0% found this document useful (0 votes)
176 views369 pages

Suru Buri

Uploaded by

Attila Siklodi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
176 views369 pages

Suru Buri

Uploaded by

Attila Siklodi
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 369

SCREWS AND CONNECTORS

FOR WOOD
CARPENTRY, STRUCTURES AND OUTDOOR
CARPENTRY 11 STRUCTURES 131

HTS.................................................. 18 VGZ................................................138

SHS..................................................22 VGZ EVO FRAME........................162

SHS AISI410...................................24 VGZ EVO......................................170

HBS..................................................26 VGZ HARDWOOD...................... 176

HBS EVO........................................46 VGS................................................186

HBS COIL.......................................52 VGU.............................................. 200

HBS SOFTWOOD.........................54 RTR............................................... 206

HBS SOFTWOOD BULK..............58 DGZ...............................................210

HBS HARDWOOD....................... 60 SBD ...............................................218

TBS..................................................66 CTC...............................................224

TBS EVO........................................ 84 SKR | SKS......................................232

XYLOFON WASHER.................... 90 SKR-E | SKS-E............................. 236

HBS PLATE.....................................92

HBS PLATE EVO............................98

LBS.................................................102

LBA................................................106

KOP............................................... 112

DRS................................................ 118

DRT................................................120

MBS...............................................122

DWS...............................................124

DWS COIL....................................125

THERMOWASHER......................126

ISULFIX.......................................... 127

CONTENTS
OUTDOOR 243 TIMBER-TO-METAL 339

KKT COLOR A4 | AISI316......... 256 SBS - SPP.................................... 340

KKT A4 | AISI316........................ 260 SBS A2 | AISI304........................ 342

KKT COLOR................................ 264 SBN - SBN A2 | AISI304........... 344

KKZ A2 | AISI304........................ 268 WBAZ........................................... 346

KWP A2 | AISI305.......................270 TBS EVO...................................... 348

KKA AISI410.................................272 MTS A2 | AISI304....................... 349

KKA COLOR.................................274 MCS A2 | AISI304...................... 350

EWS...............................................276

KKF AISI410................................. 280

SCI A4 | AISI316.......................... 284

SCI A2 | AISI305......................... 286 COMPLEMENTARY 355

SCA A2 | AISI304....................... 290


PRODUCTS
HBS PLATE EVO......................... 292
A 10 M.......................................... 356
HBS EVO......................................293
A 18 M BL.................................... 356
TBS EVO...................................... 294
KMR 3373.....................................357
VGZ EVO..................................... 295
KMR 3372.....................................357
FLAT | FLIP.................................. 296
KMR 3338.................................... 358
TVM.............................................. 300
KMR 3352.................................... 358
GAP.............................................. 304
IMPULS.........................................359
TERRALOCK............................... 308
B 13 B............................................359
GROUND COVER.......................312
BIT................................................ 360
NAG...............................................313
JIG ALU STA.................................361
GRANULO....................................314
JIG ALU SBD................................361
TERRA BAND UV........................316
D 38 RLE...................................... 362
PROFID......................................... 317
DRILL STOP................................ 363
JFA.................................................318
BIT STOP..................................... 363
SUPPORT.....................................322
LEWIS........................................... 364
ALU TERRACE............................ 328
SNAIL HSS................................... 366
STAR............................................. 334
JIG VGZ 45°.................................367
SHIM..............................................335
JIG VGU........................................367
QUALITY CONTROL
PRODUCTION PHASES CONTROLS

Rothoblaas designs, tests, manufactures, certifies and markets its prod-


ucts under its own name and brand. The manufacturing process is
systematically checked during each phase (FPC), the whole procedure
strictly monitored and controlled to ensure compliance and quality at
each stage.

RAW MATERIAL HEAD MOULDING NOTCHING THE TIP


Steel wire enters the plant after being Multiple gold presses to engrave Precise notch, set back from the
inspected and the wire coils are name and length of the screw self-perforating tip
carefully washed

01 A 02 03 04 05 B

CUTTING TO LENGTH ROLLING


The steel wire is inserted in the Creation of the cutter and the
all-in-one machine thread down to the tip

QUALITY OF THE STEEL


With the steel annealing and tempering process, Rothoblaas screws
obtain the perfect balance between resistance (fyk = 1000 N/mm2) and
ductility (excellent possibility of bending), thanks to high-level engineer-
ing know-how.

TRACEABILITY
During the production process each screw is
assigned an identifying code (batch number)
which guarantees the traceability of raw mate-
rials before the product is placed on the market.

4 | QUALITY CONTROL
CE - ETA - DoP
As manufacturer, Rothoblaas is responsible 1. IDENTIFICATION OF THE PRODUCER
for its products covered by ETA. 2. ETA number
These products must be provided with CE 3. Declaration of performance
marking, normally on the label, which en-
sures legal validity and must show the fol-
1 ------------------------Rotho Blaas
lowing information: 2 ------------------------ETA-11/0030
3 ------------------------DoP: HBS_DoP_ETA110030
(www.rothoblaas.com)

PACKAGING AND QUALITY CHECK


LABELLING AT ROTHOBLAAS
A mechanized line The FPC procedure continues with a second stage
providing packaging of geometric and mechanical checks carried out at
and labelling Rothoblaas

06 CD 07 E 08 09 F 10

HEAT TREATMENT/ STORAGE SELLING AND


GALVANIZING AND Acceptance of the incoming TRACEABILITY
WAXING goods and sampling by the With the batch number and
Quality Check Laboratory the selling order it is possible
Special furnace hardening
process with controlled to track all the manufacturing
temperature evolution and zinc phases:
plated in an electrolytic tank the customer can be sure to
followed by anti-friction waxing obtain
a certified quality product

CONTROLS
A. Verification, check and registration of the
incoming raw materials
B. Geometric inspection according to regu-
lated tolerances and calibration
C. Mechanical check: ultimate resistance to
torsion, tension and bending angle
D. Check on coating thickness and salt spray
sample tests
E. Inspection of package and label
F. Application test

QUALITY CONTROL | 5
COMPLETE RANGE
“THE IDEAL COMBINATION”
HEAD

COUNTERSUNK WITH RIBS


HBS, HBS COIL, HBS EVO, HBS S, HBS S BULK, VGS,
SCI A2/A4, SBS, SPP

THREAD
FLANGE ASYMMETRIC “UMBRELLA”
TBS , TBS MAX, TBS EVO HBS , HBS COIL , HBS S, HBS S BULK, HBS EVO, HBS P,
HBS P EVO, TBS, TBS EVO, SCI A2/A4

COUNTERSUNK SMOOTH SYMMETRICAL COARSE THREAD


HTS, DRS, DRT, SKS, SCA A2, SBS A2, SBN, SBN A2 VGZ, VGZ EVO, VGS, SCA A2

COUNTERSUNK 50° SYMMETRICAL FINE THREAD


SHS, SHS AISI410, HBS H HBS H, HTS, SHS, SHS AISI410, LBS, DWS, DWS COIL,
KKF AISI410, MCS A2, VGZ H

ROUND DOUBLE
LBS DGZ, CTC, SBD, KKT A4 COLOR, KKT A4, KKT COLOR,
KKZ A2, KWP A2, KKA AISI410

HEXAGONAL TRILOBULAR
KOP, SKR, VGS, MTS A2 KKT A4 COLOR, KKT A4, KKT COLOR

CONE-SHAPED QUADLOBULAR
KKT A4 COLOR, KKT A4, KKT COLOR EWS A2, EWS AISI410

PAN HEAD FINE, FOR METAL


HBS P, HBS P EVO, KKF AISI410 KKA AISI 410, KKA COLOR, SBS, SPP, SBS A2, SBN, SBN A2

CONVEX STANDARD FOR WOOD


EWS A2, EWS AISI410, MCS A2 KOP, RTR, MTS A2

CYLINDRICAL SPACER
VGZ, VGZ EVO, VGZ H, DGZ, CTC, MBS, SBD, KKZ A2, DRS, DRT
KWP A2, KKA AISI410, KKA COLOR

BUGLE HI-LOW (CONCRETE)


DWS, DWS COIL MBS, SKR, SKS

6 | COMPLETE RANGE
carbon steel + zinc plated
TIP

MATERIALS AND COATINGS


SHARP
HTS, SHS, HBS, HBS COIL, HBS S,
HBS (L ≤ 50 mm), HBS COIL (L ≤ 50 mm), HTS, LBS, DRS, DRT, DWS, HBS S BULK, TBS, HBS H, HBS P, LBS,
DWS COIL, KWP A2, SCA A2, MCS A2 KOP, DRS, DRT, MBS, VGZ, VGZ H,
VGS, RTR, DGZ, SBD, CTC, SKR, SKS,
SBS, SPP, SBN

SHARP SAW
HBS S, HBS S BULK
carbon steel +
color coating
KKT COLOR, KKA COLOR
SHARP SAW NIBS
VGS Ø13

carbon steel +
SHARP 1 CUT C4 EVO coating
HBS (L > 50 mm), HBS COIL (L > 50 mm), HBS EVO, HBS P, HBS P EVO, HBS EVO, TBS EVO, HBS P EVO,
TBS, TBS EVO, VGZ, VGZ EVO, VGS, DGZ, CTC, SHS, SHS AISI410, VGZ EVO, SKR EVO, SKS EVO
KKT A4 COLOR , KKT A4, EWS A2, EWS AISI410, KKF AISI410, SCI A2/A4

SHARP 2 CUT
KKT COLOR AISI410 martensitic
stainless steel
KKF AISI410, EWS AISI410,
KKA AISI410, SHS AISI410

HARD WOOD (DECKING)


KKZ A2

A2 stainless steel
(AISI304 | AISI305)
SCI A2, SCA A2, EWS A2, KKZ A2,
HARD WOOD (SOLID) KWP A2, SBS A2, SBN A2, MCS A2,
HBS H, VGZ H MTS A2, WBAZ

ALUMINIUM (DECKING) A4 stainless steel


KKA AISI410, KKA COLOR (AISI316)
KKT A4 COLOR, KKT A4, SCI A4

METAL (WITH FINS)


SBS, SBS A2, SPP
bi-metal stainless steel +
carbon steel
SBS A2

METAL (WITHOUT FINS)


SBD, SBN, SBN A2

phosphate steel
DWS, DWS COIL
STANDARD FOR WOOD
MBS, KOP, MTS A2

CONCRETE EPDM/PP/PU
SKR, SKS XYLOFON WASHER, WBAZ,
THERMOWASHER, ISULFIX

COMPLETE RANGE | 7
CARPENTRY
CARPENTRY
CARPENTRY

HTS LBS
FULLY THREADED COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . 18 ROUND HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . 102

SHS LBA
SMALL HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22 HIGH BOND NAIL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

SHS AISI410 KOP


SMALL HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24 COACH SCREW DIN571 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

HBS DRS
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26 TIMBER-TO-TIMBER SPACER SCREW. . . . . . . . . . . . . . . . . . . . . . . 118

HBS EVO DRT


COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46 TIMBER-BRICKWORK SPACER SCREW . . . . . . . . . . . . . . . . . . . . . 120

HBS COIL MBS


HBS BOUND SCREWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52 SELF-TAPPING SCREW WITH CYLINDRICAL
HEAD FOR MASONRY. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
HBS SOFTWOOD
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54 DWS
DRYWALL SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124
HBS SOFTWOOD BULK
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58 DWS COIL
DWS COLLATED PLASTERBOARD SCREW . . . . . . . . . . . . . . . . . . 125
HBS HARDWOOD
COUNTERSUNK SCREW FOR HARDWOODS. . . . . . . . . . . . . . . . . 60 THERMOWASHER
WASHER TO FASTEN INSULATION TO TIMBER . . . . . . . . . . . . . . 126
TBS
FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66 ISULFIX
ANCHOR FOR FASTENING INSULATION
TBS EVO TO BRICKWORK. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

XYLOFON WASHER
SEPARATING WASHER FOR TIMBER SCREW. . . . . . . . . . . . . . . . . . 90

HBS PLATE
PAN HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . . 92

HBS PLATE EVO


PAN HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

CARPENTRY | 11
GEOMETRY
THE DETAIL THAT MAKES THE DIFFERENCE

Every detail of the screw geometry is analysed and developed to


increase strength and application performance.
TIP
1. SELF-PERFORATING TIP
The self-perforating tip, enhanced with exclusive geometries for particu-
lar types of wood (LVL, hardwood, etc.), with corkscrew thread running
all the way to the tip, guaranteeing a fast, high-performance initial grip.

2. NOTCH NOTCH
The notch makes it possible to tear the fibres during insertion, thus pre-
venting the risk of splitting or cracking the wood. The setback position
of the notch is essential to guarantee excellent grip and perforation of
the tip.

3. THREAD
THREAD SPACING
With carefully designed geometries, the thread allows fast, secure screw-
ing, in particular the thread pitch is related to screw diameter and length.
Coarse-pitch threads are well suited to medium/long screws as they
make screwing faster; on the other hand, fine-pitch threads are ideal for
small screws which require great care and precision during screwing.

4. CUTTER CUTTER
The geometry of the cutter is carefully studied to widen the wood grain
and move away the shavings created as the screw progresses. The cutter
creates the space for the passage of the shank and limits screw over-
heating.

5. SHANK
WAXING
The shank is covered by special surface waxing which considerably re-
duces friction and torsional stress during screwing.

6. UNDERHEAD
The ribs are very sharp and able to cut through the shavings coming out
of the hole, following perforation of the wood.
RIBS
7. HEAD
Head geometry defines screw resistance to penetration.

FLANGE HEAD

1
3

5
7
2

12 | GEOMETRY | CARPENTRY
RESEARCH & DEVELOPMENT
CONSTANT EVOLVING KNOW-HOW

Extensive testing campaigns — conducted in our in-house labo-


ratories on softwood, hardwood and LVL — have resulted in the
development of products suitable for every type of wood, keep-
ing the focus on three key parameters:

FAST GRIP
It is obtained with a sharp tip, initial coarse thread and a regular conical
profile in the first section;

EASE OF PROGRESS
It is the ability of the screw to penetrate the wood with reduced effort
and is obtained with an initial slow thread (double or reverse) and irregu-
lar geometry that facilitates the removal of shavings;

FAST INSERTION
To allow for fast insertion, the notch must be setback with respect to the
end of the tip and is fundamental for screws longer than 50 mm, to avoid
splitting during insertion and to maintain an acceptable level of wood
damage.

CARPENTRY | RESEARCH & DEVELOPMENT | 13


DUCTILITY
FASTENERS SEISMIC PERFORMANCE
EXPERIMENTAL TESTS

FprEN 14592 (2018) introduces three performance classes for cylindrical


shank fasteners used in seismic areas; these take the form of three class-
es of ductility ("low cycle ductility classes for fasteners used in seismic
areas"). The three classes are indicated as S1 (low ductility), S2 (medi-
um ductility) and S3 (high ductility). A fastener is classified in one of the
above classes according to the results of specific monotonic and cyclic
bending tests conducted on the threaded portion of the fastener.
This seismic classification is essential as it helps designers prevent brittle
fractures caused by a sudden failure of the metal fastener.

The objective of the standard is to verify that, based on the seismic class
and choice of fastener, at the end of the third cycle, the residual moment
Mres is at least equal to 80% of the average yield moment My determined
with monotonic testing.

TEST PROTOCOL USED IN CYCLIC TESTS

αu

Tubular Mandrel Loading device


αc guide
Support

Fastener
Rotation

Time 2d
0
16d

Test set-up diagram (static diagram: three-point bending).


-αc

1st cycle 2nd cycle 3rd cycle determination of the residual


bending moment capacity

MOMENT-ROTATION CURVE RESULTING FROM A CYCLIC TEST

Kel Mres
Bending moment

Mmax
M(1st)
M(2nd)
M(3rd)

Test configuration.
-αc 0 αc α + 20° αu
Rotation [°]

14 | DUCTILITY | CARPENTRY
EXPERIMENTAL TESTING TBS Ø8x160 mm

60
α = 10.50° α + 20°

Moment [kNmm]
40
My

20

Tests of TBS 8x160


Bilinear schematization
0
0 α 15 30 45
Deformed screw at the end of a cyclic test. Rotation [°]

60
An extensive testing campaign was therefore α = 10.50°
conducted on more than 500 Rothoblaas fas- 40 Seismic class: S3
teners, with diameters ranging from 6 mm to 10
Moment [kNmm]
mm and lengths between 100 mm and 300 mm. 20

All screws tested showed excellent mechan- 0


ical properties under monotonic conditions,
thus meeting the ductility requirement out-
-20
lined in EN 14592.
-40 Tests of TBS 8x160
In addition, all screws succeeded in complet-
ing three load cycles, achieving the highest Bilinear schematization
seismic performance class for 8 and 10 mm -60
-30 -15 0 15 30 45
diameter screws. Rotation [°]

The full scientific report on the experimental


testing is available at Rothoblaas. HBS Ø10x300 mm

80
α = 8.98° α + 20°

60
Moment [kNmm]

My

40

20
Tests of HBS 10x300
Bilinear schematization
0
0 α 15 30 45
Rotation [°]

80
α = 8.98°
60
Seismic class: S3
40
Moment [kNmm]

HBS 20
S
0
X X
B
H

-20
S
-40
X X
B
H

TBS -60 Tests of HBS 10x300


Bilinear schematization
-80
-30 -15 0 15 30 45
Rotation [°]

CARPENTRY | DUCTILITY | 15
LVL AND HARDWOOD
HIGH DENSITY WOODS

Chestnut, oak, cypress, beech, eucalyptus, bamboo and many other ex- MICROLLAM® LUMBER
otic woods are increasingly being used in construction. In addition to
these, elements in Microllam® lumber, called LVL (Laminated Veneer
Lumber), are also used. These are continuous elements, obtained from
thin layers of different species of wood (fir, pine, beech) just a few milli-
metres thick, overlapped and glued together. Microllam® sheets can be
produced with longitudinal grains or crossed grains depending on the
structural use of the element.

The resulting elements offer absolute dimensional stability and high me-
chanical performance for a wide range of applications (beams, joists,
pillars, walls, floors, curved elements, etc.).

Rothoblaas has conducted extensive testing to analyse the performance


of cylindrical shank fasteners on LVL elements, considering several pa- MICROLLAM® LUMBER WITH
rameters: CROSS-GRAIN VENEER

1. Different types of wood and their densities


2. Presence/absence of pre-drill holes
3. Fully/partially threaded fasteners
4. LVL panels with one/two-way grain
5. Application of fasteners on the side/narrow surface

thickness
surface thickness between
21-90 cm

widths lengths up to
up to 2.50 m 18,00 m

cover surface

front surface

The test results obtained proved useful as they


provided detailed verification of minimum ap-
plicable distances and analysed the different
screwing forces according to installation and
geometry of the fastener used.

16 | LVL AND HARDWOOD | CARPENTRY


According to the European Technical Assessment ETA-11/0030, Rothoblaas screws can be used for structural connections
when panels or LVL elements are employed.

With the aim of categorising the performance of partially threaded screws and fully threaded connectors in applications us-
ing LVL elements, Rothoblaas has conducted in-depth research at accredited external laboratories (Eurofins Expert Services
Oy, Espoo, Finland). Specifically, tests were conducted on the following aspects:

• THREAD WITHDRAWAL RESISTANCE (In edgewise and flatwise connections)


• HEAD PULL-THROUGH RESISTANCE
• REDUCED MINIMUM DISTANCES
• STIFFNESS OF CONNECTIONS
The full scientific report on the experimental testing is available at Rothoblaas.

t
b
b l b
t
t
b t
l
l l

CARPENTRY | LVL AND HARDWOOD | 17


HTS BIT INCLUDED EN 14592

FULLY THREADED COUNTERSUNK SCREW

TOTAL THREAD
The thread is 80% the length of the screw and the smooth part under
head guarantees maximum coupling efficiency with fibre board panels.

FINE THREAD
A fine thread is ideal for utmost screwing precision, even on MDF panels.
The Torx slot ensures stability and security.

CHROMIUM (VI) FREE


Total absence of hexavalent chromium. Compliance with the strictest
regulations governing chemical substances (SVHC).
REACH information available.

CHARACTERISTICS
FOCUS fibre board screw
HEAD countersunk without under-head ribs
DIAMETER from 3,0 to 5,0 mm
LENGTH from 12 to 80 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• fibre board and MDF panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
Service classes 1 and 2.

18 | HTS | CARPENTRY
GEOMETRY AND MECHANICAL CHARACTERISTICS

dS
S
dK 90° d2 d1

X X
T
H
t1 b
L

Nominal diameter d1 [mm] 3 3,5 4 4,5 5


Head diameter dK [mm] 6,00 7,00 8,00 8,80 9,70
Tip diameter d2 [mm] 2,00 2,20 2,50 2,80 3,20
Shank diameter dS [mm] 2,20 2,45 2,75 3,20 3,65
Head thickness t1 [mm] 2,20 2,40 2,70 2,80 2,80
Pre-drilling hole diameter dV [mm] 2,0 2,0 2,5 2,5 3,0
Characteristic yield
My,k [Nm] 2,2 2,7 3,8 5,8 8,8
moment
Characteristic
fax,k [N/mm2] 18,5 17,9 17,1 17,0 15,5
withdrawal-resistance parameter
Associated density ρa [kg/m3] 350 350 350 350 350
Characteristic head-pull-through
fhead,k [N/mm2] 26,0 25,1 24,1 23,1 22,5
parameter
Associated density ρa [kg/m3] 350 350 350 350 350
Characteristic tensile
ftens,k [kN] 4,2 4,5 5,5 7,8 11,0
strength

CODES AND DIMENSIONS

d1 CODE L b pcs d1 CODE L b pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm]
HTS312 12 1/2 6 1000 4 HTS440 40 1 9/16 32 500
3 HTS316 16 5/8 10 1000 0.16 HTS445 45 1 3/4 37 400
0.12 HTS320 20 13/16 14 1000 TX 20 HTS450 50 1 15/16 42 400
TX 10 HTS325 25 1 19 1000 HTS4530 30 1 3/16 24 500
HTS330 30 1 3/16 24 1000 4,5 HTS4535 35 1 3/8 27 500
HTS3516 16 5/8 10 1000 0.18 HTS4540 40 1 9/16 32 400
HTS3520 20 13/16 14 1000 TX 20 HTS4545 45 1 3/4 37 400
3,5 HTS3525 25 1 19 1000 HTS4550 50 1 15/16 42 200
0.14 HTS3530 30 1 3/16 24 500 HTS530 30 1 3/16 24 500
TX 15 HTS3535 35 1 3/8 27 500 HTS535 35 1 3/8 27 400
HTS3540 40 1 9/16 32 500 HTS540 40 1 9/16 32 200
HTS3550 50 1 15/16 42 400 5 HTS545 45 1 3/4 37 200
0.20
HTS420 20 13/16 14 1000 TX 25 HTS550 50 1 15/16 42 200
4 HTS425 25 1 19 1000 HTS560 60 2 3/8 50 200
0.16
TX 20 HTS430 30 1 3/16 24 500 HTS570 70 2 3/4 60 100
HTS435 35 1 3/8 27 500 HTS580 80 3 1/8 70 100

CHIPBOARD
The total thread and countersunk head geom-
etry are ideal for fastening metal hinges when
building furniture. Ideal for use with single bit
(included in the package), easily exchanged in
the driver bit holder.
The self-perforating unnotched tip increases
the initial grip of the screw.

CARPENTRY | HTS | 19
MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 3,0 3,5 4 4,5 5 3,0 3,5 4 4,5 5
a1 [mm] 5∙d 15 18 20 23 5∙d 25 4∙d 12 14 16 18 4∙d 20
a2 [mm] 3∙d 9 11 12 14 3∙d 15 4∙d 12 14 16 18 4∙d 20
a3,t [mm] 12∙d 36 42 48 54 12∙d 60 7∙d 21 25 28 32 7∙d 35
a3,c [mm] 7∙d 21 25 28 32 7∙d 35 7∙d 21 25 28 32 7∙d 35
a4,t [mm] 3∙d 9 11 12 14 3∙d 15 5∙d 15 18 20 23 7∙d 35
a4,c [mm] 3∙d 9 11 12 14 3∙d 15 3∙d 9 11 12 14 3∙d 15

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 3,0 3,5 4 4,5 5 3,0 3,5 4 4,5 5
a1 [mm] 10∙d 30 35 40 45 12∙d 60 5∙d 15 18 20 23 5∙d 25
a2 [mm] 5∙d 15 18 20 23 5∙d 25 5∙d 15 18 20 23 5∙d 25
a3,t [mm] 15∙d 45 53 60 68 15∙d 75 10∙d 30 35 40 45 10∙d 50
a3,c [mm] 10∙d 30 35 40 45 10∙d 50 10∙d 30 35 40 45 10∙d 50
a4,t [mm] 5∙d 15 18 20 23 5∙d 25 7∙d 21 25 28 32 10∙d 50
a4,c [mm] 5∙d 15 18 20 23 5∙d 25 5∙d 15 18 20 23 5∙d 25
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are in accordance with EN 1995:2014 considering a • The minimum spacing for all panel-to-timber connections(a1 , a2) can be
timber characteristic density of ρk ≤ 420 kg/m3. multiplied by a coefficient of 0,85.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

20 | HTS | CARPENTRY
STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

thin steel-timber thick steel-timber thread head


geometry timber-to-timber panel-to-timber(1)
plate(2) plate(3) withdrawal(4) pull-through (5)
Splate

L
b

d1

d1 L b A RV,k RV,k RV,k RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN] [kN]

SPLATE = 1,50 mm
12 6 - - - - 0,23 0,49 0,36 1,01

SPLATE = 3,0 mm
SPAN = 12 mm
SPAN = 9 mm

16 10 - - - - 0,32 0,66 0,60 1,01


3 20 14 - - - - 0,41 0,77 0,84 1,01
25 19 7 0,38 - - 0,52 0,92 1,14 1,01
30 24 12 0,60 0,76 0,72 0,62 1,08 1,44 1,01
16 10 - - - - 0,33 0,73 0,68 1,33
SPLATE = 1,75 mm

SPLATE = 3,5 mm
20 14 - - - - 0,43 0,85 0,95 1,33
SPAN = 12 mm
SPAN = 9 mm

25 19 - - - - 0,55 1,01 1,29 1,33


3,5 30 24 9 0,53 0,83 - 0,66 1,19 1,62 1,33
35 27 14 0,77 0,92 0,94 0,78 1,34 1,83 1,33
40 32 19 0,82 0,92 0,99 0,90 1,45 2,17 1,33
50 42 29 0,89 0,92 0,99 1,13 1,62 2,84 1,33
20 14 - - - - 0,46 0,98 1,03 1,66
SPLATE = 2,20 mm

SPLATE = 4,0 mm

25 19 - - - - 0,59 1,15 1,40 1,66


SPAN = 12 mm
SPAN = 9 mm

30 24 6 0,38 - - 0,72 1,33 1,77 1,66


4 35 27 11 0,71 0,99 - 0,85 1,49 1,99 1,66
40 32 16 0,97 0,99 1,18 0,97 1,69 2,36 1,66
45 37 21 1,02 0,99 1,18 1,10 1,81 2,73 1,66
50 42 26 1,08 0,99 1,18 1,23 1,90 3,09 1,66
SPLATE = 2,25 mm

SPLATE = 4,5 mm

30 24 3 0,21 - - 0,77 1,53 1,98 1,93


SPAN = 12 mm

SPAN = 15 mm

35 27 8 0,56 - - 0,91 1,69 2,22 1,93


4,5 40 32 13 0,90 1,31 - 1,05 1,90 2,63 1,93
45 37 18 1,15 1,40 1,42 1,19 2,12 3,05 1,93
50 42 23 1,21 1,40 1,46 1,33 2,33 3,46 1,93
30 24 - - - - 0,84 1,75 2,01 2,28
35 27 5 0,38 - - 0,99 1,90 2,26 2,28
SPLATE = 5,0 mm
SPLATE = 2,5 mm
SPAN = 12 mm

SPAN = 15 mm

40 32 10 0,76 - - 1,14 2,12 2,68 2,28


45 37 15 1,14 1,46 1,51 1,30 2,34 3,10 2,28
5
50 42 20 1,39 1,46 1,70 1,45 2,57 3,52 2,28
60 50 30 1,52 1,46 1,74 1,75 2,93 4,19 2,28
70 60 40 1,65 1,46 1,74 2,06 3,14 5,03 2,28
80 70 50 1,65 1,46 1,74 3,35 5,87 2,28

NOTES: GENERAL PRINCIPLES:


(1) The characteristic shear strength are calculated considering an OSB panel • Characteristic values according to EN 1995:2014.
or particle board with a SPAN thickness and mass density of ρk = 500 kg/m3. • Design values can be obtained from characteristic values as follows:
(2) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1). Rk kmod
Rd =
(3) The shear resistance characteristics are calculated considering the case of

γM
a thick plate (SPLATE ≥ d1).
(4) The axial thread withdrawal resistance was calculated considering a 90° an- The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
gle between the grain and the connector and for a fixing length of b.
(5) The axial resistance to head pull-through was calculated using timber ele- • For the calculation process a timber characteristic density ρk = 385 kg/m3
has been considered.
ments.
• The values have been calculated considering a minimum tip pull-through
In the case of steel-to-timber connections, generally the steel tensile strength
depth of 6d1 .
is binding with respect to head separation or pull-through.
• Sizing and verification of the timber elements, panels and steel plates must
be done separately.
• The characteristic shear resistances are calculated for screws inserted with-
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.

CARPENTRY | HTS | 21
SHS BIT INCLUDED ETA-11/0030

SMALL HEAD SCREW

INVISIBLE HEAD
Concealed 50° head for easy insertion in small spaces without creating
openings in the wood.

FASTENING ON TONGUE AND GROOVE BOARDS


Ideal for use in joints to secure beads or small elements.

Ø5 VERSION WITH TX30


The new 5 diameter version is a real carpentry screw: robust, unobtrusive
and with all the convenience and precision of the torx 30 impression.

CHARACTERISTICS
FOCUS 50° concealed head
HEAD 50° countersunk with under-head ribs
DIAMETER 3,5 | 5,0 mm
LENGTH from 30 to 120 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• tapped boards
• timber based panels
• fibre board and MDF panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
Service classes 1 and 2

22 | SHS | CARPENTRY
GEOMETRY AND MECHANICAL CHARACTERISTICS

A A
dS dS

dK 50° d2 d1 dK 50° d2 d1

b b
L L

SHS Ø3,5 SHS Ø5

Nominal diameter d1 [mm] 3,5 5


Head diameter dK [mm] 5,75 10,00
Tip diameter d2 [mm] 2,30 3,40
Shank diameter dS [mm] 2,65 3,65
Pre-drilling hole diameter(1) dV [mm] 2,0 3,0
Characteristic yield
My,k [Nm] - 5,4
moment
Characteristic
fax,k [N/mm2] - 11,7
withdrawal-resistance parameter(2)
Associated density ρa [kg/m3] - 350
Characteristic head-pull-through
fhead,k [N/mm2] - 10,5
parameter(2)
Associated density ρa [kg/m3] - 350
Characteristic tensile
ftens,k [kN] - 7,9
strength
(1)
Pre-drilling valid for softwood.
(2)
Valid for softwood - maximum density 440 kg/m3.
For applications with different materials or with high density please see ETA-11/0030.

CODES AND DIMENSIONS

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm] [in] [mm] [mm] [in]
SHS3530 30 1 3/16 20 10 3/8 500 SHS550 50 1 15/16 24 26 1 1/32 200
3,5 SHS3540 40 1 9/16 26 14 9/16 500 SHS560 60 2 3/8 30 30 1 3/16 200
0.14
TX 10 SHS3550 50 1 15/16 34 16 5/8 500 SHS570 70 2 3/4 35 35 1 3/8 200
5
SHS3560 60 2 3/8 40 20 13/16 500 0.20 SHS580 80 3 1/8 40 40 1 9/16 200
TX 30
Not holding CE marking. SHS590 90 3 1/2 45 45 1 3/4 200
SHS5100 100 4 50 50 1 15/16 200
SHS5120 120 4 3/4 60 60 2 3/8 200

CARPENTRY | SHS | 23
SHS AISI410 BIT INCLUDED
410
AISI

SMALL HEAD SCREW

INVISIBLE HEAD
The smaller head and high performing thread guarantee perfect inser-
tion of the screw in small thicknesses. Ideal for exterior applications.

AISI410
Martensitic stainless steel with an excellent balance between mechanical
resistance and corrosion resistance.

GEOMETRY
CODES AND DIMENSIONS
A
d1 CODE dK L b A pcs
[mm] [in] [mm] [mm] [in] [mm] [mm] [in] dK 50° d1
SHS3540AS 5,75 40 1 9/16 26 14 9/16 500
3,5
0.14 SHS3550AS 5,75 50 1 15/16 34 16 5/8 500 b
TX 10
SHS3560AS 5,75 60 2 3/8 40 20 13/16 500 L

MATERIAL
AISI410 martensitic stainless steel.

FIELDS OF USE
Ideal for exterior use, thanks
to the stainless steel.

24 | SHS AISI410 | CARPENTRY


BUILDING INFORMATION
MODELING

Structural connection elements in digital format


Complete with three-dimensional geometric features and additional parametric
information, they are available in IFC, REVIT, ALLPLAN, ARCHICAD, SKETCHUP and
TEKLA format, and are ready to integrate into your next successful project. Down-
load them now!

www.rothoblaas.com
HBS BIT INCLUDED ETA-11/0030

COUNTERSUNK SCREW

SUPERIOR STRENGTH
Steel with superb yield and failure strength (fy,k = 1000 N/mm2). Very high
torsional strength ftor,k for safer screwing.

STRUCTURAL APPLICATIONS
Approved for structural applications subject to stresses in any direction
vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better
timber pull-through.

DUCTILITY
The bending angle is 20° greater than standard, certified according to
ETA-11/0030. Cyclical SEISMIC-REV tests according to EN 12512. Seismic
performance tested according to EN 14592.

CHROMIUM (VI) FREE


Total absence of hexavalent chromium. Compliance with the strictest
regulations governing chemical substances (SVHC).
REACH information available.

CHARACTERISTICS
FOCUS extremely complete range
HEAD countersunk with under-head ribs
DIAMETER from 3,5 to 12,0 mm
LENGTH from 30 to 600 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
• high density woods
Service classes 1 and 2.

26 | HBS | CARPENTRY
CLT
Values also tested, certified and calculated for
CLT. Calculation tables and dimensioning soft-
ware (MyProject) for CLT available in the cata-
logue and online.

LVL
Values also tested, certified and calculat-
ed for CLT and high density woods such as
Microllam® LVL.

CARPENTRY | HBS | 27
Valley jack rafter joint with HBS screws, diameter 8 mm. Fastening CLT walls
with 6 mm diameter HBS screws.

GEOMETRY AND MECHANICAL CHARACTERISTICS

S
X X

dK 90° d2 d1
B
H

dS
t1 b
L

Nominal diameter d1 [mm] 3,5 4 4,5 5 6 8 10 12


Head diameter dK [mm] 7,00 8,00 9,00 10,00 12,00 14,50 18,25 20,75
Tip diameter d2 [mm] 2,25 2,55 2,80 3,40 3,95 5,40 6,40 6,80
Shank diameter dS [mm] 2,45 2,75 3,15 3,65 4,30 5,80 7,00 8,00
Head thickness t1 [mm] 2,20 2,80 2,80 3,10 4,50 4,50 5,80 7,20
Pre-drilling hole diameter(1) dV [mm] 2,0 2,5 2,5 3,0 4,0 5,0 6,0 7,0
Characteristic yield
My,k [Nm] 2,1 3,0 4,1 5,4 9,5 20,1 35,8 48,0
moment
Characteristic
fax,k [N/mm2] 11,7 11,7 11,7 11,7 11,7 11,7 11,7 11,7
withdrawal-resistance parameter(2)
Associated density ρa [kg/m3] 350 350 350 350 350 350 350 350
Characteristic
fax,k [N/mm2] 15,0 15,0 15,0 15,0 15,0 15,0 15,0 15,0
withdrawal-resistance parameter(3)
Associated density ρa [kg/m3] 500 500 500 500 500 500 500 500
Characteristic head-pull-through
fhead,k [N/mm2] 10,5 10,5 10,5 10,5 10,5 10,5 10,5 10,5
parameter(2)
Associated density ρa [kg/m3] 350 350 350 350 350 350 350 350
Characteristic head-pull-through
fhead,k [N/mm2] 20,0 20,0 20,0 20,0 20,0 20,0 20,0 20,0
parameter(3)
Associated density ρa [kg/m3] 500 500 500 500 500 500 500 500
Characteristic tensile
ftens,k [kN] 3,8 5,0 6,4 7,9 11,3 20,1 31,4 33,9
strength
(1) Pre-drilling valid for softwood.
(2) Valid for softwood - maximum density 440 kg/m3.
(3) Valid for softwood LVL - maximum density 550 kg/m3 .
For applications with different materials or with high density please see ETA-11/0030.

28 | HBS | CARPENTRY
CODES AND DIMENSIONS

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm] [in] [mm] [mm] [in]
3,5 HBS3540 40 1 9/16 18 22 7/8 500 HBS880 80 3 1/8 52 28 1 1/8 100
0.14 HBS3545 45 1 3/4 24 21 13/16 400 HBS8100 100 4 52 48 1 7/8 100
TX 15 HBS3550 50 1 15/16 24 26 1 1/32 400 HBS8120 120 4 3/4 60  60 2 3/8 100
HBS430 30 1 3/16 18 12 1/2 500 HBS8140 140 5 1/2 60 80 3 1/8 100
HBS435 35 1 3/8 18 17 11/16 500 HBS8160 160 6 1/4 80 80 3 1/8 100
HBS440 40 1 9/16 24 16 5/8 500 HBS8180 180 7 1/8 80 100 4 100
4 HBS445 45 1 3/4 30 15 9/16 400 HBS8200 200 8 80 120 4 3/4 100
0.16
TX 20 HBS450 50 1 15/16 30 20 13/16 400 HBS8220 220 8 5/8 80 140 5 1/2 100
HBS460 60 2 3/8 35 25 1 200 8 HBS8240 240 9 1/2 80 160 6 1/4 100
HBS470 70 2 3/4 40 30 1 3/16 200 0.32 HBS8260 260 10 1/4 80 180 7 1/8 100
HBS480 80 3 1/8 40 40 1 9/16 200 TX 40 HBS8280 280 11 80 200 8 100
HBS4540 40 1 9/16 24 16 5/8 400 HBS8300 300 11 3/4 100 200 8 100
HBS4545 45 1 3/4 30 15 9/16 400 HBS8320 320 12 5/8 100 220 8 5/8 100
4,5 HBS4550 50 1 15/16 30 20 13/16 200 HBS8340 340 13 3/8 100 240 9 1/2 100
0.18
TX 20 HBS4560 60 2 3/8 35 25 1 200 HBS8360 360 14 1/4 100 260 10 1/4 100
HBS4570 70 2 3/4 40 30 1 3/16 200 HBS8380 380 15 100 280 11 100
HBS4580 80 3 1/8 40 40 1 9/16 200 HBS8400 400 15 3/4 100 300 11 3/4 100
HBS540 40 1 9/16 24 16 5/8 200 HBS8440 440 17 1/4 100 340 13 3/8 100
HBS545 45 1 3/4 24 21 13/16 200 HBS8480 480 19 100 380 15 100
HBS550 50 1 15/16 24 26 1 1/32 200 HBS8520 520 20 1/2 100 420 16 9/16 100
HBS560 60 2 3/8 30 30 1 3/16 200 HBS1080 80 3 1/8 52 28 1 1/8 50
5
HBS570 70 2 3/4 35 35 1 3/8 100 HBS10100 100 4 52 48 1 7/8 50
0.20
TX 25 HBS580 80 3 1/8 40 40 1 9/16 100 HBS10120 120 4 3/4 60 60 2 3/8 50
HBS590 90 3 1/2 45 45 1 3/4 100 HBS10140 140 5 1/2 60 80 3 1/8 50
HBS5100 100 4 50 50 1 15/16 100 HBS10160 160 6 1/4 80 80 3 1/8 50
HBS5120 120 4 3/4 60 60 2 3/8 100 HBS10180 180 7 1/8 80 100 4 50
HBS640 40 1 9/16 35 8 5/16 100 HBS10200 200 8 80 120 4 3/4 50
HBS650 50 1 15/16 35 15 9/16 100 10 HBS10220 220 8 5/8 80 140 5 1/2 50
HBS660 60 2 3/8 30 30 1 3/16 100 0.40 HBS10240 240 9 1/2 80 160 6 1/4 50
HBS670 70 2 3/4 40 30 1 3/16 100 TX 40 HBS10260 260 10 1/4 80 180 7 1/8 50
HBS680 80 3 1/8 40 40 1 9/16 100 HBS10280 280 11 80 200 8 50
HBS690 90 3 1/2 50 40 1 9/16 100 HBS10300 300 11 3/4 100 200 8 50
HBS6100 100 4 50 50 1 15/16 100 HBS10320 320 12 5/8 100 220 8 5/8 50
HBS6110 110 4 3/8 60 50 1 15/16 100 HBS10340 340 13 3/8 100 240 9 1/2 50
HBS6120 120 4 3/4 60 60 2 3/8 100 HBS10360 360 14 1/4 100 260 10 1/4 50
6 HBS6130 130 5 1/8 60 70 2 3/4 100 HBS10380 380 15 100 280 11 50
0.24
HBS6140 140 5 1/2 75 65 2 9/16 100 HBS10400 400 15 3/4 100 300 11 3/4 50
TX 30
HBS6150 150 6 75 75 2 15/16 100 HBS12120 120 4 3/4 80 40 1 9/16 25
HBS6160 160 6 1/4 75 85 3 3/8 100 HBS12160 160 6 1/4 80 80 3 1/8 25
HBS6180 180 7 1/8 75 105 4 1/8 100 HBS12200 200 8 80 120 4 3/4 25
HBS6200  200 8 75 125 4 15/16 100 HBS12240 240 9 1/2 80 160 6 1/4 25
HBS6220 220 8 5/8 75 145 5 11/16 100 HBS12280 280 11 80 200 8 25
HBS6240 240 9 1/2 75 165 6 1/2 100 12 HBS12320 320 12 5/8 120 200 8 25
HBS6260 260 10 1/4 75 185 7 1/4 100 0.48 HBS12360 360 14 1/4 120 240 9 1/2 25
HBS6280 280 11 75 205 8 1/16 100 TX 50 HBS12400 400 15 3/4 120 280 11 25
HBS6300 300 11 3/4 75 225 8 7/8 100 HBS12440 440 17 1/4 120 320 12 5/8 25
HBS12480 480 19 120 360 14 1/4 25
HBS12520 520 20 1/2 120 400 15 3/4 25
HBS12560 560 22 120 440 17 1/4 25
HBS12600 600 23 5/8 120 480 19 25

HUS TURNED WASHER

dHBS CODE D1 D2 h pcs


[mm] [mm] [mm] [mm]
6 HUS6 7,5 20,0 4,50 100
8 HUS8 8,5 25,0 5,50 50 D2 D1 h
10 HUS10 10,8 30,0 6,50 50 dHBS

12 HUS12 14,0 37,0 8,50 25

CARPENTRY | HBS | 29
MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 3,5 4 4,5 5 6 8 10 12 3,5 4 4,5 5 6 8 10 12
a1 [mm] 5∙d 18 20 23 5∙d 25 30 40 50 60 4∙d 14 16 18 4∙d 20 24 32 40 48
a2 [mm] 3∙d 11 12 14 3∙d 15 18 24 30 36 4∙d 14 16 18 4∙d 20 24 32 40 48
a3,t [mm] 12∙d 42 48 54 12∙d 60 72 96 120 144 7∙d 25 28 32 7∙d 35 42 56 70 84
a3,c [mm] 7∙d 25 28 32 7∙d 35 42 56 70 84 7∙d 25 28 32 7∙d 35 42 56 70 84
a4,t [mm] 3∙d 11 12 14 3∙d 15 18 24 30 36 5∙d 18 20 23 7∙d 35 42 56 70 84
a4,c [mm] 3∙d 11 12 14 3∙d 15 18 24 30 36 3∙d 11 12 14 3∙d 15 18 24 30 36

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 3,5 4 4,5 5 6 8 10 12 3,5 4 4,5 5 6 8 10 12
a1 [mm] 10∙d 35 40 45 12∙d 60 72 96 120 144 5∙d 18 20 23 5∙d 25 30 40 50 60
a2 [mm] 5∙d 18 20 23 5∙d 25 30 40 50 60 5∙d 18 20 23 5∙d 25 30 40 50 60
a3,t [mm] 15∙d 53 60 68 15∙d 75 90 120 150 180 10∙d 35 40 45 10∙d 50 60 80 100 120
a3,c [mm] 10∙d 35 40 45 10∙d 50 60 80 100 120 10∙d 35 40 45 10∙d 50 60 80 100 120
a4,t [mm] 5∙d 18 20 23 5∙d 25 30 40 50 60 7∙d 25 28 32 10∙d 50 60 80 100 120
a4,c [mm] 5∙d 18 20 23 5∙d 25 30 40 50 60 5∙d 18 20 23 5∙d 25 30 40 50 60
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014, according to • The minimum spacing for all panel-to-timber connections(a1 , a2) can be
ETA-11/0030, considering a timber characteristic density of ρk ≤ 420 kg/m3 multiplied by a coefficient of 0,85.
and calculation diameter of d = nominal screw diameter. • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii),
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be the minimum spacing and distances parallel to the grain must be multiplied
multiplied by a coefficient of 0,7. by a coefficient of 1.5.

30 | HBS | CARPENTRY
STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

thin steel-timber thick steel-timber thread head


geometry timber-to-timber panel-to-timber(1)
plate(2) plate(3) withdrawal(4) pull-through (5)
Splate

d1

d1 L b A RV,k RV,k RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN]
40 18 22 0,73 0,72 0,85 1,12 0,80 0,56

1,75 mm
SPLATE =

SPLATE =
3,5 mm
12 mm
SPAN =

3,5 45 24 21 0,79 0,72 0,91 1,18 1,06 0,56


50 24 26 0,79 0,72 0,91 1,18 1,06 0,56
30 18 12 0,72 0,76 0,93 1,28 0,91 0,73
35 18 17 0,79 0,84 1,04 1,38 0,91 0,73

SPLATE = 4,0 mm
SPLATE = 2,0 mm
SPAN = 12 mm

40 24 16 0,83 0,84 1,12 1,45 1,21 0,73


45 30 15 0,81 0,84 1,19 1,53 1,52 0,73
4
50 30 20 0,91 0,84 1,19 1,53 1,52 0,73
60 35 25 0,99 0,84 1,26 1,59 1,77 0,73
70 40 30 0,99 0,84 1,32 1,65 2,02 0,73
80 40 40 0,99 0,84 1,32 1,65 2,02 0,73
40 24 16 0,98 1,06 1,33 1,74 1,36 0,92
SPLATE = 4,5 mm
S PLATE = 2,25 m
SPAN = 12 mm

45 30 15 0,96 1,06 1,42 1,83 1,70 0,92


50 30 20 1,06 1,06 1,42 1,83 1,70 0,92
4,5
60 35 25 1,18 1,06 1,49 1,90 1,99 0,92
70 40 30 1,22 1,06 1,56 1,97 2,27 0,92
80 40 40 1,22 1,06 1,56 1,97 2,27 0,92
40 24 16 1,12 1,16 1,46 2,00 1,52 1,13
45 24 21 1,19 1,20 1,56 2,05 1,52 1,13
SPLATE = 5,0 mm
SPLATE = 2,5 mm

50 24 26 1,29 1,20 1,56 2,05 1,52 1,13


SPAN = 12 mm

60 30 30 1,46 1,20 1,65 2,14 1,89 1,13


5 70 35 35 1,46 1,20 1,73 2,22 2,21 1,13
80 40 40 1,46 1,20 1,81 2,30 2,53 1,13
90 45 45 1,46 1,20 1,89 2,38 2,84 1,13
100 50 50 1,46 1,20 1,97 2,46 3,16 1,13
120 60 60 1,46 1,20 2,13 2,62 3,79 1,13

NOTES:
(1) The characteristic shear resistances are calculated considering an OSB3 or (5) The axial resistance to head pull-through, with and without a washer, was
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with calculated using timber elements.
thickness SPAN. In the case of steel-to-timber connections, generally the steel tensile strength
(2) The shear resistance characteristics are calculated considering the case of is binding with respect to head separation or pull-through.
a thin plate (SPLATE ≤ 0,5 d1).
(3) The shear resistance characteristics are calculated considering the case of
a thick plate (SPLATE ≥ d1).
(4) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.

