MULTIPLE CHOICE QUESTIONS
CHAPTER –1 RELATIONS AND FUNCTIONS
Q1. If A1,2,3and let R1,1 , 2,2 , 3,3 , 1,2 , 2,1 , 2,3 , 3,                
                                  2, Then R is:
       (a) Reflexive, symmetric but not transitive              (b) symmetric, transitive but not reflexive
       (c) Reflexive and transitive but not symmetric           (d) an equivalence relation
Q2. Let R be a relation defined on Z by aRb a         b, Then R is:
        (a) symmetric, transitive but not reflexive              (b) Reflexive, symmetric but not transitive
       (c) Reflexive and transitive but not symmetric           (d) an equivalence relation
Q3. Let R be a relation defined on Z as follows: a b,    R a2                        b2   25, Then
domain of R is:
       (a) 3,4,5            (b) 0,3,4,5             (c) 0,  3, 4, 5                             (d)
none of these
Q4. The relation R defined on the set A1,2,3,4,5by R        a b, :a  b 16is given by:
                                                                             2       2
       (a) 1,1 , 2,1 , 3,1 , 4,1 , 2,                               3               (b) 2,2 ,
3,2 , 4,2 , 2,                    4
      (c) 3,3 , 4,3 , 5,4 , 3,                       4                 (d) none of these
Q5. Let R be a relation defined on Z as follows: x y,    R x                  y    1. Then R is:
       (a) Reflexive and transitive                   (b) Reflexive and symmetric
       (c) Symmetric and transitive                    (d) an equivalence relation
Q6. Let A1,2,3 , B 1,4,6,9and R is a relation from Ato B define by ‘ x is greater than y ’.
Then range of R is given by:
       (a) 1,4,6,9          (b) 4,6,9             (c) 1                    (d) none of these
Prepared by Amit Bajaj Sir | Downloaded from http://amitbajajmaths.blogspot.com/                         Page 1
Q7. A relation R is defined from 2,3,4,5 to 3,6,7,                                                             
                               10by xR y  x is relatively prime to y .
Then the domain of R is given by:
       (a) 2,3,5            (b) 3,5              (c) 2,3,4                   (d) 2,3,4,5
Q8. In the set Z of integers, which of the following relation R is not an equivalence relation?
        (a) xR y : if x  y                             (b) xR y : if x  y
        (c) xRy : if x y isan even integer             (d) xR y : if x y mod3
Q9. Let f R: R and g R: R be defined by f x     2x  3x 5 and g x  4x 5, then 
                                                          2
fog0is:
       (a) 20                 (b) 25                    (c) 40                     (d) 10
                                                                                            1 
Q10. Let f x    x and g x   x , then  fog  13  gof                      3  is given by:
                                                   
       (a) 0                  (b) 1                    (c) 1                      (d) 2
                                                                               
                                                                          xa
Q11. Let the function f R:     b R 1be defined by f x                        ;ab,
                                                                          then: x b
       (a) f is one-one but not onto          (b) f is onto but not one-one                   (c) f is
both one-one and onto                         (d) none of these
                                                         x
Q12. The function f : 0 ,                           R given by
                                                        f x    
                                                                is: x1
        (a) f is both one-one and onto                  (b) f is one-one but not onto
       (c) f is onto but not one-one                    (d) neither one-one nor onto
Q13. Which of the following functions from Z to itself are bijections?
      (a) f x   x   3
                              (b) f x     x2     (c) f x       2x 1        (d) f x      x x  2
Prepared by Amit Bajaj Sir | Downloaded from http://amitbajajmaths.blogspot.com/                             Page 2
Q14. If the function f : 2 , Bdefined by f x                   x 4x 5is a bijection, then B is:
                                                                            2
       (a) R                               (b) 1,            (c) 4,                       (d) 5,
Q15. The function f R: R defined by f x                  x 1x2x3is:
       (a) f is one-one but not onto                             (b) f is onto but not one-one
       (c) f is both one-one and onto                            (d) neither one-one nor onto
Q16. Let f x    x and g x   2 . Then the solution set of the equation fog x  gof x is:
                         2                           x
       (a) R                               (b) 0              (c) 0,2                       (d) none of these
Q17. If f R: R is given by f x                3x 5, then f x:
                                                                1
                                                                                           5
                                   1                                                   x
       (a) is given by                                           (b) is given by
                       3 5x                                            3
         (c) does not exist because f is not one-one (d) does not exist because f is not onto
                                                                                                            e
Q18. The inverse of the function f R:  xR x: 1given by f x                                   eexx  exx is:
                 (a) 12log11xx                    (b) 12log 22xx (c)
                 12log11xx                       (d) none of these 
                     1
Q19. Let f x                   , then fo fofxis:
                  1x
       (a) x  x R                        (b) x   x R 1   (c) x   x R 0,1 (d) none of these
                                                                     1     1
Q20. Let f x   sin        1
                                  x , g x    x and h x   2x ,            x              , then:
                                                                     2     2
(a) fogoh x     2 (b) fogoh x   (c) hofoghogof (d) hofog  hogof Q21. If g x  
x2 x 2and     gof x    2x  5 2x , then f x is equal to:
                                       2
Prepared by Amit Bajaj Sir | Downloaded from http://amitbajajmaths.blogspot.com/                                        Page 3
       (a) 2x3                      (b) 2x3                  (c) 2x2  3 1x            (d) 2x2  3 1x
Q22. If f x   sin xand g f x   sin x , then g x is given by:
                         2
       (a)     x1                    (b) x           (c)     x1                 (d)  x
Q23. If the binary operation on Z is defined by a b a b ab    2                                     2
                                                                                                                4, then value
of 2 3  4is:
       (a) 233                       (b) 33                    (c) 55                     (d) -55
Q24. If be a binary operation on R defined by a b  ab 1. Then , is:
       (a) Commutative but not associative                     (b) Associative but not Commutative
       (c) Neither commutative nor associative                 (d) Commutative and associative
Q25. For the binary operation defined on R1by the rule a b   a b ab, the inverse of a is:
                                              a                       1                             2
       (a) a                        (b)                      (c)                          (d) a
                                              a1                     a
ANSWERS
1. a   2. c      3. c        4. d    5. b     6. c    7. d     8. a       9. c    10. b   11. c         12. b   13. b    14. b
15. b 16. c      17. b       18. a   19. c    20. c   21. a    22. b      23. b   24. a   25. b
Prepared by Amit Bajaj Sir | Downloaded from http://amitbajajmaths.blogspot.com/                                        Page 4