5 2e 2
Equating real part,
Z ∞
cosx π cos 1
dx =
−∞ x 2 − 2x + 5 2e 2
91 / 101
6(xii)
Z ∞
xdx
=0
−∞ (x 2 + 9)2
92 / 101
Solution I
z z
The complex function f (z) = = has singularities at
(z 2 +9)2 (z+3i)2 (z−3i)2
93 / 101
Question 7
94 / 101
Solution
1
The Laurent series representation of e z will give us
∞
1 1 1 ez
z+ z1
X
z
e =e 1+ + + + ... =
z 2!z 2 3!z 3 n=0
n!z n
By Generalized Cauchy’s Integral formula, Let f (z) be analytic in a simply
connected domain containing the simple closed contour C . Then f (z) has
derivatives of all orders at each point z0 inside C , with
n! f (z)
I
(n)
f (z0 ) = dz
2πi γ (z − a)n+1
95 / 101
Solution 7
Hence,
∞ ∞ ∞
ez 1 ez 1
Z Z X I
z+ z1
X X
e dz = = = 2πi
C C n=0 n!z n n=0
n! C zn n=0
n!(n + 1)!
96 / 101
Question 8
97 / 101
Solution (i)
98 / 101
8(ii)
1
f (z) = e z −1
99 / 101
Solution
ez − 1 = 0
=⇒ z = 2nπi n ∈ Z
d z
dz e − 1 = e z ) ̸= 0, at z = 2nπi
Therefore f(z) has simple pole at z = 2nπi
100 / 101
Question 8(iii)
101 / 101