CARPENTRY | HBS | 31
STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

timber-to-timber thin steel-timber thick steel-timber thread head head pull-through


geometry timber-to-timber
with washer plate(2) plate(3) withdrawal(4) pull-through (5) with washer (5)
legno-legno Splate
con rondella

d1

d1 L b A RV,k RV,k RV,k RV,k Rax,k Rhead,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
40 35 8 0,89 0,89 1,64 2,60 2,65 1,63 4,53
50 35 15 1,53 1,66 2,08 2,98 2,65 1,63 4,53
60 30 30 1,78 1,94 2,24 2,93 2,27 1,63 4,53
70 40 30 1,88 2,23 2,43 3,12 3,03 1,63 4,53
80 40 40 2,08 2,43 2,43 3,12 3,03 1,63 4,53
90 50 40 2,08 2,61 2,61 3,31 3,79 1,63 4,53
100 50 50 2,08 2,61 2,61 3,31 3,79 1,63 4,53
110 60 50 2,08 2,80 2,80 3,49 4,55 1,63 4,53
SPLATE = 6 mm
SPLATE = 3 mm

120 60 60 2,08 2,80 2,80 3,49 4,55 1,63 4,53


130 60 70 2,08 2,80 2,80 3,49 4,55 1,63 4,53
6
140 75 65 2,08 2,80 3,09 3,78 5,68 1,63 4,53
150 75 75 2,08 2,80 3,09 3,78 5,68 1,63 4,53
160 75 85 2,08 2,80 3,09 3,78 5,68 1,63 4,53
180 75 105 2,08 2,80 3,09 3,78 5,68 1,63 4,53
200 75 125 2,08 2,80 3,09 3,78 5,68 1,63 4,53
220 75 145 2,08 2,80 3,09 3,78 5,68 1,63 4,53
240 75 165 2,08 2,80 3,09 3,78 5,68 1,63 4,53
260 75 185 2,08 2,80 3,09 3,78 5,68 1,63 4,53
280 75 205 2,08 2,80 3,09 3,78 5,68 1,63 4,53
300 75 225 2,08 2,80 3,09 3,78 5,68 1,63 4,53
80 52 28 2,59 3,31 4,00 5,11 5,25 2,38 7,08
100 52 48 3,28 4,00 4,00 5,11 5,25 2,38 7,08
120 60 60 3,28 4,20 4,20 5,31 6,06 2,38 7,08
140 60 80 3,28 4,20 4,20 5,31 6,06 2,38 7,08
160 80 80 3,28 4,45 4,70 5,81 8,08 2,38 7,08
180 80 100 3,28 4,45 4,70 5,81 8,08 2,38 7,08
200 80 120 3,28 4,45 4,70 5,81 8,08 2,38 7,08
220 80 140 3,28 4,45 4,70 5,81 8,08 2,38 7,08
SPLATE = 8 mm
SPLATE = 4 mm

240 80 160 3,28 4,45 4,70 5,81 8,08 2,38 7,08


260 80 180 3,28 4,45 4,70 5,81 8,08 2,38 7,08
8
280 80 200 3,28 4,45 4,70 5,81 8,08 2,38 7,08
300 100 200 3,28 4,45 5,21 6,32 10,10 2,38 7,08
320 100 220 3,28 4,45 5,21 6,32 10,10 2,38 7,08
340 100 240 3,28 4,45 5,21 6,32 10,10 2,38 7,08
360 100 260 3,28 4,45 5,21 6,32 10,10 2,38 7,08
380 100 280 3,28 4,45 5,21 6,32 10,10 2,38 7,08
400 100 300 3,28 4,45 5,21 6,32 10,10 2,38 7,08
440 100 340 3,28 4,45 5,21 6,32 10,10 2,38 7,08
480 100 380 3,28 4,45 5,21 6,32 10,10 2,38 7,08
520 100 420 3,28 4,45 5,21 6,32 10,10 2,38 7,08
80 52 28 3,63 4,33 4,75 6,94 6,57 3,77 10,20
100 52 48 4,22 4,92 5,51 7,12 6,57 3,77 10,20
120 60 60 4,81 5,76 5,76 7,37 7,58 3,77 10,20
140 60 80 4,81 5,76 5,76 7,37 7,58 3,77 10,20
160 80 80 4,81 6,40 6,40 8,00 10,10 3,77 10,20
180 80 100 4,81 6,40 6,40 8,00 10,10 3,77 10,20
SPLATE = 10 mm
SPLATE = 5 mm

200 80 120 4,81 6,40 6,40 8,00 10,10 3,77 10,20


220 80 140 4,81 6,40 6,40 8,00 10,10 3,77 10,20
10 240 80 160 4,81 6,40 6,40 8,00 10,10 3,77 10,20
260 80 180 4,81 6,40 6,40 8,00 10,10 3,77 10,20
280 80 200 4,81 6,40 6,40 8,00 10,10 3,77 10,20
300 100 200 4,81 6,42 7,03 8,63 12,63 3,77 10,20
320 100 220 4,81 6,42 7,03 8,63 12,63 3,77 10,20
340 100 240 4,81 6,42 7,03 8,63 12,63 3,77 10,20
360 100 260 4,81 6,42 7,03 8,63 12,63 3,77 10,20
380 100 280 4,81 6,42 7,03 8,63 12,63 3,77 10,20
400 100 300 4,81 6,42 7,03 8,63 12,63 3,77 10,20

32 | HBS | CARPENTRY
STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

timber-to-timber thin steel-timber thick steel-timber thread head head pull-through


geometry timber-to-timber
with washer plate(2) plate(3) withdrawal(4) pull-through (5) with washer (5)
legno-legno Splate
con rondella

d1

d1 L b A RV,k RV,k RV,k RV,k Rax,k Rhead,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
120 80 40 4,87 6,68 7,81 9,79 12,12 4,88 15,51
160 80 80 6,00 7,81 7,81 9,79 12,12 4,88 15,51
200 80 120 6,00 7,81 7,81 9,79 12,12 4,88 15,51
240 80 160 6,00 7,81 7,81 9,79 12,12 4,88 15,51

SPLATE = 12 mm
SPLATE = 6 mm
280 80 200 6,00 7,81 7,81 9,79 12,12 4,88 15,51
320 120 200 6,00 8,66 9,32 11,30 18,18 4,88 15,51
12 360 120 240 6,00 8,66 9,32 11,30 18,18 4,88 15,51
400 120 280 6,00 8,66 9,32 11,30 18,18 4,88 15,51
440 120 320 6,00 8,66 9,32 11,30 18,18 4,88 15,51
480 120 360 6,00 8,66 9,32 11,30 18,18 4,88 15,51
520 120 400 6,00 8,66 9,32 11,30 18,18 4,88 15,51
560 120 440 6,00 8,66 9,32 11,30 18,18 4,88 15,51
600 120 480 6,00 8,66 9,32 11,30 18,18 4,88 15,51

NOTES: GENERAL PRINCIPLES:


(1) The characteristic shear resistances are calculated considering an OSB3 or • Characteristic values comply with the EN 1995:2014 standard in accord-
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with ance with ETA-11/0030.
thickness SPAN. • Design values can be obtained from characteristic values as follows:
(2) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1). Rk kmod
Rd =
(3) The shear resistance characteristics are calculated considering the case of

γM
a thick plate (SPLATE ≥ d1).
(4) The axial thread withdrawal resistance was calculated considering a 90° an- The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
gle between the grain and the connector and for a fixing length of b.
(5) The axial resistance to head pull-through, with and without a washer, was • For the mechanical resistance values and the geometry of the screws, ref-
erence was made to ETA-11/0030.
calculated using timber elements.
• For the calculation process a timber characteristic density ρk = 385 kg/m3
In the case of steel-to-timber connections, generally the steel tensile strength
has been considered.
is binding with respect to head separation or pull-through.
• Values were calculated considering the threaded part as being completely
inserted into the wood.
• Sizing and verification of the timber elements, panels and steel plates must
be done separately.
• The characteristic shear resistances are calculated for screws inserted with-
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.
• For different calculation configurations, the MyProject software is available
(www.rothoblaas.com).

CARPENTRY | HBS | 33
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
lateral face(1) narrow face(2)
d1 [mm] 6 8 10 12 6 8 10 12
a1 [mm] 4∙d 24 32 40 48 10∙d 60 80 100 120
a2 [mm] 2.5∙d 15 20 25 30 4∙d 24 32 40 48
a3,t [mm] 6∙d 36 48 60 72 12∙d 72 96 120 144
a3,c [mm] 6∙d 36 48 60 72 7∙d 42 56 70 84
a4,t [mm] 6∙d 36 48 60 72 6∙d 36 48 60 72
a4,c [mm] 2.5∙d 15 20 25 30 3∙d 18 24 30 36
d = nominal screw diameter

a4,c a4,t
α F
F
α α
F
F α

a3,t a3,c

a3,t F
a3,c a3,c
a2
a2 a4,c a4,c F
a2 a4,c a4,t

a1 a1
tCLT tCLT

NOTES:
The minimum distances are compliant with ETA-11/0030 and are to be con- (1) Minimum CLT thickness t
min = 10∙d
sidered valid unless otherwise specified in the technical documents for the (2) Minimum CLT thickness t
CLT panels. min = 10∙d and minimum screw pull-through
depth tpen = 10∙d

34 | HBS | CARPENTRY
MINIMUM DISTANCES FOR SHEAR LOADS | LVL

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5 6 8 10 5 6 8 10
a1 [mm] 12∙d 60 72 96 120 5∙d 25 30 40 50
a2 [mm] 5∙d 25 30 40 50 5∙d 25 30 40 50
a3,t [mm] 15∙d 75 90 120 150 10∙d 50 60 80 100
a3,c [mm] 10∙d 50 60 80 100 10∙d 50 60 80 100
a4,t [mm] 5∙d 25 30 40 50 10∙d 50 60 80 100
a4,c [mm] 5∙d 25 30 40 50 5∙d 25 30 40 50
d = nominal screw diameter

a4,c a4,t
α F a2

F α
a1

a2
F a2
α α
F

a1
a3,t a3,c

NOTES:

• The minimum distances are compliant with ETA-11/0030 and are to be con- where:
sidered valid unless otherwise specified in the technical documents for the t 1 is the thickness in mm of the LVL element in a connection with 2 wood-
LVL panels. en elements. For connections with 3 or more elements, t 1 represents the
• The minimum distances are applicable when using both parallel and cross thickness of the most external LVL;
grain softwood LVL. t 2 is the thickness in mm of the central element in a connection with 3 or
• The minimum distances without pre-drilling hole are valid for minimum more elements.
thickness of LVL elements tmin:
t1 ≥ 8,4 d -9

11,4 d
t2 ≥
75

CARPENTRY | HBS | 35
STATIC VALUES | CLT

SHEAR(1)

CLT - CLT CLT - CLT panel - CLT(2) CLT - panel - CLT(2)


geometry
lateral face lateral face - narrow face lateral face lateral face

t
A

d1

d1 L b A RV,k RV,k RV,k t RV,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [mm] [kN]
40 35 8 0,80 - 1,30 - -
50 35 15 1,44 - 1,53 - -
60 30 30 1,63 - 1,53 - -
70 40 30 1,74 - 1,53 30 2,19
80 40 40 1,97 - 1,53 35 2,19
90 50 40 1,97 - 1,53 40 2,19
100 50 50 1,97 - 1,53 45 2,19
110 60 50 1,97 - 1,53 50 2,19

SPAN = 15 mm

SPAN = 15 mm
120 60 60 1,97 - 1,53 55 2,19
130 60 70 1,97 - 1,53 60 2,19
6
140 75 65 1,97 - 1,53 65 2,19
150 75 75 1,97 - 1,53 70 2,19
160 75 85 1,97 - 1,53 75 2,19
180 75 105 1,97 - 1,53 85 2,19
200 75 125 1,97 - 1,53 95 2,19
220 75 145 1,97 - 1,53 105 2,19
240 75 165 1,97 - 1,53 115 2,19
260 75 185 1,97 - 1,53 125 2,19
280 75 205 1,97 - 1,53 135 2,19
300 75 225 1,97 - 145 2,19
80 52 28 2,42 1,84 2,30 - -
100 52 48 3,04 2,13 2,30 40 2,92
120 60 60 3,11 2,26 2,30 50 2,92
140 60 80 3,11 2,26 2,30 60 2,92
160 80 80 3,11 2,58 2,30 70 2,92
180 80 100 3,11 2,58 2,30 80 2,92
200 80 120 3,11 2,58 2,30 90 2,92
220 80 140 3,11 2,58 2,30 100 2,92
SPAN = 18 mm

SPAN = 18 mm

240 80 160 3,11 2,58 2,30 110 2,92


260 80 180 3,11 2,58 2,30 120 2,92
8
280 80 200 3,11 2,58 2,30 130 2,92
300 100 200 3,11 2,58 2,30 140 2,92
320 100 220 3,11 2,58 2,30 150 2,92
340 100 240 3,11 2,58 2,30 160 2,92
360 100 260 3,11 2,58 2,30 170 2,92
380 100 280 3,11 2,58 2,30 180 2,92
400 100 300 3,11 2,58 2,30 190 2,92
440 100 340 3,11 2,58 2,30 210 2,92
480 100 380 3,11 2,58 2,30 230 2,92
520 100 420 3,11 2,58 250 2,92

36 | HBS | CARPENTRY
CHARACTERISTIC VALUES
EN 1995:2014

SHEAR(1) TENSION

CLT - timber timber - CLT thread withdrawal thread withdrawal head head pull-through
lateral face narrow face lateral face(3) narrow face(4) pull-through (5) with washer(5)

RV,k RV,k Rax,k Rax,k Rhead,k Rhead,k


[kN] [kN] [kN] [kN] [kN] [kN]
0,80 - 2,46 - 1,51 4,20
1,47 - 2,46 - 1,51 4,20
1,69 - 2,11 - 1,51 4,20
1,82 - 2,81 - 1,51 4,20
2,01 - 2,81 - 1,51 4,20
2,01 - 3,51 - 1,51 4,20
2,01 - 3,51 - 1,51 4,20
2,01 - 4,21 - 1,51 4,20
2,01 - 4,21 - 1,51 4,20
2,01 - 4,21 - 1,51 4,20
2,01 - 5,27 - 1,51 4,20
2,01 - 5,27 - 1,51 4,20
2,01 - 5,27 - 1,51 4,20
2,01 - 5,27 - 1,51 4,20
2,01 - 5,27 - 1,51 4,20
2,01 - 5,27 - 1,51 4,20
2,01 - 5,27 - 1,51 4,20
2,01 - 5,27 - 1,51 4,20
2,01 - 5,27 - 1,51 4,20
2,01 - 5,27 - 1,51 4,20
2,51 2,19 4,87 3,70 2,21 6,56
3,17 2,19 4,87 3,70 2,21 6,56
3,17 2,32 5,62 4,21 2,21 6,56
3,17 2,32 5,62 4,21 2,21 6,56
3,17 2,66 7,49 5,45 2,21 6,56
3,17 2,66 7,49 5,45 2,21 6,56
3,17 2,66 7,49 5,45 2,21 6,56
3,17 2,66 7,49 5,45 2,21 6,56
3,17 2,66 7,49 5,45 2,21 6,56
3,17 2,66 7,49 5,45 2,21 6,56
3,17 2,66 7,49 5,45 2,21 6,56
3,17 2,66 9,36 6,66 2,21 6,56
3,17 2,66 9,36 6,66 2,21 6,56
3,17 2,66 9,36 6,66 2,21 6,56
3,17 2,66 9,36 6,66 2,21 6,56
3,17 2,66 9,36 6,66 2,21 6,56
3,17 2,66 9,36 6,66 2,21 6,56
3,17 2,66 9,36 6,66 2,21 6,56
3,17 2,66 9,36 6,66 2,21 6,56
3,17 2,66 9,36 6,66 2,21 6,56

CARPENTRY | HBS | 37
STATIC VALUES | CLT

SHEAR(1)

CLT - CLT CLT - CLT panel - CLT(2) CLT - panel - CLT(2)


geometry
lateral face lateral face - narrow face lateral face lateral face

t
A

d1

d1 L b A RV,k RV,k RV,k t RV,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [mm] [kN]
80 52 28 3,40 2,34 3,31 - -
100 52 48 3,86 2,91 3,31 - -
120 60 60 4,45 3,03 3,31 50 3,89
140 60 80 4,49 3,03 3,31 60 3,89
160 80 80 4,56 3,37 3,31 70 3,89
180 80 100 4,56 3,37 3,31 80 3,89

SPAN = 22 mm
200 80 120 4,56 3,37 3,31 90 3,89

SPAN = 22 mm
220 80 140 4,56 3,37 3,31 100 3,89
10 240 80 160 4,56 3,37 3,31 110 3,89
260 80 180 4,56 3,37 3,31 120 3,89
280 80 200 4,56 3,37 3,31 130 3,89
300 100 200 4,56 3,76 3,31 140 3,89
320 100 220 4,56 3,76 3,31 150 3,89
340 100 240 4,56 3,76 3,31 160 3,89
360 100 260 4,56 3,76 3,31 170 3,89
380 100 280 4,56 3,76 3,31 180 3,89
400 100 300 4,56 3,76 3,31 190 3,89
120 80 40 4,54 3,56 - - -
160 80 80 5,69 4,00 - - -
200 80 120 5,69 4,00 - - -
240 80 160 5,69 4,00 - - -
280 80 200 5,69 4,00 - - -
320 120 200 5,69 4,65 - - -
12 360 120 240 5,69 4,65 - - -
-

400 120 280 5,69 4,65 - - -


440 120 320 5,69 4,65 - - -
480 120 360 5,69 4,65 - - -
520 120 400 5,69 4,65 - - -
560 120 440 5,69 4,65 - - -
600 120 480 5,69 4,65 - - -

NOTES:
(1) The characteristic shear strength is independent from the direction of the (4)
The axial thread withdrawal resistance is valid for minimum thickness of the ele-
grain of the CLT panels outer layer. ment of tmin = 10∙d and minimum screw pull-through depth tpen = 10∙d.
(2) The characteristic shear resistances are calculated considering an OSB3 or (5) The axial resistance to head pull-through was calculated using timber ele-
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with ments.
thickness SPAN.
(3) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.

38 | HBS | CARPENTRY
CHARACTERISTIC VALUES
EN 1995:2014

SHEAR(1) TENSION

CLT - timber timber - CLT thread withdrawal thread withdrawal head head pull-through
lateral face narrow face lateral face(3) narrow face(4) pull-through (5) with washer(5)

RV,k RV,k Rax,k Rax,k Rhead,k Rhead,k


[kN] [kN] [kN] [kN] [kN] [kN]
3,50 3,01 6,08 4,42 3,50 9,45
4,02 3,01 6,08 4,42 3,50 9,45
4,63 3,12 7,02 5,03 3,50 9,45
4,65 3,12 7,02 5,03 3,50 9,45
4,65 3,46 9,36 6,51 3,50 9,45
4,65 3,46 9,36 6,51 3,50 9,45
4,65 3,46 9,36 6,51 3,50 9,45
4,65 3,46 9,36 6,51 3,50 9,45
4,65 3,46 9,36 6,51 3,50 9,45
4,65 3,46 9,36 6,51 3,50 9,45
4,65 3,46 9,36 6,51 3,50 9,45
4,65 3,86 11,70 7,96 3,50 9,45
4,65 3,86 11,70 7,96 3,50 9,45
4,65 3,86 11,70 7,96 3,50 9,45
4,65 3,86 11,70 7,96 3,50 9,45
4,65 3,86 11,70 7,96 3,50 9,45
4,65 3,86 11,70 7,96 3,50 9,45
4,71 4,10 11,23 7,54 4,52 14,37
5,79 4,11 11,23 7,54 4,52 14,37
5,79 4,11 11,23 7,54 4,52 14,37
5,79 4,11 11,23 7,54 4,52 14,37
5,79 4,11 11,23 7,54 4,52 14,37
5,79 4,78 16,85 10,86 4,52 14,37
5,79 4,78 16,85 10,86 4,52 14,37
5,79 4,78 16,85 10,86 4,52 14,37
5,79 4,78 16,85 10,86 4,52 14,37
5,79 4,78 16,85 10,86 4,52 14,37
5,79 4,78 16,85 10,86 4,52 14,37
5,79 4,78 16,85 10,86 4,52 14,37
5,79 4,78 16,85 10,86 4,52 14,37

GENERAL PRINCIPLES:
• Characteristic values comply with the EN 1995:2014 standard and national • Values were calculated considering the threaded part as being completely
specification ÖNORM EN 1995 - Annex K in accordance with ETA-11/0030. inserted into the wood.
• Design values can be obtained from characteristic values as follows: • Sizing and verification of the timber elements and panels must be done
separately.
Rk kmod
• The characteristic shear resistances are calculated for screws inserted with-
Rd =

γM out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.
The coefficients γM and kmod should be taken according to the current
• The shear resistance characteristics are calculated considering a minimum
regulations used for the calculation.
fixing length of 4 d1 .
• For the mechanical resistance values and the geometry of the screws, ref-
• The screws must be positioned in accordance with the minimum distances.
erence was made to ETA-11/0030.
• For the calculation process, a mass density of ρ k = 350 kg/m3 has been
considered for CLT elements and a mass density of ρ k = 385 kg/m3 has
been considered for timber elements.

CARPENTRY | HBS | 39
STATIC VALUES | LVL

SHEAR

geometry LVL - LVL LVL - LVL - LVL LVL - timber timber - LVL

t2

d1 A

d1 L b A RV,k A t2 RV,k A RV,k A RV,k


[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [mm] [kN] [mm] [kN]
40 24 - - - - - - - - -
45 24 - - - - - - - - -
50 24 - - - - - - - - -
60 30 - - - - - - - 27 1,35
5 70 35 33 1,80 - - - 33 1,69 35 1,47
80 40 40 1,80 - - - 40 1,69 40 1,47
90 45 45 1,80 - - - 45 1,69 45 1,47
100 50 50 1,80 - - - 50 1,69 50 1,47
120 60 60 1,80 - - - 60 1,69 70 1,47
40 35 - - - - - - - - -
50 35 - - - - - - - - -
60 30 - - - - - - - - -
70 40 - - - - - - - - -
80 40 - - - - - - - 35 1,96
90 50 45 2,56 - - - 45 2,41 40 2,09
100 50 50 2,56 - - - 50 2,41 50 2,09
110 60 50 2,56 - - - 50 2,41 50 2,09
120 60 60 2,56 - - - 60 2,41 60 2,09
130 60 70 2,56 - - - 70 2,41 70 2,09
6
140 75 65 2,56 - - - 65 2,41 65 2,09
150 75 75 2,56 - - - 75 2,41 75 2,09
160 75 85 2,56 45 70 5,12 85 2,41 85 2,09
180 75 105 2,56 55 75 5,12 105 2,41 105 2,09
200 75 125 2,56 60 85 5,12 125 2,41 125 2,09
220 75 145 2,56 70 85 5,12 145 2,41 145 2,09
240 75 165 2,56 75 95 5,12 165 2,41 165 2,09
260 75 185 2,56 75 115 5,12 185 2,41 185 2,09
280 75 205 2,56 75 135 5,12 205 2,41 205 2,09
300 75 225 2,56 75 155 5,12 225 2,41 225 2,09

NOTES:
(1) The axial thread withdrawal resistance was calculated considering a 90° (2) The axial resistance to head pull-through, with and without a washer, was
angle between the grain and the connector and for a fixing length of b. calculated using wood elements.

40 | HBS | CARPENTRY
CHARACTERISTIC VALUES
EN 1995:2014

TENSION

head pull-through
thread withdrawal thread withdrawal head pull-through
with washer
flat(1) edge(1) flat(2)
flat(2)

Rax,k Rax,k Rhead,k Rhead,k


[kN] [kN] [kN] [kN]
1,74 1,16 1,94 -
1,74 1,16 1,94 -
1,74 1,16 1,94 -
2,18 1,45 1,94 -
2,54 1,69 1,94 -
2,90 1,94 1,94 -
3,99 2,66 1,94 -
3,63 2,42 1,94 -
4,36 2,90 1,94 -
3,05 2,03 2,79 7,74
3,05 2,03 2,79 7,74
2,61 1,74 2,79 7,74
3,48 2,32 2,79 7,74
3,48 2,32 2,79 7,74
4,36 2,90 2,79 7,74
4,36 2,90 2,79 7,74
5,23 3,48 2,79 7,74
5,23 3,48 2,79 7,74
5,23 3,48 2,79 7,74
6,53 4,36 2,79 7,74
6,53 4,36 2,79 7,74
6,53 4,36 2,79 7,74
6,53 4,36 2,79 7,74
6,53 4,36 2,79 7,74
6,53 4,36 2,79 7,74
6,53 4,36 2,79 7,74
6,53 4,36 2,79 7,74
6,53 4,36 2,79 7,74
6,53 4,36 2,79 7,74

GENERAL PRINCIPLES:
• Characteristic values comply with the EN 1995:2014 standard in accord- • For the calculation process, a mass density of ρ k = 480 kg/m3 has
ance with ETA-11/0030. been considered for the softwood LVL elements and a mass density of
• Design values can be obtained from characteristic values as follows: ρk = 350 kg/m3 has been considered for timber elements.
• Values were calculated considering the threaded part as being completely
Rk kmod inserted into the wood.
Rd =

γM • Sizing and verification of the timber elements, panels and steel plates must
be done separately.
The coefficients γM and kmod should be taken according to the current
• The characteristic shear resistances are calculated for screws inserted with-
regulations used for the calculation.
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
• For the mechanical resistance values and the geometry of the screws, ref- greater resistance values can be obtained.
erence was made to ETA-11/0030.

CARPENTRY | HBS | 41
STATIC VALUES | LVL

SHEAR

geometry LVL - LVL LVL - LVL - LVL LVL - timber timber - LVL

t2

d1 A

d1 L b A RV,k A t2 RV,k A RV,k A RV,k


[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [mm] [kN] [mm] [kN]
80 52 - - - - - - - - -
100 52 - - - - - - - 40 2,89
120 60 60 4,01 - - - 60 3,77 60 3,30
140 60 80 4,01 - - - 80 3,77 80 3,30
160 80 80 4,01 - - - 80 3,77 80 3,30
180 80 100 4,01 - - - 100 3,77 100 3,30
200 80 120 4,01 65 75 8,03 120 3,77 120 3,30
220 80 140 4,01 75 75 8,03 140 3,77 140 3,30
240 80 160 4,01 80 85 8,03 160 3,77 160 3,30
260 80 180 4,01 80 105 8,03 180 3,77 180 3,30
8
280 80 200 4,01 80 125 8,03 200 3,77 200 3,30
300 100 200 4,01 100 105 8,03 200 3,77 200 3,30
320 100 220 4,01 100 125 8,03 220 3,77 220 3,30
340 100 240 4,01 100 145 8,03 240 3,77 240 3,30
360 100 260 4,01 100 165 8,03 260 3,77 260 3,30
380 100 280 4,01 100 185 8,03 280 3,77 280 3,30
400 100 300 4,01 120 165 8,03 300 3,77 300 3,30
440 100 340 4,01 120 205 8,03 340 3,77 340 3,30
480 100 380 4,01 120 245 8,03 380 3,77 380 3,30
520 100 420 4,01 120 285 8,03 420 3,77 420 3,30
80 52 - - - - - - - - -
100 52 - - - - - - - - -
120 60 - - - - - - - 45 4,08
140 60 - - - - - - - 60 4,69
160 80 75 5,93 - - - 75 5,58 80 4,84
180 80 100 5,93 - - - 100 5,58 100 4,84
200 80 120 5,93 - - - 120 5,58 120 4,84
220 80 140 5,93 - - - 140 5,58 140 4,84
10 240 80 160 5,93 80 85 11,87 160 5,58 160 4,84
260 80 180 5,93 80 105 11,87 180 5,58 180 4,84
280 80 200 5,93 80 125 11,87 200 5,58 200 4,84
300 100 200 5,93 100 105 11,87 200 5,58 200 4,84
320 100 220 5,93 100 125 11,87 220 5,58 220 4,84
340 100 240 5,93 100 145 11,87 240 5,58 240 4,84
360 100 260 5,93 100 165 11,87 260 5,58 260 4,84
380 100 280 5,93 120 145 11,87 280 5,58 280 4,84
400 100 300 5,93 120 165 11,87 300 5,58 300 4,84

42 | HBS | CARPENTRY
CHARACTERISTIC VALUES
EN 1995:2014

TENSION

head pull-through
thread withdrawal thread withdrawal head pull-through
with washer
flat(1) edge(1) flat(2)
flat(2)

Rax,k Rax,k Rhead,k Rhead,k


[kN] [kN] [kN] [kN]
6,04 4,03 4,07 12,10
6,04 4,03 4,07 12,10
6,97 4,65 4,07 12,10
6,97 4,65 4,07 12,10
9,29 6,19 4,07 12,10
9,29 6,19 4,07 12,10
9,29 6,19 4,07 12,10
9,29 6,19 4,07 12,10
9,29 6,19 4,07 12,10
9,29 6,19 4,07 12,10
9,29 6,19 4,07 12,10
11,61 7,74 4,07 12,10
11,61 7,74 4,07 12,10
11,61 7,74 4,07 12,10
11,61 7,74 4,07 12,10
11,61 7,74 4,07 12,10
11,61 7,74 4,07 12,10
11,61 7,74 4,07 12,10
11,61 7,74 4,07 12,10
11,61 7,74 4,07 12,10
7,55 5,03 6,45 17,42
7,55 5,03 6,45 17,42
8,71 5,81 6,45 17,42
8,71 5,81 6,45 17,42
11,61 7,74 6,45 17,42
11,61 7,74 6,45 17,42
11,61 7,74 6,45 17,42
11,61 7,74 6,45 17,42
11,61 7,74 6,45 17,42
11,61 7,74 6,45 17,42
11,61 7,74 6,45 17,42
14,52 9,68 6,45 17,42
14,52 9,68 6,45 17,42
14,52 9,68 6,45 17,42
14,52 9,68 6,45 17,42
14,52 9,68 6,45 17,42
14,52 9,68 6,45 17,42

CARPENTRY | HBS | 43
CALCULATION EXAMPLES: VALLEY JACK RAFTER JOINT

CONNECTION TIMBER-TO-TIMBER/SINGLE SHEAR

ELEMENT 1 1 ELEMENT 2 2

B1 = 120 mm B2 = 160 mm
H1 = 160 mm 1 2 H2 = 240 mm
Slope 30% (16,7°) Slope 21% (12,0°)
Glulam GL24h Glulam GL24h

PROJECT DATA SCREW SELECTION CONNECTION GEOMETRY

Fv,Rd = 7,17 kN HBS = 10x180 mm t 1 = 60 mm


Service class = 1 Pre-drilling hole = no α 1 = 73,3° (90° - 16,7°)
Load duration = short Washer = no t2 = 120 mm
(fixing length in element 2)

α 2 = 78,0° (90° - 12,0°)

SHEAR RESISTANCE CALCULATION (EN 1995:2014 e ETA-11/0030)

d1 = 10,0 mm My,k = 35,8 Nm


fh,1,k = 15,82 N/mm2 Rax,Rk = min {resistance to thread withdrawal; resistance to head pull-through} = min {Rax,Rk ; Rhead,Rk}
fh,2,k = 15,82 N/mm2 = 3,77 kN
β = 1,00 Rax,Rk/4 = 0,94 kN (cable effect)

fh,1,k t1 d
fh,2,k t2 d (a) = 9,49 kN
fh,1,k t1 d t2 t2 2 t2 2 t Rax,Rk
β + 2β2 1 + + + β3 -β 1+ 2 + (b) = 18,99 kN
1+β t1 t1 ta t1 4

fh,1,k t1 d 4β (2 + β) My,RK Rax,Rk (c) = 7,39 kN


Rv,Rk = min 1,05 2β (1 + β) + -β +
2+β fh,1,k d t12 4
(d) = 4,87 kN
f t d 4β (1 + 2β ) My,RK Rax,Rk
1,05 h,1,k 2 2β2 (1 + β) + -β +
1 + 2β fh,1,k d t22 4
(e) = 7,90 kN
2β Rax,Rk
1,15 2My,RK fh,1,k d + (f) = 4,81 kN
(1 + β) 4

Rv,Rk = 4,81 kN
EN 1995:2014 Italy - NTC 2018
kmod = 0,9 kmod = 0,9
γM = 1,3 γM = 1,5
Rk kmod Rv,Rd = 3,33 kN Rv,Rd = 2,89 kN
Rd =
γM
Minimum number of screws Minimum number of screws
Fv,Rd/Rv,Rd = 2,15 Fv,Rd/Rv,Rd = 2,48

3 screws are hypothesized nef,SHEAR 3 (screws perpendicular to the grain)


nef,TENSION max( 30,9;0,9·3)=2,70

Recalculating the shear resistance, for the cable effect, a tensile strength for the individual screws is assumed at:
Rax,Rk = 3,77 · 2,70/3 = 3,39 kN (head pull-through)
Rax,Rk /4 = 0,85 kN (cable effect)

Individual screw shear resistance:


Rv,Rk = 4,72 kN

EN 1995:2014 Italy - NTC 2018


Rv,Rd = 3,27 kN Rv,Rd = 2,83 kN
Rv,Rd ≥ Fv,Rd
Connection shear resistance: Connection shear resistance:
Rv,Rd = 3,27 x 3 = 9,80 kN > 7,17 kN OK Rv,Rd = 2,83 x 3 = 8,49 kN > 7,17 kN OK

44 | HBS | CARPENTRY
CALCULATION EXAMPLES: VALLEY JACK RAFTER JOINT WITH MYPROJECT

CONNECTION TIMBER-TO-TIMBER/SINGLE SHEAR

ELEMENT 1 1 ELEMENT 2 2

B1 = 120 mm B2 = 160 mm
H1 = 160 mm 1 2 H2 = 240 mm
Slope 30% (16,7°) Slope 21% (12,0°)
Glulam GL24h Glulam GL24h

PROJECT DATA SCREW SELECTION CONNECTION GEOMETRY

Fv,Rd = 7,17 kN HBS = 10x180 mm t 1 = 60 mm


Service class = 1 Pre-drilling hole = no α 1 = 73,3° (90° - 16,7°)
Load duration = short Washer = no t2 = 120 mm
(fixing length in element 2)

α 2 = 78,0° (90° - 12,0°)

SHEAR RESISTANCE CALCULATION WITH MYPROJECT SOFTWARE (EN 1995:2014 e ETA-11/0030)

CALCULATION REPORT

CARPENTRY | HBS | 45
HBS EVO 1002
CERTIFIED

C4 COATING BIT INCLUDED COATING ETA-11/0030

COUNTERSUNK SCREW

C4 EVO COATING
20 μm multilayer coating with a surface treatment of epoxy resin and
aluminium flakes. No rust after 1440 hours of salt spray exposure, as per
ISO 9227. Can be used in service class 3 outdoor applications and under
class C4 atmospheric corrosion conditions.

AGGRESSIVE WOODS
Ideal for applications with woods containing tannin or treated with im-
pregnating agents or other chemical processes.

STRUCTURAL APPLICATIONS
Approved for structural applications subject to stresses in any direction
vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better
timber pull-through.

SUPERIOR STRENGTH
Steel with superb yield and failure strength (fy,k = 1000 N/mm2). Very high
torsional strength ftor,k for safer screwing.

CHARACTERISTICS
FOCUS corrosiveness class C4
HEAD countersunk with under-head ribs
DIAMETER from 5,0 to 8,0 mm
LENGTH from 80 to 320 mm

MATERIAL
Carbon steel, with a 20 μm coating, highly re-
sistant to corrosion.

FIELDS OF USE
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
• aggressive woods (containing tannin)
• chemically treated woods
Service classes 1, 2 and 3.

46 | HBS EVO | CARPENTRY


SERVICE CLASS 3
Certified for use in service class 3 outdoor ap-
plications and under class C4 atmospheric cor-
rosion conditions. Ideal for fastening timber
framed panels and lattice beams (Rafter, Truss).

HARDWOOD FRAME
Values also tested, certified and calculated for
high density woods. Ideal for fastening ag-
gressive woods containing tannin.

CARPENTRY | HBS EVO | 47


Fastening sill beams in frame structures.

Fastening outdoor fencing.

GEOMETRY AND MECHANICAL CHARACTERISTICS

S
X X

dK 90° d2 d1
B
H

dS
t1 b
L

Nominal diameter d1 [mm] 5 6 8


Head diameter dK [mm] 10,00 12,00 14,50
Tip diameter d2 [mm] 3,40 3,95 5,40
Shank diameter dS [mm] 3,65 4,30 5,80
Head thickness t1 [mm] 3,10 4,50 4,50
Pre-drilling hole diameter(1) dV [mm] 3,0 4,0 5,0
Characteristic yield
My,k [Nm] 5,4 9,5 20,1
moment
Characteristic
fax,k [N/mm2] 11,7 11,7 11,7
withdrawal-resistance parameter(2)
Associated density ρa [kg/m3] 350 350 350
Characteristic head-pull-through
fhead,k [N/mm2] 10,5 10,5 10,5
parameter(2)
Associated density ρa [kg/m3] 350 350 350
Characteristic tensile
ftens,k [kN] 7,9 11,3 20,1
strength
(1)
Pre-drilling valid for softwood.
(2)
Valid for softwood - maximum density 440 kg/m3.
For applications with different materials or with high density please see ETA-11/0030.

48 | HBS EVO | CARPENTRY


CODES AND DIMENSIONS

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm] [in] [mm] [mm] [in]

5 HBSEVO580 80 3 1/8 40 40 1 9/16 100 HBSEVO8100 100 4 52 48 1 7/8 100


0.20 HBSEVO590 90 3 1/2 45 45 1 3/4 100 HBSEVO8120 120 4 3/4 60 60 2 3/8 100
TX 25 HBSEVO5100 100 4 50 50 1 15/16 100 HBSEVO8140 140 5 1/2 60 80 3 1/8 100
HBSEVO680 80 3 1/8 40 40 1 9/16 100 HBSEVO8160 160 6 1/4 80 80 3 1/8 100
HBSEVO6100 100 4 50 50 1 15/16 100 8 HBSEVO8180 180 7 1/8 80 100 4 100
0.32
6 HBSEVO6120 120 4 3/4 60 60 2 3/8 100 TX 40 HBSEVO8200 200 8 80 120 4 3/4 100
0.24 HBSEVO6140 140 5 1/2 75 65 2 9/16 100 HBSEVO8220 220 8 5/8 80 140 5 1/2 100
TX 30 HBSEVO6160 160 6 1/4 75 85 3 3/8 100 HBSEVO8240 240 9 1/2 80 160 6 1/4 100
HBSEVO6180 180 7 1/8 75 105 4 1/8 100 HBSEVO8280 280 11 80 200 8 100
HBSEVO6200 200 8 75 125 4 15/16 100 HBSEVO8320 320 12 5/8 100 220 9 1/2 100

MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5 6 8 5 6 8
a1 [mm] 5∙d 25 30 40 4∙d 20 24 32
a2 [mm] 3∙d 15 18 24 4∙d 20 24 32
a3,t [mm] 12∙d 60 72 96 7∙d 35 42 56
a3,c [mm] 7∙d 35 42 56 7∙d 35 42 56
a4,t [mm] 3∙d 15 18 24 7∙d 35 42 56
a4,c [mm] 3∙d 15 18 24 3∙d 15 18 24

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5 6 8 5 6 8
a1 [mm] 12∙d 60 72 96 5∙d 25 30 40
a2 [mm] 5∙d 25 30 40 5∙d 25 30 40
a3,t [mm] 15∙d 75 90 120 10∙d 50 60 80
a3,c [mm] 10∙d 50 60 80 10∙d 50 60 80
a4,t [mm] 5∙d 25 30 40 10∙d 50 60 80
a4,c [mm] 5∙d 25 30 40 5∙d 25 30 40
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are in accordance with the EN 1995:2014 standard, • The minimum spacing for all steel-to-timber connections (a1 , a2) can be
according to ETA-11/0030, considering a timber characteristic density of multiplied by a coefficient of 0,7.
ρk ≤ 420 kg/m3. • The minimum spacing for all panel-to-timber connections(a1 , a2) can be
• In the case of joints with elements in Douglas fir, the minimum spacing and multiplied by a coefficient of 0,85.
distances parallel to the grain must be multiplied by a coefficient of 1.5.

CARPENTRY | HBS EVO | 49


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

thin steel-timber thick steel-timber thread head


geometry timber-to-timber panel-to-timber(1)
plate(2) plate(3) withdrawal(4) pull-through (5)
Splate

d1
d1 L b A RV,k RV,k RV,k RV,k Rax,k Rhead,k
[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN]
80 40 40 1,54 1,22 1,91 2,42 2,71 1,21

SPLATE =

SPLATE =
5,0 mm
2,5 mm
SPAN =
15 mm

5 90 45 45 1,54 1,22 2,00 2,51 3,05 1,21


100 50 50 1,54 1,22 2,08 2,59 3,38 1,21
80 40 40 2,18 1,67 2,55 3,27 3,25 1,75
100 50 50 2,18 1,67 2,76 3,48 4,06 1,75

SPLATE = 6,0 mm
SPLATE = 3,0 mm
SPAN = 18 mm

120 60 60 2,18 1,67 2,96 3,68 4,87 1,75


6 140 75 65 2,18 1,67 3,26 3,99 6,09 1,75
160 75 85 2,18 1,67 3,26 3,99 6,09 1,75
180 75 105 2,18 1,67 3,26 3,99 6,09 1,75
200 75 125 2,18 1,67 3,26 3,99 6,09 1,75
100 52 48 3,44 2,64 4,21 5,37 5,63 2,55
120 60 60 3,44 2,64 4,43 5,59 6,50 2,55
140 60 80 3,44 2,64 4,43 5,59 6,50 2,55
SPLATE = 8,0 mm
SPLATE = 4,0 mm
SPAN = 22 mm

160 80 80 3,44 2,64 4,97 6,13 8,66 2,55


180 80 100 3,44 2,64 4,97 6,13 8,66 2,55
8
200 80 120 3,44 2,64 4,97 6,13 8,66 2,55
220 80 140 3,44 2,64 4,97 6,13 8,66 2,55
240 80 160 3,44 2,64 4,97 6,13 8,66 2,55
280 80 200 3,44 2,64 4,97 6,13 8,66 2,55
320 100 220 3,44 2,64 5,51 6,67 10,83 2,55

NOTES: GENERAL PRINCIPLES:


(1) The characteristic shear resistances are calculated considering an OSB3 or • Characteristic values comply with the EN 1995:2014 standard in accord-
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with ance with ETA-11/0030.
thickness SPAN. • Design values can be obtained from characteristic values as follows:
(2) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1). Rk kmod
Rd =
(3) The shear resistance characteristics are calculated considering the case of

γM
a thick plate (SPLATE ≥ d1).
(4) The axial thread withdrawal resistance was calculated considering a 90° an- The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
gle between the grain and the connector and for a fixing length of b.
(5) The axial resistance to head pull-through, with and without a washer, was • For the mechanical resistance values and the geometry of the screws, ref-
erence was made to ETA-11/0030.
calculated using timber elements.
• For the calculation process a timber characteristic density ρk = 420 kg/m3
In the case of steel-to-timber connections, generally the steel tensile strength
has been considered.
is binding with respect to head separation or pull-through.
• Values were calculated considering the threaded part as being completely
inserted into the wood.
• Sizing and verification of the timber elements, panels and steel plates must
be done separately.
• The characteristic shear resistances are calculated for screws inserted with-
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.
• For different calculation configurations, the MyProject software is available
(www.rothoblaas.com).

50 | HBS EVO | CARPENTRY


HBS COIL ETA-11/0030

HBS BOUND SCREWS

QUICK, IN SERIES USE


Quick and precise installation. Fast and safe execution thanks to the spe-
cial binding.

HBS 6,0 mm
Also available in a diameter of 6.0 mm, ideal for quick wall-to-wall fas-
tening in CLT structures.

CHARACTERISTICS
FOCUS HBS bound screw
HEAD countersunk with under-head ribs
DIAMETER from 4,0 to 6,0 mm
LENGTH from 30 to 80 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
• high density woods
Service classes 1 and 2.

52 | HBS COIL | CARPENTRY


GEOMETRY

X X
dK 90° d2 d1

B
H
dS
t1 b
L

Nominal diameter d1 [mm] 4 4,5 5 6


Head diameter dK [mm] 8,00 9,00 10,00 12,00
Tip diameter d2 [mm] 2,55 2,80 3,40 3,95
Shank diameter dS [mm] 2,75 3,15 3,65 4,30
Head thickness t1 [mm] 2,80 2,80 3,10 4,50
Pre-drilling hole diameter(1) dV [mm] 2,5 2,5 3,0 4,0
(1) Pre-drilling valid for softwood.

CODES AND DIMENSIONS

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm] [in] [mm] [mm] [in]
HZB430 30 1 3/16 16 14 9/16 3000 HZB560 60 2 3/8 30 30 1 3/16 1250
4 5
0.16 HZB440 40 1 9/16 24 16 5/8 2000 0.20 HZB570 70 2 3/4 35 35 1 3/8 625
TX 20 TX 25
HZB450 50 1 15/16 24 26 1 1/32 1500 HZB580 80 3 1/8 40 40 1 9/16 625
4,5 6 HZB670 70 2 3/4 40 30 1 3/16 625
0.18 HZB4550 50 1 15/16 24 26 1 1/32 1500 0.24
TX 20 TX 30 HZB680 80 3 1/8 40 40 1 9/16 625

ADDITIONAL PRODUCTS

CODE description d1 lengths pcs


[mm] [mm]

automatic loader for


HH3373 4,0 25-50 1
cordless screwdriver A 18 M BL

automatic loader for HH3372


HH3372 4,5 - 6,0 40-80 1
cordless screwdriver A 18 M BL

HH3352 powered screwdriver 4,0 25-50 1

HH3338 powered screwdriver 4,5 - 6,0 40-80 1

HH14411591 extension - - 1

HZB6PLATE adapter plate for HZB Ø6 - - 1


HH3338

HH14000621 TX30 M6 bit for HZB Ø6 - - 1

Further information on page 356-358.

Ø6 mm HBS COIL APPLICATION


HH14411591
The adapter plates for use of 4,0, 4,5 and 5,0 diameter HBS COIL screws are
already supplied with the respective screwdriver loaders. To use HBS COIL
screws with a diameter of 6.0, the adapter plates supplied must be replaced
with the adapter plate HZB6PLATE. For HBS COIL screws diameter 6,0 it is also
necessary to use the appropriate TX30 bit (code HH14000621).
We recommend using the extension HH14411591 for an easier installation of
the screws on horizontal planes.
HZB6PLATE HH14000621

CARPENTRY | HBS COIL | 53


HBS SOFTWOOD EN 14592

COUNTERSUNK SCREW

HBS S
Special self-perforating tip with serrated thread (SAW tip) that cuts the
timber fibres, facilitating initial grip and subsequent penetration.

LONGER THREAD
Greater thread length (60%) to ensure superb joint closure and great ver-
satility.

CHROMIUM (VI) FREE


Total absence of hexavalent chromium. Compliance with the strictest
regulations governing chemical substances (SVHC).
REACH information available.

CHARACTERISTICS
FOCUS long thread
HEAD countersunk with under-head ribs
DIAMETER from 5,0 to 8,0 mm
LENGTH from 50 to 400 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• fibre board and MDF panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
Service classes 1 and 2.

54 | HBS SOFTWOOD | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS
A

X X
dK 90° d2 d1

BS
H

X
t1 dS b
L

Nominal diameter d1 [mm] 5 6 8


Head diameter dK [mm] 10,00 12,00 14,50
Tip diameter d2 [mm] 3,40 3,95 5,40
Shank diameter dS [mm] 3,65 4,30 5,80
Head thickness t1 [mm] 3,10 4,50 4,50
Pre-drilling hole diameter dV [mm] 3,0 4,0 5,0
Characteristic yield
My,k [Nm] 6,0 10,0 20,5
moment
Characteristic
fax,k [N/mm2] 12,0 12,0 12,0
withdrawal-resistance parameter
Associated density ρa [kg/m3] 350 350 350
Characteristic head-pull-through
fhead,k [kN] 13,0 13,0 13,0
parameter
Associated density ρa [kg/m3] 350 350 350
Characteristic tensile
ftens,k [kN] 8,0 12,0 19,0
strength

CODES AND DIMENSIONS


d1 CODE L b A pcs d1 CODE L b A pcs
[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm] [in] [mm] [mm] [in]
HBSS550 50 1 15/16 30 20 13/16 200 6 HBSS6280 280 11 100 180 7 1/8 100
HBSS560 60 2 3/8 35 25 1 200 0.24
5
HBSS570 70 2 3/4 40 30 1 3/16 200 TX 30 HBSS6300 300 11 3/4 100 200 8 100
0.20 HBSS880 80 3 1/8 52 28 1 1/8 100
HBSS580 80 3 1/8 50 30 1 3/16 100
TX 25 HBSS8100 100 4 60 40 1 9/16 100
HBSS5100 100 4 60 40 1 9/16 100
HBSS8120 120 4 3/4 80 40 1 9/16 100
HBSS5120 120 4 3/4 60 60 2 3/8 100
HBSS8140 140 5 1/2 80 60 2 3/8 100
HBSS660 60 2 3/8 35 25 1 100
HBSS8160 160 6 1/4 90 70 2 3/4 100
HBSS670 70 2 3/4 40 30 1 3/16 100
HBSS8180 180 7 1/8 90 90 3 1/2 100
HBSS680 80 3 1/8 50 30 1 3/16 100
HBSS8200 200 8 100 100 4 100
HBSS690 90 3 1/2 55 35 1 3/8 100
8 HBSS8220 220 8 5/8 100 120 4 3/4 100
HBSS6100 100 4 60 40 1 9/16 100
0.32 HBSS8240 240 9 1/2 100 140 5 1/2 100
6 HBSS6120 120 4 3/4 75 45 1 3/4 100 TX 40 HBSS8260 260 10 1/4 100 160 6 1/4 100
0.24 HBSS6140 140 5 1/2 80 60 2 3/8 100 HBSS8280 280 11 100 180 7 1/8 100
TX 30 HBSS6160 160 6 1/4 90 70 2 3/4 100 HBSS8300 300 11 3/4 100 200 8 100
HBSS6180 180 7 1/8 100 80 3 1/8 100 HBSS8320 320 12 5/8 100 220 8 5/8 100
HBSS6200 200 8 100 100 4 100 HBSS8340 340 13 3/8 100 240 9 1/2 100
HBSS6220 220 8 5/8 100 120 4 3/4 100 HBSS8360 360 14 1/4 100 260 10 1/4 100
HBSS6240 240 9 1/2 100 140 5 1/2 100 HBSS8380 380 15 100 280 11 100
HBSS6260 260 10 1/4 100 160 6 1/4 100 HBSS8400 400 15 3/4 100 300 11 3/4 100

TIMBER ROOF
The screws’ fast initial grip makes it possible
to create secure structural connections in all
assembly conditions.

CARPENTRY | HBS SOFTWOOD | 55


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5 6 8 5 6 8
a1 [mm] 5∙d 25 30 40 4∙d 20 24 32
a2 [mm] 3∙d 15 18 24 4∙d 20 24 32
a3,t [mm] 12∙d 60 72 96 7∙d 35 42 56
a3,c [mm] 7∙d 35 42 56 7∙d 35 42 56
a4,t [mm] 3∙d 15 18 24 7∙d 35 42 56
a4,c [mm] 3∙d 15 18 24 3∙d 15 18 24

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5 6 8 5 6 8
a1 [mm] 12∙d 60 72 96 5∙d 25 30 40
a2 [mm] 5∙d 25 30 40 5∙d 25 30 40
a3,t [mm] 15∙d 75 90 120 10∙d 50 60 80
a3,c [mm] 10∙d 50 60 80 10∙d 50 60 80
a4,t [mm] 5∙d 25 30 40 10∙d 50 60 80
a4,c [mm] 5∙d 25 30 40 5∙d 25 30 40
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES: GENERAL PRINCIPLES:


• The minimum distances are compliant with EN 1995:2014, considering a • Characteristic values according to EN 1995:2014.
timber characteristic density of ρ k ≤ 420 kg/m3 and a diameter of d = nom- • Design values can be obtained from characteristic values as follows:
inal screw diameter.
• T
he minimum spacing for all steel-to-timber connections (a1 , a2) can be Rk kmod
Rd =
multiplied by a coefficient of 0,7.

γM
• The minimum spacing for all panel-to-timber connections(a1 , a2) can be
multiplied by a coefficient of 0,85. The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
or the calculation process a timber characteristic density ρk = 385 kg/m3
• F
has been considered.
• Sizing and verification of the timber elements, panels and steel plates must
be done separately.
• The characteristic shear resistances are calculated for screws inserted with-
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.

56 | HBS SOFTWOOD | CARPENTRY


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

thin steel-timber thick steel-timber thread head


geometry timber-to-timber panel-to-timber(1)
plate(2) plate(3) withdrawal(4) pull-through (5)
Splate

d1

d1 L b A RV,k RV,k RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN]
50 30 20 1,18 1,44 1,48 2,06 1,94 1,40

SPLATE = 2,5 mm

SPLATE = 5 mm
SPAN = 18 mm

60 35 25 1,27 1,44 1,68 2,14 2,27 1,40


70 40 30 1,37 1,44 1,76 2,22 2,59 1,40
5
80 50 30 1,37 1,44 1,92 2,38 3,24 1,40
100 60 40 1,46 1,44 2,08 2,55 3,89 1,40
120 60 60 1,46 1,44 2,08 2,55 3,89 1,40
60 35 25 1,62 1,85 2,00 2,83 2,72 2,02
70 40 30 1,75 1,85 2,30 2,93 3,11 2,02
80 50 30 1,75 1,85 2,49 3,12 3,89 2,02
90 55 35 1,86 1,85 2,59 3,22 4,27 2,02
100 60 40 1,98 1,85 2,69 SPLATE = 6 mm 3,32 4,66 2,02
120 75 45 2,03 1,85 2,98 3,61 5,83 2,02
SPLATE = 3 mm
SPAN = 18 mm

140 80 60 2,03 1,85 3,05 3,71 6,22 2,02


6 160 90 70 2,03 1,85 3,05 3,90 6,99 2,02
180 100 80 2,03 1,85 3,05 4,10 7,77 2,02
200 100 100 2,03 1,85 3,05 4,10 7,77 2,02
220 100 120 2,03 1,85 3,05 4,10 7,77 2,02
240 100 140 2,03 1,85 3,05 4,10 7,77 2,02
260 100 160 2,03 1,85 3,05 4,10 7,77 2,02
280 100 180 2,03 1,85 3,05 4,10 7,77 2,02
300 100 200 2,03 1,85 3,05 4,10 7,77 2,02
80 52 28 2,46 2,65 3,29 4,77 5,39 2,95
100 60 40 2,75 2,65 3,97 4,98 6,22 2,95
120 80 40 2,75 2,65 4,49 5,50 8,29 2,95
140 80 60 3,16 2,65 4,49 5,50 8,29 2,95
160 90 70 3,16 2,65 4,75 5,75 9,32 2,95
180 90 90 3,16 2,65 4,75 5,75 9,32 2,95
SPLATE = 8 mm
SPLATE = 4 mm

200 100 100 3,16 2,65 4,84 6,01 10,36 2,95


SPAN = 18 mm

220 100 120 3,16 2,65 4,84 6,01 10,36 2,95


8 240 100 140 3,16 2,65 4,84 6,01 10,36 2,95
260 100 160 3,16 2,65 4,84 6,01 10,36 2,95
280 100 180 3,16 2,65 4,84 6,01 10,36 2,95
300 100 200 3,16 2,65 4,84 6,01 10,36 2,95
320 100 220 3,16 2,65 4,84 6,01 10,36 2,95
340 100 240 3,16 2,65 4,84 6,01 10,36 2,95
360 100 260 3,16 2,65 4,84 6,01 10,36 2,95
380 100 280 3,16 2,65 4,84 6,01 10,36 2,95
400 100 300 3,16 2,65 4,84 6,01 10,36 2,95

NOTES:
(1)
The characteristic shear strength are calculated considering an OSB (4) The axial thread withdrawal resistance was calculated considering a 90° an-
panel or particle board with a SPAN thickness and timber density of gle between the grain and the connector and for a fixing length of b.
ρk = 500 kg/m3. (5) The axial resistance to head pull-through was calculated using timber ele-
(2) The shear resistance characteristics are calculated considering the case of ments.
a thin plate (SPLATE ≤ 0,5 d1). In the case of steel-to-timber connections, generally the steel tensile
(3) The shear resistance characteristics are calculated considering the case of strength is binding with respect to head separation or pull-through.
a thick plate (SPLATE ≥ d1).

CARPENTRY | HBS SOFTWOOD | 57


HBS SOFTWOOD BULK EN 14592

COUNTERSUNK SCREW

HBS S BULK
Large package (BULK) for mass and serial use in factory or construction
yard. Special self-perforating tip with serrated thread (SAW tip).

LONGER THREAD
Greater thread length (60%) to ensure superb joint closure and great ver-
satility.

CHROMIUM (VI) FREE


Total absence of hexavalent chromium. Compliance with the strictest
regulations governing chemical substances (SVHC).
REACH information available.

CHARACTERISTICS
FOCUS maxi package
HEAD countersunk with under-head ribs
DIAMETER 5,0 and 6,0 mm
LENGTH from 60 to 160 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• fibre board and MDF panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
Service classes 1 and 2.

58 | HBS SOFTWOOD BULK | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS

X X
dK 90° d2 d1

BS
H

X
dS
t1 b
L

Nominal diameter d1 [mm] 5 6


Head diameter dK [mm] 10,00 12,00
Tip diameter d2 [mm] 3,40 3,95
Shank diameter dS [mm] 3,65 4,30
Head thickness t1 [mm] 3,10 4,50
Pre-drilling hole diameter dV [mm] 3,0 4,0
Characteristic yield
My,k [Nm] 6,0 10,0
moment
Characteristic
fax,k [N/mm2] 12,0 12,0
withdrawal-resistance parameter
Associated density ρa [kg/m3] 350 350
Characteristic head-pull-through
fhead,k [kN] 13,0 13,0
parameter
Associated density ρa [kg/m3] 350 350
Characteristic tensile
ftens,k [kN] 8,0 12,0
strength

CODES AND DIMENSIONS

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm] [in] [mm] [mm] [in]
HBSSBULK560 60 2 3/8 35 25 1 2500 HBSSBULK6100 100 4 60 40 1 9/16 800
5 HBSSBULK570 70 2 3/4 40 30 1 3/16 2000 6 HBSSBULK6120 120 4 3/4 75 45 1 3/4 600
0.20 0.24
TX 25 HBSSBULK580 80 3 1/8 50 30 1 3/16 1800 TX 30 HBSSBULK6140 140 5 1/2 80 60 2 3/8 600
HBSSBULK5100 100 4 60 40 1 9/16 1000 HBSSBULK6160 160 6 1/4 90 70 2 3/4 500

TIMBER FRAME
Ideal for serial fastening of factory-framed
panels. Packaging in large quantities prevents
material wastes and speeds up production.

CARPENTRY | HBS SOFTWOOD BULK | 59


HBS HARDWOOD BIT INCLUDED ETA-11/0030

COUNTERSUNK SCREW FOR HARDWOODS

HARDWOOD CERTIFICATION
Special tip with diamond geometry and notched, serrated thread.
ETA-11/0030 certification for use with high density timber without any
pre-drill. Approved for structural applications subject to stresses in any
direction vs. the grain (α = 0° - 90°).

LARGER DIAMETER
Inner tip diameter increased to ensure tightening in the highest density
woods. Excellent twisting moment values. HBS H Ø6 mm, comparable to
a diameter of 7 mm; HBS H Ø8 mm, comparable to a diameter of 9 mm.

60° COUNTERSUNK HEAD


Concealed head, 60°, for effective, minimally invasive insertion, even in
high density woods.

CHARACTERISTICS
FOCUS hardwood screw
HEAD 60° taper with under-head ribs
DIAMETER 7,0 and 9,0 mm
LENGTH from 80 to 240 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
• beech, oak, cypress, ash, eucalyptus,
bamboo
Service classes 1 and 2.

60 | HBS HARDWOOD | CARPENTRY


HARDWOOD PERFORMANCE
Geometry developed for high performance
and use without pre-drilling on structural
woods such as beech, oak, cypress, ash, eu-
calyptus, bamboo.

BEECH LVL
Values also tested, certified and calculated
for high density woods such as beechwood
Microllam® LVL. Certified for use without
pre-drilling, for densities of up to 800 kg/m3.

CARPENTRY | HBS HARDWOOD | 61


GEOMETRY AND MECHANICAL CHARACTERISTICS

X X
dK 60° d2 d1

BS
H

dS
t1 b
L

Nominal diameter eq. d1 eq. [mm] 7 9


Nominal diameter d1 [mm] 6 8
Head diameter dK [mm] 12,00 14,50
Tip diameter d2 [mm] 4,50 5,90
Shank diameter dS [mm] 4,80 6,30
Pre-drilling hole diameter(1) dV [mm] 4,0 6,0
Characteristic yield
My,k [Nm] 15,8 33,4
moment
Characteristic withdrawal-
fax,k [N/mm2] 42,0 42,0
resistance parameter(2)
Associated density ρa [kg/m3] 730 730
Characteristic head-pull-through
fhead,k [N/mm2] 50,0 50,0
parameter(2)
Associated density ρa [kg/m3] 730 730
Characteristic withdrawal-
fax,k [N/mm2] 22,0 22,0
resistance parameter(3)
Associated density ρa [kg/m3] 530 530
Characteristic head-pull-through
fhead,k [N/mm2] 28,0 24,0
parameter(3)
Associated density ρa [kg/m3] 530 530
Characteristic tensile
ftens,k [kN] 18,0 32,0
strength
(1) Pre-drilling valid for hardwood and beech LVL.
(2) Valid for beech or FST LVL - maximum density 750 kg/m3.
(3) Valid for hardwood (oak, beech) - maximum density 590 kg/m3 .
For applications with different materials please see ETA-11/0030.

CODES AND DIMENSIONS

d1 eq. CODE d1 L b A pcs d1 eq. CODE d1 L b A pcs


[mm] [in] [mm] [in] [mm] [in] [mm][mm] [in] [mm] [in] [mm] [in] [mm] [in] [mm][mm] [in]
HBSH780 6 0.24 80 3 1/8 50 30 1 3/16 100 HBSH9120 8 0.32 120 4 3/4 70 50 1 15/16 100
HBSH7100 6 0.24 100 4 60 40 1 9/16 100 HBSH9140 8 0.32 140 5 1/2 80 60 2 3/8 100
7
0.28 HBSH7120 6 0.24 120 4 3/4 70 50 1 15/16 100 HBSH9160 8 0.32 160 6 1/4 90 70 2 3/4 100
9
TX 30
HBSH7140 6 0.24 140 5 1/2 80 60 2 3/8 100 0.36 HBSH9180 8 0.32 180 7 1/8 100 80 3 1/8 100
TX 40
HBSH7160 6 0.24 160 6 1/4 90 70 2 3/4 100 HBSH9200 8 0.32 200 8 100 100 4 100
HBSH9220 8 0.32 220 8 5/8 100 120 4 3/4 100
HBSH9240 8 0.32 240 9 1/2 100 140 5 1/2 100
d1 eq. = nominal diameter equivalent to a screw with the same dS

NOTES: upon request, EVO version is available.

62 | HBS HARDWOOD | CARPENTRY


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 eq. [mm] 7 9 7 9
d1 [mm] 6 8 6 8
a1 [mm] 5∙d1 30 40 4∙d1 24 32
a2 [mm] 3∙d1 18 24 4∙d1 24 32
a3,t [mm] 12∙d1 72 96 7∙d1 42 56
a3,c [mm] 7∙d1 42 56 7∙d1 42 56
a4,t [mm] 3∙d1 18 24 7∙d1 42 56
a4,c [mm] 3∙d1 18 24 3∙d1 18 24

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 eq. [mm] 7 9 7 9
d1 [mm] 6 8 6 8
a1 [mm] 15∙d1 90 120 7∙d1 42 56
a2 [mm] 7∙d1 42 56 7∙d1 42 56
a3,t [mm] 20∙d1 120 160 15∙d1 90 120
a3,c [mm] 15∙d1 90 120 15∙d1 90 120
a4,t [mm] 7∙d1 42 56 12∙d1 72 96
a4,c [mm] 7∙d1 42 56 7∙d1 42 56
d1 = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014, according to • The minimum spacing for all panel-to-timber connections(a1 , a2) can be
ETA-11/0030, considering a timber characteristic density of ρk > 420 kg/m3 multiplied by a coefficient of 0,85.
and calculation diameter of d = nominal screw diameter.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

CARPENTRY | HBS HARDWOOD | 63


STATIC VALUES | HARDWOOD CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

thin steel-timber thick steel-timber thread head


geometry timber-to-timber panel-to-timber(1)
plate(2) plate(3) withdrawal(4) pull-through (5)

Splate Splate
A

d1

d1 eq. d1 L b A RV,k RV,k RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN]
6 80 50 30 3,21 1,71 4,27 5,33 6,80 4,15

SPLATE = 6 mm
SPLATE = 3 mm
SPAN = 12 mm

6 100 60 40 3,61 1,71 4,61 5,67 8,16 4,15


7 6 120 70 50 3,61 1,71 4,95 6,01 9,52 4,15
6 140 80 60 3,61 1,71 5,14 6,35 10,88 4,15
6 160 90 70 3,61 1,71 5,14 6,69 12,24 4,15
8 120 70 50 5,35 2,39 7,31 9,02 12,69 5,20
8 140 80 60 5,43 2,39 7,76 9,47 14,50 5,20

SPLATE = 8 mm
SPLATE = 4 mm
SPAN = 15 mm

8 160 90 70 5,43 2,39 8,21 9,92 16,32 5,20


9 8 180 100 80 5,43 2,39 8,27 10,38 18,13 5,20
8 200 100 100 5,43 2,39 8,27 10,38 18,13 5,20
8 220 100 120 5,43 2,39 8,27 10,38 18,13 5,20
8 240 100 140 5,43 2,39 8,27 10,38 18,13 5,20

NOTES: GENERAL PRINCIPLES:


(1) The characteristic shear resistances are calculated considering an OSB3 or • C
 haracteristic values comply with the EN 1995:2014 standard in accord-
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with ance with ETA-11/0030.
thickness SPAN. • Design values can be obtained from characteristic values as follows:
(2) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1). Rk kmod
Rd =
(3) The shear resistance characteristics are calculated considering the case of γM
a thick plate (SPLATE ≥ d1).
(4) The axial thread withdrawal resistance was calculated considering a 90° an- The coefficients γM and kmod should be taken according to the current
gle between the grain and the connector and for a fixing length of b. regulations used for the calculation.
(5) The axial resistance to head pull-through was calculated using timber ele- • For the mechanical resistance values and the geometry of the screws, ref-
ments. erence was made to ETA-11/0030.
In the case of steel-to-timber connections, generally the steel tensile • For the calculation process a mass density equal to ρk = 550 kg/m3 has
strength is binding with respect to head separation or pull-through. been considered for hardwood (oak) elements.
• Values were calculated considering the threaded part as being completely
inserted into the wood.
• Sizing and verification of the timber elements, panels and steel plates must
be done separately.
• The connector characteristic strength values are calculated for screws in-
serted without pre-drilling hole.

64 | HBS HARDWOOD | CARPENTRY


STATIC VALUES | BEECH LVL CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION(3)

thin steel-LVL thick steel-LVL thread steel head


geometry LVL - LVL
plate(1) plate(2) withdrawal(4) tension pull-through(5)

d1

d1 eq. d1 L b A RV,k RV,k RV,k Rax,k Rtens,k Rhead,k


[mm] [mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN]
6 80 50 30 5,19 6,54 7,94 12,60 7,20

SPLATE = 6 mm
SPLATE = 3 mm
6 100 60 40 5,19 6,77 8,57 15,12 7,20
7 6 120 70 50 5,19 6,77 9,20 17,64 18,00 7,20
6 140 80 60 5,19 6,77 9,29 20,16 7,20
6 160 90 70 5,19 6,77 9,29 22,68 7,20
8 120 70 50 8,19 11,13 13,75 23,52 10,51
8 140 80 60 8,19 11,13 14,59 26,88 10,51
SPLATE = 8 mm
SPLATE = 4 mm

8 160 90 70 8,19 11,13 15,43 30,24 10,51


9 8 180 100 80 8,19 11,13 15,74 33,60 32,00 10,51
8 200 100 100 8,19 11,13 15,74 33,60 10,51
8 220 100 120 8,19 11,13 15,74 33,60 10,51
8 240 100 140 8,19 11,13 15,74 33,60 10,51

NOTES: GENERAL PRINCIPLES:


(1) The shear resistance characteristics are calculated considering the case of • Characteristic values comply with the EN 1995:2014 standard in accord-
a thin plate (SPLATE ≤ 0,5 d1). ance with ETA-11/0030.
(2) The shear resistance characteristics are calculated considering the case of • Design values can be obtained from characteristic values as follows:
a thick plate (SPLATE ≥ d1).
Rk kmod
(3) The tensile design strength of the connector is the lower between the tim-
Rd =
ber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
γM
Rax,k kmod The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
Rax,d = min γM • For the mechanical resistance values and the geometry of the screws, ref-
Rtens,k erence was made to ETA-11/0030.


γM2 • For the calculation process a mass density equal to ρk = 730 kg/m3 has
been considered for LVL beech elements.
(4) The axial thread withdrawal resistance was calculated considering a 90° an-
• Values were calculated considering the threaded part as being completely
gle between the grain and the connector and for a fixing length of b.
inserted into the wood.
(5) The axial resistance to head pull-through was calculated using LVL beech
• Sizing and verification of the timber elements, panels and steel plates must
elements.
be done separately.
In the case of steel-to-timber connections, generally the steel tensile
• The characteristic shear strength are calculated for screws inserted without
strength is binding with respect to head separation or pull-through.
pre-drilling hole.

CARPENTRY | HBS HARDWOOD | 65


TBS BIT INCLUDED ETA-11/0030

FLANGE HEAD SCREW

INTEGRATED WASHER
The flange head serves as washer and ensures high tensile strength. Ideal
in the presence of wind or variations in timber dimensions.

STRUCTURAL APPLICATIONS
Approved for structural applications subject to stresses in any direction
vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better
timber pull-through.

SUPERIOR STRENGTH
Steel with superb yield and failure strength (fy,k = 1000 N/mm2). Very high
torsional strength ftor,k for safer screwing.

DUCTILITY
Bending angle 20° greater than standard, certified according to
ETA-11/0030. Cyclical SEISMIC-REV tests according to EN 12512. Seismic
performance tested according to EN 14592.

CHARACTERISTICS
FOCUS screw with built-in washer
HEAD flange
DIAMETER from 6,0 to 10,0 mm
LENGTH from 40 to 520 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
• high density woods
Service classes 1 and 2.

66 | TBS | CARPENTRY
SECONDARY BEAMS
Ideal for fastening joists to sill beams to achieve
high wind uplift resistance. The flange head
guarantees excellent tensile strength which
means the use of additional lateral fastening
systems can be avoided.

I-JOIST
Values also tested, certified and calculat-
ed for CLT and high density woods such as
Microllam® LVL.

CARPENTRY | TBS | 67
Fastening SIP panels with 8 mm diameter TBS screws. Fastening CLT walls
with 8 mm diameter TBS screws.

GEOMETRY AND MECHANICAL CHARACTERISTICS

dK dK d2 d1 dK dK

dS
b
L Ø6 - Ø8 Ø8 MAX Ø10

Nominal diameter d1 [mm] 6 8 8 MAX 10


Head diameter dK [mm] 15,50 19,00 24,50 25,00
Tip diameter d2 [mm] 3,95 5,40 5,40 6,40
Shank diameter dS [mm] 4,30 5,80 5,80 7,00
Pre-drilling hole diameter(1) dV [mm] 4,0 5,0 5,0 6,0
Characteristic yield
My,k [Nm] 9,5 20,1 20,1 35,8
moment
Characteristic withdrawal-resist-
fax,k [N/mm2] 11,7 11,7 11,7 11,7
ance parameter(2)
Associated density ρa [kg/m3] 350 350 350 350
Characteristic withdrawal-resist-
fax,k [N/mm2] 15 15 15 15
ance parameter(3)
Associated density ρa [kg/m3] 500 500 500 500
Characteristic head-pull-through
fhead,k [N/mm2] 10,5 10,5 15,0 10,5
parameter(2)
Associated density ρa [kg/m3] 350 350 350 350
Characteristic head-pull-through
fhead,k [N/mm2] 20 20 20 20
parameter(3)
Associated density ρa [kg/m3] 500 500 500 500
Characteristic tensile
ftens,k [kN] 11,3 20,1 20,1 31,4
strength
(1) Pre-drilling valid for softwood.
(2) Valid for softwood - maximum density 440 kg/m3.
(3) Valid for softwood LVL - maximum density 550 kg/m3 .
For applications with different materials or with high density please see ETA-11/0030.

68 | TBS | CARPENTRY
CODES AND DIMENSIONS

d1 dK CODE L b A pcs d1 dK CODE L b A pcs


[mm] [in] [mm] [mm] [in] [mm] [mm] [in] [mm] [in] [mm] [mm] [in] [mm] [mm] [in]
TBS660 60 2 3/8 40 20 13/16 100 TBS10100 100 4 52 48 1 7/8 50
TBS670 70 2 3/4 40 30 1 3/16 100 TBS10120 120 4 3/4 60 60 2 3/8 50
TBS680 80 3 1/8 50 30 1 3/16 100 TBS10140 140 5 1/2 60 80 3 1/8 50
TBS690 90 3 1/2 50 40 1 9/16 100 TBS10160 160 6 1/4 80 80 3 1/8 50
TBS6100 100 4 60 40 1 9/16 100 TBS10180 180 7 1/8 80 100 4 50
TBS6120 120 4 3/4 75 45 1 3/4 100 TBS10200 200 8 100 100 4 50
6 TBS6140 140 5 1/2 75 65 2 9/16 100 TBS10220 220 8 5/8 100 120 4 3/4 50
0.24 15,5 TBS6160 160 6 1/4 75 85 3 3/8 100 TBS10240 240 9 1/2 100 140 5 1/2 50
TX 30 TBS6180 180 7 1/8 75 105 4 1/8 100 TBS10260 260 10 1/4 100 160 6 1/4 50
10
TBS6200 200 8 75 125 4 15/16 100 0.40 25 TBS10280 280 11 100 180 7 1/8 50
TBS6220 220 8 5/8 100 120 4 3/4 100 TX 50 TBS10300 300 11 3/4 100 200 8 50
TBS6240 240 9 1/2 100 140 5 1/2 100 TBS10320 320 12 5/8 120 200 8 50
TBS6260 260 10 1/4 100 160 6 1/4 100 TBS10340 340 13 3/8 120 220 8 5/8 50
TBS6280 280 11 100 180 7 1/8 100 TBS10360 360 14 1/4 120 240 9 1/2 50
TBS6300 300 11 3/4 100 200 8 100 TBS10380 380 15 120 260 10 1/4 50
TBS840 40 1 9/16 32 8 5/16 100 TBS10400 400 15 3/4 120 280 11 50
TBS860 60 2 3/8 52 10 1 1/8 100 TBS10440 440 17 1/4 120 320 12 5/8 50
TBS880 80 3 1/8 52 28 1 1/8 50 TBS10480 480 19 120 360 14 1/4 50
TBS8100 100 4 52 48 1 7/8 50 TBS10520 520 20 1/2 120 400 15 3/4 50
TBS8120 120 4 3/4 80 40 1 9/16 50
TBS8140 140 5 1/2 80 60 2 3/8 50
TBS MAX
TBS8160 160 6 1/4 100 60 2 3/8 50
TBS8180 180 7 1/8 100 80 3 1/8 50 d1 dK CODE L b A pcs
TBS8200 200 8 100 100 4 50 [mm] [in] [mm] [mm] [in] [mm] [mm] [in]
TBS8220 220 8 5/8 100 120 4 3/4 50 8 TBSMAX8200 200 8 120 80 3 1/8 50
8 TBS8240 240 9 1/2 100 140 5 1/2 50 0.32 24,5 TBSMAX8220 220 8 5/8 120 100 4 50
0.32 19 TX 40 TBSMAX8240 240 9 1/2 120 120 4 3/4 50
TX 40 TBS8260 260 10 1/4 100 160 6 1/4 50
TBS8280 280 11 100 180 7 1/8 50
TBS8300 300 11 3/4 100 200 8 50
TBS8320 320 12 5/8 100 220 8 5/8 50
TBS8340 340 13 3/8 100 240 9 1/2 50
TBS8360 360 14 1/4 100 260 10 1/4 50
TBS8380 380 15 100 280 11 50
TBS8400 400 15 3/4 100 300 11 3/4 50
TBS8440 440 17 1/4 100 340 13 3/8 50
TBS8480 480 19 100 380 15 50
TBS8520 520 20 1/2 100 420 16 9/16 50

TBS MAX FOR RIB TIMBER


With its increased thread (120 mm) and en-
larged head (24,5 mm), the TBS MAX guarantees
excellent grip and superb joint closure. Ideal for
the production of ribbed floors (Rippendecke),
optimising the number of fastenings. The en-
larged head guarantees excellent joint tight-
ening, making the use of presses unnecessary
when gluing wooden elements together.

CARPENTRY | TBS | 69
MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 6 8 8 MAX 10 6 8 8 MAX 10
a1 [mm] 5∙d 30 40 40 50 4∙d 24 32 32 40
a2 [mm] 3∙d 18 24 24 30 4∙d 24 32 32 40
a3,t [mm] 12∙d 72 96 96 120 7∙d 42 56 56 70
a3,c [mm] 7∙d 42 56 56 70 7∙d 42 56 56 70
a4,t [mm] 3∙d 18 24 24 30 7∙d 42 56 56 70
a4,c [mm] 3∙d 18 24 24 30 3∙d 18 24 24 30

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 6 8 8 MAX 10 6 8 8 MAX 10
a1 [mm] 12∙d 72 96 96 120 5∙d 30 40 40 50
a2 [mm] 5∙d 30 40 40 50 5∙d 30 40 40 50
a3,t [mm] 15∙d 90 120 120 150 10∙d 60 80 80 100
a3,c [mm] 10∙d 60 80 80 100 10∙d 60 80 80 100
a4,t [mm] 5∙d 30 40 40 50 10∙d 60 80 80 100
a4,c [mm] 5∙d 30 40 40 50 5∙d 30 40 40 50
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014, according to • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii),
ETA-11/0030, considering a timber characteristic density of ρk ≤ 420 kg/m3 the minimum spacing and distances parallel to the grain must be multiplied
and calculation diameter of d = nominal screw diameter. by a coefficient of 1,5.
• The minimum spacing for all panel-to-timber connections(a1 , a2) can be
multiplied by a coefficient of 0,85.

70 | TBS | CARPENTRY
STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

geometry timber-to-timber panel-to-timber(1) thread withdrawal(2) head pull-through

d1

d1 L b A RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN]
60 40 20 1,89 - 3,03 2,72
70 40 30 2,15 - 3,03 2,72
80 50 30 2,15 2,14 3,79 2,72
90 50 40 2,35 2,50 3,79 2,72
100 60 40 2,35 2,50 4,55 2,72
SPAN = 50 mm

120 75 45 2,35 2,50 5,68 2,72


140 75 65 2,35 2,50 5,68 2,72
6 160 75 85 2,35 2,50 5,68 2,72
180 75 105 2,35 2,50 5,68 2,72
200 75 125 2,35 2,50 5,68 2,72
220 100 120 2,35 2,50 7,58 2,72
240 100 140 2,35 2,50 7,58 2,72
260 100 160 2,35 2,50 7,58 2,72
280 100 180 2,35 2,50 7,58 2,72
300 100 200 2,35 2,50 7,58 2,72
40 32 8 1,08 - 3,23 4,09
60 52 10 1,35 - 5,25 4,09
80 52 28 3,02 - 5,25 4,09
100 52 48 3,71 3,22 5,25 4,09
120 80 40 3,41 3,89 8,08 4,09
140 80 60 3,71 3,89 8,08 4,09
160 100 60 3,71 3,89 10,10 4,09
180 100 80 3,71 3,89 10,10 4,09
200 100 100 3,71 3,89 10,10 4,09
220 100 120 3,71 3,89 10,10 4,09
240 100 140 3,71
SPAN = 65 mm

3,89 10,10 4,09


8
260 100 160 3,71 3,89 10,10 4,09
280 100 180 3,71 3,89 10,10 4,09
300 100 200 3,71 3,89 10,10 4,09
320 100 220 3,71 3,89 10,10 4,09
340 100 240 3,71 3,89 10,10 4,09
360 100 260 3,71 3,89 10,10 4,09
380 100 280 3,71 3,89 10,10 4,09
400 100 300 3,71 3,89 10,10 4,09
440 100 340 3,71 3,89 10,10 4,09
480 100 380 3,71 3,89 10,10 4,09
520 100 420 3,71 3,89 10,10 4,09
200 120 80 5,11 5,28 12,12 9,72
8
220 120 100 5,11 5,28 12,12 9,72
MAX
240 120 120 5,11 5,28 12,12 9,72

NOTES:
(1) The characteristic shear strength are calculated considering an OSB panel (2) The axial thread withdrawal resistance was calculated considering a 90° an-
or particle board with a SPAN thickness. gle between the grain and the connector and for a fixing length of b.

CARPENTRY | TBS | 71
STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

geometry timber-to-timber panel-to-timber(1) thread withdrawal(2) head pull-through

d1

d1 L b A RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN]
100 52 48 4,92 - 6,57 7,08
120 60 60 5,64 4,47 7,58 7,08
140 60 80 5,64 5,84 7,58 7,08
160 80 80 5,64 5,85 10,10 7,08
180 80 100 5,64 5,85 10,10 7,08
200 100 100 5,64 5,85 12,63 7,08
220 100 120 5,64 5,85 12,63 7,08
240 100 140 5,64 5,85 12,63 7,08
SPAN = 80 mm

260 100 160 5,64 5,85 12,63 7,08


10 280 100 180 5,64 5,85 12,63 7,08
300 100 200 5,64 5,85 12,63 7,08
320 120 200 5,64 5,85 15,15 7,08
340 120 220 5,64 5,85 15,15 7,08
360 120 240 5,64 5,85 15,15 7,08
380 120 260 5,64 5,85 15,15 7,08
400 120 280 5,64 5,85 15,15 7,08
440 120 320 5,64 5,85 15,15 7,08
480 120 360 5,64 5,85 15,15 7,08
520 120 400 5,64 5,85 15,15 7,08

NOTES:
(1) The characteristic shear strength are calculated considering an OSB panel • For the calculation process a timber characteristic density ρk = 385 kg/m3
or particle board with a SPAN thickness. has been considered. Characteristic resistances can also be considered as
(2) The axial thread withdrawal resistance was calculated considering a 90° an- valid for larger densities, for the purposes of safety
gle between the grain and the connector and for a fixing length of b. • Values were calculated considering the threaded part as being completely
inserted into the wood.
• Sizing and verification of the timber elements, panels and steel plates must
GENERAL PRINCIPLES:
be done separately.
• Characteristic values comply with the EN 1995:2014 standard in accord- • The characteristic shear resistances are calculated for screws inserted with-
ance with ETA-11/0030. out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
• Design values can be obtained from characteristic values as follows: greater resistance values can be obtained.
Rk kmod • For different calculation configurations, the MyProject software is available
Rd = (www.rothoblaas.com).

γM
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
• For the mechanical resistance values and the geometry of the screws, ref-
erence was made to ETA-11/0030.

72 | TBS | CARPENTRY
CALCULATION EXAMPLE: RAFTER - PURLIN JOINT WITH MYPROJECT

CONNECTION TIMBER-TO-TIMBER/SINGLE SHEAR

ELEMENT 1 1 ELEMENT 2 2

B1 = 120 mm
1 B2 = 200 mm
H1 = 160 mm H2 = 240 mm
Slope 30% (16,7°) Slope 0% (0°)
Glulam GL24h Glulam GL24h
2

PROJECT DATA SCREW SELECTION CONNECTION GEOMETRY

Fv,Rd = 1,89 kN TBS = 8x260 mm t 1 = 160 mm


Service class = 1 Pre-drilling hole = no α 1 = 0°
Load duration = short t2 = 100 mm
(fixing length in element 2)

α 2 = 90°

SHEAR RESISTANCE CALCULATION WITH MYPROJECT SOFTWARE (EN 1995:2014 e ETA-11/0030)

d1 = 8,0 mm My,k = 20,1 Nm


fh,1,k = 16,92 N/mm2 Rax,Rk = min {resistance to thread withdrawal; resistance to head pull-through} = min {Rax,Rk ; Rhead,Rk}
fh,2,k = 16,92 N/mm2 = 4,09 kN
β = 1,00 Rax,Rk/4 = 1,02 kN (cable effect)

Rv,Rk = 3,71 kN

EN 1995:2014 Italy - NTC 2018


R k kmod = 0,9 kmod = 0,9
Rv,Rd = v,Rk mod γM = 1,3 γM = 1,5
γM
Rv,Rd = 2,56 kN > 1,89 kN OK Rv,Rd = 2,22 kN > 1,89 kN OK

CARPENTRY | TBS | 73
MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
lateral face(1) narrow face(2)
d1 [mm] 6 8 10 6 8 10
a1 [mm] 4∙d 24 32 40 10∙d 60 80 100
a2 [mm] 2.5∙d 15 20 25 4∙d 24 32 40
a3,t [mm] 6∙d 36 48 60 12∙d 72 96 120
a3,c [mm] 6∙d 36 48 60 7∙d 42 56 70
a4,t [mm] 6∙d 36 48 60 6∙d 36 48 60
a4,c [mm] 2.5∙d 15 20 25 3∙d 18 24 30
d = nominal screw diameter

a4,c a4,t
α F
F
α α
F
F α

a3,t a3,c

a3,t F
a3,c a3,c
a2
a2 a4,c a4,c F
a2 a4,c a4,t

a1 a1
tCLT tCLT

NOTES:
The minimum distances are compliant with ETA-11/0030 and are to be con- (1) Minimum CLT thickness t
min = 10∙d
sidered valid unless otherwise specified in the technical documents for the (2) Minimum CLT thickness t
CLT panels. min = 10∙d and minimum screw pull-through
depth tpen = 10∙d

74 | TBS | CARPENTRY
MINIMUM DISTANCES FOR SHEAR LOADS | LVL

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 6 8 10 6 8 10
a1 [mm] 12∙d 72 96 120 5∙d 30 40 50
a2 [mm] 5∙d 30 40 50 5∙d 30 40 50
a3,t [mm] 15∙d 90 120 150 10∙d 60 80 100
a3,c [mm] 10∙d 60 80 100 10∙d 60 80 100
a4,t [mm] 5∙d 30 40 50 10∙d 60 80 100
a4,c [mm] 5∙d 30 40 50 5∙d 30 40 50
d = nominal screw diameter

a4,c a4,t
α F a2

F α
a1

a2
F a2
α α
F

a1
a3,t a3,c

NOTES:
• The minimum distances are compliant with ETA-11/0030 and are to be con- where:
sidered valid unless otherwise specified in the technical documents for the t 1 is the thickness in mm of the LVL element in a connection with 2 wood-
LVL panels. en elements. For connections with 3 or more elements, t 1 represents the
• The minimum distances are applicable when using both parallel and cross thickness of the most external LVL;
grain LVL. t 2 is the thickness in mm of the central element in a connection with 3 or
• The minimum distances without pre-drilling hole are valid for minimum more elements.
thickness of LVL elements tmin:
t1 ≥ 8,4 d -9

11,4 d
t2 ≥
75

CARPENTRY | TBS | 75
STATIC VALUES | CLT

SHEAR(1)

CLT - CLT CLT - CLT panel - CLT(2) CLT - panel - CLT(2)


geometry
lateral face lateral face - narrow face lateral face lateral face

t
A

d1

d1 L b A RV,k RV,k RV,k t RV,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [mm] [kN]
60 40 20 1,77 - 1,73 - -
70 40 30 2,00 - 1,73 30 2,19
80 50 30 2,00 - 1,73 35 2,19
90 50 40 2,22 - 1,73 40 2,19
100 60 40 2,22 - 1,73 45 2,19
120 75 45 2,22 - 1,73 55 2,19

SPAN = 15 mm

SPAN = 15 mm
140 75 65 2,22 - 1,73 65 2,19
6 160 75 85 2,22 - 1,73 75 2,19
180 75 105 2,22 - 1,73 85 2,19
200 75 125 2,22 - 1,73 95 2,19
220 100 120 2,22 - 1,73 105 2,19
240 100 140 2,22 - 1,73 115 2,19
260 100 160 2,22 - 1,73 125 2,19
280 100 180 2,22 - 1,73 135 2,19
300 100 200 2,22 - 1,73 145 2,19
40 32 8 0,98 0,98 1,67 - -
60 52 8 0,98 0,98 2,61 - -
80 52 28 2,82 2,21 2,62 - -
100 52 48 3,43 2,45 2,62 40 2,92
120 80 40 3,16 2,37 2,62 50 2,92
140 80 60 3,51 2,65 2,62 60 2,92
160 100 60 3,51 2,65 2,62 70 2,92
180 100 80 3,51 2,98 2,62 80 2,92
200 100 100 3,51 2,98 2,62 90 2,92
SPAN = 18 mm

SPAN = 18 mm

220 100 120 3,51 2,98 2,62 100 2,92


240 100 140 3,51 2,98 2,62 110 2,92
8
260 100 160 3,51 2,98 2,62 120 2,92
280 100 180 3,51 2,98 2,62 130 2,92
300 100 200 3,51 2,98 2,62 140 2,92
320 100 220 3,51 2,98 2,62 150 2,92
340 100 240 3,51 2,98 2,62 160 2,92
360 100 260 3,51 2,98 2,62 170 2,92
380 100 280 3,51 2,98 2,62 180 2,92
400 100 300 3,51 2,98 2,62 190 2,92
440 100 340 3,51 2,98 2,62 210 2,92
480 100 380 3,51 2,98 2,62 230 2,92
520 100 420 3,51 2,98 2,62 250 2,92
200 120 80 4,81 3,99 2,92 90 2,92
18 mm

18 mm
SPAN =

SPAN =

8
220 120 100 4,81 3,99 2,92 100 2,92
MAX
240 120 120 4,81 3,99 2,92 110 2,92

76 | TBS | CARPENTRY
CHARACTERISTIC VALUES
EN 1995:2014

SHEAR(1) TENSION

CLT - timber timber - CLT thread withdrawal thread withdrawal head


lateral face narrow face narrow face(3) narrow face(4) pull-through (5)

RV,k RV,k Rax,k Rax,k Rhead,k


[kN] [kN] [kN] [kN] [kN]
1,82 1,67 2,81 - 2,52
2,08 1,72 2,81 - 2,52
2,08 1,86 3,51 - 2,52
2,26 1,86 3,51 - 2,52
2,26 1,99 4,21 - 2,52
2,26 1,99 5,27 - 2,52
2,26 1,99 5,27 - 2,52
2,26 1,99 5,27 - 2,52
2,26 1,99 5,27 - 2,52
2,26 1,99 5,27 - 2,52
2,26 1,99 7,02 - 2,52
2,26 1,99 7,02 - 2,52
2,26 1,99 7,02 - 2,52
2,26 1,99 7,02 - 2,52
2,26 1,99 7,02 - 2,52
0,98 1,08 3,00 2,39 3,79
0,98 1,08 4,87 3,70 3,79
2,90 2,52 4,87 3,70 3,79
3,57 2,52 4,87 3,70 3,79
3,29 2,98 7,49 5,45 3,79
3,57 3,08 7,49 5,45 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
3,57 3,08 9,36 6,66 3,79
4,87 4,02 11,23 7,85 9,00
4,87 4,02 11,23 7,85 9,00
4,87 4,02 11,23 7,85 9,00

CARPENTRY | TBS | 77
STATIC VALUES | CLT

SHEAR(1)

CLT - CLT CLT - CLT panel - CLT(2) CLT - panel - CLT(2)


geometry
lateral face lateral face - narrow face lateral face lateral face

t
A

d1

d1 L b A RV,k RV,k RV,k t RV,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [mm] [kN]
100 52 48 4,50 3,10 3,89 - -
120 60 60 5,22 3,41 3,89 50 3,89
140 60 80 5,26 3,75 3,89 60 3,89
160 80 80 5,33 4,12 3,89 70 3,89
180 80 100 5,33 4,51 3,89 80 3,89
200 100 100 5,33 4,52 3,89 90 3,89
220 100 120 5,33 4,52 3,89 100 3,89
240 100 140 5,33 4,52 3,89 110 3,89

SPAN = 22 mm

SPAN = 22 mm
260 100 160 5,33 4,52 3,89 120 3,89
10 280 100 180 5,33 4,52 3,89 130 3,89
300 100 200 5,33 4,52 3,89 140 3,89
320 120 200 5,33 4,52 3,89 150 3,89
340 120 220 5,33 4,52 3,89 160 3,89
360 120 240 5,33 4,52 3,89 170 3,89
380 120 260 5,33 4,52 3,89 180 3,89
400 120 280 5,33 4,52 3,89 190 3,89
440 120 320 5,33 4,52 3,89 210 3,89
480 120 360 5,33 4,52 3,89 230 3,89
520 120 400 5,33 4,52 3,89 250 3,89

NOTES:
(1) The characteristic shear strength is independent from the direction of the (4) The axial thread withdrawal resistance is valid for minimum thickness of
grain of the CLT panels outer layer. the element of tmin = 10∙d1 and minimum screw pull-through depth
(2) The characteristic shear resistances are calculated considering an OSB3 or tpen = 10∙d1 .
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with (5) The axial resistance to head pull-through was calculated using timber ele-
thickness SPAN. ments.
(3) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.

78 | TBS | CARPENTRY
CHARACTERISTIC VALUES
EN 1995:2014

SHEAR(1) TENSION

CLT - timber timber - CLT thread withdrawal thread withdrawal head


lateral face narrow face narrow face(3) narrow face(4) pull-through (5)

RV,k RV,k Rax,k Rax,k Rhead,k


[kN] [kN] [kN] [kN] [kN]
4,78 3,17 6,08 4,42 6,56
5,39 3,43 7,02 5,03 6,56
5,42 3,43 7,02 5,03 6,56
5,42 4,15 9,36 6,51 6,56
5,42 4,15 9,36 6,51 6,56
5,42 4,69 11,70 7,96 6,56
5,42 4,69 11,70 7,96 6,56
5,42 4,69 11,70 7,96 6,56
5,42 4,69 11,70 7,96 6,56
5,42 4,69 11,70 7,96 6,56
5,42 4,69 11,70 7,96 6,56
5,42 4,70 14,04 9,38 6,56
5,42 4,70 14,04 9,38 6,56
5,42 4,70 14,04 9,38 6,56
5,42 4,70 14,04 9,38 6,56
5,42 4,70 14,04 9,38 6,56
5,42 4,70 14,04 9,38 6,56
5,42 4,70 14,04 9,38 6,56
5,42 4,70 14,04 9,38 6,56

GENERAL PRINCIPLES:
• Characteristic values comply with the EN 1995:2014 standard and national • Values were calculated considering the threaded part as being completely
specification ÖNORM EN 1995 - Annex K in accordance with ETA-11/0030. inserted into the wood.
• • Design values can be obtained from characteristic values as follows: • Sizing and verification of the timber elements and panels must be done
separately.
Rk kmod
Rd = • The characteristic shear resistances are calculated for screws inserted with-
γM out pre-drilling hole. In the case of screws inserted with pre-drilling hole,

greater resistance values can be obtained.
The coefficients γM and kmod should be taken according to the current
• The shear resistance characteristics are calculated considering a minimum
regulations used for the calculation.
fixing length of 4 d1 .
• For the mechanical resistance values and the geometry of the screws, ref-
• The screws must be positioned in accordance with the minimum distances.
erence was made to ETA-11/0030.
• For the calculation process, a mass density of ρ k = 350 kg/m3 has been
considered for CLT elements and a mass density of ρ k = 385 kg/m3 has
been considered for timber elements.

CARPENTRY | TBS | 79
STATIC VALUES | LVL

SHEAR

geometry LVL - LVL LVL - LVL- LVL LVL - timber timber - LVL

t2

d1 A

d1 L b A RV,k A t2 RV,k A RV,k A RV,k


[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [mm] [kN] [mm] [kN]
60 40 - - - - - - - - -
70 40 - - - - - - - - -
80 50 - - - - - - - 35 2,14
90 50 45 2,84 - - - 45 2,50 40 2,30
100 60 45 3,02 - - - 45 2,68 40 2,30
120 75 45 3,02 - - - 45 2,87 45 2,34
140 75 65 3,02 - - - 65 2,87 65 2,34
6 160 75 85 3,02 45 70 5,68 85 2,87 85 2,34
180 75 105 3,02 55 75 5,90 105 2,87 105 2,34
200 75 125 3,02 60 85 6,05 125 2,87 125 2,34
220 100 120 3,02 70 85 6,05 120 2,87 120 2,34
240 100 140 3,02 75 95 6,05 140 2,87 140 2,34
260 100 160 3,02 75 115 6,05 160 2,87 160 2,34
280 100 180 3,02 75 135 6,05 180 2,87 180 2,34
300 100 200 3,02 75 155 6,05 200 2,87 200 2,34
40 32 - - - - - - - - -
60 52 - - - - - - - - -
80 52 - - - - - - - - -
100 52 - - - - - - - 40 3,15
120 80 60 4,74 - - - 60 4,15 40 3,15
140 80 60 4,74 - - - 60 4,50 60 3,70
160 100 60 4,74 - - - 60 4,50 60 3,70
180 100 80 4,74 - - - 80 4,50 80 3,70
200 100 100 4,74 65 75 9,47 100 4,50 100 3,70
220 100 120 4,74 75 75 9,48 120 4,50 120 3,70
240 100 140 4,74 80 85 9,48 140 4,50 140 3,70
8
260 100 160 4,74 80 105 9,48 160 4,50 160 3,70
280 100 180 4,74 80 125 9,48 180 4,50 180 3,70
300 100 200 4,74 100 105 9,48 200 4,50 200 3,70
320 100 220 4,74 100 125 9,48 220 4,50 220 3,70
340 100 240 4,74 100 145 9,48 240 4,50 240 3,70
360 100 260 4,74 100 165 9,48 260 4,50 260 3,70
380 100 280 4,74 100 185 9,48 280 4,50 280 3,70
400 100 300 4,74 120 165 9,48 300 4,50 300 3,70
440 100 340 4,74 120 205 9,48 340 4,50 340 3,70
480 100 380 4,74 120 245 9,48 380 4,50 380 3,70
520 100 420 4,74 120 285 9,48 420 4,50 420 3,70
200 120 80 5,90 60 80 9,47 80 5,50 80 5,00
8
220 120 100 5,90 60 100 9,47 100 5,50 100 5,00
MAX
240 120 120 5,90 80 80 10,64 120 5,50 120 5,00

80 | TBS | CARPENTRY
CHARACTERISTIC VALUES
EN 1995:2014

TENSION

thread withdrawal thread withdrawal head pull-through


flat(1) edge(1) flat(2)

Rax,k Rax,k Rhead,k


[kN] [kN] [kN]
3,48 2,32 4,65
3,48 2,32 4,65
4,36 2,90 4,65
4,36 2,90 4,65
5,23 3,48 4,65
6,53 4,36 4,65
6,53 4,36 4,65
6,53 4,36 4,65
6,53 4,36 4,65
6,53 4,36 4,65
8,71 5,81 4,65
8,71 5,81 4,65
8,71 5,81 4,65
8,71 5,81 4,65
8,71 5,81 4,65
3,72 2,48 6,99
6,04 4,03 6,99
6,04 4,03 6,99
6,04 4,03 6,99
9,29 6,19 6,99
9,29 6,19 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
11,61 7,74 6,99
13,94 9,29 11,62
13,94 9,29 11,62
13,94 9,29 11,62

CARPENTRY | TBS | 81
STATIC VALUES | LVL

SHEAR

geometry LVL - LVL LVL - LVL- LVL LVL - timber timber - LVL

t2

d1 A

d1 L b A RV,k A t2 RV,k A RV,k A RV,k


[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [mm] [kN] [mm] [kN]
100 52 - - - - - - - - -
120 60 - - - - - - - 45 4,64
140 60 - - - - - - - 60 5,28
160 80 75 7,23 - - - 75 6,31 80 5,61
180 80 100 7,23 - - - 100 6,31 100 5,61
200 100 100 7,35 - - - 100 6,89 100 5,61
220 100 120 7,35 - - - 120 6,89 120 5,61
240 100 140 7,35 80 85 14,09 140 6,89 140 5,61
260 100 160 7,35 80 105 14,09 160 6,89 160 5,61
10 280 100 180 7,35 80 125 14,09 180 6,89 180 5,61
300 100 200 7,35 100 105 14,69 200 6,89 200 5,61
320 120 200 7,35 100 125 14,69 200 6,99 200 5,61
340 120 220 7,35 100 145 14,69 220 6,99 220 5,61
360 120 240 7,35 100 165 14,69 240 6,99 240 5,61
380 120 260 7,35 120 145 14,69 260 6,99 260 5,61
400 120 280 7,35 120 165 14,69 280 6,99 280 5,61
440 120 320 7,35 140 165 14,69 320 6,99 320 5,61
480 120 360 7,35 140 205 14,69 360 6,99 360 5,61
520 120 400 7,35 160 205 14,69 400 6,99 400 5,61

NOTES:
(1) The axial thread withdrawal resistance was calculated considering a 90° an- (2) The axial resistance to head pull-through was calculated using parallel or
gle between the grain and the connector and for a fixing length of b. cross grain LVL elements with tmin thickness.

82 | TBS | CARPENTRY
CHARACTERISTIC VALUES
EN 1995:2014

TENSION

thread withdrawal thread withdrawal head pull-through


flat(1) edge(1) flat(2)

Rax,k Rax,k Rhead,k


[kN] [kN] [kN]
7,55 5,03 12,10
8,71 5,81 12,10
8,71 5,81 12,10
11,61 7,74 12,10
11,61 7,74 12,10
14,52 9,68 12,10
14,52 9,68 12,10
14,52 9,68 12,10
14,52 9,68 12,10
14,52 9,68 12,10
14,52 9,68 12,10
17,42 11,61 12,10
17,42 11,61 12,10
17,42 11,61 12,10
17,42 11,61 12,10
17,42 11,61 12,10
17,42 11,61 12,10
17,42 11,61 12,10
17,42 11,61 12,10

GENERAL PRINCIPLES:
• Characteristic values comply with the EN 1995:2014 standard in accord- • Values were calculated considering the threaded part as being completely
ance with ETA-11/0030. inserted into the wood.
• Design values can be obtained from characteristic values as follows: • Sizing and verification of the timber elements, panels and steel plates must
be done separately.
Rk kmod
Rd = • The characteristic shear resistances are calculated for screws inserted with-
γM out pre-drilling hole. In the case of screws inserted with pre-drilling hole,

greater resistance values can be obtained.
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
• For the mechanical resistance values and the geometry of the screws, ref-
erence was made to ETA-11/0030.
• For the calculation process a mass density equal to ρk = 480 kg/m3 was
considered for softwood LVL elements and a mass density of 350 kg/m3 has
been considered for timber elements.

CARPENTRY | TBS | 83
TBS EVO 1002
CERTIFIED

C4 COATING BIT INCLUDED COATING ETA-11/0030

FLANGE HEAD SCREW

C4 EVO COATING
20 μm multilayer coating with a surface treatment of epoxy resin and
aluminium flakes. No rust after 1440 hours of salt spray exposure, as per
ISO 9227. Can be used in service class 3 outdoor applications and under
class C4 atmospheric corrosion conditions.

AGGRESSIVE WOODS
Ideal for applications with woods containing tannin or treated with im-
pregnating agents and other chemical processes.

INTEGRATED WASHER
The flange head serves as washer and ensures high tensile strength. Ideal
in the presence of wind or variations in timber dimensions.

STRUCTURAL APPLICATIONS
Approved for structural applications subject to stresses in any direction
vs. the grain (α = 0° - 90°). Asymmetric “umbrella” threading for better
timber pull-through.

CHARACTERISTICS
FOCUS corrosiveness class C4
HEAD flange
DIAMETER 6,0 and 8,0 mm
LENGTH from 60 to 240 mm

MATERIAL
Carbon steel, with a 20 μm coating, highly
resistant to corrosion.

FIELDS OF USE
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
• aggressive woods (containing tannin)
• chemically treated woods
Service classes 1, 2 and 3.

84 | TBS EVO | CARPENTRY


OUTDOOR WALKWAYS
Ideal for the construction of outdoor struc-
tures such as walkways and arcades. Values
also certified for screw insertion parallel to
the grain. Ideal for fastening aggressive woods
containing tannin.

SIP PANELS
Values also tested, certified and calculated
for CLT and high density woods such as Mi-
crollam® LVL. Suitable for fastening SIP and
sandwich panels.

CARPENTRY | TBS EVO | 85


Fastening Wood Trusses outdoors.

Fastening of 3-layer, multi-ply beams


with plasterboard coating.

GEOMETRY AND MECHANICAL CHARACTERISTICS

dK d2 d1

dS
b
L

Nominal diameter d1 [mm] 6 8


Head diameter dK [mm] 15,50 19,00
Tip diameter d2 [mm] 3,95 5,40
Shank diameter dS [mm] 4,30 5,80
Pre-drilling hole diameter(1) dV [mm] 4,0 5,0
Characteristic yield
My,k [Nm] 9,5 20,1
moment
Characteristic
fax,k [N/mm2] 11,7 11,7
withdrawal-resistance parameter(2)
Associated density ρa [kg/m3] 350 350
Characteristic head-pull-through
fhead,k [N/mm2] 10,5 10,5
parameter(2)
Associated density ρa [kg/m3] 350 350
Characteristic tensile
ftens,k [kN] 11,3 20,1
strength
(1)
Pre-drilling valid for softwood.
(2)
Valid for softwood - maximum density 440 kg/m3.
For applications with different materials or with high density please see ETA-11/0030.

86 | TBS EVO | CARPENTRY


CODES AND DIMENSIONS

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm] [in] [mm] [mm] [in]
TBSEVO660 60 2 3/8 40 20 13/16 100 TBSEVO8100 100 4 52 48 1 7/8 50
TBSEVO680 80 3 1/8 50 30 1 3/16 100 TBSEVO8120 120 4 3/4 80 40 1 9/16 50
TBSEVO6100 100 4 60 40 1 9/16 100 TBSEVO8140 140 5 1/2 80 60 2 3/8 50
6 TBSEVO6120 120 4 3/4 75 45 1 3/4 100 8 TBSEVO8160 160 6 1/4 100 60 2 3/8 50
0.24 0.32
TX 30 TBSEVO6140 140 5 1/2 75 65 2 9/16 100 TX 40 TBSEVO8180 180 7 1/8 100 80 3 1/8 50
TBSEVO6160 160 6 1/4 75 85 3 3/8 100 TBSEVO8200 200 8 100 100 4 50
TBSEVO6180 180 7 1/8 75 105 4 1/8 100 TBSEVO8220 220 8 5/8 100 120 4 3/4 50
TBSEVO6200 200 8 75 125 4 15/16 100 TBSEVO8240 240 9 1/2 100 140 5 1/2 50

WBAZ WASHER
D1

CODE screw D2 H D1 pcs


H [mm] [mm] [mm] [mm]
WBAZ25A2 6,0 - 6,5 25 15 6,5 100

D2

INSTALLATION
TBS EVO + WBAZ fastening package
ØxL [mm]
6 x 60 min. 0 - max. 40
6 x 80 min. 10 - max. 60
A 6 x 100 min. 30 - max. 80
A
6 x 120 min. 50 - max. 100
6 x 140 min. 70 - max. 120
6 x 160 min. 90 - max. 140
6 x 180 min. 110 - max. 160
6 x 200 min. 130 - max. 180

Correct tightening Excessive tightening Insufficient tightening Tightening


off axis

NOTES: The thickness of the washer after installation is approximately 8-9 mm.

FASTENING METAL SHEET


Can be installed on sheets up to 0.7 mm thick
without pre-drilling. TBS EVO Ø6 mm, ideal
when used in combination with washer WBAZ.
For outdoor use (Service class 3).

CARPENTRY | TBS EVO | 87


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 6 8 6 8
a1 [mm] 5∙d 30 40 4∙d 24 32
a2 [mm] 3∙d 18 24 4∙d 24 32
a3,t [mm] 12∙d 72 96 7∙d 42 56
a3,c [mm] 7∙d 42 56 7∙d 42 56
a4,t [mm] 3∙d 18 24 7∙d 42 56
a4,c [mm] 3∙d 18 24 3∙d 18 24

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 6 8 6 8
a1 [mm] 12∙d 72 96 5∙d 30 40
a2 [mm] 5∙d 30 40 5∙d 30 40
a3,t [mm] 15∙d 90 120 10∙d 60 80
a3,c [mm] 10∙d 60 80 10∙d 60 80
a4,t [mm] 5∙d 30 40 10∙d 60 80
a4,c [mm] 5∙d 30 40 5∙d 30 40
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014, according to • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii),
ETA-11/0030, considering a timber characteristic density of ρk ≤ 420 kg/m3 the minimum spacing and distances parallel to the grain must be multiplied
and calculation diameter of d = nominal screw diameter. by a coefficient of 1,5.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.
• The minimum spacing for all panel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,85.

88 | TBS EVO | CARPENTRY


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

geometry timber-to-timber panel-to-timber(1) thread withdrawal(2) head pull-through

d1

d1 L b A RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN]
60 40 20 2,02 - 3,25 2,92
80 50 30 2,31 2,28 4,06 2,92
SPAN = 50 mm
100 60 40 2,47 2,54 4,87 2,92
120 75 45 2,47 2,54 6,09 2,92
6
140 75 65 2,47 2,54 6,09 2,92
160 75 85 2,47 2,54 6,09 2,92
180 75 105 2,47 2,54 6,09 2,92
200 75 125 2,47 2,54 6,09 2,92
100 52 48 3,90 3,41 5,63 4,39
120 80 40 3,66 3,96 8,66 4,39
SPAN = 65 mm

140 80 60 3,90 3,96 8,66 4,39


160 100 60 3,90 3,96 10,83 4,39
8
180 100 80 3,90 3,96 10,83 4,39
200 100 100 3,90 3,96 10,83 4,39
220 100 120 3,90 3,96 10,83 4,39
240 100 140 3,90 3,96 10,83 4,39

NOTES:
(1) The characteristic shear strength are calculated considering an OSB panel • For the mechanical resistance values and the geometry of the screws, ref-
or particle board with a SPAN thickness. erence was made to ETA-11/0030.
(2) The axial thread withdrawal resistance was calculated considering a 90° an- • For the calculation process a timber characteristic density ρk = 420 kg/m3
gle between the grain and the connector and for a fixing length of b. has been considered.
• Values were calculated considering the threaded part as being completely
inserted into the wood.
GENERAL PRINCIPLES:
• Sizing and verification of the timber elements, panels and steel plates must
• Characteristic values comply with the EN 1995:2014 standard in accord- be done separately.
ance with ETA-11/0030. • The characteristic shear resistances are calculated for screws inserted with-
• Design values can be obtained from characteristic values as follows: out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.
Rk kmod
Rd = • For different calculation configurations, the MyProject software is available
γM (www.rothoblaas.com).

The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.

CARPENTRY | TBS EVO | 89


XYLOFON WASHER
SEPARATING WASHER
FOR TIMBER SCREW

SOUNDPROOFING
The separating washer acts as separator between the metallic and struc-
tural elements, reducing the transmission of vibrations.

TESTED VALUES
Polyurethane compound tested acoustically and mechanically.

CODES AND DIMENSIONS


XYLOFON WASHER
CODE dSCREW dext dint h pcs
[mm] [mm] [mm]
XYLW803811 Ø8 - Ø10 38 11 6,0 50

ULS 440 - WASHER


CODE dSCREW dext dint h pcs
[mm] [mm] [mm]
ULS11343 Ø8 - Ø10 34 11 3,0 200

MATERIAL AND DURABILITY


Polyurethane compound (80 shore). Product
free of VOCs and harmful substances. High
chemical stability and deformation free in time.

FIELDS OF USE
Mechanical separation of timber-to-timber
shear joints made with screws.

90 | XYLOFON WASHER | CARPENTRY


EXPERIMENTAL INVESTIGATION

LOAD-BEARING CAPACITY AND STIFFNESS OF CONNECTIONS TEST [ T-T ]


BETWEEN CLT PANELS MADE WITH HBS PARTIALLY THREAD (CLT - CLT)
SCREWS AND XYLOFON WASHERS
F
Through experimental testing and analytical approaches, the mechan- force application
ical and deformation performance of connections between CLT pan-
els — made with 8x280 HBS screws installed with/without XYLOFON pre-tensioning
WASHER separating washers — was analysed with and without the use of

7 x HBS
resilient, intermediate XYLOFON35 decoupling profiles.

8x280/8
/3s
CLT 90

1000
135

0
plain bearing
80

70

90 300
60

50
Fmean [kN]

40

30
TEST [ T-X ]
20 (CLT - XYLOFON35 - CLT)
T-T 0kN T-T 30kN
10 T-X 0kN T-X 30kN
T-X-W 0kN T-X-W 30kN F
0
0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 XYLOFON35

Displacement [mm]

Graphic representation of the experimental data for the various test configurations.

SERIES Fmean(1) FR,k pre-tens.(2) Kser Ku


[kN] [kN] [kN] [N/mm] [N/mm]
52,9 44,0 0 30252 3524
T-T
61,4 52,4 30 42383 4090
54,4 40,1 0 7114 3629
T-X
70,9 60,5 30 9540 4726
65,0 48,3 0 6286 4330
T-X-W
76,2 63,4 30 7997 5080
(1) Average value for 3 tests.
(2) Preload forces of 30 kN were applied to simulate the operating load.
TEST [ T-X-W ]
(CLT - XYLOFON35 + XYLOFON WASHER - CLT)

The experimental test results show that fastener load-bearing capacity is F


affected by the presence of the resilient XYLOFON35 profile (T-X series),
METAL
recording a reduction of about 9% in FR,k. However, adding the XYLOFON XYLOFON35
WASHER
WASHER (T-X-W series) separating washers recorded a 10% increase in +
XYLOFO

FR,k due to the increase in the axial strength of the connection (cable XYLOFON
WASHER
effect). +
N WASH

In terms of deformation, the presence of the decoupling layer implies a HBS Ø8


reduction in slip modulus Kser. =
ER

The viscous and damping component of XYLOFON combined with the


reduced thickness achieves acoustic benefits, limiting the repercussions
on the static performance.

• The full scientific report on the experimental testing is available at Rothoblaas.


• Experimental testing conducted in collaboration with Technische Versuchs
und Forschungsanstalt (TVFA), Innsbruck.

CARPENTRY | XYLOFON WASHER | 91


HBS PLATE BIT INCLUDED ETA-11/0030

PAN HEAD SCREW FOR PLATES

HBS P
Designed for steel-to-timber joints: the head has a shoulder and the
thickness is increased for completely safe, reliable fastening plates to the
timber.

PLATE FASTENING
The under-head shoulder achieves an interlocking effect with the cir-
cular hole in the plate, thus guaranteeing excellent static performance.

LONGER THREAD
Increased thread length for excellent shear strength and tensile strength
in steel-to-timber joints. Values higher than normal.

CHARACTERISTICS
FOCUS steel-to-timber joints
HEAD shoulder for plate
DIAMETER from 8,0 to 12,0 mm
LENGTH from 80 to 200 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
• high density woods
Service classes 1 and 2.

92 | HBS PLATE | CARPENTRY


MULTISTOREY
Ideal for steel-to-timber joints with large cus-
tomized plates, designed for multi-story tim-
ber buildings.

TITAN
Values also tested, certified and calculated for
fastening standard Rothoblaas plates.

CARPENTRY | HBS PLATE | 93


Steel-to-timber shear joint Mixed steel-to-timber
structural joint

GEOMETRY AND MECHANICAL CHARACTERISTICS


AP

P
dK dUK d2 d1
X X
BS

dS
t1 b
L

Nominal diameter d1 [mm] 8 10 12


Head diameter dK [mm] 14,50 18,25 20,75
Tip diameter d2 [mm] 5,40 6,40 6,80
Shank diameter dS [mm] 5,80 7,00 8,00
Head thickness t1 [mm] 3,40 4,35 5,00
Underhead diameter dUK [mm] 10,00 12,00 14,00
Pre-drilling hole diameter(1) dV [mm] 5,0 6,0 7,0
Recommended hole diameter
dv,steel [mm] 11,0 13,0 15,0
on steel plate
Characteristic yield
My,k [Nm] 20,1 35,8 48,0
moment
Characteristic withdrawal-resist-
fax,k [N/mm2] 11,7 11,7 11,7
ance parameter(2)
Associated density ρa [kg/m3] 350 350 350
Characteristic head-pull-through
fhead,k [N/mm2] 10,5 10,5 10,5
parameter(2)
Associated density ρa [kg/m3] 350 350 350
Characteristic tensile
ftens,k [kN] 20,1 31,4 33,9
strength
(1)
Pre-drilling valid for softwood.
(2)
Valid for softwood - maximum density 440 kg/m3.
For applications with different materials or with high density please see ETA-11/0030.

94 | HBS PLATE | CARPENTRY


CODES AND DIMENSIONS
d1 CODE L b AP pcs d1 CODE L b AP pcs
[mm] [in] [mm] [in] [mm] [mm] [mm] [in] [mm] [in] [mm] [mm]
HBSP880 80 3 1/8 55 1.0 ÷ 15.0 100 HBSP12120 120 4 3/4 90 1,0 ÷ 20,0 25
HBSP8100 100 4 75 1.0 ÷ 15.0 100 HBSP12140 140 5 1/2 110 1,0 ÷ 20,0 25
8 12
0.32 HBSP8120 120 4 3/4 95 1.0 ÷ 15.0 100 0.48 HBSP12160 160 6 1/4 120 1,0 ÷ 30,0 25
TX 40 TX 50
HBSP8140 140 5 1/2 110 1,0 ÷ 20,0 100 HBSP12180 180 7 1/8 140 1,0 ÷ 30,0 25
HBSP8160 160 6 1/4 130 1,0 ÷ 20,0 100 HBSP12200 200 8 160 1,0 ÷ 30,0 25
HBSP10100 100 4 75 1.0 ÷ 15.0 50
HBSP10120 120 4 3/4 95 1.0 ÷ 15.0 50
10
0.40 HBSP10140 140 5 1/2 110 1,0 ÷ 20,0 50
TX 40
HBSP10160 160 6 1/4 130 1,0 ÷ 20,0 50
HBSP10180 180 7 1/8 150 1,0 ÷ 20,0 50

MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER


Splate

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 8 10 12 8 10 12
a1 [mm] 5∙d ∙ 0,7 28 35 42 4∙d ∙ 0,7 22 28 34
a2 [mm] 3∙d ∙ 0,7 17 21 25 4∙d ∙ 0,7 22 28 34
a3,t [mm] 12∙d 96 120 144 7∙d 56 70 84
a3,c [mm] 7∙d 56 70 84 7∙d 56 70 84
a4,t [mm] 3∙d 24 30 36 7∙d 56 70 84
a4,c [mm] 3∙d 24 30 36 3∙d 24 30 36

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 8 10 12 8 10 12
a1 [mm] 12∙d ∙ 0,7 67 84 101 5∙d ∙ 0,7 28 35 42
a2 [mm] 5∙d ∙ 0,7 28 35 42 5∙d ∙ 0,7 28 35 42
a3,t [mm] 15∙d 120 150 180 10∙d 80 100 120
a3,c [mm] 10∙d 80 100 120 10∙d 80 100 120
a4,t [mm] 5∙d 40 50 60 10∙d 80 100 120
a4,c [mm] 5∙d 40 50 60 5∙d 40 50 60
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014, according to • In the case of joints with elements in Douglas fir (Pseudotsuga menziesii),
ETA-11/0030, considering a timber characteristic density of ρ k ≤ 420 kg/m3 the minimum spacing and distances parallel to the grain must be multiplied
and calculation diameter of d = nominal screw diameter. by a coefficient of 1.5.

CARPENTRY | HBS PLATE | 95


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

thin steel-to-timber thick steel-to-timber thread steel


geometry
plate (1) plate (2) withdrawal(3) tension
Splate Splate

d1

d1 L b RV,k RV,k Rax,k Rtens,k


[mm] [mm] [mm] [kN] [kN] [kN] [kN]
80 55 4,07 5,18 5,56

SPLATE = 8,0 mm
SPLATE = 4,0 mm

100 75 4,58 5,69 7,58


8 120 95 5,08 6,19 9,60 20,10
140 110 5,36 6,57 11,11
160 130 5,36 7,08 13,13
100 75 6,01 7,84 9,47
SPLATE = 12,0 mm SPLATE = 10,0 mm
SPLATE = 5,0 mm

120 95 6,87 8,47 12,00


10 140 110 7,34 8,95 13,89 31,40
160 130 7,74 9,58 16,42
180 150 7,74 10,21 18,94
120 90 8,19 10,17 13,64
SPLATE = 6,0 mm

140 110 8,94 10,92 16,67


12 160 120 9,32 11,30 18,18 33,90
180 140 9,55 12,06 21,21
200 160 9,55 12,82 24,24

NOTES:
(1) The shear resistance characteristics are calculated considering the case of • The tensile design strength of the connector is the lower between the tim-
a thin plate (SPLATE ≤ 0,5 d1). ber-side design strength (Rax,d) and the steel-side design strength (Rtens,d).
(2) The shear resistance characteristics are calculated considering the case of
Rax,k kmod
a thick plate (SPLATE ≥ d1).
(3) The axial thread withdrawal resistance was calculated considering a 90° an- Rax,d = min γM
gle between the grain and the connector and for a fixing length of b. Rtens,k
In the case of steel-to-timber connections, generally the steel tensile strength

γM2
is binding with respect to head separation or pull-through.
• For the mechanical resistance values and the geometry of the screws, ref-
erence was made to ETA-11/0030.
GENERAL PRINCIPLES: • For the calculation process a timber characteristic density ρk = 385 kg/m3
has been considered.
• Characteristic values comply with the EN 1995:2014 standard in accord-
ance with ETA-11/0030. • Values were calculated considering the threaded part as being completely
inserted into the wood.
• Design values can be obtained from characteristic values as follows:
• Sizing and verification of the timber elements, panels and steel plates must
Rk kmod be done separately.
Rd =
γM • The characteristic shear resistances are calculated for screws inserted with-

out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
The coefficients γM and kmod should be taken according to the current greater resistance values can be obtained.
regulations used for the calculation.
• For different calculation methods, the MyProject software is available free

of charge (www.rothoblaas.com).

96 | HBS PLATE | CARPENTRY


HBS PLATE EVO 1002
CERTIFIED

C4 COATING BIT INCLUDED COATING ETA-11/0030

PAN HEAD SCREW

HBS P EVO
Designed for outdoor steel-to-timber joints: the thickness of the shoul-
der screw is increased for completely safe, reliable fastening plates to the
timber. The small sizes (5,0 and 6,0 mm) are also ideal for timber-to-tim-
ber joints.

C4 EVO COATING
20 μm multilayer coating with a surface treatment of epoxy resin and
aluminium flakes. No rust after 1440 hours of salt spray exposure, as per
ISO 9227. Can be used in service class 3 outdoor applications and under
class C4 atmospheric corrosion conditions.

AGGRESSIVE WOODS
Ideal for applications with woods containing tannin or treated with im-
pregnating agents or other chemical processes.

CHARACTERISTICS
FOCUS corrosiveness class C4
HEAD shoulder for plate
DIAMETER from 5,0 to 10,0 mm
LENGTH from 40 to 180 mm

MATERIAL
Carbon steel, with a 20 μm coating, highly
resistant to corrosion.

FIELDS OF USE
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
• aggressive woods (containing tannin)
• chemically treated woods
Service classes 1, 2 and 3.

98 | HBS PLATE EVO | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS
AT AP

tK tK
P P
dK d2 d1 dK d2 d1

X X
X X

BS
BS

H H

dUK dS dUK dS
t1 b t1 b
L L
HBS P EVO - 5,0 | 6,0 mm HBS P EVO - 8,0 | 10,0 mm
Nominal diameter d1 [mm] 5 6 8 10
Head diameter dK [mm] 9,65 12,00 14,50 18,25
Tip diameter d2 [mm] 3,40 3,95 5,40 6,40
Shank diameter dS [mm] 3,65 4,30 5,80 7,00
Head thickness t1 [mm] 5,50 6,50 8,00 10,00
Washer thickness tK [mm] 1,00 1,50 3,40 4,35
Underhead diameter dUK [mm] 6,0 8,0 10,00 12,00
Pre-drilling hole diameter(1) dV [mm] 3,0 4,0 5,0 6,0
Characteristic yield
My,k [Nm] 5,4 9,5 20,1 35,8
moment
Characteristic withdrawal-resistance
fax,k [N/mm2] 11,7 11,7 11,7 11,7
parameter(2)
Associated density ρa [kg/m3] 350 350 350 350
Characteristic head-pull-through
fhead,k [N/mm2] 10,5 10,5 10,5 10,5
parameter(2)
Associated density ρa [kg/m3] 350 350 350 350
Characteristic tensile
ftens,k [kN] 7,9 11,3 20,1 31,4
strength
(1)
Pre-drilling valid for softwood.
(2)
Valid for softwood - maximum density 440 kg/m3.
For applications with different materials or with high density please see ETA-11/0030.

CODES AND DIMENSIONS

d1 CODE L b AT AP pcs d1 CODE L b AP pcs


[mm] [in] [mm] [in] [mm] [mm] [mm] [mm] [in] [mm] [in] [mm] [mm]
HBSPEVO550 50 1 15/16 30 20 1.0 ÷ 10.0 200 8 HBSPEVO8120 120 4 3/4 95 1.0 ÷ 15.0 100
5 HBSPEVO560 60 2 3/8 35 25 1.0 ÷ 10.0 200 0.32 HBSPEVO8140 140 5 1/2 110 1,0 ÷ 20,0 100
0.20 TX 40
TX 25 HBSPEVO570 70 2 3/4 40 30 1.0 ÷ 10.0 100 HBSPEVO8160 160 6 1/4 130 1,0 ÷ 20,0 100
HBSPEVO580 80 3 1/8 50 30 1.0 ÷ 10.0 100 HBSPEVO1060 60 2 3/8 52 1.0 ÷ 15.0 50
6 HBSPEVO680 80 3 1/8 50 30 1.0 ÷ 10.0 100 HBSPEVO1080 80 3 1/8 60 1.0 ÷ 15.0 50
0.24 HBSPEVO10100 100 4 75 1.0 ÷ 15.0 50
HBSPEVO690 90 3 1/2 55 35 1.0 ÷ 10.0 100 10
TX 30
0.40 HBSPEVO10120 120 4 3/4 95 1.0 ÷ 15.0 50
HBSPEVO840 40 1 9/16 32 - 1.0 ÷ 15.0 100
8 TX 40 HBSPEVO10140 140 5 1/2 110 1,0 ÷ 20,0 50
HBSPEVO860 60 2 3/8 52 - 1.0 ÷ 15.0 100
0.32 HBSPEVO10160 160 6 1/4 130 1,0 ÷ 20,0 50
TX 40 HBSPEVO880 80 3 1/8 55 - 1.0 ÷ 15.0 100
HBSPEVO10180 180 7 1/8 150 1,0 ÷ 20,0 50
HBSPEVO8100 100 4 75 - 1.0 ÷ 15.0 100

TYP R
Ideal for fastening standard Rothoblaas plates
in outdoor environments.
The 5 mm diameter version is ideal for fasten-
ing patio deck planks.

CARPENTRY | HBS PLATE EVO | 99


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5 6 8 10 5 6 8 10
a1 [mm] 5∙d 25 30 40 50 4∙d 20 24 32 40
a2 [mm] 3∙d 15 18 24 30 4∙d 20 24 32 40
a3,t [mm] 12∙d 60 72 96 120 7∙d 35 42 56 70
a3,c [mm] 7∙d 35 42 56 70 7∙d 35 42 56 70
a4,t [mm] 3∙d 15 18 24 30 7∙d 35 42 56 70
a4,c [mm] 3∙d 15 18 24 30 3∙d 15 18 24 30

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5 6 8 10 5 6 8 10
a1 [mm] 12∙d 60 72 96 120 5∙d 25 30 40 50
a2 [mm] 5∙d 25 30 40 50 5∙d 25 30 40 50
a3,t [mm] 15∙d 75 90 120 150 10∙d 50 60 80 100
a3,c [mm] 10∙d 50 60 80 100 10∙d 50 60 80 100
a4,t [mm] 5∙d 25 30 40 50 10∙d 50 60 80 100
a4,c [mm] 5∙d 25 30 40 50 5∙d 25 30 40 50
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• Minimum distances are in accordance with EN 1995:2014 as per • The minimum spacing for all panel-to-timber connections(a1 , a2) can be
ETA-11/0030 considering a timber characteristic density of ρ k ≤ 420 kg/m3. multiplied by a coefficient of 0,85.
• In the case of joints with elements in Douglas fir, the minimum spacing and
distances parallel to the grain must be multiplied by a coefficient of 1.5.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

100 | HBS PLATE EVO | CARPENTRY


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

thin steel-timber thick steel-timber thread head


geometry timber-to-timber panel-to-timber(1)
plate(2) plate(3) withdrawal(4) pull-through (5)

Splate Splate
A

d1

d1 L b A RV,k RV,k RV,k RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN] [kN]
50 30 20 1,29 1,05 1,12 1,74 2,25 2,03 1,13

2,5 mm
SPLATE =

SPLATE =
5,0 mm
12 mm
SPAN =

SPAN =
60 35 25 1,43 1,05 1,12 1,82 2,33 2,37 1,13
9 mm

5
70 40 30 1,51 1,05 1,12 1,91 2,42 2,71 1,13
80 50 30 1,51 1,05 1,12 2,08 2,59 3,38 1,13

80 50 30 2,02 1,51 1,58 2,76 3,48 4,06 1,75


SPLATE =

SPLATE =
6,0 mm
3,0 mm
12 mm

15 mm
SPAN =

SPAN =

6
90 55 35 2,18 1,51 1,58 2,86 3,58 4,47 1,75

40 32 8 1,18 - - 2,13 3,66 3,47 2,55


60 52 8 1,18 - - 3,31 5,12 5,63 2,55

SPLATE = 8,0 mm
SPLATE = 4,0 mm
SPAN = 18 mm
SPAN = 15 mm

80 55 25 2,67 2,32 2,38 4,29 5,45 5,96 2,55


8 100 75 25 2,67 2,32 2,38 4,83 5,99 8,12 2,55
120 95 25 2,67 2,32 2,38 5,37 6,53 10,29 2,55
140 110 30 2,83 2,32 2,38 5,60 6,94 11,91 2,55
160 130 30 2,83 2,32 2,38 5,60 7,48 14,08 2,55
60 52 8 1,38 - - 3,80 6,31 7,04 4,05
80 60 20 3,45 2,55 3,12 5,18 7,74 8,12 4,05
SPLATE = 10,0 mm
SPLATE = 5,0 mm
SPAN = 18 mm
SPAN = 15 mm

100 75 25 3,77 2,55 3,12 6,56 8,26 10,15 4,05


10 120 95 25 3,77 2,55 3,12 7,26 8,93 12,86 4,05
140 110 30 3,91 2,55 3,12 7,77 9,44 14,89 4,05
160 130 30 3,91 2,55 3,12 8,09 10,12 17,60 4,05
180 150 30 3,91 2,55 3,12 8,09 10,80 20,31 4,05

NOTES: GENERAL PRINCIPLES:


(1) The characteristic shear resistances are calculated considering an OSB3 or • Characteristic values comply with the EN 1995:2014 standard in accord-
OSB4 panel, as per EN 300, or a particle board panel, as per EN 312, with ance with ETA-11/0030.
thickness SPAN. • Design values can be obtained from characteristic values as follows:
(2) The shear resistance characteristics are calculated considering the case of
a thin plate (SPLATE ≤ 0,5 d1).
Rk kmod
Rd =
(3) The shear resistance characteristics are calculated considering the case of γM

a thick plate (SPLATE ≥ d1).
(4) The axial thread withdrawal resistance was calculated considering a 90° an- • The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
gle between the grain and the connector and for a fixing length of b.
(5) The axial resistance to head pull-through was calculated using timber ele- • For the mechanical resistance values and the geometry of the screws, ref-
erence was made to ETA-11/0030.
ments.
• For the calculation process a timber characteristic density ρk = 420 kg/m3
In the case of steel-to-timber connections, generally the steel tensile strength
has been considered.
is binding with respect to head separation or pull-through.
• Values were calculated considering the threaded part as being completely
inserted into the wood.
• Sizing and verification of the timber elements, panels and steel plates must
be done separately.
• The characteristic shear resistances are calculated for screws inserted with-
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.
• For different calculation configurations, the MyProject software is available
(www.rothoblaas.com).

CARPENTRY | HBS PLATE EVO | 101


LBS BIT INCLUDED ETA-11/0030

ROUND HEAD SCREW FOR PLATES

SCREW FOR PERFORATED PLATES


Cylindrical shoulder designed for fastening metal elements. Achieves an
interlocking effect with the hole in the plate, thus guaranteeing excellent
static performance.

STATICS
Can be calculated according to Eurocode 5 under thick plate timber-to-
steel connections, even with thin metal elements.
Excellent shear strength values.

DUCTILITY
The bending angle is 20° greater than standard, certified according to
ETA-11/0030. Cyclical SEISMIC-REV tests according to EN 12512.

CHARACTERISTICS
FOCUS screw for perforated plates
HEAD round with cylindrical underhead
DIAMETER 5,0 | 7,0 mm
LENGTH from 25 to 100 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
• high density woods
Service classes 1 and 2.

102 | LBS | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS

dUK

dK d2 d1

t1 b
L

Nominal diameter d1 [mm] 5 7


Head diameter dK [mm] 7,80 11,00
Tip diameter d2 [mm] 3,00 4,40
Underhead diameter dUK [mm] 4,90 7,00
Head thickness t1 [mm] 2,40 3,50
Pre-drilling hole diameter(1) dV [mm] 3,0 4,0
Characteristic yield
My,k [Nm] 5,4 14,2
moment
Characteristic withdrawal-resist-
fax,k [N/mm2] 11,7 11,7
ance parameter(2)
Associated density ρa [kg/m3] 350 350
Characteristic head-pull-through
fhead,k [N/mm2] 10,5 10,5
parameter(2)
Associated density ρa [kg/m3] 350 350
Characteristic tensile
ftens,k [kN] 7,9 15,4
strength
(1)
Pre-drilling valid for softwood.
(2)
Valid for softwood - maximum density 440 kg/m3.
For applications with different materials or with high density please see ETA-11/0030.

CODES AND DIMENSIONS

d1 CODE L b pcs d1 CODE L b pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm]
LBS525 25 1 21 500 LBS760 60 2 3/8 55 100
7
LBS540 40 1 9/16 36 500 0.28 LBS780 80 3 1/8 75 100
5
TX 30
0.20 LBS550 50 1 15/16 46 200 LBS7100 100 4 95 100
TX 20
LBS560 60 2 3/8 56 200
LBS570 70 2 3/4 66 200

ALUMAXI
Values also tested, certified and calculat-
ed for fastening standard Rothoblaas plates.
The 7 mm diameter version is ideal for joining
the ALUMAXI concealed beam hanger.

CARPENTRY | LBS | 103


MINIMUM DISTANCES FOR SHEAR LOADS | STEEL-TO-TIMBER

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5 7 5 7
a1 [mm] 5∙d ∙ 0,7 18 25 4∙d ∙ 0,7 14 20
a2 [mm] 3∙d ∙ 0,7 11 15 4∙d ∙ 0,7 14 20
a3,t [mm] 12∙d 60 84 7∙d 35 49
a3,c [mm] 7∙d 35 49 7∙d 35 49
a4,t [mm] 3∙d 15 21 7∙d 35 49
a4,c [mm] 3∙d 15 21 3∙d 15 21

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5 7 5 7
a1 [mm] 12∙d ∙ 0,7 42 59 5∙d ∙ 0,7 18 25
a2 [mm] 5∙d ∙ 0,7 18 25 5∙d ∙ 0,7 18 25
a3,t [mm] 15∙d 75 105 10∙d 50 70
a3,c [mm] 10∙d 50 70 10∙d 50 70
a4,t [mm] 5∙d 25 35 10∙d 50 70
a4,c [mm] 5∙d 25 35 5∙d 25 35
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014, according to • In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be
ETA, considering a timber characteristic density of ρk ≤ 420 kg/m3 and cal- multiplied by a coefficient of 1,5.
culation diameter of d = nominal screw diameter.

104 | LBS | CARPENTRY


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR

geometry steel-to-timber(1)

SPLATE

L
b

d1

d1 L b RV,k
[mm] [mm] [mm] [kN]
25 21 1,59 1,58 1,56 - - - -
40 36 2,24 2,24 2,24 2,24 2,23 - -

6,0 mm
4,0 mm

5,0 mm
2,5 mm
1,5 mm
SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =
2,0 mm

3,0 mm
5 50 46 2,39 2,39 2,39 2,39 2,39 2,38 2,36
60 56 2,55 2,55 2,55 2,55 2,55 2,54 2,52
70 66 2,71 2,71 2,71 2,71 2,71 2,69 2,68
60 55 2,86 2,81 2,98 3,37 3,79 4,21 4,18
SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =
6,0 mm

8,0 mm
4,0 mm
2,0 mm

3,0 mm

5,0 mm

7,0 mm
7 80 75 3,81 3,80 3,88 4,13 4,38 4,66 4,63
100 95 4,25 4,25 4,38 4,63 4,87 5,10 5,08

SHEAR TENSION

geometry timber-to-timber thread withdrawal(2)

A
L
b

d1

d1 L b A RV,k Rax,k
[mm] [mm] [mm] [mm] [kN] [kN]
25 21 - - 1,33
40 36 15 1,01 2,27
5 50 46 20 1,11 2,90
60 56 25 1,24 3,54
70 66 30 1,35 4,17
60 55 25 1,91 4,86
7 80 75 35 2,25 6,63
100 95 45 2,49 8,40

NOTES:
(1) The characteristic shear-strength value for LBS Ø5 nails has been evaluated The coefficients γM and kmod should be taken according to the current
assuming a plate thickness = SPLATE, always considering the case of thick regulations used for the calculation.
plate according to ETA-11/0030 (SPLATE ≥ 1,5 mm). • For the mechanical resistance values and the geometry of the screws, ref-
The characteristic shear-strength value for LBS Ø7 screws has been evalu- erence was made to ETA-11/0030.
ated assuming a plate thickness = SPLATE , and considering the thin (SPLATE • For the calculation process a timber characteristic density ρk = 385 kg/m3
≤ 0,5 d1), intermediate (0,5 d1 < SPLATE < d1) or thick (SPLATE ≥ d1) plate case has been considered.
scenario.
(2) The axial thread withdrawal resistance was calculated considering a 90° an- • Dimensioning and verification of timber elements and steel plates must be
carried out separately.
gle between the grain and the connector and for a fixing length of b.
• The characteristic shear resistances are calculated for screws inserted with-
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
GENERAL PRINCIPLES: greater resistance values can be obtained.

• Characteristic values comply with the EN 1995:2014 standard in accord-


ance with ETA-11/0030.
• Design values can be obtained from characteristic values as follows:
Rk kmod
Rd =
γM

CARPENTRY | LBS | 105


LBA
HIGH BOND NAIL

ANKER NAIL
Threaded annular ring nail for improved pull-out strength.

CE MARKING
Nails with CE marking, in accordance with ETA for fastening metallic
plates to timber structures.

STAINLESS STEEL
Also available in A4 | AISI316 stainless steel.

CHARACTERISTICS
FOCUS threaded, annular ring nail
HEAD flat
DIAMETER 4,0 | 6,0 mm
LENGTH from 40 to 100 mm

MATERIAL
Carbon steel with bright zinc plated or stain-
less steel A4.

FIELDS OF USE
• timber based panels
• fibre board and MDF panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
Service classes 1 and 2.

106 | LBA | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS | LBA

d1

dK dE

t1 b
L

Nominal diameter d1 [mm] 4 6


Head diameter dK [mm] 8,00 12,00
External diameter dE [mm] 4,40 6,65
Head thickness t1 [mm] 1,40 2,00
Pre-drilling hole diameter dV [mm] 3,0 4,5
Characteristic yield
My,k [Nm] 6,5 19,0
moment
Characteristic
fax,k [N/mm2] 7,5 7,5
withdrawal-resistance parameter
Characteristic tensile
ftens,k [kN] 6,9 11,4
strength

CODES AND DIMENSIONS


LBA LBAI A4 | AISI316 A4
AISI 316

d1 CODE L b pcs d1 CODE L b pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm]
LBA440 40 1 9/16 30 250 4
LBAI450 50 1 15/16 40 250
0.16
LBA450 50 1 15/16 40 250
4 ANKER COIL NAIL - K34°
LBA460 60 2 3/8 50 250
0.16
LBA475 75 2 15/16 60 250
d1 CODE L pcs
LBA4100 100 4 80 250
[mm] [mm]
LBA660 60 2 3/8 50 250
6 L HH20006080 40 2000
LBA680 80 3 1/8 70 250
0.24 4 HH20006085 50 2000
LBA6100 100 4 80 250 HH20006090 60 2000
d 34°

3731 PALMAR RIVETER 0116 ANKER RIVETER 34°

CODE dNAIL trigger pcs CODE dNAIL trigger pcs


[mm] [mm]
HH3731 4-6 single 1 ATEU0116 4 single 1

WHT
Values also tested, certified and calculated for
fastening standard Rothoblaas plates. Using a
handheld riveter speeds up installation.

CARPENTRY | LBA | 107


MINIMUM DISTANCES FOR NAILS SUBJECT TO SHEAR | STEEL-TO-TIMBER

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

NAILS INSERTED WITH PRE-DRILLING HOLES NAILS INSERTED WITH PRE-DRILLING HOLES
d1 [mm] 4 6 4 6
a1 [mm] 5∙d ∙ 0,7 14 5∙d ∙ 0,7 21 4∙d ∙ 0,7 11 4∙d ∙ 0,7 17
a2 [mm] 3∙d ∙ 0,7 8 3∙d ∙ 0,7 13 4∙d ∙ 0,7 11 4∙d ∙ 0,7 17
a3,t [mm] 12∙d 48 12∙d 72 7∙d 28 7∙d 42
a3,c [mm] 7∙d 28 7∙d 42 7∙d 28 7∙d 42
a4,t [mm] 3∙d 12 3∙d 18 5∙d 20 7∙d 42
a4,c [mm] 3∙d 12 3∙d 18 3∙d 12 3∙d 18

NAILS INSERTED WITHOUT PRE-DRILLING HOLE NAILS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 4 6 4 6
a1 [mm] 10∙d ∙ 0,7 28 12∙d ∙ 0,7 50 5∙d ∙ 0,7 14 5∙d ∙ 0,7 21
a2 [mm] 5∙d ∙ 0,7 14 5∙d ∙ 0,7 21 5∙d ∙ 0,7 14 5∙d ∙ 0,7 21
a3,t [mm] 15∙d 60 15∙d 90 10∙d 40 10∙d 60
a3,c [mm] 10∙d 40 10∙d 60 10∙d 40 10∙d 60
a4,t [mm] 5∙d 20 5∙d 30 7∙d 28 10∙d 60
a4,c [mm] 5∙d 20 5∙d 30 5∙d 20 5∙d 30
d = nominal nail diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014, according to • In the case of timber-to-timber joints, the minimum spacing (a1 , a2) can be
ETA, considering a timber characteristic density of ρ k ≤ 420 kg/m3 and cal- multiplied by a coefficient of 1,5.
culation diameter of d = nominal nail diameter.

108 | LBA | CARPENTRY


STATIC VALUES | STEEL-TO-TIMBER CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

geometry steel-to-timber(1) thread withdrawal(2)

SPLATE

L b

d1

d1 L b RV,k Rax,k
[mm] [mm] [mm] [kN] [kN]
40 30 2,05 2,03 2,02 2,00 1,98 1,95 1,92 0,97
50 40 2,34 2,34 2,34 2,34 2,34 2,34 2,34 1,30

6,0 mm
4,0 mm
2,0 mm

3,0 mm

5,0 mm
2,5 mm
1,5 mm
SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =
4 60 50 2,50 2,50 2,50 2,50 2,50 2,50 2,50 1,62
75 60 2,66 2,66 2,66 2,66 2,66 2,66 2,66 1,94
100 80 2,99 2,99 2,99 2,99 2,99 2,99 2,99 2,59
60 50 2,59 2,57 3,43 4,29 4,25 4,21 4,17 2,43

6,0 mm
4,0 mm
2,0 mm

3,0 mm

5,0 mm
2,5 mm
1,5 mm
SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =
6 80 70 3,47 3,45 4,23 5,03 5,03 5,03 5,03 3,40
100 80 4,30 4,30 4,79 5,28 5,28 5,28 5,28 3,89

SHEAR TENSION

geometry steel-to-LVL (1) thread withdrawal(2)

SPLATE

L b

d1

d1 L b RV,k Rax,k
[mm] [mm] [mm] [kN] [kN]
40 30 2,47 2,45 2,43 2,41 2,38 2,34 2,31 1,16
50 40 2,66 2,66 2,66 2,66 2,66 2,66 2,66 1,54
4 60 50 2,86 2,86 2,86 2,86 2,86 2,86 2,86 1,93
2,5 mm
SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =
1,5 mm

4 mm

6 mm
2 mm

3 mm

5 mm

75 60 3,05 3,05 3,05 3,05 3,05 3,05 3,05 2,32


100 80 3,43 3,43 3,43 3,43 3,43 3,43 3,43 3,09
60 50 3,23 3,20 4,17 5,17 5,12 5,07 5,02 2,90
6 80 70 4,33 4,30 5,01 5,75 5,75 5,75 5,75 4,06
100 80 4,95 4,95 5,50 6,04 6,04 6,04 6,04 4,63

NOTES: GENERAL PRINCIPLES:


(1) T he characteristic shear-strength value for LBA Ø4 nails has been evaluated • C
 haracteristic values are consistent with EN 1995:2014 and in accordance
assuming a plate thickness = SPLATE , always considering the case of thick with ETA.
plate according to ETA (SPLATE ≥ 1,5 mm). • Design values can be obtained from characteristic values as follows:
The characteristic shear-strength value for LBA Ø6 screws has been eval-
uated assuming a plate thickness = SPLATE , and considering the thin
Rk kmod
Rd =
(SPLATE ≤ 2,0 mm), and thick-plate case scenarios (2,0 < SPLATE < 3,0 mm) γM
according to ETA (SPLATE ≥ 3,0 mm).
(2) The axial thread-withdrawal resistance was calculated considering a 90° The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
angle between the grain and the connector and for a fixing length of b.
or the calculation process, a mass density equal to ρk = 385 kg/m3
• F
has been considered for timber elements and a mass density equal to
ρk = 480 kg/m3 has been considered for LVL elements.
• Dimensioning and verification of timber elements and steel plates must be
carried out separately.
• The shear characteristic resistances are calculated for nails inserted without
pre-drilling holes. In the case of nails inserted with pre-drilling holes, great-
er resistance values can be obtained.

CARPENTRY | LBA | 109


MINIMUM DISTANCES FOR NAILS SUBJECT TO SHEAR | CLT(1)

Load-to-grain angle (2) α = 0° Load-to-grain angle (2) α = 90°

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
lateral face(3) lateral face(3)
d1 [mm] 4 6 4 6
a1 [mm] 4∙d 24 36 10∙d 12 18
a2 [mm] 2.5∙d 12 18 4∙d 12 18
a3,t [mm] 6∙d 40 60 12∙d 28 42
a3,c [mm] 6∙d 24 36 7∙d 24 36
a4,t [mm] 6∙d 12 18 6∙d 28 42
a4,c [mm] 2.5∙d 12 18 3∙d 12 18
d = nominal screw diameter

a1 F
α F α α
a3,t a3,c F
F α

a2
tCLT a4,t a4,c

NOTES:
(1) The minimum distances are compliant with national specification ÖNORM (3) CLT panel minimum thickness t
CLT,min = 10·d - single layer minimum thick-
EN 1995-1-1 - Annex K and are to be considered valid unless otherwise ness ti = 9 mm.
specified in the technical documents for the CLT panels.
(2) Angle between force and direction of the grain of the CLT panel outer layer.

110 | LBA | CARPENTRY


STATIC VALUES | STEEL-TO-CLT CHARACTERISTIC VALUES
EN 1995:2014

SHEAR (1)

geometry of the nail steel-to-CLT(2)

SPLATE Fv
L b
Fv

d1

d1 L b RV,k
[mm] [mm] [mm] [kN]
40 30 2,23 2,23 2,23 2,23 2,23 2,19 2,15
50 40 2,30 2,30 2,30 2,30 2,30 2,30 2,30

6,0 mm
4,0 mm
2,0 mm

3,0 mm

5,0 mm
2,5 mm
1,5 mm
SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =
4 60 50 2,36 2,36 2,36 2,36 2,36 2,36 2,36
75 60 2,43 2,43 2,43 2,43 2,43 2,43 2,43
100 80 2,55 2,55 2,55 2,55 2,55 2,55 2,55
60 50 4,35 4,35 4,34 4,29 4,18 4,08 3,96

10,0 mm

12,0 mm
SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =

SPLATE =
6,0 mm

8,0 mm
4,0 mm
3,0 mm

5,0 mm

6 80 70 4,55 4,55 4,55 4,55 4,55 4,55 4,53


100 80 4,66 4,66 4,66 4,66 4,66 4,66 4,66

NOTES : GENERAL PRINCIPLES:


(1) The characteristic shear-strength value for LBA Ø4 nails has been evaluated • Design values can be obtained from characteristic values as follows:
assuming a plate thickness = SPLATE, always considering the case of thick
plate according to ETA (SPLATE ≥ 1,5 mm). The characteristic shear-strength
Rk kmod
Rd =
value for LBA Ø6 screws has been evaluated assuming a plate thickness = γM
SPLATE , and considering the thin (SPLATE ≤ 2,0 mm), and thick-plate case
scenarios (2,0 < SPLATE < 3,0 mm) according to ETA (SPLATE ≥ 3,0 mm). The coefficients γM and kmod should be taken according to the current
(2) regulations used for the calculation.
The characteristic values for the steel-CLT joint are according to
EN 1995-1-1 according to the national ÖNORM EN 1995 - Annex K specifi- • For the mechanical strength values and the geometry of the nails, reference
cations, to be considered valid unless otherwise specified in the technical was made to ETA.
documents of the CLT panels. • For the calculation process a timber characteristic density ρ k = 350 kg/m3
The table values are valid for CLT panels with minimum thickness has been considered.
tCLT,min = 10·d and with minimum thickness of the single layer ti = 9 mm. • The values in the table are independent of the load-to-grain angle.
• Dimensioning and verification of timber elements and steel plates must be
carried out separately.
• The shear characteristic resistances are calculated for nails inserted without
pre-drilling holes. In the case of nails inserted with pre-drilling holes, great-
er resistance values can be obtained.

CARPENTRY | LBA | 111


KOP EN 14592

COACH SCREW DIN571

CE MARKING
Screws with the CE mark, in accordance with EN 14592.

HEXAGONAL HEAD
Appropriate for use on plates in steel-to-timber applications, thanks to
its hexagonal head.

OUTDOOR VERSION
Also available in stainless steel A2 | AISI304 for outdoor use (service class 3).

CHARACTERISTICS
FOCUS coach screw with CE marking
HEAD hexagonal
DIAMETER from 8,0 to 16,0 mm
LENGTH from 50 to 400 mm

MATERIAL
Available in carbon steel with bright zinc plated
and in stainless steel A2.

FIELDS OF USE
• timber based panels
• fibre board and MDF panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
Service classes 1 and 2.

112 | KOP | CARPENTRY


GEOMETRY AND MECHANICAL CHARACTERISTICS
A

d2 d1

k dS
SW b
L

Nominal diameter d1 [mm] 8 10 12 16


Wrench size SW [mm] 13 17 19 24
Head thickness k [mm] 5,50 7,00 8,00 10,00
Tip diameter d2 [mm] 5,60 7,00 9,00 12,00
Shank diameter dS [mm] 8,00 10,00 12,00 16,00
Diameter pre-drilling hole - smooth part dV1 [mm] 8,0 10,0 12,0 16,0
Diameter pre-drilling hole - threaded part dV2 [mm] 5,5 7,0 8,5 11,0
Thread length b [mm] ≥ 0,6 L
Characteristic yield moment My,k [Nm] 16,9 32,2 65,7 138,0
Characteristic withdrawal-resistance
fax,k [N/mm2] 12,9 10,6 10,2 10,0
parameter
Associated density ρa [kg/m3] 400 400 440 360
Characteristic head-pull-through
fhead,k [N/mm2] 22,8 19,8 16,4 16,5
parameter
Associated density ρa [kg/m3] 440 420 430 430
Characteristic tensile
ftens,k [kN] 15,7 23,6 37,3 75,3
strength

CODES AND DIMENSIONS

d1 CODE L pcs d1 CODE L pcs


[mm] [in] [mm] [in] [mm] [in] [mm] [in]
KOP850( * ) 50 1 15/16 100 KOP12150 150 6 25
KOP860 60 2 3/8 100 KOP12160 160 6 1/4 25
KOP870 70 2 3/4 100 KOP12180 180 7 1/8 25
KOP880 80 3 1/8 100 KOP12200 200 8 25
8 KOP8100 100 4 50 KOP12220 220 8 5/8 25
0.32
SW 13 KOP8120 120 4 3/4 50 KOP12240 240 9 1/2 25
KOP8140 140 5 1/2 50 12 KOP12260 260 10 1/4 25
0.48
KOP8160 160 6 1/4 50 SW 19 KOP12280 280 11 25
KOP8180 180 7 1/8 50 KOP12300 300 11 3/4 25
KOP8200 200 8 50 KOP12320 320 12 5/8 25
KOP1050( * ) 50 1 15/16 50 KOP12340 340 13 3/8 25
KOP1060( * ) 60 2 3/8 50 KOP12360 360 14 1/4 25
KOP1080 80 3 1/8 50 KOP12380 380 15 25
KOP10100 100 4 50 KOP12400 400 15 3/4 25
KOP10120 120 4 3/4 50 KOP1680( * ) 80 3 1/8 25
KOP10140 140 5 1/2 50 KOP16100( * ) 100 4 25
10 KOP10150 150 6 50 KOP16120 120 4 3/4 25
0.40 KOP10160 160 6 1/4 50 KOP16140 140 5 1/2 25
SW 17 KOP10180 180 7 1/8 50 KOP16150 150 6 25
KOP10200 200 8 50 KOP16160 160 6 1/4 25
KOP10220 220 8 5/8 50 KOP16180 180 7 1/8 25
KOP10240 240 9 1/2 50 KOP16200 200 8 25
KOP10260 260 10 1/4 50 16 KOP16220 220 8 5/8 25
0.63
KOP10280 280 11 50 SW 24 KOP16240 240 9 1/2 25
KOP10300 300 11 3/4 50 KOP16260 260 10 1/4 25
KOP1250( * ) 50 1 15/16 50 KOP16280 280 11 25
KOP1260( * ) 60 2 3/8 50 KOP16300 300 11 3/4 25
KOP1270( * ) 70 2 3/4 50 KOP16320 320 12 5/8 25
12 KOP1280 80 3 1/8 50 KOP16340 340 13 3/8 25
0.48
SW 19 KOP1290 90 3 1/2 25 KOP16360 360 14 1/4 25
KOP12100 100 4 25 KOP16380 380 15 25
KOP12120 120 4 3/4 25 KOP16400 400 15 3/4 25
KOP12140 140 5 1/2 25 (*) Not holding CE marking.

CARPENTRY | KOP | 113


A2 | AISI304 VERSION CODES AND DIMENSIONS A2
AISI 304

d1 CODE L pcs d1 CODE L pcs


[mm] [in] [mm] [in] [mm] [in] [mm] [in]
AI571850 50 1 15/16 100 AI57112100 100 4 25
AI571860 60 2 3/8 100 AI57112120 120 4 3/4 25
8 12
0.32 AI571880 80 3 1/8 100 0.48 AI57112140 140 5 1/2 25
SW 13 SW 19
AI5718100 100 4 50 AI57112160 160 6 1/4 25
AI5718120 120 4 3/4 50 AI57112180 180 7 1/8 25
AI5711050 50 1 15/16 50 The stainless steel screws have not been granted the CE mark.
AI5711060 60 2 3/8 50
AI5711080 80 3 1/8 50
AI57110100 100 4 50
10
0.40 AI57110120 120 4 3/4 50
SW 17
AI57110140 140 5 1/2 50
AI57110160 160 6 1/4 50
AI57110180 180 7 1/8 50
AI57110200 200 8 50

MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 8 10 12 16 8 10 12 16
a1 [mm] 5∙d 40 50 60 80 4∙d 32 40 48 64
a2 [mm] 4∙d 32 40 48 64 4∙d 32 40 48 64

a3,t 7∙d 7∙d


[mm] 80 80 84 112 80 80 84 112
(min. 80 mm) (min. 80 mm)
a3,c [mm] 4∙d 32 40 48 64 7∙d 56 70 84 112
a4,t [mm] 3∙d 24 30 36 48 4∙d 32 40 48 64
a4,c [mm] 3∙d 24 30 36 48 3∙d 24 30 36 48
d = nominal nail diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• Minimum distances in accordance with EN 1995:2014. - pre-drill hole for the threaded portion, equal to approximately 70% of the
• For KOP screws with a diameter of d > 6 mm, a pre-drill is required as per shank diameter.
EN 1995:2014:
- pre-drill hole for smooth part of the shank, dimensions matching that of
the shank itself, depth equal to the length of the shank.

114 | KOP | CARPENTRY


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

timber-to-timber timber-to-timber thin steel-timber thick steel-timber thread head


geometry
α = 0°(1) α = 90°(2) plate(3) plate(4) withdrawal(5) pull-through(6)

Splate Splate
A

d1

d1 L b(7) A RV,k RV,k RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN]
50 30 20 2,96 2,23 2,64 3,75 2,78 3,54
60 36 24 3,28 2,68 3,22 4,38 3,34 3,54
70 42 28 3,55 2,87 3,51 4,56 3,90 3,54

SPLATE = 8 mm
SPLATE = 4 mm
80 48 32 3,78 3,01 3,65 4,70 4,45 3,54
100 60 40 3,96 3,32 3,93 4,98 5,56 3,54
8
120 72 48 3,96 3,42 4,20 5,25 6,68 3,54
140 84 56 3,96 3,42 4,48 5,53 7,79 3,54
160 96 64 3,96 3,42 4,76 5,81 8,90 3,54
180 108 72 3,96 3,42 5,04 6,09 10,02 3,54
200 120 80 3,96 3,42 5,07 6,37 11,13 3,54
50 30 20 3,48 2,56 3,10 4,65 2,86 5,45
60 36 24 4,18 3,07 3,79 5,30 3,43 5,45
80 48 32 5,01 4,01 4,97 6,56 4,57 5,45
100 60 40 5,78 4,56 5,26 6,84 5,72 5,45
120 72 48 6,05 4,92 5,54 7,13 6,86 5,45
140 84 56 6,05 5,19 5,83 7,42 8,00 5,45
SPLATE = 10 mm
SPLATE = 5 mm

150 90 60 6,05 5,19 5,97 7,56 8,57 5,45


10 160 96 64 6,05 5,19 6,12 7,70 9,14 5,45
180 108 72 6,05 5,19 6,40 7,99 10,29 5,45
200 120 80 6,05 5,19 6,69 8,27 11,43 5,45
220 132 88 6,05 5,19 6,97 8,56 12,57 5,45
240 144 96 6,05 5,19 7,26 8,85 13,72 5,45
260 156 104 6,05 5,19 7,54 9,13 14,86 5,45
280 168 112 6,05 5,19 7,66 9,42 16,00 5,45
300 180 120 6,05 5,19 7,66 9,70 17,15 5,45

NOTES:
(1) The characteristic shear resistance values are calculated using an angle α be- (6) The axial resistance to head pull-through was calculated using timber ele-
tween the strength and the grain of 0°. ments. In the case of steel-to-timber connections, generally the steel ten-
(2) The characteristic shear resistance values are calculated using an angle α be- sile strength is binding with respect to head separation or pull-through.
tween the strength and the grain of 90°. (7) During calculation, a thread length of b = 0,6 L is used, with the exception
(3) The shear resistance characteristics are calculated considering the case of of the measures (*).
a thin plate (SPLATE ≤ 0,5 d1).
(4) The shear resistance characteristics are calculated considering the case of
a thick plate (SPLATE ≥ d1).
(5) The axial thread withdrawal resistance was calculated considering a 90° an-
gle between the grain and the connector and for a fixing length of b.

CARPENTRY | KOP | 115


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

timber-to-timber timber-to-timber thin steel-timber thick steel-timber thread head


geometry
α = 0° (1) α = 90° (2) plate(3) plate(4) withdrawal(5) pull-through(6)

Splate Splate
A

d1

d1 L b(7) A RV,k RV,k RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN]
50 30 20 4,01 2,89 3,49 6,10 3,06 5,54
60 36 24 4,81 3,46 4,28 6,67 3,67 5,54
70 42 28 5,61 4,04 5,07 7,36 4,28 5,54
80 48 32 6,42 4,62 5,86 8,12 4,89 5,54
90 54 36 6,92 5,19 6,66 8,94 5,50 5,54
100 60 40 7,20 5,63 7,40 9,78 6,12 5,54
120 72 48 7,82 6,02 7,70 10,13 7,34 5,54
140 84 56 8,50 6,41 8,01 10,44 8,56 5,54
150 90 60 8,64 6,62 8,16 SPLATE = 12 mm 10,59 9,17 5,54
SPLATE = 6 mm

160 96 64 8,64 6,84 8,31 10,74 9,78 5,54


180 108 72 8,64 7,25 8,62 11,05 11,01 5,54
12
200 120 80 8,64 7,25 8,92 11,36 12,23 5,54
220 132 88 8,64 7,25 9,23 11,66 13,45 5,54
240 144 96 8,64 7,25 9,54 11,97 14,68 5,54
260 156 104 8,64 7,25 9,84 12,27 15,90 5,54
280 168 112 8,64 7,25 10,15 12,58 17,12 5,54
300 180 120 8,64 7,25 10,45 12,88 18,35 5,54
320 192 128 8,64 7,25 10,76 13,19 19,57 5,54
340 195 * 145 8,64 7,25 10,84 13,27 19,88 5,54
360 195 * 165 8,64 7,25 10,84 13,27 19,88 5,54
380 195 * 185 8,64 7,25 10,84 13,27 19,88 5,54
400 195 * 205 8,64 7,25 10,84 13,27 19,88 5,54

NOTES:
(1) The characteristic shear resistance values are calculated using an angle α be- (5) The axial thread withdrawal resistance was calculated considering a 90° an-
tween the strength and the grain of 0°. gle between the grain and the connector and for a fixing length of b.
(2) The characteristic shear resistance values are calculated using an angle α be- (6) The axial resistance to head pull-through was calculated using timber ele-
tween the strength and the grain of 90°. ments. In the case of steel-to-timber connections, generally the steel ten-
(3) The shear resistance characteristics are calculated considering the case of sile strength is binding with respect to head separation or pull-through.
a thin plate (SPLATE ≤ 0,5 d1). (7) During calculation, a thread length of b = 0,6 L is used, with the exception
(4) The shear resistance characteristics are calculated considering the case of of the measures (*).
a thick plate (SPLATE ≥ d1).

116 | KOP | CARPENTRY


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

timber-to-timber timber-to-timber thin steel-timber thick steel-timber thread head


geometry
α = 0° (1) α = 90° (2) plate(3) plate(4) withdrawal(5) pull-through(6)

Splate Splate
A

d1

d1 L b(7) A RV,k RV,k RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN] [kN]
80 48 32 8,49 6,03 6,99 11,17 7,51 8,89
100 60 40 10,48 7,42 8,93 13,02 9,39 8,89
120 72 48 11,43 8,46 10,87 15,10 11,26 8,89
140 84 56 12,18 9,28 12,70 16,59 13,14 8,89
150 90 60 12,58 9,50 12,93 16,83 14,08 8,89
160 96 64 12,99 9,72 13,16 17,06 15,02 8,89
180 108 72 13,86 10,20 13,63 17,53 16,89 8,89

SPLATE = 16 mm
SPLATE = 8 mm

200 120 80 14,09 10,72 14,10 18,00 18,77 8,89


220 132 88 14,09 11,26 14,57 18,47 20,65 8,89
16
240 144 96 14,09 11,63 15,04 18,94 22,53 8,89
260 156 104 14,09 11,63 15,51 19,41 24,40 8,89
280 168 112 14,09 11,63 15,98 19,88 26,28 8,89
300 180 120 14,09 11,63 16,45 20,35 28,16 8,89
320 192 128 14,09 11,63 16,92 20,82 30,04 8,89
340 204 136 14,09 11,63 17,39 21,29 31,91 8,89
360 205 * 155 14,09 11,63 17,43 21,33 32,07 8,89
380 205 * 175 14,09 11,63 17,43 21,33 32,07 8,89
400 205 * 195 14,09 11,63 17,43 21,33 32,07 8,89

NOTES: GENERAL PRINCIPLES:


(1) The characteristic shear resistance values are calculated using an angle α • Characteristic values according to EN 1995:2014.
between the strength and the grain of 0°. • Design values can be obtained from characteristic values as follows:
(2) T he characteristic shear resistance values are calculated using an angle α
between the strength and the grain of 90°. Rk kmod
Rd =
(3) The shear resistance characteristics are calculated considering the case of

γM
a thin plate (SPLATE ≤ 0,5 d1).
The coefficients γM and kmod should be taken according to the current
(4) The shear resistance characteristics are calculated considering the case of
regulations used for the calculation.
a thick plate (SPLATE ≥ d1).
 or the calculation process a timber characteristic density ρ k = 350 kg/m3
• F
(5) The axial thread withdrawal resistance was calculated considering a 90° an-
has been considered.
gle between the grain and the connector and for a fixing length of b.
• V
 alues were calculated considering the minimum threaded part as being
(6) The axial resistance to head pull-through was calculated using timber ele-
completely inserted into the wood.
ments. In the case of steel-to-timber connections, generally the steel ten-
sile strength is binding with respect to head separation or pull-through. • D
 imensioning and verification of timber elements and steel plates must be
carried out separately.
(7) During calculation, a thread length of b = 0,6 L is used, with the exception
of the measures (*). • The characteristic shear resistance values are calculated for screws inserted
with pre-drilling hole.

CARPENTRY | KOP | 117


DRS
TIMBER-TO-TIMBER SPACER SCREW

DOUBLE THREAD, DIFFERENTIATED


Underhead thread with specially designed geometry to create and regu-
late a space between the fastenable thicknesses.

VENTILATED FACADES
The differentiated double thread is ideal for regulating the position of the
battens on the facade and to create proper verticality. Ideal for levelling
panelling, battens, ceilings and paving.

CODES AND DIMENSIONS

d1 CODE L b pcs
[mm] [mm] [mm]
DRS680S 80 44 100

6 DRS6100S 100 56 100


TX 30 DRS6120S 120 66 100
DRS6145S 145 66 100

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
Thanks to the possibility to create a distance
between pieces of wood, it is possible to cre-
ate versatile fastenings quickly and safely,
without the need for any interposed element.

118 | DRS | CARPENTRY


GEOMETRY

d3 dS

dK d2 d1

b1 b
L

Nominal diameter d1 [mm] 6


Head diameter dK [mm] 12,00
Tip diameter d2 [mm] 3,90
Shank diameter dS [mm] 4,35
Underhead thread diameter d3 [mm] 6,80
Length head + rings b1 [mm] 21,0

INSTALLATION

Select the screw length so that the thread is completely


inserted in the timber support.

01 02 03 04

Position the DRS screw. Attach the batten, screwing Loosen the screw based on Adjust the other screws in a
in the screw so that the head the desired distance. similar manner to level the
is flush with the timber. structure.

CARPENTRY | DRS | 119


DRT
TIMBER-BRICKWORK SPACER SCREW

DOUBLE THREAD, DIFFERENTIATED


Underhead thread with specially designed geometry to create and regu-
late a space between the fastenable thicknesses.

FASTENING TO BRICKWORK
Underhead thread with a greater diameter to allow fastening to brick-
work through the addition of a plastic screw anchor.

CODES AND DIMENSIONS


NDK GL NYLON SCREW ANCHOR

d1 CODE L b pcs CODE d0 L pcs


[mm] [mm] [mm] [mm] [mm]
DRT680 80 50 100 NDKG840 8 40 100
6
DRT6100 100 60 100 For fastening on concrete or brickwork, use of the
TX 30
DRT6120 120 70 100 NDK GL nylon screw anchor is recommended.

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
The differentiated double thread is ideal for ad-
justing the position of timber elements on brick-
work supports (using the plastic screw anchor)
and to create the proper verticality. Ideal for lev-
elling panels on walls, paving and ceilings.

120 | DRT | CARPENTRY


GEOMETRY

d3 dS

dK d2 d1

b1 b
L

Nominal diameter d1 [mm] 6


Head diameter dK [mm] 12,50
Tip diameter d2 [mm] 3,90
Shank diameter dS [mm] 4,35
Underhead thread diameter d3 [mm] 9,90
Diameter of concrete/brickwork opening dV [mm] 8,0
Length head + rings b1 [mm] 22,0

INSTALLATION

Select the screw length so that the thread is completely


inserted in the concrete/brickwork support.

01 02 03 04

Drill the elements with a Place the NDK GL nylon Position the DRT screw. Attach the batten, screw-
dV= 8,0 mm diameter. screw anchor inside the ing in the screw so that the
support. head is flush with the tim-
ber.

05 06

Loosen the screw based on Adjust the other screws in a


the desired distance. similar manner to level the
structure.

CARPENTRY | DRT | 121


MBS
SELF-TAPPING SCREW WITH CYLINDRICAL
HEAD FOR MASONRY

HI-LOW THREADING
Appropriate for direct fastening on compact and semi-solid materials:
natural stone, concrete, solid bricks and hollow bricks.

WOOD FRAMES
Thanks to the cylindrical head, it is ideal for fastening wood frames di-
rectly to brickwork supports.

CODES AND DIMENSIONS

d1 CODE L pcs
[mm] [mm]
GEOMETRY
MBS7572 72 100
MBS7592 92 100

7,5 MBS75112 112 100


TX 30 MBS75132 132 100
MBS75152 152 100 d1
MBS75182 182 100

Available also with countersunk flat head: suitable for of PVC and aluminum L
profile fastening.

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
The HI-LOW thread allows for safe fastening
even near the edges of the support, thanks to
the reduced tension induced on the material,
ideal for frames.

122 | MBS | CARPENTRY


INSTALLATION PARAMETERS

Nominal diameter d1 [mm] 7,5


Head diameter dk [mm] 8,0
Diameter of pre-drilling
d0 [mm] 6,0
hole concrete/brickwork
Hole diameter in
df [mm] 6,2
the element to be fastened

dK

dF d 1 screw diameter
dK head diameter
d0 diameter of pre-drilling hole concrete/brickwork
d F hole diameter in the element to be fastened
hnom nominal anchoring depth
hnom

d1
dO

STATIC VALUES
WITHDRAWAL RESISTANCE
Type of support hnom,min Nrec
[mm] [kN]
Concrete 30 0,76
40 0,29
Solid brick
80 1,79
40 0,05
Hollow brick
60 0,21
Light concrete 80 0,12

INSTALLATION

01 02 03 04

CARPENTRY | MBS | 123


DWS
DRYWALL SCREW

OPTIMISED GEOMETRY
Bugle head and phosphate-coated steel; ideal for fastening sheets of
drywall.

FULLY FINE THREADED


Fully fine threaded screw, ideal for fastening on sheet metal supports.

CODES AND DIMENSIONS

GEOMETRY
d1 CODE L description pcs
[mm] [mm]
FE620001 25 1000

3,5 FE620005 35 1000


sheet metal substructure
PH 2 FE620010 45 500 d1
FE620015 55 500 L
4,2
FE620020 65 sheet metal substructure 200
PH 2

MATERIAL
Phosphate-coated carbon steel.

FIELDS OF USE
Ideal for quickly and safely creating thermal
and noise insulation.

124 | DWS | CARPENTRY


DWS COIL
DWS COLLATED PLASTERBOARD SCREW

OPTIMISED GEOMETRY
Fully threaded screw with bugle head and phosphate-coated steel; ideal
for fastening sheets of drywall and plaster fibre.

COLLATED VERSION
Bound in plastic for quick, precise mass use.

CODES AND DIMENSIONS

d1 CODE L description pcs


[mm] [mm]
HH10600404 30 10000 GEOMETRY
3,9
HH10600405 35 timber substructure 10000
PH 2
HH10600406 45 10000
HH10600401 30 10000
3,9 sheet-metal substructure
HH10600402 35 10000
PH 2 max 0,75 mm d1
HH10600403 45 10000
HH10600397 30 10000 L
3,9
fermacell
PH 2 HH10600398 35 10000

MATERIAL
Phosphate-coated carbon steel.

FIELDS OF USE
Ideal for fastening sheets of drywall or plaster
fibre to sheet metal substructures (maximum
0,75 mm).

CARPENTRY | DWS COIL | 125


THERMOWASHER
WASHER TO FASTEN INSULATION TO TIMBER

CE FASTENING WITH HBS SCREWS


The THERMOWASHER is intended for use with screws with the CE mark-
ing in accordance with ETA. Ideal for Ø6 or Ø8 HBS screws, with lengths
based on the thickness of the insulation to be fastened.

ANTI-THERMAL BRIDGE
Incorporated hole cover to avoid thermal bridges. Large cable spaces
for proper plaster adhesion. Has a system that prevents the screw from
pulling out.

CODES AND DIMENSIONS

CODE dSCREW axbxc pcs


[mm] [mm]
THERMO65 6/8 65 x 4 x 20 700

MATERIAL
Propylene (PP) system.

FIELDS OF USE
The Ø65 propylene washer is compatible with
Ø6 and Ø8 screws; it is suitable for any type
of insulation and any type of fixture thickness.

126 | THERMOWASHER | CARPENTRY


ISULFIX ETA

ANCHOR FOR FASTENING INSULATION


TO BRICKWORK

CERTIFICATE
Anchor with the CE mark in accordance with ETA, with certified resist-
ance values. Double expansion with preassembled steel nails allows for
fast versatile fastening on concrete and brickwork.

DOUBLE EXPANSION
Ø8 PVC double expansion anchor with preassembled steel nails, for fas-
tening to concrete and brickwork. Can be used, with an additional wash-
er, on particularly soft insulating materials.

CODES AND DIMENSIONS

CODE L dHOLE dHEAD A pcs


[mm] [mm] [mm] [mm]
ISULFIX8110 110 80 250
ISULFIX8150 150 8 60 120 150
ISULFIX8190 190 160 100

CODE dHEAD description pcs


[mm]
additional washer
ISULFIX90 90 250
for soft insulation
A= maximum fastening thickness

MATERIAL
PVC system with carbon steel nail.

FIELDS OF USE
Anchor available in various measurements for
different insulation thicknesses; can be used
with an additional washer for use with soft insu-
lation; method of use and certified laying pos-
sibilities indicated in the relative ETA document.

CARPENTRY | ISULFIX | 127


STRUCTURES
STRUCTURES
STRUCTURES

VGZ
FULL THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . . 138

VGZ EVO FRAME


MINI FULL THREADED SCREW WITH CYLINDRICAL HEAD. . . . 162

VGZ EVO
FULL THREADED SCREW WITH CYLINDRICAL HEAD. . . . . . . . . 170

VGZ HARDWOOD
FULLY THREADED SCREW FOR HARDWOODS . . . . . . . . . . . . . . . 176

VGS
FULLY THREADED SCREW WITH COUNTERSUNK
OR HEXAGONAL HEAD. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 186

VGU
45° WASHER FOR VGS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

RTR
STRUCTURAL REINFORCEMENT SYSTEM . . . . . . . . . . . . . . . . . . 206

DGZ
DOUBLE THREADED SCREW FOR INSULATION . . . . . . . . . . . . . 210

SBD
SELF-DRILLING DOWEL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

CTC
CONNECTOR FOR TIMBER-TO-CONCRETE FLOORS. . . . . . . . 224

SKR | SKS
CONCRETE SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 232

SKR-E | SKS-E
SCREW ANCHOR FOR CONCRETE CE1. . . . . . . . . . . . . . . . . . . . . 236

STRUCTURES | 131
STRUCTURAL CONNECTORS
STRENGTH AND STIFFNESS

STRENGTH
Partially thread screw
Concentration of stresses in the localised area in the direction of the
load. Resistance connected to the bearing stress of the walls of the hole
in the timber and the bending of the screw.

SCREWS FOR SHEAR LOADS

RESISTANCE PROPORTIONAL
TO THE DIAMETER
S

X X
B
H
Total thread connectors
Stress distributed along the entire threaded surface. High resistance con-
nected to the timber cylinder affected by tangential stresses.

CONNECTORS STRESSED AXIALLY

RESISTANCE PROPORTIONAL
TO THE THREADED LENGTH

APPLICATION EXAMPLE
CONNECTION WITH HBS PARTIALLY THREAD SCREWS CONNECTION WITH VGZ TOTAL THREAD CONNECTORS

more screws and more deformation fewer connectors and less deformation

132 | STRUCTURAL CONNECTORS | STRUCTURES


A new approach for modern screws, conceived as connectors
able to guarantee excellent static performance, taking advan-
tage of the axial capacity.

RIGIDITY
Partially thread screw

F
RIGIDITY

DUCTILITY F

• screws for shear loads


• high slip s
• low rigidity
• high ductility

Total thread connectors


F
RIGIDITY

F
DUCTILITY

• connectors stressed axially s


• limited slip
• high rigidity
• reduced ductility

EXPERIMENTAL BEHAVIOUR
F - load [kN]

kSER VGZ
The rigidity of the connection is conventional- kSER HBS
ly identified by the slope of the elastic portions
of the monotonic load-slip curve.
A
The graph refers to shear tests to control dis- A
placement for HBS screws under lateral stress
(shear) and crossed VGZ screws stressed axially. B

s - slip [mm]

STRUCTURES | STRUCTURAL CONNECTORS | 133


SCREWS STRESSED AXIALLY
TENSILE AND COMPRESSION STRENGTH

The strength is proportional to the length of the thread and thus


high performance can be achieved with smaller diameters.

DETERMINING RESISTANCE
To verify the resistance of screws stressed axially, the determining value is the lower between:

STEEL THREAD HEAD


tension / head separation, withdrawal pull-through
instability

resistance 100% strength 30-100% resistance 10%


function of thread L

For total thread connectors, the resistance to head pull-through (binding in the case of partial thread screws) is considered
unimportant and, instead, the high resistance to thread withdrawal is considered, which is expressed both for tensile and
compression stress.

APPLICATION EXAMPLE
TIMBER-TO-TIMBER SHEAR CONNECTION

Connection with VGZ total thread connectors Connection with HBS partially thread screws

Fc Ft Fc =0 Ft

Ft Fc Ft

134 | SCREWS STRESSED AXIALLY | STRUCTURES


JOINTS WITH DIFFERENT TYPES OF CONNECTORS

"When a connection includes different types of connectors or connec-


tor types with different rigidities, it is recommended that the compati-
bility of these types be verified [EN 1995:2014]."

In practice, this means that it is not allowed to use different fastening


systems to transfer a single stress (e.g. F shear). The global resistance is
not the sum of the individual resistances.

APPLICATION EXAMPLE
Transfer of shear force F through connectors stressed axially

SOLUTION A BREAKDOWN
RESULT R = F
2 crossed connectors OF THE FORCES

F
F

1 screw under tension

+ R

1 compressed screw

SOLUTION B BREAKDOWN
RESULT R = F
2 parallel connectors OF THE FORCES

F
F

2 screws under tension

+ R/2 + R/2 = R*

* to be added to any contribution from friction

direct contact: wood


compressed

STRUCTURES | SCREWS STRESSED AXIALLY | 135


STRUCTURAL REINFORCEMENT
RESPONSE TO STRESS

Wood is an anisotropic material. Therefore, it has different me-


chanical characteristics depending on the direction of the grain
and the stress.

The anisotropy of the material derives from its cellular organisation:


wood consists of layers of fibres welded to each other by lignin and can
be compared to extremely thin straws, known as tracheids.

The physical structure determines the mechanical characteristics of the


wood:

• great resistance and rigidity for stresses in the direction of the axis of 01 | 02
the fibres;
• reduced efficiency for stresses perpendicular to the direction of the
fibres, in particular for tensile stresses.

In the context of reinforcements, the main mono-axial stresses to which


wood may be subjected are:

01 | 02 TENSION PERPENDICULAR TO THE FIBRES


03 COMPRESSION PERPENDICULAR TO THE FIBRES 03
04 LONGITUDINAL SHEAR

04

136 | STRUCTURAL REINFORCEMENT | STRUCTURES


01
FAILURE REINFORCEMENT

REINFORCEMENT FOR TENSION


PERPENDICULAR TO THE FIBRES -
NOTCH

Resistance influenced above all by cracks, knots, resin channels. Mark-


edly fragile behaviour.

02
REINFORCEMENT FOR TENSION
FAILURE REINFORCEMENT

PERPENDICULAR TO THE FIBRES -


HANGING LOAD

Failure can occur in the case in which the load applied affects a height
limited by the main beam (a/h ≤ 0,7). Markedly fragile behaviour.

03
FAILURE REINFORCEMENT

REINFORCEMENT FOR COMPRESSION


PERPENDICULAR
TO THE FIBRES - RESTING

Crushing and severing of the fibres in the area where the forces are intro-
duced (e.g. supports). Sufficiently ductile behaviour.

04
FAILURE REINFORCEMENT

REINFORCEMENT FOR
LONGITUDINAL SHEAR

Collapse near the neutral axis, mutual sliding of the two parts of the sec-
tion. Beam subject to flexion: tense area or support area. Markedly frag-
ile behaviour.

STRUCTURES | STRUCTURAL REINFORCEMENT | 137


VGZ BIT INCLUDED ETA-11/0030

FULL THREADED SCREW WITH


CYLINDRICAL HEAD

TENSION
Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent
tensile performance. Very broad range of measurements.

STRUCTURAL APPLICATIONS
Approved for structural applications subject to stresses in any direction
vs. the grain (α = 0° - 90°). Reduced minimum distances.

CYLINDRICAL HEAD
Ideal for concealed joints, timber couplings and structural reinforce-
ments. Guarantees fire protection and earthquake suitability. Cyclical
SEISMIC-REV tests according to EN 12512.

CHROMIUM (VI) FREE


Total absence of hexavalent chromium. Compliance with the strictest
regulations governing chemical substances (SVHC).
REACH information available.

CHARACTERISTICS
FOCUS 45° connections, reinforcements and couplings
HEAD cylindrical, countersunk
DIAMETER 5,3 | 5,6 | 7,0 | 9,0 | 11,0 mm
LENGTH from 80 to 600 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
• high density woods
Service classes 1 and 2.

138 | VGZ | STRUCTURES


STRUCTURAL RESTORATION
Ideal for coupling beams in structural renova-
tions and new works. Can also be used parallel
to the grain thanks to the special approval.

CLT, LVL
Values also tested, certified and calculat-
ed for CLT and high density woods such as
Microllam® LVL.

STRUCTURES | VGZ | 139


Very high stiffness in side-by-side joining of CLT floors. Reinforcement orthogonal to grain for hanging
Application with double inclination at 45°, perfect for building load due to joining of main-secondary beams.
using the JIG VGZ template.

GEOMETRY AND MECHANICAL CHARACTERISTICS

X
Z

dK d2 d1
G

X
V

b
L

Nominal diameter d1 [mm] 5,3 5,6 7 9 11


Head diameter dK [mm] 8,00 8,00 9,50 11,50 13,50
Tip diameter d2 [mm] 3,60 3,80 4,60 5,90 6,60
Pre-drilling hole diameter(1) dV [mm] 3,5 3,5 4,0 5,0 6,0
Characteristic yield
My,k [Nm] 9,2 10,6 14,2 27,2 45,9
moment
Characteristic
fax,k [N/mm2] 11,7 11,7 11,7 11,7 11,7
withdrawal-resistance parameter(2)
Associated density ρa [kg/m3] 350 350 350 350 350
Characteristic
fax,k [N/mm2] 15,0 15,0 15,0 15,0 15,0
withdrawal-resistance parameter(3)
Associated density ρa [kg/m3] 500 500 500 500 500
Characteristic tensile
ftens,k [kN] 11,0 12,3 15,4 25,4 38,0
strength
Characteristic yield strength fy,k [N/mm2] 1000 1000 1000 1000 1000
(1) Pre-drilling valid for softwood.
(2) Valid for softwood - maximum density 440 kg/m3.
(3) Valid for softwood LVL - maximum density 550 kg/m3 .
For applications with different materials or with high density please see ETA-11/0030.

140 | VGZ | STRUCTURES


CODES AND DIMENSIONS

d1 CODE L b pcs d1 CODE L b pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm]
VGZ580 80 3 1/8 70 50 VGZ9160 160 6 1/4 150 25
5,3
0.21 VGZ5100 100 4 90 50 VGZ9180 180 7 1/8 170 25
TX 25
VGZ5120 120 4 3/4 110 50 VGZ9200 200 8 190 25
5,6 VGZ5140 140 5 1/2 130 50 VGZ9220 220 8 5/8 210 25
0.23
TX 25 VGZ5160 160 6 1/4 150 50 VGZ9240 240 9 1/2 230 25
VGZ780 80 3 1/8 70 25 VGZ9260 260 10 1/4 250 25
VGZ7100 100 4 90 25 VGZ9280 280 11 270 25
VGZ7120 120 4 3/4 110 25 9 VGZ9300 300 11 3/4 290 25
0.36
VGZ7140 140 5 1/2 130 25 TX 40 VGZ9320 320 12 5/8 310 25
VGZ7160 160 6 1/4 150 25 VGZ9340 340 13 3/8 330 25
VGZ7180 180 7 1/8 170 25 VGZ9360 360 14 1/4 350 25
7 VGZ7200 200 8 190 25 VGZ9380 380 15 370 25
0.28
TX 30 VGZ7220 220 8 5/8 210 25 VGZ9400 400 15 3/4 390 25
VGZ7240 240 9 1/2 230 25 VGZ9440 440 17 1/4 430 25
VGZ7260 260 10 1/4 250 25 VGZ9480 480 19 470 25
VGZ7280 280 11 270 25 VGZ9520 520 20 1/2 510 25
VGZ7300 300 11 3/4 290 25 VGZ11250 250 10 240 25
VGZ7340 340 13 3/8 330 25 VGZ11300 300 11 3/4 290 25
VGZ7380 380 15 370 25 VGZ11350 350 13 3/4 340 25
11 VGZ11400 400 15 3/4 390 25
0.44
TX 50 VGZ11450 450 17 3/4 440 25
VGZ11500 500 19 3/4 490 25
VGZ11550 550 21 5/8 540 25
VGZ11600 600 23 5/8 590 25

JIG VGZ 45° TEMPLATE

CODE description pcs


JIGVGZ45 steel template for VGZ screws at 45° 1

Further information on page 367.

JIG VGZ 45° TEMPLATE


Installation at 45° using the JIG VGZ steel
template.

STRUCTURES | VGZ | 141


EFFECTIVE THREAD USED IN CALCULATION
b = L - 10 mm represents the entire length of the
10 Sg Tol. Sg 10 threaded part

S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of


the threaded part net of a laying
b
tolerance (Tol.) of 10 mm
L
The timber to timber withdrawal, shear and sliding values were calculated considering the centre
of gravity of the connector placed in correspondence with the shear plane.

MINIMUM DISTANCES FOR SHEAR LOADS (1)

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5,3 5,6 7 9 11 5,3 5,6 7 9 11
a1 [mm] 5∙d 27 28 35 45 55 4∙d 21 22 28 36 44
a2 [mm] 3∙d 16 17 21 27 33 4∙d 21 22 28 36 44
a3,t [mm] 12∙d 64 67 84 108 132 7∙d 37 39 49 63 77
a3,c [mm] 7∙d 37 39 49 63 77 7∙d 37 39 49 63 77
a4,t [mm] 3∙d 16 17 21 27 33 7∙d 37 39 49 63 77
a4,c [mm] 3∙d 16 17 21 27 33 3∙d 16 17 21 27 33

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5,3 5,6 7 9 11 5,3 5,6 7 9 11
a1 [mm] 12∙d 64 67 84 108 132 5∙d 27 28 35 45 55
a2 [mm] 5∙d 27 28 35 45 55 5∙d 27 28 35 45 55
a3,t [mm] 15∙d 80 84 105 135 165 10∙d 53 56 70 90 110
a3,c [mm] 10∙d 53 56 70 90 110 10∙d 53 56 70 90 110
a4,t [mm] 5∙d 27 28 35 45 55 10∙d 53 56 70 90 110
a4,c [mm] 5∙d 27 28 35 45 55 5∙d 27 28 35 45 55
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
(1) The minimum distances are in accordance with EN 1995:2014 considering a • The minimum spacing for all panel-to-timber connections(a1 , a2) can be
timber characteristic density of ρk ≤ 420 kg/m3. multiplied by a coefficient of 0,85.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

142 | VGZ | STRUCTURES


MINIMUM DISTANCES FOR AXIAL STRESSES (2)

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE


d1 [mm] 5,3 5,6 7 9 11
a1 [mm] 5∙d 27 28 35 45 55
a2 [mm] 5∙d 27 28 35 45 55
a2,LIM (3) [mm] 2.5∙d 13 14 18 23 28
a1,CG (4) [mm] 10∙d 53 56 70 90 110
a2,CG (5) [mm] 4∙d 21 22 28 36 44
aCROSS [mm] 1.5∙d 8 8 11 14 17

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG
a2,CG a1,CG

a2,CG a2,CG
a1 a2 a2,CG a2
a2,CG a2,CG

a
1
a1,CG
a1,CG
a2,CG a1,CG

plan front plan front

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT CROSSED SCREWS INSERTED WITH AN ANGLE α WITH RESPECT
TO THE GRAIN TO THE GRAIN

a2,CG
45°
a2

a2,CG a2,CG
aCROSS
a1,CG a1 a2,CG

a1,CG a1

plan front plan front

NOTES:
(2) The minimum distances for connectors stressed axially are independent of (5) For main beam-secondary beam joints with VGZ screws d = 7 mm inclined
the insertion angle of the connector and the angle of the force with respect or crossed, inserted at an angle of 45° to the secondary beam head, with a
to the grain, in accordance with ETA-11/0030. minimum secondary beam height of 18 d, the minimum distance a2 CG can
(3) The axial distance a can be reduced down to 2,5 d if for each connector a be taken equal to 3∙d 1 .
2 1
“joint surface” a1∙a2 = 25∙d1 2 is maintained.
(4) For main beam-secondary beam joints with VGZ screws d = 7 mm inclined
or crossed, inserted at an angle of 45° to the secondary beam head, with a
minimum secondary beam height of 18 d, the minimum distance at 1,CG can
be taken equal to 8∙d1 .

STRUCTURES | VGZ | 143


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

TENSION(1)

geometry total thread withdrawal(2) partial thread withdrawal(2) steel tension

estrazione
estrazione
filetto
filetto
parziale
parziale

Sg A

L
A

Sg A

d1

timber timber steel


d1 L b A min Rax,k Sg A min Rax,k Rtens,k
[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
80 70 90 4,68 25 45 1,67
5,3 100 90 110 6,02 35 55 2,34 11,00
120 110 130 7,36 45 65 3,01
140 130 150 9,19 55 75 3,89
5,6 12,30
160 150 170 10,61 65 85 4,60
80 70 90 6,19 25 45 2,21
100 90 110 7,96 35 55 3,09
120 110 130 9,72 45 65 3,98
140 130 150 11,49 55 75 4,86
160 150 170 13,26 65 85 5,75
180 170 190 15,03 75 95 6,63
200 190 210 16,79 85 105 7,51
7 15,40
220 210 230 18,56 95 115 8,40
240 230 250 20,33 105 125 9,28
260 250 270 22,10 115 135 10,16
280 270 290 23,87 125 145 11,05
300 290 310 25,63 135 155 11,93
340 330 350 29,17 155 175 13,70
380 370 390 32,70 175 195 15,47
160 150 170 17,05 65 85 7,39
180 170 190 19,32 75 95 8,52
200 190 210 21,59 85 105 9,66
220 210 230 23,87 95 115 10,80
240 230 250 26,14 105 125 11,93
260 250 270 28,41 115 135 13,07
280 270 290 30,68 125 145 14,21

9 300 290 310 32,96 135 155 15,34


25,40
320 310 330 35,23 145 165 16,48
340 330 350 37,50 155 175 17,61
360 350 370 39,78 165 185 18,75
380 370 390 42,05 175 195 19,89
400 390 410 44,32 185 205 21,02
440 430 450 48,87 205 225 23,30
480 470 490 53,41 225 245 25,57
520 510 530 57,96 245 265 27,84

144 | VGZ | STRUCTURES


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

TENSION(1)

geometry total thread withdrawal(2) partial thread withdrawal(2) steel tension

estrazione
estrazione
filetto
filetto
parziale
parziale

Sg A

L
A

Sg A

d1

timber timber steel


d1 L b A min Rax,k Sg A min Rax,k Rtens,k
[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
250 240 260 33,34 110 130 15,28
300 290 310 40,28 135 155 18,75
350 340 360 47,22 160 180 22,22
400 390 410 54,17 185 205 25,70
11 38,00
450 440 460 61,11 210 230 29,17
500 490 510 68,06 235 255 32,64
550 540 560 75,00 260 280 36,11
600 590 610 81,95 285 305 39,59

NOTES:
(1)  The connector design resistance is the lowest between the timber side de- (2) The axial resistance of the thread to withdrawal was calculated consider-
sign resistance (Rax,d) and the steel side resistance (Rtens,d). ing a 90° angle between the fibres and the connector and for a effective
thread length of b or Sg.
Rax,k kmod For intermediate values of Sg it is possible to linearly interpolate.

Rax,d = min γM
Rtens,k
γM2

STRUCTURES | VGZ | 145


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR SLIDING

geometry timber-to-timber timber-to-timber(3)

Sg A A

S
g
45°
L

S
g
Sg B

d1

d1 L Sg A min RV,k A min Bmin RV,k


[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN]
80 25 40 1,66 30 50 1,18
5,3 100 35 50 2,09 40 55 1,66
120 45 60 2,32 45 60 2,13
140 55 70 2,69 50 70 2,75
5,6
160 65 80 2,87 60 75 3,25
80 25 40 2,16 30 50 1,56
100 35 50 2,68 40 55 2,19
120 45 60 3,15 45 60 2,81
140 55 70 3,37 55 70 3,44
160 65 80 3,59 60 75 4,06
180 75 90 3,81 65 85 4,69
200 85 100 4,03 75 90 5,31
7
220 95 110 4,25 80 100 5,94
240 105 120 4,30 90 105 6,56
260 115 130 4,30 95 110 7,19
280 125 140 4,30 100 120 7,81
300 135 150 4,30 110 125 8,44
340 155 170 4,30 125 140 9,69
380 175 190 4,30 140 155 10,89
160 65 80 5,10 60 75 5,22
180 75 90 5,38 70 85 6,03
200 85 100 5,67 75 90 6,83
220 95 110 5,95 80 100 7,63
240 105 120 6,23 90 105 8,44
260 115 130 6,50 95 110 9,24
280 125 140 6,50 105 120 10,04

9 300 135 150 6,50 110 125 10,85


320 145 160 6,50 115 135 11,65
340 155 170 6,50 125 140 12,46
360 165 180 6,50 130 145 13,26
380 175 190 6,50 140 155 14,06
400 185 200 6,50 145 160 14,87
440 205 220 6,50 160 175 16,47
480 225 240 6,50 175 190 17,96
520 245 260 6,50 190 205 17,96

146 | VGZ | STRUCTURES


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR SLIDING

geometry timber-to-timber timber-to-timber(3)

Sg A A

S
g
45°
L

S
g
Sg B

d1

d1 L Sg A min RV,k A min Bmin RV,k


[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN]
250 110 125 8,35 95 110 10,80
300 135 150 9,06 115 125 13,26
350 160 175 9,06 130 145 15,71
400 185 200 9,06 150 160 18,17
11
450 210 225 9,06 165 180 20,63
500 235 250 9,06 185 195 23,08
550 260 275 9,06 200 215 25,54
600 285 300 9,06 220 230 26,87

NOTES: GENERAL PRINCIPLES:


(3) The axial resistance of the thread withdrawal was calculated considering a • Characteristic values comply with the EN 1995:2014 standard in accord-
45° angle between the fibres and the connector and for an effective thread ance with ETA-11/0030.
length of Sg. • Design values can be obtained from characteristic values as follows:
Rk kmod
Rd =
γM
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
• For the mechanical resistance values and the geometry of the screws, ref-
erence was made to ETA-11/0030.
• For the calculation process a timber characteristic density ρk = 385 kg/m3
has been considered.
• Dimensioning and verification of the timber elements must be carried out
separately.
• The characteristic shear resistances are calculated for screws inserted with-
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.
• The withdrawal, shear and sliding values were calculated considering the cen-
tre of gravity of the connector placed in correspondence with the shear plane.

STRUCTURES | VGZ | 147


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR CONNECTION WITH CROSSED CONNECTORS


RIGHT-ANGLE JOINT - MAIN BEAM/SECONDARY BEAM
d1 L S g HT(1) S g NT (1) BHT,min HHT,min = hNT,min bNT,min no. pairs R1V,k (2) R2V,k(2) m(3)
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [kN] [mm]
withdrawal(4) instability
50 1 2,8 8,2
5,3 120 30 60 60 120 77 2 5,3 15,3 56
103 3 7,7 22,0
53 1 4,5 9,2
140 45 65 65 130 81 2 8,4 17,1 59
109 3 12,2 24,6
5,6
53 1 6,5 9,2
160 65 65 75 130 81 2 12,1 17,1 59
109 3 17,6 24,6
53 1 5,6 13,6
160 45 85 75 160 88 2 10,5 25,4 74
123 3 15,2 36,6
53 1 8,1 13,6
180 65 85 80 160 88 2 15,2 25,4 74
123 3 21,9 36,6
53 1 10,6 13,6
200 85 85 90 160 88 2 19,8 25,4 74
123 3 28,7 36,6
53 1 11,9 13,6
220 95 95 95 170 88 2 22,2 25,4 81
123 3 32,1 36,6
53 1 13,1 13,6
240 105 105 100 185 88 2 24,5 25,4 88
123 3 35,4 36,6
7
53 1 14,4 13,6
260 115 115 110 200 88 2 26,8 25,4 95
123 3 38,8 36,6
53 1 15,6 13,6
280 125 125 115 215 88 2 29,2 25,4 102
123 3 42,2 36,6
53 1 16,9 13,6
300 135 135 125 230 88 2 31,5 25,4 109
123 3 45,6 36,6
53 1 19,4 13,6
340 155 155 140 255 88 2 36,2 25,4 124
123 3 52,3 36,6
53 1 21,8 13,6
380 175 175 150 285 88 2 40,6 25,4 138
123 3 58,8 36,6

148 | VGZ | STRUCTURES


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR CONNECTION WITH CROSSED CONNECTORS


RIGHT-ANGLE JOINT - MAIN BEAM/SECONDARY BEAM
d1 L S g HT(1) S g NT (1) BHT,min HHT,min = hNT,min bNT,min no. pairs R1V,k (2) R2V,k(2) m(3)
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [kN] [mm]
withdrawal(4) instability
86 1 8,8 22,9
ì200 55 115 90 200 131 2 16,5 42,7 96
176 3 23,9 61,5
86 1 12,1 22,9
220 75 115 95 200 131 2 22,5 42,7 96
176 3 32,5 61,5
86 1 15,3 22,9
240 95 115 100 200 131 2 28,5 42,7 96
176 3 41,2 61,5
86 1 18,5 22,9
260 115 115 110 200 131 2 34,5 42,7 96
176 3 49,9 61,5
86 1 20,1 22,9
280 125 125 115 215 131 2 37,5 42,7 103
176 3 54,2 61,5
86 1 21,7 22,9
300 135 135 125 230 131 2 40,5 42,7 110
176 3 58,6 61,5
86 1 23,3 22,9
320 145 145 130 245 131 2 43,5 42,7 117
9 176 3 62,9 61,5
86 1 24,9 22,9
340 155 155 140 260 131 2 46,5 42,7 124
176 3 67,3 61,5
86 1 26,5 22,9
360 165 165 145 270 131 2 49,5 42,7 131
176 3 71,6 61,5
86 1 28,1 22,9
380 175 175 150 285 131 2 52,5 42,7 138
176 3 75,9 61,5
86 1 29,7 22,9
400 185 185 160 300 131 2 55,5 42,7 145
176 3 80,3 61,5
86 1 32,9 22,9
440 205 205 175 330 131 2 61,5 42,7 160
176 3 89,0 61,5
86 1 35,9 22,9
480 225 225 185 355 131 2 67,0 42,7 174
176 3 97,0 61,5
86 1 35,9 22,9
520 245 245 200 385 131 2 67,0 42,7 188
176 3 97,0 61,5

NOTES:
(1) The values given are calculated considering a distance a The coefficients γM and kmod should be taken according to the current regula-
1CG ≥ 5d. In some
cases the asymmetrical laying of connectors is needed (Sg HT ≠ Sg NT ). tions used for the calculation.
(2) The compression design strength of the connector is the lower between the with- (3) The assembly height (m) applies in the event of symmetrical installation of the
drawal-side design strength (R 1V,d) and the instability design strength (R 2V,d). flush connectors (Sg HT = Sg NT ) above the elements. In the case of asymmetric
installation, it is necessary to provide for installation of the connectors on the
main beam side with the head buried so as to guarantee the effective lengths
kmod R1V,k kmod
(Sg HT, Sg NT ) indicated in the table.
RV,d = min γM (4) The thread axial resistance to withdrawal has been evaluated considering an ef-
R2V,k fective thread length equal to Sg. The connectors must be inserted at 45° with
respect to the shear plane.
γM1

STRUCTURES | VGZ | 149


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR CONNECTION WITH CROSSED CONNECTORS


RIGHT-ANGLE JOINT - MAIN BEAM/SECONDARY BEAM
d1 L S g HT(1) S g NT (1) BHT,min HHT,min = hNT,min bNT,min no. pairs R1V,k (2) R2V,k(2) m(3)
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [kN] [kN] [mm]
withdrawal(4) instability
105 1 9,8 29,2
225( * ) 50 145 95 245 160 2 18,3 54,4 118
215 3 26,5 78,4
105 1 14,7 29,2
250 75 145 105 245 160 2 27,5 54,4 118
215 3 39,8 78,4
105 1 19,6 29,2
275( * ) 100 145 115 245 160 2 36,7 54,4 118
215 3 53,0 78,4
105 1 24,6 29,2
300 125 145 125 245 160 2 45,8 54,4 118
215 3 66,3 78,4
105 1 29,0 29,2
325( * ) 148 148 130 250 160 2 54,1 54,4 120
215 3 78,2 78,4
105 1 31,4 29,2
350 160 160 140 265 160 2 58,6 54,4 129
215 3 84,9 78,4
11
105 1 33,9 29,2
375( * ) 173 173 150 285 160 2 63,2 54,4 137
215 3 91,5 78,4
105 1 36,3 29,2
400 185 185 160 300 160 2 67,8 54,4 146
215 3 98,1 78,4
105 1 41,3 29,2
450 210 210 175 335 160 2 77,0 54,4 164
215 3 111,4 78,4
105 1 46,2 29,2
500 235 235 195 370 160 2 86,1 54,4 182
215 3 124,6 78,4
105 1 51,1 29,2
550 260 260 210 405 160 2 95,3 54,4 199
215 3 137,9 78,4
105 1 53,7 29,2
600 285 285 230 445 160 2 100,3 54,4 217
215 3 145,1 78,4
( * ) VGS connectors, see page 186.

NOTES:
(1) The values given are calculated considering a distance a (4) The thread axial resistance to withdrawal has been evaluated considering an ef-
1CG ≥ 5d. In some
cases the asymmetrical laying of connectors is needed (Sg HT ≠ Sg NT ). fective thread length equal to Sg. The connectors must be inserted at 45° with
(2) The compression design strength of the connector is the lower between the with- respect to the shear plane.
drawal-side design strength (R 1V,d) and the instability design strength (R 2V,d).
GENERAL PRINCIPLES:
kmod R1V,k kmod
• Characteristic values comply with the EN 1995:2014 standard in accordance with
RV,d = min γM ETA-11/0030.
R2V,k • For the calculation process a timber characteristic density ρk = 385 kg/m3 has
γM1 been considered.
• Dimensioning and verification of the timber elements must be carried out sep-
The coefficients γM and kmod should be taken according to the current regula- arately.
tions used for the calculation. • For different calculation configurations, the MyProject software is available
(3) The assembly height (m) applies in the event of symmetrical installation of the (www.rothoblaas.com).
flush connectors (Sg HT = Sg NT ) above the elements. In the case of asymmetric
installation, it is necessary to provide for installation of the connectors on the
main beam side with the head buried so as to guarantee the effective lengths
(Sg HT, Sg NT ) indicated in the table.

150 | VGZ | STRUCTURES


MINIMUM DISTANCES FOR CROSS SCREWS

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE


d1 [mm] 5,3 5,6 7 9 11
a2,CG [mm] 4∙d 21 23 21( * ) 36 44
aCROSS [mm] 1.5∙d 8 8 11 14 17
e [mm] 3,5∙d 19 20 25 32 39
( * ) For
main beam-secondary beam joints with VGZ screws d = 7 mm inclined or crossed, inserted at an angle of 45° to the secondary
beam head, with a minimum secondary beam height of 18 d, the minimum distance a2,CG can be taken equal to 3∙d1 .

PRE-DRILLING HOLE DIAMETER


d1 [mm] 5,3 5,6 7 9 11
dV (pre-drill) [mm] 3,5 3,5 4,0 5,0 6,0
Valid for softwood - maximum density 440 kg/m3.

SHEAR CONNECTION WITH CROSSED CONNECTORS - 1 PAIR

m m

90°
T
N

45°
S
g

a2,CG
HT

hNT
S
g

HHT aCROSS bNT


a2,CG

90°

BHT BHT

section plan

SHEAR CONNECTION WITH CROSSED CONNECTORS - 2 OR MORE PAIRS

m m
90°
T
N

45°
S
g

a2,CG
HT

hNT aCROSS
S
g

HHT
e bNT

aCROSS
a2,CG
90°

BHT
BHT

section plan

STRUCTURES | VGZ | 151


CALCULATION EXAMPLE: MAIN/SECONDARY BEAM CONNECTION
WITH VGZ CROSS SCREWS

For different calculation configurations, the MyProject software is available (www.rothoblaas.com)

CALCULATION REPORT

152 | VGZ | STRUCTURES


MINIMUM DISTANCES FOR SHEAR AND AXIAL LOADS | CLT

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
lateral face(1) narrow face(2)
d1 [mm] 7 9 11 7 9 11
a1 [mm] 4∙d 28 36 44 10∙d 70 90 110
a2 [mm] 2.5∙d 18 23 28 4∙d 28 36 44
a3,t [mm] 6∙d 42 54 66 12∙d 84 108 132
a3,c [mm] 6∙d 42 54 66 7∙d 49 63 77
a4,t [mm] 6∙d 42 54 66 6∙d 42 54 66
a4,c [mm] 2.5∙d 18 23 28 3∙d 21 27 33
d = nominal screw diameter

a4,c a4,t
α F
F
α α
F
F α

a3,t a3,c

a3,t F
a3,c a3,c
a2
a2 a4,c a4,c F
a2 a4,c a4,t

a1 a1
tCLT tCLT

NOTES:
The minimum distances are compliant with ETA-11/0030 and are to be con- (1) Minimum CLT thickness t
min = 10∙d
sidered valid unless otherwise specified in the technical documents for the (2) Minimum CLT thickness t
CLT panels. min = 10∙d and minimum screw pull-through
depth tpen = 10∙d

STRUCTURES | VGZ | 153


MINIMUM DISTANCES FOR SHEAR LOADS | LVL

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5,3 5,6 7 9 11 5,3 5,6 7 9 11
a1 [mm] 15∙d 80 84 105 135 165 7∙d 37 39 49 63 77
a2 [mm] 7∙d 37 39 49 63 77 7∙d 37 39 49 63 77
a3,t [mm] 20∙d 106 112 140 180 220 15∙d 80 84 105 135 165
a3,c [mm] 15∙d 80 84 105 135 165 15∙d 80 84 105 135 165
a4,t [mm] 7∙d 37 39 49 63 77 12∙d 64 67 84 108 132
a4,c [mm] 7∙d 37 39 49 63 77 7∙d 37 39 49 63 77
d = nominal screw diameter

a4,c a4,t
α F a2

F α
a1

a2
F a2
α α
F

a1
a3,t a3,c

NOTES:
Minimum distances are obtained from experimental tests carried out at Eu-
rofins Expert Services Oy, Espoo, Finland (Report EUFI29-19000819-T1/T2).

154 | VGZ | STRUCTURES


MINIMUM DISTANCES FOR AXIAL STRESSES | LVL

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
wide face edge face(1)
d1 [mm] 7 9 7 9
a1 [mm] 5∙d 35 45 10∙d 70 90
a2 [mm] 5∙d 35 45 5∙d 35 45
a1,CG [mm] 10∙d 70 90 12∙d 84 108
a2,CG [mm] 4∙d 28 36 3∙d 21 27
d = nominal screw diameter

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO THE
THE GRAIN (wide face) GRAIN (edge face)

a2,CG a2,CG
t

a2 a1,CG a1 a1 a1,CG

a2,CG plan
a1,CG a1
a1,CG a1
a1,CG a1 a1 a1,CG

plan front

h
SCREWS INSERTED WITH α ANGLE WITH RESPECT TO THE
GRAIN (wide face)
l

a2,CG front

a2
a
1

a2,CG a1,CG

a1,CG

plan front

NOTES:
The minimum distances are compliant with ETA-11/0030 and are to be con- (1) Minimum LVL thickness t
min = 45 mm (d = 7 mm) or tmin = 57 mm (d = 9 mm).
sidered valid unless otherwise specified in the technical documents for the Minumum LVL height hmin = 100 mm (d = 7 mm) or tmin = 120 mm (d = 9 mm).
LVL panels.

STRUCTURES | VGZ | 155


STATIC VALUES | CLT
TENSION(1)

total thread withdrawal(2) total thread withdrawal(3) partial thread withdrawal(2) steel
geometry
lateral face narrow face lateral face tension

L Sg Sg A
b

A
Sg A
d1

timber timber timber steel


d1 L b A min Rax,k Sg Rax,k Sg A min Rax,k Rtens,k
[mm] [mm] [mm] [mm] [kN] [mm] [kN] [mm] [mm] [kN] [kN]

80 70 90 5,73 70 4,34 25 45 2,05


100 90 110 7,37 90 5,44 35 55 2,87
120 110 130 9,01 110 6,52 45 65 3,69
140 130 150 10,65 130 7,58 55 75 4,50
160 150 170 12,29 150 8,62 65 85 5,32
180 170 190 13,92 170 9,65 75 95 6,14
200 190 210 15,56 190 10,67 85 105 6,96
7 15,40
220 210 230 17,20 210 11,67 95 115 7,78
240 230 250 18,84 230 12,67 105 125 8,60
260 250 270 20,48 250 13,65 115 135 9,42
280 270 290 22,11 270 14,63 125 145 10,24
300 290 310 23,75 290 15,61 135 155 11,06
340 330 350 27,03 330 17,53 155 175 12,69
380 370 390 30,30 370 19,43 175 195 14,33
160 150 170 15,80 150 10,54 65 85 6,84
180 170 190 17,90 170 11,80 75 95 7,90
200 190 210 20,01 190 13,04 85 105 8,95
220 210 230 22,11 210 14,27 95 115 10,00
240 230 250 24,22 230 15,49 105 125 11,06
260 250 270 26,33 250 16,69 115 135 12,11
280 270 290 28,43 270 17,89 125 145 13,16
300 290 310 30,54 290 19,08 135 155 14,22
9 25,40
320 310 330 32,64 310 20,26 145 165 15,27
340 330 350 34,75 330 21,43 155 175 16,32
360 350 370 36,86 350 22,60 165 185 17,37
380 370 390 38,96 370 23,76 175 195 18,43
400 390 410 41,07 390 24,91 185 205 19,48
440 430 450 45,28 430 27,20 205 225 21,59
480 470 490 49,49 470 29,47 225 245 23,69
520 510 530 53,70 510 31,71 245 265 25,80
250 240 260 30,89 240 18,89 110 130 14,16
300 290 310 37,32 290 22,40 135 155 17,37
350 340 360 43,76 340 25,85 160 180 20,59
400 390 410 50,19 390 29,25 185 205 23,81
11 38,00
450 440 460 56,63 440 32,60 210 230 27,03
500 490 510 63,06 490 35,92 235 255 30,24
550 540 560 69,50 540 39,20 260 280 33,46
600 590 610 75,93 590 42,45 285 305 36,68

NOTES:
(1) The connector design resistance is the lowest between the timber side de- (3) The axial thread withdrawal resistance is valid for minimum thickness of the
sign resistance and the steel side resistance. element of tmin = 10∙d and minimum screw pull-through depth tpen = 10∙d.
(4) The characteristic shear strength is independent from the direction of the
Rax,k kkmod
mod
R1V,k kmod grain of the CLT panels outer layer.
γM RV,d = min γM (5) The axial resistance of the thread withdrawal in the lateral face of the CLT
Rax,d = min
Rtens,k R2V,k panel was calculated considering always a 45° angle between the fibres and
the connector and for an effective thread length of Sg as it is impossible to
γM2 γM1 define in advance the thickness and orientation of each layer.

(2) The axial resistance of the thread to withdrawal was calculated considering
a 90° angle between the fibres and the connector and for a effective thread
length of b or Sg.
For intermediate values of Sg it is possible to linearly interpolate.

156 | VGZ | STRUCTURES


CHARACTERISTIC VALUES
EN 1995:2014

SHEAR SLIDING(5)

CLT - CLT(4) CLT - CLT(4) CLT - CLT(4) CLT - CLT(4)


lateral face lateral face - narrow face lateral face - narrow face lateral face - narrow face

A A A A
Sg A Sg Sg Sg

Sg Sg Sg Sg

Sg A min RV,k Sg A min RV,k Sg A min RV,k Sg A min R1V,k(1) R2V,k(1)


[mm] [mm] [kN] [mm] [mm] [kN] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
withdrawal instability
25 40 2,02 25 40 1,32 25 30 1,2 25 30 2,4 13,3
35 50 2,49 35 50 1,74 35 40 1,6 35 40 3,3 13,3
45 60 2,97 45 60 2,01 45 45 2,1 45 45 4,1 13,3
55 70 3,18 55 70 2,30 55 55 2,5 55 55 4,9 13,3
65 80 3,38 65 80 2,60 65 60 2,9 65 60 5,7 13,3
75 90 3,59 75 90 2,80 75 65 3,3 75 65 6,5 13,3
85 100 3,79 85 100 2,94 85 75 3,7 85 75 7,3 13,3
95 110 4,00 95 110 3,07 95 80 4,0 95 80 8,1 13,3
105 120 4,10 105 120 3,21 105 90 4,4 105 90 8,8 13,3
115 130 4,10 115 130 3,29 115 95 4,8 115 95 9,6 13,3
125 140 4,10 125 140 3,29 125 100 5,2 125 100 10,3 13,3
135 150 4,10 135 150 3,29 135 110 5,5 135 110 11,1 13,3
155 170 4,10 155 170 3,29 155 125 6,3 155 125 12,6 13,3
175 190 4,10 175 190 3,29 175 140 7,0 175 140 14,0 13,3
65 80 4,81 65 80 3,24 65 60 3,5 65 60 7,0 22,4
75 90 5,07 75 90 3,59 75 70 4,0 75 70 8,0 22,4
85 100 5,34 85 100 3,94 85 75 4,5 85 75 8,9 22,4
95 110 5,60 95 110 4,19 95 80 4,9 95 80 9,9 22,4
105 120 5,86 105 120 4,35 105 90 5,4 105 90 10,8 22,4
115 130 6,13 115 130 4,52 115 95 5,9 115 95 11,7 22,4
125 140 6,20 125 140 4,68 125 105 6,3 125 105 12,7 22,4
135 150 6,20 135 150 4,84 135 110 6,8 135 110 13,6 22,4
145 160 6,20 145 160 4,88 145 115 7,2 145 115 14,5 22,4
155 170 6,20 155 170 4,88 155 125 7,7 155 125 15,4 22,4
165 180 6,20 165 180 4,88 165 130 8,1 165 130 16,2 22,4
175 190 6,20 175 190 4,88 175 140 8,6 175 140 17,1 22,4
185 200 6,20 185 200 4,88 185 145 9,0 185 145 18,0 22,4
205 220 6,20 205 220 4,88 205 160 9,9 205 160 19,7 22,4
225 240 6,20 225 240 4,88 225 175 10,7 225 175 21,5 22,4
245 260 6,20 245 260 4,88 245 190 11,6 245 190 23,2 22,4
110 125 7,86 110 125 5,69 110 95 6,6 110 95 13,2 28,5
135 150 8,64 135 150 6,17 135 115 8,0 135 115 15,9 28,5
160 175 8,64 160 175 6,63 160 130 9,3 160 130 18,6 28,5
185 200 8,64 185 200 6,71 185 150 10,6 185 150 21,1 28,5
210 225 8,64 210 225 6,71 210 165 11,8 210 165 23,7 28,5
235 250 8,64 235 250 6,71 235 185 13,1 235 185 26,2 28,5
260 275 8,64 260 275 6,71 260 200 14,4 260 200 28,7 28,5
285 300 8,64 285 300 6,71 285 220 15,6 285 220 31,2 28,5

GENERAL PRINCIPLES:
• Characteristic values comply with the EN 1995:2014 standard and national • For the calculation process a mass density ρk = 350 kg/m3 has been con-
specification ÖNORM EN 1995 - Annex K in accordance with ETA-11/0030. sidered for CLT elements.
• Design values can be obtained from characteristic values as follows: • Dimensioning and verification of the timber elements must be carried out
separately.
Rk kmod
Rd = • The characteristic shear resistances are calculated for screws inserted with-
γM out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation. • The withdrawal, shear and sliding values were calculated considering the
centre of gravity of the connector placed in correspondence with the shear
• For the mechanical resistance values and the geometry of the screws, ref-
plane.
erence was made to ETA-11/0030.
• The screws must be positioned in accordance with the minimum distances.

STRUCTURES | VGZ | 157


STATIC VALUES | LVL

SLIDING(1)

LVL - LVL
geometry
flat

Sg
A 45°
L
b
Sg
B

d1

LVL steel
d1 L Sg A min Bmin RV,k Rtens,k 45°(5)
[mm] [mm] [mm] [mm] [mm] [kN] [kN]
80 25 30 50 1,44
100 35 40 55 2,01
120 45 45 60 2,59
140 55 55 70 3,16
160 65 60 75 3,74
180 75 65 85 4,31
200 85 75 90 4,89
7 10,89
220 95 80 100 5,46
240 105 90 105 6,04
260 115 95 110 6,61
280 125 100 120 7,19
300 135 110 125 7,76
340 155 125 140 8,91
380 175 140 155 10,06
160 65 60 75 4,80
180 75 70 85 5,54
200 85 75 90 6,28
220 95 80 100 7,02
240 105 90 105 7,76
260 115 95 110 8,50
280 125 105 120 9,24
300 135 110 125 9,98
9 17,96
320 145 115 135 10,72
340 155 125 140 11,46
360 165 130 145 12,20
380 175 140 155 12,93
400 185 145 160 13,67
440 205 160 175 15,15
480 225 175 190 16,63
520 245 190 205 17,96

NOTES:
(1) The design sliding strength of the joint is either the timber-side design (3) The axial thread withdrawal resistance R
ax,90,flat,k was calculated con-
strength (RV,d) and the steel design strength (Rtens,d 45°), whichever is lower. sidering a 90° angle between the grain and the connector and for a fixing
length of b in applications with both parallel and cross grain LVL.
RV,k kmod (4) The axial thread withdrawal resistance R
ax,90,edge,k was calculated con-
RV,d = min γM sidering a 90° angle between the grain and the connector and for a fix-
Rtens,k 45° ing length of b in applications with parallel grain LVL. Minimum height LVL
hMIN= 100 mm for VGZ connectors Ø7 and hMIN = 120 mm for VGZ con-
γM2 nectors Ø9.

(5) The connector tensile strength was calculated considering a 45° angle be-
(2) The connector design resistance is the lowest between the timber side de-
tween the fibres and the connector
sign resistance (Rax,d) and the steel side resistance (Rtens,d).

Rax,k kmod
Rax,d = min γM
Rtens,k
γM2

158 | VGZ | STRUCTURES


CHARACTERISTIC VALUES
EN 1995:2014

TENSION(2)

total thread withdrawal(3) partial thread withdrawal(3) thread withdrawal(4) steel


flat flat edge tension

Sg A
Sg
A
Sg A

LVL LVL LVL steel


b A min Rax,k Sg A min Rax,k Sg tmin Rax,k Rtens,k
[mm] [mm] [kN] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
70 90 7,11 25 45 2,54 70 45 4,74
90 110 9,15 35 55 3,56 90 45 6,10
110 130 11,18 45 65 4,57 110 45 7,45
130 150 13,21 55 75 5,59 130 45 8,81
150 170 15,24 65 85 6,61 150 45 10,16
170 190 17,28 75 95 7,62 170 45 11,52
190 210 19,31 85 105 8,64 190 45 12,87
15,40
210 230 21,34 95 115 9,65 210 45 14,23
230 250 23,37 105 125 10,67 230 45 15,58
250 270 25,41 115 135 11,69 250 45 16,94
270 290 27,44 125 145 12,70 270 45 18,29
290 310 29,47 135 155 13,72 290 45 19,65
330 350 33,54 155 175 15,75 330 45 22,36
370 390 37,60 175 195 17,78 370 45 25,07
150 170 19,60 65 85 8,49 150 57 13,07
170 190 22,21 75 95 9,80 170 57 14,81
190 210 24,83 85 105 11,11 190 57 16,55
210 230 27,44 95 115 12,41 210 57 18,29
230 250 30,05 105 125 13,72 230 57 20,03
250 270 32,67 115 135 15,03 250 57 21,78
270 290 35,28 125 145 16,33 270 57 23,52
290 310 37,89 135 155 17,64 290 57 25,26
25,4
310 330 40,51 145 165 18,95 310 57 27,00
330 350 43,12 155 175 20,25 330 57 28,75
350 370 45,73 165 185 21,56 350 57 30,49
370 390 48,35 175 195 22,87 370 57 32,23
390 410 50,96 185 205 24,17 390 57 33,97
430 450 56,18 205 225 26,79 430 57 37,46
470 490 61,41 225 245 29,40 470 57 40,94
510 530 66,64 245 265 32,01 510 57 44,43

GENERAL PRINCIPLES:
• Characteristic values comply with the EN 1995:2014 standard in accord- • For the calculation process a mass density equal to ρk = 480 kg/m3 has
ance with ETA-11/0030. been considered for softwood LVL elements.
• Design values can be obtained from characteristic values as follows: • Dimensioning and verification of the timber elements must be carried out
separately.
Rk kmod
Rd = • The withdrawal and sliding values were calculated considering the centre
γM of gravity of the connector placed in correspondence with the shear plane.
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
• For the mechanical resistance values and the geometry of the screws, ref-
erence was made to ETA-11/0030.

STRUCTURES | VGZ | 159


CALCULATION EXAMPLES: REINFORCEMENT OF NOTCHED BEAM
WITH TRACTION PERPENDICULAR

PROJECT DATA B-B A-A


a2,c
B = 200 mm GL24h Glulam (ρk = 385 kg/m3)
B a2
H = 400 mm Fv,Rd = 29,5 kN
a2,c
Hef = 200 mm Service class = 1
Hi = H - Hef = 200 Load duration = medium
B-B A-A
ia = 0 (notch slope) L a = 150 mm

Hef
X Sg sup
H
Sg inf
H-Hef
Fv,Rd

La a1,c

SHEAR STRESS VERIFICATION - BEAM WITHOUT REINFORCEMENT - Section A-A (EN 1995:2014) : τd ≤ kv ∙ fv,d

1,5 Fv,Rd La Hef


τd = α= x= α= x = τd = 1,65 N/mm2
B Hef 2 H x = 75 mm
α = 0,5
1
kn = 6,50 (GL24h)
kV = min 1,1 iα1,5 kv = 0,47
kn 1+
H fv,k = 3,50 N/mm2

h α (1-α) + 0,8 x 1 -α2


H α

EN 1995:2014 Italy - NTC 2018


kmod = 0,9 kmod = 0,9
γM = 1,25 γM = 1,45
fv,d = 2,52 N/mm2 fv,d = 2,17 N/mm2
kv ∙ fv,d = 1,18 N/mm2 kv ∙ fv,d = 1,02 N/mm2

τd ≤ kv ∙ fv,d 1,65 > 1,18 N/mm2 τd ≤ kv ∙ fv,d 1,65 > 1,02 N/mm2
verification not passed verification not passed
REQUIRES REINFORCEMENT REQUIRES REINFORCEMENT

SHEAR STRESS VERIFICATION - Section B-B (EN 1995:2014) : τd ≤ fv,d

1,5 Fv,Rd
τd = α= τd = 1,65 N/mm2
B Hef

EN 1995:2014 Italy - NTC 2018


τd ≤ fv,d 1,65 < 2,52 N/mm2 τd ≤ fv,d 1,65 < 2,17 N/mm2
verification passed verification passed

REINFORCEMENT Section A-A - CALCULATION OF TRACTION STRESS PERPENDICULAR TO THE FIBRES (DIN 1052:2008)

Ft,90,d = 1,3 Fv,Rd [ 3 (1-α)2 - 2 (1-α)3] Ft,90,d = 19,18 kN

REINFORCEMENT CONNECTOR SELECTION

VGZ 9 x 360 mm To optimise the resistance, the connector is placed with the centre of gravity in correspondence
S g sup = 165 mm with the possible crack line.
S g inf = 165 mm

160 | VGZ | STRUCTURES


CONNECTOR TENSILE STRENGTH CALCULATION (EN 1995:2014 and ETA-11/0030)

Rax,α,Rk kmod
Rax,Rd = min γm
Rtens,k
γm2

ρk 0,8 Rax,90°,Rk = 18,75 kN


Rax,α,Rx = nef 11,7 d1 Sg kax Rtens,k = 25,40 kN
350

The tensile strength of the connectors calculated here is shown in the table on p.144.
The minimum distances for placement of the connectors are found in the table on p.143.

EN 1995:2014 Italy - NTC 2018


kmod = 0,9 kmod = 0,9
γM = 1,3 γM = 1,5
γM2 = 1,25 γM2 = 1,25
Rax,90°Rd = 12,98 kN Rax,90°Rd = 11,25 kN
Rtens,d = 20,32 kN Rki,d = 20,32 kN
Rax,Rd = 12,98 kN Rax,Rd = 11,25 kN

MINIMUM NUMBER OF CONNECTORS

Ft,90,d/Rax,Rd = 1,48 Ft,90,d/Rax,Rd = 1,70

2 connectors are hypothesized nef,ax = max (20,9;0,9∙2)= 1,87

FASTENER RESISTANCE TO PERPENDICULAR TENSION

Rax,Rd = 1,87 ∙ 12,98 = 24,27 kN > 19,18 kN OK Rax,Rd = 1,87 ∙ 11,25 = 21,04 kN > 19,18 kN OK

For different calculation configurations, the MyProject software is available (www.rothoblaas.com).

EXAMPLE OF JOINTS THAT REQUIRE VERIFICATION OF PERPENDICULAR TENSION AND POSSIBLE REINFORCEMENT

ia=0 ia>0

STRUCTURES | VGZ | 161


VGZ EVO FRAME 1002
CERTIFIED

C4 COATING BIT INCLUDED COATING ETA-11/0030

MINI FULL THREADED SCREW


WITH CYLINDRICAL HEAD

TIMBER FRAME
Ideal for joining small timber elements such as the crossbeams and up-
rights of light frame structures. Reduced minimum distances.

STRUCTURAL APPLICATIONS
Approved for structural applications subject to stresses in any direction
vs. the grain (α = 0° - 90°). Safety certified by numerous tests carried out
for any direction of insertion.

LUMBER
The cylindrical head is ideal for concealed joints. Deep thread and high
resistance steel (fy,k = 1000 N/mm2) for excellent tensile performance.

C4 EVO COATING
20 μm multilayer coating with a surface treatment of epoxy resin and
aluminium flakes. No rust after 1440 hours of salt spray exposure, as per
ISO 9227. Can be used in service class 3 outdoor applications and under
class C4 atmospheric corrosion conditions.

CHARACTERISTICS
FOCUS fastener for narrow sections
HEAD cylindrical, countersunk
DIAMETER 5,3 | 5,6 mm
LENGTH from 80 to 160 mm

MATERIAL
Carbon steel, with a 20 μm coating, highly
resistant to corrosion.

FIELDS OF USE
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
• aggressive woods (containing tannin)
• chemically treated woods
Service classes 1, 2 and 3.

162 | VGZ EVO FRAME | STRUCTURES


TRUSS, RAFTER
Ideal for fastening elements with small
cross-sections. Certified for application parallel
to the grain and with reduced minimum distanc-
es. Certified for outdoor use (Service class 3).

TIMBER STUD
Values also tested, certified and calculated
for CLT and high density woods such as Mi-
crollam® LVL. Ideal for fastening I-Joist beams.

STRUCTURES | VGZ EVO FRAME | 163


Fastening the crossbeams of light frame structures. Fastening the uprights of light frame struc-
tures.

GEOMETRY AND MECHANICAL CHARACTERISTICS

X
Z

dK d2 d1
G

X
V

b
L

Nominal diameter d1 [mm] 5,3 5,6


Head diameter dK [mm] 8,00 8,00
Tip diameter d2 [mm] 3,60 3,80
Pre-drilling hole diameter(1) dV [mm] 3,5 3,5
Characteristic yield
My,k [Nm] 9,2 10,6
moment
Characteristic
fax,k [N/mm2] 11,7 11,7
withdrawal-resistance parameter(2)
Associated density ρa [kg/m3] 350 350
Characteristic tensile
ftens,k [kN] 11,0 12,3
strength
Characteristic yield strength fy,k [N/mm2] 1000 1000
(1)
Pre-drilling valid for softwood.
(2)
Valid for softwood - maximum density 440 kg/m3.
For applications with different materials or with high density please see ETA-11/0030.

164 | VGZ EVO FRAME | STRUCTURES


CODES AND DIMENSIONS

d1 CODE L b pcs
[mm] [in] [mm] [in] [mm]
VGZEVO580 80 3 1/8 70 50
5,3
0.21 VGZEVO5100 100 4 90 50
TX 25
VGZEVO5120 120 4 3/4 110 50
5,6 VGZEVO5140 140 5 1/2 130 50
0.23
TX 25 VGZEVO5160 160 6 1/4 150 50

MINIMUM DISTANCES FOR SHEAR LOADS (1)

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5,3 5,6 5,3 5,6
a1 [mm] 5∙d 27 28 4∙d 21 22
a2 [mm] 3∙d 16 17 4∙d 21 22
a3,t [mm] 12∙d 64 67 7∙d 37 39
a3,c [mm] 7∙d 37 39 7∙d 37 39
a4,t [mm] 3∙d 16 17 7∙d 37 39
a4,c [mm] 3∙d 16 17 3∙d 16 17

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5,3 5,6 5,3 5,6
a1 [mm] 12∙d 64 67 5∙d 27 28
a2 [mm] 5∙d 27 28 5∙d 27 28
a3,t [mm] 15∙d 80 84 10∙d 53 56
a3,c [mm] 10∙d 53 56 10∙d 53 56
a4,t [mm] 5∙d 27 28 10∙d 53 56
a4,c [mm] 5∙d 27 28 5∙d 27 28
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
(1) The minimum distances are in accordance with EN 1995:2014 considering a • The minimum spacing for all panel-to-timber connections (a1 , a2) can be
timber characteristic density of ρk ≤ 420 kg/m3. multiplied by a coefficient of 0,85.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

STRUCTURES | VGZ EVO FRAME | 165


EFFECTIVE THREAD USED IN CALCULATION
b = L - 10 mm represents the entire length of the
10 Sg Tol. Sg 10 threaded part

S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of


the threaded part net of a laying
b
tolerance (Tol.) of 10 mm
L
The timber to timber withdrawal, shear and sliding values were calculated considering the centre
of gravity of the connector placed in correspondence with the shear plane.

MINIMUM DISTANCES FOR AXIAL STRESSES (2)

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE


d1 [mm] 5,3 5,6
a1 [mm] 5∙d 27 28
a2 [mm] 5∙d 27 28
a2,LIM(3) [mm] 2.5∙d 13 14
a1,CG [mm] 10∙d 53 56
a2,CG [mm] 4∙d 21 22
aCROSS [mm] 1.5∙d 8 8
d = nominal screw diameter

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG
a2,CG a1,CG

a2,CG a2,CG
a1 a2 a2,CG a2
a2,CG a2,CG
a
1

a1,CG
a1,CG
a2,CG a1,CG

plan front plan front

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO


THE GRAIN

a2,CG

a2

a2,CG

a1,CG a1

a1,CG a1
plan front

NOTES:
(2) The minimum distances for connectors stressed axially are independent of (3) The axial distance a can be reduced down to 2,5 d if for each connector a
2 1
the insertion angle of the connector and the angle of the force with respect “joint surface” a1∙a2 = 25∙d1 2 is maintained.
to the grain, in accordance with ETA-11/0030.

166 | VGZ EVO FRAME | STRUCTURES


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

TENSION(1)

geometry total thread withdrawal(2) partial thread withdrawal(2) steel tension

estrazione
estrazione
filetto
filetto
parziale
parziale

Sg A

L
A

Sg A

d1

timber timber steel


d1 L b A min Rax,k Sg A min Rax,k Rtens,k
[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
80 70 90 5,02 25 45 1,79
5,3 100 90 110 6,46 35 55 2,51 11,0
120 110 130 7,89 45 65 3,23
140 130 150 9,86 55 75 4,17
5,6 12,3
160 150 170 11,37 65 85 4,93

SHEAR SLIDING

geometry timber-to-timber timber-to-timber(3)

Sg A A

S
g
45°
L S
g

Sg B

d1

d1 L Sg A min RV,k A min Bmin RV,k


[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN]
80 25 40 1,77 30 50 1,27
5,3 100 35 50 2,25 40 55 1,78
120 45 60 2,45 45 60 2,28
140 55 70 2,84 50 70 2,95
5,6
160 65 80 3,03 60 75 3,48

NOTES: GENERAL PRINCIPLES:


(1) The connector design resistance is the lowest between the timber side de- • Characteristic values comply with the EN 1995:2014 standard in accord-
sign resistance (Rax,d) and the steel side resistance (Rtens,d). ance with ETA-11/0030.
• Design values can be obtained from characteristic values as follows:
Rax,k kmod
Rk kmod
Rax,d = min γM Rd =
Rtens,k γM
γM2 The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
(2) The axial resistance of the thread to withdrawal was calculated considering
• For the mechanical resistance values and the geometry of the screws, ref-
a 90° angle between the fibres and the connector and for a effective thread erence was made to ETA-11/0030.
length of b or Sg.
• For the calculation process a timber characteristic density ρk = 420 kg/m3
For intermediate values of Sg it is possible to linearly interpolate. has been considered.
(3) The axial resistance of the thread withdrawal was calculated considering a
• Dimensioning and verification of the timber elements must be carried out
45° angle between the fibres and the connector and for an effective thread separately.
length of Sg.
• The characteristic shear resistances are calculated for screws inserted with-
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.
• The withdrawal, shear and sliding values were calculated considering the cen-
tre of gravity of the connector placed in correspondence with the shear plane.

STRUCTURES | VGZ EVO FRAME | 167


CEILING-TO-WALL JOINTS: STRESSES ALONG THE AXIS

Roofing beams

04 05 06
Framed wall Framed wall upright
crossbeam

Framed panel
03 Foundation plate
platform beam 02
01

04
04
01
01 04

Joining of Joining of
upright platform beam crossbeam-main rafter
with single inclined with inclined connector
connector

02
02 05

Joining of Joining of
2x upright platform beam crossbeam-main rafter
with double inclined with double inclined con-
connector nector inserted from side

03
03 06

Joining of Joining of
2x upright platform beam crossbeam-principle rafter
with double crossed with double inclined con-
connectors nector inserted from front

168 | VGZ EVO FRAME | STRUCTURES


CEILING-TO-WALL JOINTS: OFF AXIS STRESSES

Roofing beams
Framed wall
crossbeam

10 07
11
Framed wall upright

Framed panel
platform beam 08

Floor with I-Joist


beams

Framed wall
crossbeam
09

07

07 10

Joining of Joining of
upright-crossbeam with upright-crossbeam with
single inclined connector single inclined connector

08
08 11

Joining of Joining of
crossbeam-sill plate with crossbeam-main rafter
single inclined connector with double vertical
connector

09

Joining of
upright-crossbeam with
single inclined connector

STRUCTURES | VGZ EVO FRAME | 169


VGZ EVO 1002
CERTIFIED

C4 COATING BIT INCLUDED COATING ETA-11/0030

FULL THREADED SCREW


WITH CYLINDRICAL HEAD

C4 EVO COATING
20 μm multilayer coating with a surface treatment of epoxy resin and
aluminium flakes. No rust after 1440 hours of salt spray exposure, as per
ISO 9227. Can be used in service class 3 outdoor applications and under
class C4 atmospheric corrosion conditions.

AGGRESSIVE WOODS
Ideal for applications with woods containing tannin or treated with im-
pregnating agents or other chemical processes.

TENSION
Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent
tensile performance.

STRUCTURAL APPLICATIONS
Approved for structural applications subject to stresses in any direction
vs. the grain (α = 0° - 90°). Reduced minimum distances.

CHARACTERISTICS
FOCUS corrosiveness class C4
HEAD cylindrical, countersunk
DIAMETER 5,3 | 5,6 | 7,0 | 9,0 mm
LENGTH from 80 to 360 mm

MATERIAL
Carbon steel, with a 20 μm coating, highly re-
sistant to corrosion.

FIELDS OF USE
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
• aggressive woods (containing tannin)
• chemically treated woods
Service classes 1, 2 and 3.

170 | VGZ EVO | STRUCTURES


HARDWOOD FRAME
Ideal for the construction of outdoor struc-
tures and for fastening aggressive woods con-
taining tannin. Values also certified for screw
insertion parallel to the grain.

TIMBER FRAME
Values also tested, certified and calculat-
ed for CLT and high density woods such as
Microllam® LVL.

STRUCTURES | VGZ EVO | 171


Fastening Wood Trusses outdoors. Restoration of existing timber floor using
glulam beams and VGZ connectors.

GEOMETRY AND MECHANICAL CHARACTERISTICS

X
Z

dK d2 d1
G

X
V

b
L

Nominal diameter d1 [mm] 5,3 5,6 7 9


Head diameter dK [mm] 8,00 8,00 9,50 11,50
Tip diameter d2 [mm] 3,60 3,80 4,60 5,90
Pre-drilling hole diameter(1) dV [mm] 3,5 3,5 4,0 5,0
Characteristic yield
My,k [Nm] 9,2 10,6 14,2 27,2
moment
Characteristic
fax,k [N/mm2] 11,7 11,7 11,7 11,7
withdrawal-resistance parameter(2)
Associated density ρa [kg/m3] 350 350 350 350
Characteristic tensile
ftens,k [kN] 11,0 12,3 15,4 25,4
strength
Characteristic yield strength fy,k [N/mm2] 1000 1000 1000 1000
(1)
Pre-drilling valid for softwood.
(2)
Valid for softwood - maximum density 440 kg/m3.
For applications with different materials or with high density please see ETA-11/0030.

172 | VGZ EVO | STRUCTURES


CODES AND DIMENSIONS

d1 CODE L b pcs d1 CODE L b pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm]

5,3 VGZEVO580 80 3 1/8 70 50 VGZEVO9200 200 8 190 25


0.21 VGZEVO5100 100 4 90 50 9 VGZEVO9240 240 9 1/2 230 25
TX 25 VGZEVO5120 120 4 3/4 110 50 0.36 VGZEVO9280 280 11 270 25
5,6 VGZEVO5140 140 5 1/2 130 50 TX 40 VGZEVO9320 320 12 5/8 310 25
0.23
TX 25 VGZEVO5160 160 6 1/4 150 50 VGZEVO9360 360 14 1/4 350 25
VGZEVO7140 140 5 1/2 130 25
7 VGZEVO7180 180 7 1/8 170 25
0.28 VGZEVO7220 220 8 5/8 210 25
TX 30 VGZEVO7260 260 10 1/4 250 25
VGZEVO7300 300 11 3/4 290 25

MINIMUM DISTANCES FOR SHEAR LOADS (1) For the table


Minimum distances for axial
stresses, see page 143

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5,3 5,6 7 9 5,3 5,6 7 9
a1 [mm] 5∙d 27 28 35 45 4∙d 21 22 28 36
a2 [mm] 3∙d 16 17 21 27 4∙d 21 22 28 36
a3,t [mm] 12∙d 64 67 84 108 7∙d 37 39 49 63
a3,c [mm] 7∙d 37 39 49 63 7∙d 37 39 49 63
a4,t [mm] 3∙d 16 17 21 27 7∙d 37 39 49 63
a4,c [mm] 3∙d 16 17 21 27 3∙d 16 17 21 27

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5,3 5,6 7 9 5,3 5,6 7 9
a1 [mm] 12∙d 64 67 84 108 5∙d 27 28 35 45
a2 [mm] 5∙d 27 28 35 45 5∙d 27 28 35 45
a3,t [mm] 15∙d 80 84 105 135 10∙d 53 56 70 90
a3,c [mm] 10∙d 53 56 70 90 10∙d 53 56 70 90
a4,t [mm] 5∙d 27 28 35 45 10∙d 53 56 70 90
a4,c [mm] 5∙d 27 28 35 45 5∙d 27 28 35 45
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
(1) The minimum distances are in accordance with EN 1995:2014 considering a • The minimum spacing for all panel-to-timber connections(a1 , a2) can be
timber characteristic density of ρk ≤ 420 kg/m3. multiplied by a coefficient of 0,85.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

STRUCTURES | VGZ EVO | 173


EFFECTIVE THREAD USED IN CALCULATION
b = L - 10 mm represents the entire length of the
10 Sg Tol. Sg 10 threaded part

S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of


the threaded part net of a laying
b
tolerance (Tol.) of 10 mm
L
The timber to timber withdrawal, shear and sliding values were calculated considering the centre
of gravity of the connector placed in correspondence with the shear plane.

STATIC VALUES CHARACTERISTIC VALUES


EN 1995:2014

TENSION(1)

geometry total thread withdrawal(2) partial thread withdrawal(2) steel tension

estrazione
estrazione
filetto
filetto
parziale
parziale

Sg A

L
A

Sg A

d1

timber timber steel


d1 L b A min Rax,k Sg A min Rax,k Rtens,k
[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
80 70 90 5,02 25 45 1,79
5,3 100 90 110 6,46 35 55 2,51 11,0
120 110 130 7,89 45 65 3,23
140 130 150 9,86 55 75 4,17
5,6 12,3
160 150 170 11,37 65 85 4,93
140 130 150 12,32 55 75 5,21
180 170 190 16,11 75 95 7,11
7 220 210 230 19,90 95 115 9,00 15,4
260 250 270 23,69 115 135 10,90
300 290 310 27,48 135 155 12,79
200 190 210 23,15 85 105 10,36
240 230 250 28,02 105 125 12,79
9 280 270 290 32,90 125 145 15,23 25,4
320 310 330 37,77 145 165 17,67
360 350 370 42,64 165 185 20,10

NOTES:
(1) The connector design resistance is the lowest between the timber side de- (2) The axial resistance of the thread to withdrawal was calculated considering
sign resistance (Rax,d) and the steel side resistance (Rtens,d). a 90° angle between the fibres and the connector and for a effective thread
length of b or Sg.
Rax,k kmod For intermediate values of Sg it is possible to linearly interpolate.
Rax,d = min γM (3) The axial resistance of the thread withdrawal was calculated considering a
Rtens,k 45° angle between the fibres and the connector and for an effective thread
length of Sg.
γM2

174 | VGZ EVO | STRUCTURES


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR SLIDING

geometry timber-to-timber timber-to-timber(3)

Sg A A

S
g
45°
L

S
g
Sg B

d1

d1 L Sg A min RV,k A min Bmin RV,k


[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN]
80 25 40 1,77 30 50 1,27
5,3 100 35 50 2,25 40 55 1,78
120 45 60 2,45 45 60 2,28
140 55 70 2,84 50 70 2,95
5,6
160 65 80 3,03 60 75 3,48
140 55 70 3,55 55 70 3,69
180 75 90 4,02 65 85 5,03
7 220 95 110 4,49 80 100 6,37
260 115 130 4,49 95 110 7,71
300 135 150 4,49 110 125 9,05
200 85 100 5,99 75 90 7,32
240 105 120 6,60 90 105 9,05
9
280 125 140 6,80 105 120 10,77
320 145 160 6,80 115 135 12,49
360 165 180 6,80 130 145 14,21

GENERAL PRINCIPLES:
• Characteristic values comply with the EN 1995:2014 standard in accord- • For the calculation process a timber characteristic density ρk = 420 kg/m3
ance with ETA-11/0030. has been considered.
• Design values can be obtained from characteristic values as follows: • Dimensioning and verification of the timber elements must be carried out
separately.
Rk kmod
Rd = • The characteristic shear resistances are calculated for screws inserted with-
γM out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation. • The withdrawal, shear and sliding values were calculated considering the
centre of gravity of the connector placed in correspondence with the shear
• For the mechanical resistance values and the geometry of the screws, ref-
plane.
erence was made to ETA-11/0030.

STRUCTURES | VGZ EVO | 175


VGZ HARDWOOD BIT INCLUDED ETA-11/0030

FULLY THREADED SCREW FOR HARDWOODS

HARDWOOD CERTIFICATION
Special tip with diamond geometry and notched, serrated thread.
ETA-11/0030 certification for use with high density timber without any
pre-drill. Approved for structural applications subject to stresses in any
direction vs. the grain (α = 0° - 90°).

TENSION
Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent
tensile performance. Inner tip diameter increased to ensure tightening in
the highest density woods. Excellent twisting moment values.

CYLINDRICAL HEAD
Ideal for concealed joints, timber couplings and structural reinforce-
ments. Guarantees fire protection and earthquake suitability.

CHARACTERISTICS
FOCUS fastener for hardwood
HEAD cylindrical, countersunk
DIAMETER 7,0 | 9,0 mm
LENGTH from 140 to 320 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• Solid timber and glulam
• CLT, LVL
• high density woods
• beech, oak, cypress, ash, eucalyptus,
bamboo
Service classes 1 and 2.

176 | VGZ HARDWOOD | STRUCTURES


HARDWOOD PERFORMANCE
Geometry developed for high performance
and use without pre-drilling on structural
woods such as beech, oak, cypress, ash, euca-
lyptus, bamboo.

BEECH LVL
Values also tested, certified and calculated for
high density woods such as beechwood Mi-
crollam® LVL. Certified for use for densities of
up to 800 kg/m3.

STRUCTURES | VGZ HARDWOOD | 177


GEOMETRY AND MECHANICAL CHARACTERISTICS

dS
X
H

dK d2 d1

X
G
X

V
b
L

Nominal diameter eq. d1 eq. [mm] 7 9


Nominal diameter d1 [mm] 6 8
Head diameter dK [mm] 9,50 11,50
Tip diameter d2 [mm] 4,50 5,90
Pre-drilling hole diameter(1) dV [mm] 4,0 6,0
Characteristic yield
My,k [Nm] 15,8 33,4
moment
Characteristic
fax,k [N/mm2] 42,0 42,0
withdrawal-resistance parameter(2)
Associated density ρa [kg/m3] 730 730
Characteristic
fax,k [N/mm2] 22,0 22,0
withdrawal-resistance parameter(3)
Associated density ρa [kg/m3] 530 530
Characteristic tensile
ftens,k [kN] 18,0 32,0
strength
(1) Pre-drilling valid for hardwood and beech LVL.
A suitable pilot hole must be drilled for the insertion of some connectors in beech LVL.
For further details please see ETA-11/0030.
(2) Valid for beech or FST LVL - maximum density 750 kg/m3 .
(3) Valid for hardwood (oak, beech) - maximum density 590 kg/m3 .
For applications with different materials please see ETA-11/0030.

CODES AND DIMENSIONS

d1 eq. CODE d1 L b pcs d1 eq. CODE d1 L b pcs


[mm] [in] [mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm] [in] [mm]
VGZH7140 6 0.24 140 5 1/2 130 25 VGZH9200 8 0.32 200 8 190 25
7 VGZH7180 6 0.24 180 7 1/8 170 25 9 VGZH9240 8 0.32 240 9 1/2 230 25
0.28 0.36
TX 30 VGZH7220 6 0.24 220 8 5/8 210 25 TX 40 VGZH9280 8 0.32 280 11 270 25
VGZH7260 6 0.24 260 10 1/4 250 25 VGZH9320 8 0.32 320 12 5/8 310 25

d1 eq. = nominal diameter equivalent to a screw with the same dS

NOTES: upon request, EVO version is available.

178 | VGZ HARDWOOD | STRUCTURES


EFFECTIVE THREAD USED IN CALCULATION
b = L - 10 mm represents the entire length of the
10 Sg Tol. Sg 10 threaded part

S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of


the threaded part net of a laying
b
tolerance (Tol.) of 10 mm
L
The timber to timber withdrawal, shear and sliding values were calculated considering the centre
of gravity of the connector placed in correspondence with the shear plane.

MINIMUM DISTANCES FOR AXIAL STRESSES (1)

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE


d1 eq. [mm] 7 9
d1 [mm] 6 8
a1 [mm] 5∙d1 30 40
a2 [mm] 5∙d1 30 40
a2,LIM(2) [mm] 2.5∙d1 15 20
a1,CG [mm] 10∙d1 60 80
a2,CG [mm] 4∙d1 24 32
aCROSS [mm] 1.5∙d1 9 12
d1 = nominal screw diameter

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG
a2,CG a1,CG

a2,CG a2,CG
a1 a2 a2,CG a2
a2,CG a2,CG a
1

a1,CG
a1,CG
a2,CG a1,CG

plan front plan front

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT TO CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT
THE GRAIN TO THE GRAIN

a2,CG
45°
a2

a2,CG a2,CG
aCROSS
a1,CG a1 a2,CG

a1,CG a1

plan front plan front

NOTES:
(1)
The minimum distances for connectors stressed axially are independent of (2)
The axial distance a2 can be reduced down to 2,5 d1 if for each connector a
the insertion angle of the connector and the angle of the force with respect “joint surface” a1 a2 = 25 d12 is maintained.
to the grain, in accordance with ETA-11/0030.

STRUCTURES | VGZ HARDWOOD | 179


MINIMUM DISTANCES FOR SHEAR LOADS (1)

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 eq. [mm] 7 9 7 9
d1 [mm] 6 8 6 8
a1 [mm] 5∙d1 30 40 4∙d1 24 32
a2 [mm] 3∙d1 18 24 4∙d1 24 32
a3,t [mm] 12∙d1 72 96 7∙d1 42 56
a3,c [mm] 7∙d1 42 56 7∙d1 42 56
a4,t [mm] 3∙d1 18 24 7∙d1 42 56
a4,c [mm] 3∙d1 18 24 3∙d1 18 24

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 eq. [mm] 7 9 7 9
d1 [mm] 6 8 6 8
a1 [mm] 15∙d1 90 120 7∙d1 42 56
a2 [mm] 7∙d1 42 56 7∙d1 42 56
a3,t [mm] 20∙d1 120 160 15∙d1 90 120
a3,c [mm] 15∙d1 90 120 15∙d1 90 120
a4,t [mm] 7∙d1 42 56 12∙d1 72 96
a4,c [mm] 7∙d1 42 56 7∙d1 42 56
d1 = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
(1) The minimum distances are compliant with EN 1995:2014, accord- • The minimum spacing for all panel-to-timber connections (a1, a2) can be
ing to ETA-11/0030, considering a timber characteristic density of multiplied by a coefficient of 0,85.
ρk > 420 kg/m3 and calculation diameter of d = nominal screw diameter.
• The minimum spacing for all steel-to-timber connections (a1, a2) can be
multiplied by a coefficient of 0,7.

180 | VGZ HARDWOOD | STRUCTURES


STATIC VALUES | HARDWOOD CHARACTERISTIC VALUES
EN 1995:2014

TENSION(1)

geometry total thread withdrawal (2) partial thread withdrawal (2) steel tension
estrazione
estrazione
filetto
filetto
parziale
parziale

Sg A

L
A

Sg

d1

timber timber steel


d1 eq. d1 L b A min Rax,k Sg A min Rax,k Rtens,k
[mm] [mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
6 140 130 150 17,68 55 75 7,48
6 180 170 190 23,11 75 95 10,20
7 18,00
6 220 210 230 28,55 95 115 12,92
6 260 250 270 33,99 115 135 15,64
8 200 190 210 34,45 85 105 15,41
8 240 230 250 41,70 105 125 19,04
9 32,00
8 280 270 290 48,95 125 145 22,66
8 320 310 330 56,20 145 165 26,29

SHEAR SLIDING

geometry timber-to-timber timber-to-timber (3)


estrazione filetto parziale

Sg A A

S
g
45°
L

S
Sg g B

d1

steel
d1 eq. d1 L Sg A min RV,k A min Bmin RV,k Rtens,k 45°
[mm] [mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
6 140 55 70 4,44 55 70 5,29
6 180 75 90 5,12 70 85 7,21
7 12,73
6 220 95 110 5,14 80 100 9,13
6 260 115 130 5,14 95 110 11,06
8 200 85 100 7,99 75 90 10,90
8 240 105 120 8,27 90 105 13,46
9 22,63
8 280 125 140 8,27 105 120 16,02
8 320 145 160 8,27 120 135 18,59

NOTES: GENERAL PRINCIPLES:


(1)  The connector design resistance is the lowest between the timber side design • C
 haracteristic values comply with the EN 1995:2014 standard in accordance with
resistance (Rax,d) and the steel side resistance (Rtens,d). ETA-11/0030.
Rax,k kmod • Design values can be obtained from characteristic values as follows:

Rax,d = min γM Rk kmod


Rtens,k Rd =
γM2
γM

(2) The axial resistance of the thread to withdrawal was calculated considering a 90° T he coefficients γM and kmod should be taken according to the current regula-
tions used for the calculation.
angle between the fibres and the connector and for an effective thread length of
b or Sg. • For the mechanical resistance values and the geometry of the screws, reference
For intermediate values of Sg it is possible to linearly interpolate. was made to ETA-11/0030.
(3) The design sliding strength of the joint is either the timber-side design strength • For the calculation process a mass density equal to ρk = 550 kg/m3 has been
(RV,d) or the steel design strength (Rtens,d 45°), whichever is lower. considered for hardwood (oak) elements.
• Dimensioning and verification of the timber elements must be carried out separately.
RV,k kmod • The connector characteristic strength values are calculated for screws inserted
RV,d = min γM without pre-drilling hole.
Rtens,k 45° • The withdrawal, shear and sliding values were calculated considering the centre
γM2 of gravity of the connector placed in correspondence with the shear plane.

(4) The connector tensile strength was calculated considering a 45° angle between
the fibres and the connector.

STRUCTURES | VGZ HARDWOOD | 181


MINIMUM DISTANCES FOR CROSS SCREWS

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE


d1 eq. [mm] 7 9
d1 [mm] 6 8
a2,CG [mm] 4∙d1 24 32
aCROSS [mm] 1.5∙d1 9 12
e [mm] 3.5∙d1 21 28
d1 = nominal screw diameter

PRE-DRILLING HOLE DIAMETER


d1 eq. [mm] 7 9
d1 [mm] 6 8
dv (pre-drill) [mm] 4,0 6,0
Valid for hardwood and beech LVL.

SHEAR CONNECTION WITH CROSSED CONNECTORS - 1 PAIR

m m

90°
T
N

45°
S
g

a2,CG
HT

hNT
S
g

HHT aCROSS bNT


a2,CG

90°

BHT BHT

section plan

SHEAR CONNECTION WITH CROSSED CONNECTORS - 2 OR MORE PAIRS

m m
90°
T
N

45°
S
g

a2,CG
HT

hNT aCROSS
S
g

HHT
e bNT

aCROSS
a2,CG
90°

BHT
BHT

section plan

182 | VGZ HARDWOOD | STRUCTURES


STATIC VALUES | HARDWOOD CHARACTERISTIC VALUES
EN 1995:2014

SHEAR CONNECTION WITH CROSSED CONNECTORS


RIGHT-ANGLE JOINT - MAIN BEAM/SECONDARY BEAM
d1 eq. d1 L S g HT(1) S g NT (1) BHT min HHT min = hNT min bNT min no. pairs R1 V,k(1) R2 V,k(2) R3 V,k(2) m(3)
[mm] [mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [kN] [kN] [mm]
withdrawal (4) instability tension
57 1 7,7 14,0 25,5
6 140 40 70 65 110 87 2 14,4 26,1 47,5 62
117 3 20,8 37,8 68,7
57 1 14,4 14,0 25,5
6 180 75 75 80 140 87 2 26,9 26,1 47,5 65
117 3 38,9 37,8 68,4
7
57 1 18,3 14,0 25,5
6 220 95 95 95 170 87 2 34,1 26,1 47,5 79
117 3 49,3 37,8 68,4
57 1 22,1 14,0 25,5
6 260 115 115 110 195 87 2 41,3 26,1 47,5 94
117 3 59,7 37,8 68,4
76 1 19,2 45,5 45,3
8 200 75 95 90 155 116 2 35,9 85,0 84,4 80
156 3 51,9 122,9 121,6
76 1 26,9 45,5 45,3
8 240 105 105 100 185 116 2 50,2 85,0 84,4 87
156 3 72,7 122,9 121,6
9
76 1 32,0 45,5 45,3
8 280 125 125 115 210 116 2 59,8 85,0 84,4 101
156 3 86,5 122,9 121,6
76 1 37,2 45,5 45,3
8 320 145 145 130 240 116 2 69,4 85,0 84,4 115
156 3 100,4 122,9 121,6

NOTES: GENERAL PRINCIPLES:


(1) The values given are calculated considering a distance a
1,CG ≥ 5d. In some • Characteristic values comply with the EN 1995:2014 standard in accord-
cases the asymmetrical laying of connectors is needed (Sg HT ≠ Sg NT ). ance with ETA-11/0030.
(2) T he compression design strength of the connector is the lower between • For the mechanical resistance values and the geometry of the screws, ref-
the withdrawal-side design strength (R 1 V,d), the instability design strength erence was made to ETA-11/0030.
(R 2 V,d) and the tensile design strength (R3 V,d). • For the calculation process a mass density equal to ρk = 550 kg/m3 has
been considered for hardwood (oak) elements.
R1V,k kmod
• Dimensioning and verification of the timber elements must be carried out
γM separately.
R2V,k
RV,d = min
γM1
R3V,k
γM2
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
(3) The assembly height (m) applies in the event of symmetrical installation of
the flush connectors (Sg HT = Sg NT ) above the elements.
(4) The thread axial resistance to withdrawal has been evaluated considering
an effective thread length equal to Sg. The connectors must be inserted at
45° with respect to the shear plane.

STRUCTURES | VGZ HARDWOOD | 183


STATIC VALUES | BEECH LVL CHARACTERISTIC VALUES
EN 1995:2014

TENSION(1)
steel
geometry total thread withdrawal(2)
tension

L b

d1

LVL steel
without pre-drilling hole with pre-drilling hole
d1 eq. d1 L b A min Rax,k Rax,k Rtens,k
[mm] [mm] [mm] [mm] [mm] [kN] [kN] [kN]
6 140 130 150 32,76 22,62
6 180 170 190 42,84 29,58
7 18,00
6 220 210 230 52,92 36,54
6 260 250 270 63,00 43,50
8 200 190 210 63,84 44,08
8 240 230 250 77,28 53,36
9 32,00
8 280 270 290 90,72 62,64
8 320 310 330 104,16 71,92

TENSION(1)
steel
geometry partial thread withdrawal (2)
tension

L b Sg A

Sg A
d1

LVL steel
without pre-drilling hole with pre-drilling hole
d1 eq. d1 L b Sg A min Rax,k Rax,k Rtens,k
[mm] [mm] [mm] [mm] [mm] [mm] [kN] [kN] [kN]
6 140 130 55 75 13,86 9,57
6 180 170 75 95 18,90 13,05
7 18,00
6 220 210 95 115 23,94 16,53
6 260 250 115 135 28,98 20,01
8 200 190 85 105 28,56 19,72
8 240 230 105 125 35,28 24,36
9 32,00
8 280 270 125 145 42,00 29,00
8 320 310 145 165 48,72 33,64

NOTES:
(1)  The connector design resistance is the lowest between the timber side design (3) The design sliding strength of the joint is either the timber-side design strength
resistance (Rax,d) and the steel side resistance (Rtens,d). (RV,d) or the steel design strength (Rtens,d 45°), whichever is lower.

Rax,k kmod RV,k kmod


γM RV,d = min γM
Rax,d = min
Rtens,k Rtens,k 45°
γM2 γM2

(2) The axial thread withdrawal resistance Rax,90,k was calculated considering a 90°
angle between the grain and the connector and for a fixing length of b. (4) The connector tensile strength was calculated considering a 45° angle between
the fibres and the connector.

184 | VGZ HARDWOOD | STRUCTURES


STATIC VALUES | BEECH LVL CHARACTERISTIC VALUES
EN 1995:2014

SLIDING(3)

geometry LVL - LVL

Sg
A 45°
L b
Sg
B

d1

LVL steel
without pre-drilling with pre-drilling
hole hole
d1 eq. d1 L Sg A min Bmin RV,k RV,k Rtens,k 45° (4)
[mm] [mm] [mm] [mm] [mm] [mm] [kN] [kN] [kN]
6 140 55 55 70 7,84 5,41
6 180 75 70 85 10,69 7,38
7 12,73
6 220 95 80 100 13,54 9,35
6 260 115 95 110 16,39 11,32
8 200 85 75 90 16,16 11,16
8 240 105 90 105 19,96 13,78
9 22,63
8 280 125 105 120 23,76 16,40
8 320 145 120 135 27,56 19,03

SHEAR

geometry LVL - LVL

A Sg
L b

Sg

d1

LVL
without pre-drilling hole with pre-drilling hole
d1 eq. d1 L Sg A min RV,k RV,k
[mm] [mm] [mm] [mm] [mm] [kN] [kN]
6 140 55 70 6,77 5,78
6 180 75 90 6,77 6,65
7
6 220 95 110 6,77 6,77
6 260 115 130 6,77 6,77
8 200 85 100 11,13 10,50
8 240 105 120 11,13 11,13
9
8 280 125 140 11,13 11,13
8 320 145 160 11,13 11,13

GENERAL PRINCIPLES:
• C
 haracteristic values comply with the EN 1995:2014 standard in accordance with • For the calculation process a mass density equal to ρk = 730 kg/m3 has been
ETA-11/0030. considered for LVL beach elements.
• Design values can be obtained from characteristic values as follows: • Dimensioning and verification of the timber elements must be carried out sep-
arately.
Rk kmod
• The characteristic shear resistance values of connectors are calculated for screws
Rd =
γM inserted with and without pre-drilling hole.
• A suitable pilot hole must be drilled for the insertion of some connectors. For
T he coefficients γM and kmod should be taken according to the current regula- further details please see ETA-11/0030.
tions used for the calculation. • The withdrawal, shear and sliding values were calculated considering the centre
• For the mechanical resistance values and the geometry of the screws, reference of gravity of the connector placed in correspondence with the shear plane.
was made to ETA-11/0030.

STRUCTURES | VGZ HARDWOOD | 185


VGS BIT INCLUDED ETA-11/0030

FULLY THREADED SCREW WITH


COUNTERSUNK OR HEXAGONAL HEAD

TENSION
Deep thread and high resistance steel (fy,k = 1000 N/mm2) for excellent
tensile performance. Approved for structural applications subject to
stresses in any direction vs. the grain (α = 0° - 90°).

COUNTERSUNK OR HEXAGONAL HEAD


Countersunk head up to L = 600 mm, ideal for use on plates or for con-
cealed reinforcements. Hexagonal head L > 600 mm to facilitate grip-
ping with screwdriver.

CHROMIUM (VI) FREE


Total absence of hexavalent chromium. Compliance with the strictest
regulations governing chemical substances (SVHC).
REACH information available.

9,0 | 11,0 | 13,0 mm L ≤ 600 mm 11,0 | 13,0 mm L > 600 mm

CHARACTERISTICS
FOCUS 45° connections, lifting and reinforcements
countersunk with ribs for L ≤ 600 mm
HEAD
hexagonal for L > 600 mm
DIAMETER 9,0 | 11,0 | 13,0 mm
LENGTH from 100 to 1200 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
• high density woods
Service classes 1 and 2.

186 | VGS | STRUCTURES


TENSILE STRENGTH
Ideal for joints requiring high tensile or sliding
strength. Can be used on steel plates in com-
bination with the VGU washer.

TITAN V
Values also tested, certified and calculated for
fastening standard Rothoblaas plates.

STRUCTURES | VGS | 187


Reinforcement perpendicular to the grain of a large glulam beam. System for lifting and transport using WASP
hook and VGS screw.

GEOMETRY AND MECHANICAL CHARACTERISTICS


VGS Ø9 - Ø11 VGS Ø11 | L > 600 mm

t1 t1

S
X G

dK

S
90° d2 d1

V
G

X
V

X
X

SW
b
45° L

VGS Ø13 | L ≤ 600 mm VGS Ø13 | L > 600 mm

t1 t1

S
X G
S

dK
V

90° d2 d1
G

X
X
V

SW
b
45° L

9 11 11 13 13
Nominal diameter d1 [mm]
[L ≤ 600 mm] [L > 600 mm] [L ≤ 600 mm] [L > 600 mm]
Head diameter dK [mm] 16,00 19,30 - 22,00 -
Wrench size SW - - SW17 - SW19
Head thickness t1 [mm] 6,50 8,20 6,40 9,40 7,50
Tip diameter d2 [mm] 5,90 6,60 8,00
Pre-drilling hole diameter(1) dV [mm] 5,0 6,0 8,0
Characteristic yield
My,k [Nm] 27,2 45,9 70,9
moment
Characteristic
fax,k [N/mm2] 11,7 11,7 11,7
withdrawal-resistance parameter(2)
Associated density ρa [kg/m3] 350 350 350,0
Characteristic tensile
ftens,k [kN] 25,4 38,0 53,0
strength
Characteristic yield strength fy,k [N/mm2] 1000 1000 1000
(1) Pre-drilling valid for softwood.
(2) Valid for softwood - maximum density 440 kg/m3 .
For applications with different materials or with high density please see ETA-11/0030.
For VGS Ø13 screw a Ø8x80 predrill is recommended.

188 | VGS | STRUCTURES


CODES AND DIMENSIONS

d1 CODE L b pcs d1 CODE L b pcs


[mm] [in] [mm] [in] [mm] [mm] [in] [mm] [in] [mm]
VGS9100 100 4 90 25 VGS13100 100 4 90 25
VGS9120 120 4 3/4 110 25 VGS13150 150 6 140 25
VGS9140 140 5 1/2 130 25 VGS13200 200 8 190 25
13
VGS9160 160 6 1/4 150 25
0.52 VGS13300 300 11 3/4 280 25
VGS9180 180 7 1/8 170 25 TX 50
VGS13400 400 15 3/4 380 25
VGS9200 200 8 190 25
VGS13500 500 19 3/4 480 25
VGS9220 220 8 5/8 210 25
VGS9240 240 9 1/2 230 25 VGS13600 600 23 5/8 580 25

VGS9260 260 10 1/4 250 25 VGS13700 700 27 1/2 680 25


9
0.36 VGS9280 280 11 270 25 VGS13800 800 31 1/2 780 25
TX 40 13
VGS9300 300 11 3/4 290 25 0.52 VGS13900 900 35 1/2 880 25
VGS9320 320 12 5/8 310 25 SW 19 VGS131000 1000 39 3/8 980 25
VGS9340 340 13 3/8 330 25 TX 50
VGS131100 1100 43 5/16 1080 25
VGS9360 360 14 1/4 350 25
VGS131200 1200 47 1/4 1180 25
VGS9380 380 15 370 25
VGS9400 400 15 3/4 390 25
VGS9440 440 17 1/4 430 25
VGS9480 480 19 470 25
VGS9520 520 20 1/2 510 25
VGU WASHER
VGS11100 100 4 90 25
VGS11125 125 4 15/16 115 25
VGS11150 150 6 140 25
VGS11175 175 6 7/8 165 25
VGS11200 200 8 190 25
CODE screw pcs
VGS11225 225 8 7/8 215 25
[mm]
VGS11250 250 10 240 25
VGU945 VGS Ø9 25
11 VGS11275 275 10 7/8 265 25
VGU1145 VGS Ø11 25
0.44 VGS11300 300 11 3/4 290 25
TX 50 VGU1345 VGS Ø13 25
VGS11325 325 12 3/4 315 25
VGS11350 350 13 3/4 340 25
VGS11375 375 14 3/4 365 25 WASP HOOK
VGS11400 400 15 3/4 390 25
VGS11450 450 17 3/4 440 25
VGS11500 500 19 3/4 490 25
VGS11550 550 21 5/8 540 25
CODE screw max. capacity pcs
VGS11600 600 23 5/8 590 25
11 [mm] [kg]
VGS11700 700 27 1/2 680 25
0.44 WASP VGS Ø11 1300 2
SW17 WASPL VGS Ø13 5000 2
VGS11800 800 31 1/2 780 25
TX 50

WASP
Various installation options with more types of
screws for load conditions and different material.

STRUCTURES | VGS | 189


EFFECTIVE THREAD USED IN CALCULATION
b = L - 10 mm represents the entire length of the
10 Sg Tol. Sg 10 threaded part

S g = (L - 10 mm - 10 mm - Tol.)/ 2 represents the partial length of


b the threaded part net of a laying
tolerance (Tol.) of 10 mm
L
The timber to timber withdrawal, shear and sliding values were calculated considering the centre
of gravity of the connector placed in correspondence with the shear plane.

MINIMUM DISTANCES FOR SHEAR LOADS (1)

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 9 11 13 9 11 13
a1 [mm] 5∙d 45 55 65 4∙d 36 44 52
a2 [mm] 3∙d 27 33 39 4∙d 36 44 52
a3,t [mm] 12∙d 108 132 156 7∙d 63 77 91
a3,c [mm] 7∙d 63 77 91 7∙d 63 77 91
a4,t [mm] 3∙d 27 33 39 7∙d 63 77 91
a4,c [mm] 3∙d 27 33 39 3∙d 27 33 39

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 9 11 13 9 11 13
a1 [mm] 12∙d 108 132 156 5∙d 45 55 65
a2 [mm] 5∙d 45 55 65 5∙d 45 55 65
a3,t [mm] 15∙d 135 165 195 10∙d 90 110 130
a3,c [mm] 10∙d 90 110 130 10∙d 90 110 130
a4,t [mm] 5∙d 45 55 65 10∙d 90 110 130
a4,c [mm] 5∙d 45 55 65 5∙d 45 55 65
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
(1)
Minimum distances are in accordance with EN 1995:2014 as per • The minimum spacing for all panel-to-timber connections(a1 , a2) can be
ETA-11/0030 considering a timber characteristic density ofρk ≤ 420 kg/m3. multiplied by a coefficient of 0,85.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

190 | VGS | STRUCTURES


MINIMUM DISTANCES FOR AXIAL STRESSES (2)

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE


d1 [mm] 9 11 13
a1 [mm] 5∙d 45 55 65
a2 [mm] 5∙d 45 55 65
a2,LIM (3) [mm] 2.5∙d 23 28 33
a1,CG [mm] 10∙d 90 110 130
a2,CG [mm] 4∙d 36 44 52
aCROSS [mm] 1.5∙d 14 17 20
d = nominal screw diameter

SCREWS UNDER TENSION INSERTED WITH AN ANGLE α WITH RESPECT TO THE GRAIN

a2,CG
a2,CG a1,CG

a2,CG a2,CG
a1 a2 a2,CG a2
a2,CG a2,CG

a
1
a1,CG
a1,CG
a2,CG a1,CG

plan front plan front

SCREWS INSERTED WITH α = 90° ANGLE WITH RESPECT CROSS SCREWS INSERTED WITH AN ANGLE α WITH RESPECT
TO THE GRAIN TO THE GRAIN

a2,CG
45°
a2

a2,CG a2,CG
aCROSS
a1,CG a1 a2,CG

a1,CG a1

plan front plan front

NOTES:
(2) The minimum distances for connectors stressed axially are independent of (3) The axial distance a can be reduced down to 2,5 d if for each connector a
2 1
the insertion angle of the connector and the angle of the force with respect “joint surface” a1∙a2 = 25∙d1 2 is maintained.
to the grain, in accordance with ETA-11/0030.

STRUCTURES | VGS | 191


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

TENSION(1)/COMPRESSION(2)

steel
geometry total thread withdrawal(3) partial thread withdrawal(3) instability
tension
estrazione
estrazionefiletto
filettoparziale
parziale

Sg A

L
A

Sg A

d1

timber timber steel steel


d1 L b A min Rax,k Sg A min Rax,k Rtens,k Rki,k
[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [kN] [kN]
100 90 110 10,23 35 55 3,98
120 110 130 12,50 45 65 5,11
140 130 150 14,77 55 75 6,25
160 150 170 17,05 65 85 7,39
180 170 190 19,32 75 95 8,52
200 190 210 21,59 85 105 9,66
220 210 230 23,87 95 115 10,80
240 230 250 26,14 105 125 11,93
260 250 270 28,41 115 135 13,07
9 280 270 290 30,68 125 145 14,21 25,40 17,25
300 290 310 32,96 135 155 15,34
320 310 330 35,23 145 165 16,48
340 330 350 37,50 155 175 17,61
360 350 370 39,78 165 185 18,75
380 370 390 42,05 175 195 19,89
400 390 410 44,32 185 205 21,02
440 430 450 48,87 205 225 23,30
480 470 490 53,41 225 245 25,57
520 510 530 57,96 245 265 27,84
100 90 110 12,50 35 55 4,86
125 115 135 15,97 48 68 6,60
150 140 160 19,45 60 80 8,33
175 165 185 22,92 73 93 10,07
200 190 210 26,39 85 105 11,81
225 215 235 29,86 98 118 13,54
250 240 260 33,34 110 130 15,28
275 265 285 36,81 123 143 17,01
300 290 310 40,28 135 155 18,75
11 325 315 335 43,75 148 168 20,49 38,00 21,93
350 340 360 47,22 160 180 22,22
375 365 385 50,70 173 193 23,96
400 390 410 54,17 185 205 25,70
450 440 460 61,11 210 230 29,17
500 490 510 68,06 235 255 32,64
550 540 560 75,00 260 280 36,11
600 590 610 81,95 285 305 39,59
700 680 710 94,45 335 355 46,53
800 780 810 108,34 385 405 53,48

192 | VGS | STRUCTURES


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

TENSION(1)/COMPRESSION(2)

steel
geometry total thread withdrawal(3) partial thread withdrawal(3) instability
tension
estrazione
estrazionefiletto
filettoparziale
parziale

Sg A

L
A

Sg A

d1

timber timber steel steel


d1 L b A min Rax,k Sg A min Rax,k Rtens,k Rki,k
[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [kN] [kN]
100 90 110 14,77 35 55 5,75
150 140 160 22,98 60 80 9,85
200 190 210 31,19 85 105 13,95
300 280 310 45,96 135 155 22,16
400 380 410 62,38 185 205 30,37
500 480 510 78,79 235 255 38,58
13 600 580 610 95,21 285 305 46,78 53,00 32,69
700 680 710 111,62 335 355 54,99
800 780 810 128,04 385 405 63,20
900 880 910 144,45 435 455 71,41
1000 980 1010 160,87 485 505 79,61
1100 1080 1110 177,28 535 555 87,82
1200 1180 1210 193,70 585 605 96,03

NOTES:
(1) The tensile design strength of the connector is the lower between the (3) The axial resistance of the thread to withdrawal was calculated considering
timber-side design strength (Rax,d) and the steel-side design strength a 90° angle between the fibres and the connector and for a effective thread
(Rtens,d). length of b or Sg.
For intermediate values of Sg it is possible to linearly interpolate.
Rax,k kmod
Rax,d = min γM
Rtens,k
γM2

(2) The compression design strength of the connector is the lower between
the timber-side design strength (Rax,d) and the instability design strength
(Rki,k).

Rax,k kmod
Rax,d = min γM
Rki,k
γM1

STRUCTURES | VGS | 193


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR SLIDING(4)

geometry timber-to-timber timber-to-timber(5) steel-to-timber(5)

Sg A A

S
g
45° 45°
L

S
g
S
g
Amin
Sg B

d1

timber timber steel


d1 L Sg A min RV,k A min Bmin RV,k Sg A min RV,k Rtens,k 45°(6)
[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
100 35 50 3,53 40 55 2,81 80 75 6,43
120 45 60 4,19 50 60 3,62 100 90 8,04
140 55 70 4,81 55 70 4,42 120 105 9,64
160 65 80 5,10 60 75 5,22 140 120 11,25
180 75 90 5,38 70 85 6,03 160 135 12,86
200 85 100 5,67 75 90 6,83 180 145 14,46
220 95 110 5,95 85 100 7,63 200 160 16,07
240 105 120 6,23 90 105 8,44 220 175 17,68
260 115 130 6,50 100 110 9,24 240 190 19,29
9 280 125 140 6,50 105 120 10,04 260 205 20,89 17,96
300 135 150 6,50 110 125 10,85 280 220 22,50
320 145 160 6,50 120 135 11,65 300 230 24,11
340 155 170 6,50 125 140 12,46 320 245 25,71
360 165 180 6,50 135 145 13,26 340 260 27,32
380 175 190 6,50 140 155 14,06 360 275 28,93
400 185 200 6,50 145 160 14,87 380 290 30,54
440 205 220 6,50 160 175 16,47 420 315 33,75
480 225 240 6,50 175 190 18,08 460 345 36,96
520 245 260 6,50 190 205 19,69 500 375 40,18
100 35 50 4,27 40 55 3,44 80 75 7,86
125 48 63 5,40 50 65 4,67 105 95 10,31
150 60 75 6,40 60 75 5,89 130 110 12,77
175 73 88 7,05 70 80 7,12 155 130 15,22
200 85 100 7,48 80 90 8,35 180 145 17,68
225 98 113 7,92 85 100 9,58 205 165 20,13
250 110 125 8,35 95 110 10,80 230 185 22,59
275 123 138 8,79 105 115 12,03 255 200 25,04
300 135 150 9,06 115 125 13,26 280 220 27,50
11 325 148 163 9,06 120 135 14,49 305 235 29,96 26,87
350 160 175 9,06 130 145 15,71 330 255 32,41
375 173 188 9,06 140 155 16,94 355 270 34,87
400 185 200 9,06 150 160 18,17 380 290 37,32
450 210 225 9,06 165 180 20,63 430 325 42,23
500 235 250 9,06 185 195 23,08 480 360 47,14
550 260 275 9,06 200 215 25,54 530 395 52,05
600 285 300 9,06 220 230 27,99 580 430 56,96
700 335 350 9,06 255 265 32,90 - - -
800 385 400 9,06 290 305 37,81 - - -

194 | VGS | STRUCTURES


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR SLIDING(4)

geometry timber-to-timber timber-to-timber(5) steel-to-timber(5)

Sg A A

S
g
45° 45°
L

S
g
S
g
Amin
Sg B

d1

timber timber steel


d1 L Sg A min RV,k A min Bmin RV,k Sg A min RV,k Rtens,k 45°(6)
[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
100 35 50 4,87 45 55 4,06 80 75 9,29
150 60 75 7,61 60 75 6,96 130 110 15,09
200 85 100 9,46 80 90 9,87 180 145 20,89
300 135 150 11,51 115 125 15,67 280 220 32,50
400 185 200 11,94 150 160 21,47 380 290 44,11
500 235 250 11,94 185 195 27,28 480 360 55,71
13 600 285 300 11,94 220 230 33,08 580 430 67,32 37,48
700 335 350 11,94 255 265 38,88 - - -
800 385 400 11,94 290 305 44,69 - - -
900 435 450 11,94 325 340 50,49 - - -
1000 485 500 11,94 360 375 56,30 - - -
1100 535 550 11,94 395 410 62,10 - - -
1200 585 600 11,94 430 445 67,90 - - -

NOTES: GENERAL PRINCIPLES:


(4) The axial thread withdrawal resistance was calculated considering a 45° angle • Characteristic values comply with the EN 1995:2014 standard in accord-
between the fibres and the connector and for an effective thread length of Sg. ance with ETA-11/0030.
(5) The design sliding resistance of the connector is either the timber-side de- • Design values can be obtained from characteristic values as follows:
sign resistance (RV,d) and the steel design resistance (Rtens,d 45°), which-
ever is lower.
Rk kmod
Rd =
γM
RV,k kmod
The coefficients γM and kmod should be taken according to the current
RV,d = min γM regulations used for the calculation.
Rtens,k 45° • For the mechanical resistance values and the geometry of the screws, ref-
erence was made to ETA-11/0030.
γM2
• For the calculation process a timber characteristic density ρk = 385 kg/m3
has been considered.
To properly create the joint, the head of the connector must be completely
inserted in the steel plate. • Dimensioning and verification of timber elements and steel plates must be
(6) The connector tensile strength was calculated considering a 45° angle be- carried out separately.
tween the fibres and the connector. • The characteristic shear resistances are calculated for screws inserted with-
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
greater resistance values can be obtained.
• The timber to timber withdrawal, shear and sliding values were calculated
considering the centre of gravity of the connector placed in correspond-
ence with the shear plane.

STRUCTURES | VGS | 195


TIMBER-TO-TIMBER APPLICATION

RECOMMENDED INSERTION MOMENT: Mins

VGS Ø9 Mins = 20 Nm
VGS Ø11 L < 400 mm Mins = 30 Nm
VGS Ø11 L ≥ 400 mm Mins = 40 Nm
VGS Ø13 Mins = 50 Nm Mins
S

GV

X
X

X
STEEL-TO-TIMBER APPLICATION

X X

X
X

S
S

X
X

G
G

V V

X X

X
X

S
S

X
X

G
G

V V

X X

X
X

S
S

X
X

G
G

V V

X X

X
X

S
S

X
X

G
G

V V

X X

X
X

S
S

X
X

G
G

V V

X X

X
X

S
S

X
X

G
G

V V

X X
X

X
X

X
S

S
V V
G

G
X X
X

X
X

X
S

S
V V
G

G
X X
X

X
X

X
S

S
V V
G

G
X X
X

X
X

X
S

S
V V
G

G
X
X

X
X

X
S

S
V V
G

G
X
X

X
X

X
S

S
V
G

G
Avoid dimensional changes to the metal. Avoid accidental stress during installation.

A. SHAPED PLATE WITH COUNTERSUNK HOLES B. VGU WASHER

α
X
X X
X
X
X

X X
S
X

V G
S

G
S

45°
X X
X

X X
G

G
S
S

X
X

V V
G G
V V

X X
X

X
S

S
X

X X
G

X X
V X V X
X X X X
S
S

X
X

X X X X
S

G X X X G X X X X X
S

S
X

X
S

V
X

V
X

X X X X
G

G
S

S
S

S
S

X
X

V V
X

G G G G
V V V V
G G G G G G
V

α
V V V V V

45°
X X
X

X
S

X X
X

X X
G

V V
S
S

X
X

G G
V V

X X
S

S
X

X
G

G
X

V V

Respect the insertion angle Avoid bending. Respect the 45° insertion Avoid bending.
(e.g. adopting a template). angle.

A. SHAPED PLATE B. WASHERS

G S
V

X
S X
X
X

X
G

X
V

S
G
X

X
S
X

X
G

X
V

Countersunk hole. Cylindrical hole. Flared washer. VGU washer.

196 | VGS | STRUCTURES


APPLICATION EXAMPLES

TAPERED BEAMS
apex tension reinforcement perpendicular to grain

HANGING LOAD
tension reinforcement perpendicular to grain

section front section front

NOTCH SUPPORT
tension reinforcement compression reinforcement
perpendicular to grain perpendicular to grain

plan plan

section section

STRUCTURES | VGS | 197


CALCULATION EXAMPLES: REINFORCEMENT OF BEAM WITH COMPRESSION
PERPENDICULAR TO THE FIBRES

PROJECT DATA
a2,c
B = 220 mm Fv,Rd = 158 kN
B a2
H = 560 mm Fc,90,Rd = 158 kN
a = 25 mm Service class = 1 a2,c

L a = 200 mm Load duration = medium a1,c a1 Fv,Rd


GL24h Glulam (ρ k = 385 kg/m3)

Fc,90,Rd

a La

SHEAR VERIFICATION OF SUPPORT (EN 1995:2014) : τd ≤ fv,d

1,5 Fv,Rd τd = 1,92 N/mm2


τd = fv,k = 3,50 N/mm2
B H

EN 1995:2014 Italy - NTC 2018


kmod = 0,8 kmod = 0,8
γM = 1,25 γM = 1,45
fv,d = 2,24 N/mm2 fv,d = 1,93 N/mm2

τd ≤ fv,d 1,92 < 2,24 N/mm2 τd ≤ fv,d 1,92 < 1,93 N/mm2
verification passed verification passed

PERPENDICULAR COMPRESSION VERIFICATION OF SUPPORT-BEAM WITHOUT REINFORCEMENT (EN 1995:2014) :


σc,90,d ≤ kc,90∙ fc,90,d
B H

lef,1 = 255 mm
lef,1 = La + a + 30
σc,90,d= 2,82 N/mm2
Fv,Rd kc,90 = 1,75
σc,90,d =
B lef,1 fc,90,k = 2,50 N/mm2

EN 1995:2014 Italy - NTC 2018


kmod = 0,8 kmod = 0,8
γM = 1,25 γM = 1,45
fc,90,d = 1,60 N/mm2 fc,90,d = 1,38 N/mm2

σc,90,d ≤ kc,90 ∙ fc,90,d 2,82 < 2,80 N/mm2 σc,90,d ≤ kc,90 ∙ fc,90,d 2,82 < 2,41 N/mm2

verification not passed verification not passed

REQUIRES REINFORCEMENT REQUIRES REINFORCEMENT

198 | VGS | STRUCTURES


PERPENDICULAR COMPRESSION VERIFICATION OF SUPPORT - BEAM WITH REINFORCEMENT (EN 1995:2014 and
ETA-11/0030) : Fc,90,Rd ≤ Rc,90,Rd

kc,90 B lef,1 fc,90d + n Rax,Rd


Rc,90,Rd = min
B lef,2 fc,90d

REINFORCEMENT CONNECTOR SELECTION

VGS 9 x 360 mm n0 = 2
L = 360 mm n90 = 2
b = 350 mm n = n0 ∙ n90 = 4

lef,2 = L + (n₀ -1) a₁ + min (a1,CG ;L) lef,2 = 555 mm

The minimum distances for placement of the connectors are found in the table on p.191.
In this example it is assumed a1 = 50 mm and a1,CG = 145 mm.

Rax,α,Rk kmod
Rax,d = Rax,90°,Rk = 39,78 kN
Rax,Rd = min γM
Rki,k = 17,25 kN
Rki,k
Rki,d =
γM1

The compression resistance of the connectors calculated here is shown in the table on p.192.

EN 1995:2014 Italy - NTC 2018


kmod = 0,8 kmod = 0,8
γM = 1,3 γM = 1,5
γM1 = 1,00 γM1 = 1,05
Rax,90°,Rd = 24,48 kN Rax,90°,Rd = 21,22 kN
Rki,d = 17,25 kN Rki,d = 16,43 kN
Rax,Rd = 17,25 kN Rax,Rd = 16,43 kN

kc,90 B lef,1 fc,90d + n Rax,Rd


Rc,90,Rd = min
B lef,2 fc,90d

Rc,90,Rd= 195,36 kN Rc,90,Rd= 168,41 kN

Fc,90,Rd ≤ Rc,90,Rd 158 < 195,36 kN Fc,90,Rd ≤ Rc,90,Rd 158 < 168,41 kN
verification passed verification passed

For different calculation configurations, the MyProject software is available (www.rothoblaas.com)

STRUCTURES | VGS | 199


VGU ETA-11/0030

45° WASHER FOR VGS

SAFETY
The VGU washer makes possible to install VGS screws at a 45° angle on
steel plates. Washer marked CE as per ETA-11/0030.

STRENGTH
Using the VGU washer with VGS screws inclined at a 45° angle on steel
plates restores the sliding strength.

PRACTICALITY
The ergonomic shape ensures a firm, precise grip during installation.
Three versions of washer, compatible with VGS Ø9, Ø11 and Ø13 mm,
for plates of variable thickness.

CHARACTERISTICS
FOCUS 45°steel-to-timber joints
VIDEO
PLATE THICKNESS from 3,0 to 20,0 mm Scan the QR Code and watch
PLATE HOLES slotted the video on our YouTube
channel
WASHER HOLE 9,0 | 11,0 | 13,0 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
• high density woods
Service classes 1 and 2.

200 | VGU | STRUCTURES


GEOMETRY
LF

D2
D1
H BF

h
L SPLATE

Washer VGU945 VGU1145 VGU1345


VGS screw diameter d1 [mm] 9,0 11,0 13,0
VGS screw pre-drilling
dV [mm] 5,0 6,0 8,0
hole diameter(1)
Internal diameter D1 [mm] 9,7 11,8 14,0
External diameter D2 [mm] 19,0 23,0 27,4
Base length L [mm] 31,8 38,8 45,8
Base heigth h [mm] 3,0 3,6 4,3
Global heigth H [mm] 23,0 28,0 33,0
min. 33.0 min. 41.0 min. 49.0
Slotted-hole length LF [mm]
max. 34.0 max. 42.0 max. 50.0
min. 14.0 min. 17.0 min. 20.0
Slotted-hole width BF [mm]
max. 15.0 max. 18.0 max. 21.0
min. 3.0 min. 4.0 min. 5.0
Steel plate thickness SPLATE [mm]
max. 12,0* max. 15,0* max. 15,0*
(1)
Pre-drilling valid for softwood.
(*) For
thicker plates it is necessary to realize a countersink in the lower part of the steel plate.
For VGS screw-lengths L > 300 mm a Ø5 pre-drill is recommended.
The assembly must be performed so as to guarantee that the stress is evenly distributed among all the installed VGU washers.

CODES AND DIMENSIONS


VGU WASHER JIG VGU TEMPLATE
CODE screw dV pcs CODE washer dh dV pcs
dh
[mm] [mm] [mm] [mm] [mm]
VGU945 VGS Ø9 5 25 JIGVGU945 VGU945 5,5 5 1
VGU1145 VGS Ø11 6 25 JIGVGU1145 VGU1145 6,5 6 1
VGU1345 VGS Ø13 8 25 JIGVGU1345 VGU1345 8,5 8 1

HSS WOOD DRILL BIT LOCKING RING FOR HSS BITS


CODE dV TL SL pcs CODE dV dint dext pcs
[mm] [mm] [mm] [mm] [mm] [mm] dint
LE
F1599105 5 150 100 1 F2108005 5 5 10 10
LT
F1599106 6 150 100 1 F2108006 6 6 12 10
dext
F1599108 8 150 100 1 F2108008 8 8 16 10

HELPS WITH INSTALLATION


The JIG VGU template makes it easy to pre-
pare a 45° angle pre-drill, thus facilitating sub-
sequent tightening of the VGS screws inside
the washer. A pre-drill length of at least 20 mm
is recommended.

STRUCTURES | VGU | 201


STATIC VALUES | STEEL-TO-TIMBER JOINT
SLIDING RESISTANCE RV

SPLATE

L 45°

g
S
Amin

d1

VGU VGS timber timber timber steel


d1 L Sg A min RV,k(1) Sg A min RV,k(1) Sg A min RV,k(1) Rtens,k 45°(2)
[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
SPLATE 3 mm 7 mm 12 mm
100 80 75 6,43 75 75 6,03 65 65 5,22
120 100 90 8,04 95 85 7,63 85 80 6,83
140 120 105 9,64 115 100 9,24 105 95 8,44
160 140 120 11,25 135 115 10,85 125 110 10,04
180 160 135 12,86 155 130 12,46 145 125 11,65
200 180 145 14,46 175 145 14,06 165 135 13,26
220 200 160 16,07 195 160 15,67 185 150 14,87
240 220 175 17,68 215 170 17,28 205 165 16,47
260 240 190 19,29 235 185 18,88 225 180 18,08
17,96
VGU945 9 280 260 205 20,89 255 200 20,49 245 195 19,69
300 280 220 22,50 275 215 22,10 265 205 21,29
320 300 230 24,11 295 230 23,71 285 220 22,90
340 320 245 25,71 315 245 25,31 305 235 24,51
360 340 260 27,32 335 255 26,92 325 250 26,12
380 360 275 28,93 355 270 28,53 345 265 27,72
400 380 290 30,54 375 285 30,13 365 280 29,33
440 420 315 33,75 415 315 33,35 405 305 32,54
480 460 345 36,96 455 340 36,56 445 335 35,76
520 500 375 40,18 495 370 39,78 485 365 38,97
SPLATE 4 mm 10 mm 15 mm
100 75 75 7,37 70 70 6,88 60 60 5,89
125 100 90 9,82 95 85 9,33 85 80 8,35
150 125 110 12,28 120 105 11,79 110 100 10,80
175 150 125 14,73 145 125 14,24 135 115 13,26
200 175 145 17,19 170 140 16,70 160 135 15,71
225 200 160 19,64 195 160 19,15 185 150 18,17
250 225 180 22,10 220 175 21,61 210 170 20,63
275 250 195 24,55 245 195 24,06 235 185 23,08
26,87
VGU1145 11 300 275 215 27,01 270 210 26,52 260 205 25,54
325 300 230 29,46 295 230 28,97 285 220 27,99
350 325 250 31,92 320 245 31,43 310 240 30,45
375 350 265 34,38 345 265 33,88 335 255 32,90
400 375 285 36,83 370 280 36,34 360 275 35,36
450 425 320 41,74 420 315 41,25 410 310 40,27
500 475 355 46,65 470 350 46,16 460 345 45,18
550 525 390 51,56 520 390 51,07 510 380 50,09
600 575 425 56,47 570 425 55,98 560 415 55,00

202 | VGU | STRUCTURES


STATIC VALUES | STEEL-TO-TIMBER JOINT
SLIDING RESISTANCE RV

SPLATE

L 45°

g
S
Amin

d1

VGU VGS timber timber timber steel


d1 L Sg A min RV,k(1) Sg A min RV,k(1) Sg A min RV,k(1) Rtens,k 45°(2)
[mm] [mm] [mm] [mm] [kN] [mm] [mm] [kN] [mm] [mm] [kN] [kN]
SPLATE 5 mm 10 mm 15 mm
100 65 65 7,54 60 60 6,96 50 55 5,80
150 115 100 13,35 110 100 12,77 100 90 11,61
200 165 135 19,15 160 135 18,57 150 125 17,41
37,48
VGU1345 13 300 265 205 30,76 260 205 30,18 250 195 29,02
400 365 280 42,37 360 275 41,79 350 265 40,63
500 465 350 53,97 460 345 53,39 450 340 52,23
600 565 420 65,58 560 415 65,00 550 410 63,84

NOTES:
(1) The connector pull-out strength has been evaluated by considering a 45° • For intermediate values of SPLATE linear interpolation is allowed.
angle to the grain and an effective length of the threaded part equal to Sg. • For the calculation process a timber characteristic density ρk = 385 kg/m3
(2) The connector tensile strength was calculated considering a 45° angle be- has been considered.
tween the fibres and the connector. • Dimensioning and verification of timber elements and steel plates must be
carried out separately.
GENERAL PRINCIPLES: • For a row of n connectors parallel to the Fv stress, it is recommended that
the effective load-bearing capacity is evaluated as :
• Characteristic values are consistent with EN 1995-1-1 and in accordance Rv,d,tot = nef · Rv,d with nef = max { 0,9 n ; n0,9 }
with ETA-11/0030.
• The design sliding strength of the joint is either the timber-side design
strength (RV,d) or the steel design strength (Rtens,d 45°), whichever is lower:

RV,k kmod
RV,d = min γM
Rtens,k 45°
γM2

The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
• F
or the correct realization of the joint, the fastener head should be fully
embedded into the VGU washer.

STRUCTURES | VGU | 203


INSTALLATION WITH THE AID OF A PRE-DRILL TEMPLATE

The pre-drill template makes it possible to prepare a 45° angle pre-drill to facilitate screwing.

1 2

Place the VGU washer in the slot provided and use the Using the template, prepare a pre-drill using a special bit
JIG-VGU template of the correct diameter. (at least 20 mm).

NO
IMPACT
S
G
V

X
X

45°
S
G
V

X
X

3 4

Position the screw and respect the 45° angle of insertion. Screw down with a NON-PULSED screw gun, stopping at
about 1 cm from the washer.

Mins
X
X

S
X
mm

X
X

X
S
X

S
G

S
V

V
X

G
X

X V
X
10

X
X

S
5-

S
G
V

X
X

S
G
V

X
X

S
G
V

X
X

S
G
V

X
X

5 6

Complete screwing using a torque wrench, applying the Perform the operation for all washers.
correct maximum insertion moment.

204 | VGU | STRUCTURES


INSTALLATION WITHOUT PRE-DRILL
L

LF

Place the steel plate on the wood and set the VGU washers in the slots provided.

NO
IMPACT
S
G
V

X
X

45°
S

G
V

X
X

X
1 2

Position the screw and respect the 45° angle of insertion. Screw down with a NON-PULSED screw gun, stopping at
about 1 cm from the washer.

Mins
X

S
X
mm

G
V

X
X

S
X

X
S
G

S
V

G
V
X

G
X

X V
X
10

X
X

S
5-

S
G
V

X
X

S
G
V

X
X

S
G
V

X
X

S
G
V

X
X

3 4

Complete screwing using a torque wrench, applying the Perform the operation for all washers.
correct maximum insertion moment.

TIMBER-TO-STEEL APPLICATION
RECOMMENDED INSERTION MOMENT: Mins
NO
IMPACT

VGS Ø9 Mins = 20 Nm
VGS Ø11 L < 400 mm Mins = 30 Nm Mins
VGS Ø11 L ≥ 400 mm Mins = 40 Nm
m

S
G
V

m
X

X S
G
V
X

X
X
10

VGS Ø13 Mins = 50 Nm


5-

STRUCTURES | VGU | 205


RTR ETA-11/0030

STRUCTURAL REINFORCEMENT SYSTEM

CERTIFICATION
Structural reinforcement bar with wood thread, CE certified according
to ETA-11/0030.

RAPID DRY SYSTEM


Large reinforcement bar (diameter: 16 mm and 20 mm) with wood thread
that does not require resin or adhesives.

STRUCTURAL REINFORCEMENT
High tensile strength steel (fy,k = 640 N/mm2), ideal for structural rein-
forcements.

CHARACTERISTICS
FOCUS perpendicular stress reinforcement
ADAPTOR attachment bushing
DIAMETER 16,0 | 20,0 mm
LENGTH 2200 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
• high density woods
Service classes 1 and 2.

206 | RTR | STRUCTURES


GEOMETRY AND MECHANICAL CHARACTERISTICS

d2 d1

Nominal diameter d1 [mm] 16 20


Tip diameter d2 [mm] 12,0 15,0
Pre-drilling hole diameter(1) dV [mm] 13,0 16,0
Characteristic yield
My,k [Nm] 200 350
moment
Characteristic
fax,k [N/mm2] 9,0 9,0
withdrawal-resistance parameter(2)
Associated density ρa [kg/m3] 350 350
Characteristic tensile
ftens,k [kN] 100,0 145,0
strength
(1) Pre-drilling valid for softwood.
(2) Valid for softwood - maximum density 440 kg/m3.

CODES AND DIMENSIONS

d1 CODE L pcs
[mm] [in] [mm] [in]
16
RTR162200 2200 86 5/8 10
0.63
20
RTR202200 2200 86 5/8 5
0.79

TOOLS
2
CODE description pcs

1 DUD38RLE drill 1 3

2 DUVSKU safety clutch 1


4
3 DUD38SH screw handle 1
5
4 ATCS2010 sleeve adaptor Ø16-20 1

5 ATCS007 sleeve Ø16 1 1 6

6 ATCS008 sleeve Ø20 1


USE AS WB SCREWDRIVER
Further information on page 362. For 16 and 20 mm structural reinforcement bars.

LARGE SPANS
The length of the bars allows for fast and se-
cure reinforcements on any size beam. Ideal
for factory installations.

STRUCTURES | RTR | 207


MINIMUM DISTANCES FOR AXIAL STRESSES(1)

a2,CG
a2
a2,CG

a1,CG a1

a1,CG a1

RODS INSERTED WITH PRE-DRILLING HOLE


d1 [mm] 16 20
a1 [mm] 5∙d 80 100
a2 [mm] 5∙d 80 100
a1,CG [mm] 10∙d 160 200
a2,CG [mm] 4∙d 64 80
d = nominal rod diameter

MINIMUM DISTANCES FOR SHEAR LOADS (1)

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

RODS INSERTED WITH PRE-DRILLING HOLE RODS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 16 20 16 20
a1 [mm] 5∙d 80 100 4∙d 64 80
a2 [mm] 3∙d 48 60 4∙d 64 80
a3,t [mm] 12∙d 192 240 7∙d 112 140
a3,c [mm] 7∙d 112 140 7∙d 112 140
a4,t [mm] 3∙d 48 60 7∙d 112 140
a4,c [mm] 3∙d 48 60 3∙d 48 60
d = nominal rod diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
(1)
Minimum distances are in accordance with EN 1995:2014 as per
ETA-11/0030 considering a timber characteristic density of ρ k ≤ 420 kg/m3.

208 | RTR | STRUCTURES


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

TENSION(1) SHEAR

geometry thread withdrawal(2) steel tension timber-to-timber

≥ Sg Sg

Sg Sg

d1

timber steel
d1 Sg Rax,k Rtens,k RV,k
[mm] [mm] [kN] [kN] [kN]
100 15,54 18,87
200 31,08 22,75
300 46,62 26,64
16 100,0
400 62,16 29,96
500 77,70 29,96
600 93,25 29,96
100 19,43 25,78
200 38,85 31,34
300 58,28 36,19
400 77,70 41,05
20 145,0
500 97,13 43,25
600 116,56 43,25
700 135,98 43,25
800 155,41 43,25

NOTES: GENERAL PRINCIPLES:


(1) The connector design resistance is the lowest between the timber side de- • C
 haracteristic values comply with the EN 1995:2014 standard in accord-
sign resistance (Rax,d) and the steel side resistance (Rtens,d). ance with ETA-11/0030.
Rax,k kmod • Design values can be obtained from characteristic values as follows:

Rax,d = min γM Rk kmod


Rtens,k Rd =
γM
γM2
(2) The axial resistance of the thread to withdrawal was calculated considering The coefficients γM and kmod should be taken according to the current
a 90° angle between the fibres and the connector and for a effective thread regulations used for the calculation.
length of Sg. • For the mechanical resistance values and the geometry of the rods, refer-
For intermediate values of Sg it is possible to linearly interpolate. ence was made to ETA-11/0030.
• For the calculation process a timber characteristic density ρk = 385 kg/m3
has been considered.
• Dimensioning and verification of the timber elements must be carried out
separately.

STRUCTURES | RTR | 209


DGZ BIT INCLUDED ETA-11/0030

DOUBLE THREADED SCREW FOR INSULATION

CONTINUOUS INSULATION
Allows continuous, uninterrupted fastening of roof insulation package.
Prevents thermal bridges in compliance with energy saving regulations.

CERTIFICATION
Connector for hard, soft and façade insulation, CE certified according to
ETA-11/0030. Available in two diameters (7 and 9 mm) to optimize the
number of fasteners.

MYPROJECT
Free MyProject software for customized fastening calculation, accom-
panied by a calculation report.

CYLINDRICAL HEAD
Cylindrical head countersunk in the joist. Also certified in versions with
flange head (DGT) and countersunk head (DGS).

CHARACTERISTICS
FOCUS insulation package fasteners
HEAD cylindrical, countersunk
DIAMETER 7,0 | 9,0 mm
LENGTH from 220 to 520 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
• timber based panels
• solid timber
• glulam (Glued Laminated Timber)
• CLT, LVL
• high density woods
Service classes 1 and 2.

210 | DGZ | STRUCTURES


THERMAL BRIDGES
Thanks to the double thread, the roof insula-
tion package can be fixed to the supporting
structure without any interruptions, thus pre-
venting thermal bridges. Certification specific
for fastening on both hard and soft insulation.

VENTILATED FAÇADES
Also tested, certified and calculated on
façade joists and with high density woods
such as Microllam® LVL.

STRUCTURES | DGZ | 211


Fastening of hard insulation on a flat roof.

Ideal for fastening hard insulation, even of great thickness.

GEOMETRY AND MECHANICAL CHARACTERISTICS

X
Z

dK d2 d1
G

X
D

dS
60 100
L

Nominal diameter d1 [mm] 7 9


Head diameter dK [mm] 9,5 11,5
Tip diameter d2 [mm] 4,60 5,90
Shank diameter dS [mm] 5,00 6,50
Characteristic yield
My,k [Nm] 14,2 27,2
moment
Characteristic
fax,k [N/mm2] 11,7 11,7
withdrawal-resistance parameter(1)
Associated density ρa [kg/m3] 350 350
Characteristic tensile
ftens,k [kN] 15,4 25,4
strength
(1) Valid for softwood - maximum density 440 kg/m3.

212 | DGZ | STRUCTURES


CODES AND DIMENSIONS

d1 CODE L pcs d1 CODE L pcs


[mm] [in] [mm] [in] [mm] [in] [mm] [in]
DGZ7220 220 8 5/8 50 DGZ9240 240 9 1/2 50
7 DGZ7260 260 10 1/4 50 DGZ9280 280 11 50
0.28 DGZ7300 300 11 3/4 50 DGZ9320 320 12 5/8 50
TX 30 DGZ7340 340 13 3/8 50 9 DGZ9360 360 14 1/4 50
0.36
DGZ7380 380 15 50 TX 40 DGZ9400 400 15 3/4 50
DGZ9440 440 17 1/4 50
DGZ9480 480 19 50

NOTES: upon request, EVO version is available. DGZ9520 520 20 1/2 50

SCREW SELECTION
MINIMUM SCREW LENGTH DGZ Ø7

batten thickness(*)
insulation + [mm]
wooden s = 30 s = 40 s = 50 s = 60 s = 80
planking A B A B A B A B A B
thickness
DGZ at 60° DGZ at 90° DGZ at 60° DGZ at 90° DGZ at 60° DGZ at 90° DGZ at 60° DGZ at 90° DGZ at 60° DGZ at 90°
[mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm]
60 220 220 220 220 220 220 220 220 260 220
80 220 220 220 220 220 220 260 220 260 220
100 220 220 260 220 260 220 260 220 300 260
120 260 220 260 220 260 260 300 260 300 260
140 260 260 300 260 300 260 300 260 340 300
160 300 260 300 260 340 300 340 300 340 300
180 340 300 340 300 340 300 340 300 380 340
200 340 300 340 300 380 340 380 340 - 340
220 380 340 380 340 380 340 380 340 - 380
240 380 340 380 340 - 380 - 380 - 380
260 - 380 - 380 - 380 - 380 - -
280 - 380 - 380 - - - - - -
(*) Minimum batten thicknesses: DGZ Ø7 mm: base/height = 50/30 mm.

MINIMUM SCREW LENGTH DGZ Ø9

batten thickness(*)
insulation + [mm]
wooden s = 30 s = 40 s = 50 s = 60 s = 80
planking A B A B A B A B A B
thickness
DGZ at 60° DGZ at 90° DGZ at 60° DGZ at 90° DGZ at 60° DGZ at 90° DGZ at 60° DGZ at 90° DGZ at 60° DGZ at 90°
[mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm] Lmin [mm]
60 - - 240 240 240 240 240 240 240 240
80 - - 240 240 240 240 240 240 280 240
100 - - 240 240 240 240 280 240 280 240
120 - - 280 240 280 240 280 240 320 280
140 - - 280 240 320 280 320 280 320 280
160 - - 320 280 320 280 320 280 360 320
180 - - 320 280 360 320 360 320 400 320
200 - - 360 320 360 320 400 320 400 360
220 - - 400 320 400 360 400 360 440 360
240 - - 400 360 400 360 440 360 440 400
260 - - 440 360 440 400 440 400 480 400
280 - - 440 400 480 400 480 400 480 440
300 - - 480 400 480 400 480 440 520 440
320 - - 520 440 520 440 520 480 520 480
340 - - 520 480 520 480 - - - -
(*) Minimum batten thicknesses: DGZ Ø9 mm: base/height = 60/40 mm.
NOTE: check that the screw tip does not stick out from the rafter.

STRUCTURES | DGZ | 213


FASTENINGS FOR CONTINUOUS INSULATION

Installation of a continuous layer of insulation guarantees excellent energy performance, eliminating thermal
bridges. Efficacy is limited by the proper use of appropriate fastening systems, calculated correctly.

CRUSHING OF THE INSULATION

Crushing of the insulation (for very heavy loads)


leads to a reduction in the ventilation chamber.
As a result, aeration in the hollow space, and thus
its efficacy, is reduced.
Additionally, it is possible that the insulating
power of the package is diminished, with the
thickness being reduced after the crushing. To
prevent this problem, it is necessary to verify that
the compression resistance of the insulation σ
(10%) is sufficient to resist the stresses in ques-
tion. Alternatively, it is possible to place screws
tilted in the two directions so that the load is en-
tirely transferred by the connectors and does not
deform the layer of insulation in any way.

SLIP OF THE INSULATION AND THE COATING

The load applied to the structure has a com-


F ponent parallel to the layer/façade which
F leads, if not restrained (for example through
“type A” screws), to a possible shift in the ex-
ternal layers, causing probable damage to the
cover surface and the insulating power. Clear
thermal, aesthetic and waterproofing prob-
lems then result.

THERMAL BRIDGES

it is important that the insulation be continuous,


without breaks or cracks, to optimise perfor-
mance and minimise thermal bridges. Thermal
bridges due to over frequent anchoring or those
placed erroneously are also to be avoided.

214 | DGZ | STRUCTURES


COVER

SOFT INSULATION
Low compression resistance (σ (10%) < 50 kPa - EN 826)
N
• the insulation does not support the load component perpendicular to
F the layer (N);
A
• screws are subject to tensile (A) and compression (B) stresses;

B
• for very high negative wind pressure loads, additional screws are in-
serted (C);
A
• adequate batten thickness makes it possible to optimise the number
B of fastenings.
C

HARD INSULATION

High compression resistance (σ(10%) ≥ 50 kPa - EN 826)


N
• the insulation supports the load component perpendicular to the lay-
F er (N);
A
• the screws are subject only to tensile stress (A);
A • for very high negative wind pressure loads, additional screws are in-
serted (C);
A • adequate batten thickness makes it possible to optimise the number
of fastenings.
C

FAÇADE

F • the screws must support both positive and negative wind pressure
loads (±N) and vertical forces (F);
A
• installation: one screw in tension(A) and one perpendicular to the
C façade (C), tense or compressed as a function of N, or screws inclined
in the 2 directions;
±N
• the screws (C) must support both the positive and negative wind pres-
A sure loads (±N) and are alternatively subjected to compression and
tensile stresses.
C

STRUCTURES | DGZ | 215


POSSIBLE CONFIGURATIONS

A B
60° A
60°
60°
90° A 90° 90° A
A
A
A 90°
B B
A A
B B 60°

RIGID ROOF INSULATION SOFT ROOF INSULATION FACADE INSULATION


σ(10%) ≥ 50 kPa (EN826) σ(10%) < 50 kPa (EN826)

NOTE: The number and placement of the fastenings depends on the geometry of the surfaces, the type of insulation and the loads acting
on them.

MINIMUM DISTANCES FOR AXIAL STRESSES (1)

a2,CG

a2

a
1
a2,CG

a1,CG a1,CG

SCREWS INSERTED WITH AND WITHOUT PRE-DRILLING HOLE


d1 [mm] 7 9
a1 [mm] 5∙d 35 45
a2 [mm] 5∙d 35 45
a1,CG [mm] 10∙d 70 90
a2,CG [mm] 4∙d 28 36
d = nominal screw diameter

NOTES:
(1) T he minimum distances for connectors stressed axially are independent of
the insertion angle of the connector and the angle of the force with respect
to the grain, in accordance with ETA-11/0030.

216 | DGZ | STRUCTURES


CALCULATION EXAMPLE: FASTENING OF CONTINUOUS INSULATION WITH DGZ

PROJECT DATA

Roof loads
Permanent load gk 0,45 kN/m2
Snow load s 1,70 kN/m2
Positive wind pressure we 0,30 kN/m2
Negative wind pressure we -0,30 kN/m2
Ridge piece height z 8,00 m

Building dimensions
Building length L 11,50 m
Building width B 8,00 m

Roof geometry
Layer slope α 30% = 16,7°
Ridge piece position L1 5,00 m

INSULATION PACKAGE FIGURES

Rafters bt x ht 120 x 160 mm GL24h spacing i 0,70 m


Wooden planking S1 20.00 mm
Tile support battens eb 0,33 m
Insulation layer S2 160.00 mm Wood grain (soft) σ(10%) 0,03 N/mm2
Battens bL x hL 60 x 40 mm C24 Commercial length LL 4,00 m

CONNECTOR SELECTION - OPTION 1 - DGZ Ø7 CONNECTOR SELECTION - OPTION 2 - DGZ Ø9

Screw under tension 7 x 300 mm 60° angle: 126 piece Screw under tension 9 x 320 mm 60° angle: 108 piece
Compressed screw 7 x 300 mm 60° angle: 126 piece Compressed screw 9 x 320 mm 60° angle: 108 piece
Perpendicular screw 7 x 260 mm 90° angle: 72 piece Perpendicular screw 9 x 280 mm 90° angle: 36 piece

Connector placement diagram. Roof batten calculation.

STRUCTURES | DGZ | 217


SBD BIT INCLUDED EN 14592

SELF-DRILLING DOWEL

STEEL AND ALUMINUM


Special self-perforating timber-to-metal tip geometry that reduces the
possibility of breakage. The cylindrical countersunk head ensures an op-
timal appearance and meets fire-resistance requisites.

INCREASED DIAMETER
The diameter of 7,5 mm ensures a shear resistance of over 15 % and en-
ables optimisation of the number of fasteners.

DOUBLE THREAD
The thread up against the tip (b1) facilitates screwing. The increased
length of the under head thread (b2) makes for fast, accurate closure.

CHARACTERISTICS
FOCUS self-drilling, timber-to-metal-to-timber
VIDEO
HEAD cylindrical, countersunk
Scan the QR Code and watch
DIAMETER 7,5 mm the video on our YouTube
channel
LENGTH from 55 to 235 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
Self-drilling system for concealed timber-to.
steel joints. Can be used with screw guns run-
ning at 600-1500 rpm with:
• steel S235 ≤ 10,0 mm
• steel S275 ≤ 8,0 mm
• steel S355 ≤ 6,0 mm
• ALUMINI, ALUMIDI and ALUMAXI brackets
Service classes 1 and 2.

218 | SBD | STRUCTURES


KNEE BEAM
Ideal for joining head beams and making con-
tinuous beams, restoring shear forces and
momentum. The small dowel diameter guar-
antees joints that offer high stiffness.

MOMENT RESISTING JOINT


Also certified, tested and calculated for fas-
tening standard Rothoblaas plates such as the
TYP X pillar-holder.

STRUCTURES | SBD | 219


Fastening of Rothoblaas pillar-holder with internal knife plate F70. Rigid ”knee“ joint with
double internal plate (LVL).

GEOMETRY AND MECHANICAL CHARACTERISTICS

dK d1

b2 b1 Lp
L

Nominal diameter d1 [mm] 7,5


Head diameter dK [mm] 11,0
Tip length Lp [mm] 19,0
Effective length Leff [mm] L - 8,0
Characteristic yield
My,k [Nm] 42,0
moment

INSTALLATION
s s
plate
single plate double plate
[mm] [mm]
S235 steel 10,0 8,0
S275 steel 8,0 6,0
S355 steel 6,0 5,0
ALUMINI 6,0 -
ALUMIDI 6,0 - s s s
ALUMAXI 10,0 - single
ta plate
ta tdouble
a ti plate
ta
Timber-to-metal plate - timber shear joint B B
Recommended pressure: ≈ 40 kg
Recommended screwing: ≈ 1000 - 1500 rpm (steel plate)
≈ 600 - 1000 rpm (aluminium plate)

220 | SBD | STRUCTURES


CODES AND DIMENSIONS

d1 CODE L b2 b1 pcs
[mm] [in] [mm] [in] [mm] [mm]
SBD7555 55 2 3/16 10 - 50
SBD7575 75 2 15/16 10 8 50
SBD7595 95 3 3/4 10 15 50
SBD75115 115 4 1/2 10 15 50
7,5 SBD75135 135 5 5/16 10 15 50
0.30
TX 40 SBD75155 155 6 1/8 20 15 50
SBD75175 175 6 7/8 40 15 50
SBD75195 195 7 11/16 40 15 50
SBD75215 215 8 7/16 40 15 50
SBD75235 235 9 1/4 40 15 50

MINIMUM DISTANCES FOR CONNECTORS SUBJECTED TO SHEAR STRESS(1)

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

d1 [mm] 7,5 7,5


a1 [mm] 5∙d 38 3∙d 23
a2 [mm] 3∙d 23 3∙d 23
a3,t [mm] max (7∙d; 80) 80 max (7∙d; 80) 80
a3,c [mm] max (3.5∙d; 40) 40 max (3.5∙d; 40) 40
a4,t [mm] 3∙d 23 4∙d 30
a4,c [mm] 3∙d 23 3∙d 23
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
(1) Minimum distances in accordance with EN 1995:2014.

STRUCTURES | SBD | 221


TIMBER-TO-STEEL AND ALUMINIUM STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014
SHEAR Rv,k - 1 INTERNAL PLATE

DOWEL HEAD INSERTION DEPTH 0 mm

FASTENING SBD [mm] 7,5x55 7,5x75 7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235

Beam width B [mm] 60 80 100 120 140 160 180 200 220 240
Head insertion
p [mm] 0 0 0 0 0 0 0 0 0 0
depth
Exterior wood ta [mm] 27 37 47 57 67 77 87 97 107 117

0° 7,48 9,20 10,18 11,46 12,91 13,69 13,95 13,95 13,95 13,95
s 30° 6,89 8,59 9,40 10,51 11,77 12,71 13,21 13,21 13,21 13,21
Rv,k load-to-grain
ta ta 45° 6,41 8,09 8,77 9,72 10,84 11,90 12,53 12,57 12,57 12,57
[kN] angle
B 60° 6,00 7,67 8,24 9,08 10,07 11,15 11,78 12,02 12,02 12,02
90° 5,66 7,31 7,79 8,53 9,42 10,40 11,14 11,54 11,54 11,54

DOWEL HEAD INSERTION DEPTH 15 mm

FASTENING SBD [mm] 7,5x55 7,5x75 7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235

Beam width B [mm] 80 100 120 140 160 180 200 220 240 -
Head insertion
p [mm] 15 15 15 15 15 15 15 15 15 -
depth
Exterior wood ta [mm] 37 47 57 67 77 87 97 107 117 -

0° 8,47 9,10 10,13 11,43 12,89 13,95 13,95 13,95 13,95 -


p s 30° 7,79 8,49 9,35 10,48 11,75 13,06 13,21 13,21 13,21 -
Rv,k load-to-grain
ta ta 45° 7,25 8,00 8,72 9,70 10,82 12,04 12,57 12,57 12,57 -
[kN] angle
B 60° 6,67 7,58 8,19 9,05 10,05 11,14 12,02 12,02 12,02 -
90° 6,14 7,23 7,74 8,50 9,40 10,39 11,40 11,54 11,54 -

CORRECTIVE COEFFICIENT kF FOR DIFFERENT DENSITIES ρk

Strength class C24 GL22h C30 GL24h C40/GL32c GL28h D24 D30
ρk [kg/m3] 350 370 380 385 400 425 485 530
kF 0,91 0,96 0,99 1,00 1,02 1,05 1,12 1,17
For different densities ρ k the timber-side design strength is calculated as: R ' V,d = R V,d · kF.

EFFECTIVE NUMBER OF DOWELS nef FOR α = 0°

a1 [mm]
SBD no. 40 50 60 70 80 90 100 120 140
2 1,49 1,58 1,65 1,72 1,78 1,83 1,88 1,97 2,00
3 2,15 2,27 2,38 2,47 2,56 2,63 2,70 2,83 2,94
4 2,79 2,95 3,08 3,21 3,31 3,41 3,50 3,67 3,81
nef
5 3,41 3,60 3,77 3,92 4,05 4,17 4,28 4,48 4,66
6 4,01 4,24 4,44 4,62 4,77 4,92 5,05 5,28 5,49
7 4,61 4,88 5,10 5,30 5,48 5,65 5,80 6,07 6,31
In the case of multiple dowels placed parallel to the fibres, the effective number must be taken into account: R ' V,d = R V,d · nef.

222 | SBD | STRUCTURES


TIMBER-TO-STEEL AND ALUMINIUM STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014
SHEAR Rv,k - 2 INTERNAL PLATES

DOWEL HEAD INSERTION DEPTH 0 mm

FASTENING SBD [mm] 7,5x55 7,5x75 7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235

Beam width B [mm] - - - - 140 160 180 200 220 240


Head insertion
p [mm] - - - - 0 0 0 0 0 0
depth
Exterior wood ta [mm] - - - - 37 42 48 56 66 74
Interior wood ti [mm] - - - - 54 64 72 76 76 80

s s 0° - - - - 21,03 23,07 24,25 25,28 26,71 27,41


ta ti ta 30° - - - - 19,19 21,17 22,71 23,60 24,85 25,72
B Rv,k load-to-grain
45° - - - - 17,69 19,62 21,08 22,19 23,30 24,25
[kN] angle
60° - - - - 16,45 18,32 19,62 20,75 21,73 22,84
90° - - - - 15,40 17,09 18,40 19,40 20,28 21,48

DOWEL HEAD INSERTION DEPTH 10 mm

FASTENING SBD [mm] 7,5x55 7,5x75 7,5x95 7,5x115 7,5x135 7,5x155 7,5x175 7,5x195 7,5x215 7,5x235

Beam width B [mm] - - - 140 160 180 200 220 240 -


Head insertion
p [mm] - - - 10 10 10 10 10 10 -
depth
Exterior wood ta [mm] - - - 37 42 48 56 66 74 -
Interior wood ti [mm] - - - 54 64 72 76 76 80 -

p s s 0° - - - 19,31 22,20 23,23 24,02 25,28 26,42 -


ta ti ta 30° - - - 17,49 20,25 21,86 22,52 23,60 24,59 -
Rv,k load-to-grain
B 45° - - - 16,01 18,65 20,36 21,26 22,19 23,07 -
[kN] angle
60° - - - 14,78 17,32 19,02 19,94 20,75 21,78 -
90° - - - 13,75 16,07 17,88 18,68 19,40 20,52 -

ALUMINI, ALUMIDI AND ALUMAXI


For applications with ALUMINI, ALUMIDI and ALUMAXI
brackets see the catalogue "PLATES AND CONNEC-
TORS FOR TIMBER" and the MyProject software on
www.rothoblaas.com.

GENERAL PRINCIPLES:
• Characteristic values according to EN 1995-1-1. • The values provided are calculated using 5 mm thick plates, a 6 mm thick
• Design values can be obtained from characteristic values as follows: milled cut in the timber and a single SBD dowel.
• For the calculation process a timber characteristic density ρk = 385 kg/m3
Rk kmod has been considered.
Rd =
γM • Sizing and verification of the timber elements and metal plates must be
done separately.
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.

STRUCTURES | SBD | 223


CTC BIT INCLUDED ETA-19/0244

CONNECTOR FOR
TIMBER-TO-CONCRETE FLOORS

CERTIFICATION
Timber-to-concrete fastener with specific CE certification according to
ETA-19/0244. Tested and calculated with parallel and crossed arrange-
ment of 45° and 30° connectors, with and without wooden planking.

RAPID DRY SYSTEM


Approved system, self-drilling, reversible, fast and minimally invasive.
Optimum static and noise performances, both for new projects and
structural restoration.

COMPLETE RANGE
Self-perforating tip with notch and countersunk cylindrical head. Availa-
ble in two diameters (7 and 9 mm) and two lengths (160 and 240 mm) to
optimize the number of fasteners.

INSTALLATION INDICATOR
During installation, the under head counter-thread serves as “correct instal-
lation” indicator and increases the fastener tightness inside the concrete.

CHARACTERISTICS
FOCUS CE marking, timber-to-concrete
HEAD cylindrical, countersunk
DIAMETER 7,0 | 9,0 mm
LENGTH 160 | 240 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
Screw connection system for timber-to-con-
crete floors, approved for:
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
Service classes 1 and 2.

224 | CTC | STRUCTURES


TIMBER-TO-CONCRETE
Ideal for composite floors and for renovation
of existing floors. Stiffness values also calcu-
lated in the presence of vapour barrier sheet or
soundproofing layer.

STRUCTURAL RESTORATION
Values also tested, certified and calculated for
high density woods. Certification specific for
application in timber-concrete structures.

STRUCTURES | CTC | 225


Composite timber-concrete floors on CLT panel with 45° connectors Composite timber-concrete floors with 30°
arranged in a single row. connectors arranged in a double row.

GEOMETRY AND MECHANICAL CHARACTERISTICS

C
dS

d2 d1
X

dK
C
X
T

X
C

b1 b2
L

Nominal diameter d1 [mm] 7 9


Head diameter dK [mm] 9,50 11,50
Tip diameter d2 [mm] 4,60 5,90
Shank diameter dS [mm] 5,00 6,50
Pre-drilling hole diameter dV [mm] 4,0 5,0
Characteristic yield moment My,k [Nm] 20 38
Characteristic withdrawal-resistance parameter fax,k [N/mm2] 11,3 11,3
Associated density ρa [kg/m3] 350 350
Characteristic tensile strength f tens,k [kN] 20,0 30,0
crossed connectors at a 45°

Withdrawal-resistance parallel connectors at a 30° Fax,concrete, Rk [kN] 10,0 10,0


characteristic - concrete parallel connectors at a 45° angle, with soundproofing layer(1)
parallel connectors at a 45° angle, without soundproofing layer Fax,concrete, Rk [kN] 15,0 15,0

Coefficient of friction(2) µ [-] 0,25 0,25


(1)Resilient underscreed foil, in bitumen and polyester felt, like SILENT FLOOR.
(2)The friction component µ can be considered only in arrangement with inclined screws (30° and 45°) and without the soundproofing
layer.

GENERAL PRINCIPLES:
• The design shear strength of each crossed connector is the minimum be- • For the mechanical strength values and the geometry of the screws, refer-
tween the timber design shear strength (Rax,d), the concrete design shear ence was made to ETA-19/0244.
strength (Rax,concrete,d) and the steel design shear strength (Rtens,d):

Fax,α,Rd
Rv,Rd =(cos α + µ sin α) min ftens,d
Fax,concrete,Rd

226 | CTC | STRUCTURES


CODES AND DIMENSIONS

d1 CODE L b1 b2 pcs d1 CODE L b1 b2 pcs


[mm] [in] [mm] [in] [mm] [mm] [mm] [in] [mm] [in] [mm] [mm]
7 CTC7160 160 6 1/4 40 110 100 9 CTC9160 160 6 1/4 40 110 100
0.28 0.36
TX 30 CTC7240 240 9 1/2 40 190 100 TX 40 CTC9240 240 9 1/2 40 190 100

SLIP MODULUS Kser


connector arrangement connector arrangement
Kser [N/mm] Kser [N/mm]
with soundproofing layer(1) without soundproofing layer(1)
CTC Ø7 CTC Ø9 CTC Ø7 CTC Ø9

45° 45°

lef 16 lef 22 lef lef 48 lef 60 lef

45° parallels 45° parallels

30° 30°

lef 48 lef 48 lef lef 80 lef 80 lef

parallel at a 30° parallel at a 30°

45° 45° 45° 45°

lef
70 lef 100 lef lef
70 lef 100 lef

45° crossed 45° crossed


(1)Resilient underscreed foil, in bitumen and polyester felt, like SILENT FLOOR.
The Kser slip modulus is to be considered as relating to a single inclined connector or a pair of crossed connectors subject to a parallel
force at the slip surface.
Ief = depth of CTC connector pull-through into timber element, in millimetres.

MINIMUM DISTANCES FOR AXIAL STRESSES (1)

parallel arrangement crossed arrangement


45°/30° 45°
dc dc

db db

a1,CG a1 a2,CG a2 a2,CG ≥ a1 a2,CG a2,CG


a1,CG aCROSS

7 9
a1 [mm] 130∙sin(α) 130∙sin(α)
a2 [mm] 35 45
a1,CG [mm] 85 85
a2,CG [mm] 32 37
aCROSS [mm] 11 14
dc = thickness of concrete slab (50 mm ≤ dc ≤ 0.7 db)
db = height of timber beam (db ≥ 100 mm)

NOTES:
(1) The minimum distances for connectors stressed axially are compliant with
ETA-19/0244.

STRUCTURES | CTC | 227


STATIC VALUES CALCULATION STANDARD
NTC 2018 - UNI EN 1995:2014

PRELIMINARY SIZING OF VB CONNECTORS FOR TIMBER-TO-CONCRETE FLOORS


660
CALCULATION EXAMPLE LOADS 50
ts
distance between joists = 660 mm own weight (gk1) = timber beam + wooden planking + concrete slab
concrete slab thickness C20/25 = 50 mm permanent non-structural load (gk2) = 2 kN/m2 H
strain limit wist = ℓ/400 variable overload (qk) = 2 kN/m2
wnet,fin = ℓ/250 variable load duration = medium B

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013)


Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 10 18 26 38
CTC 7x160 7x240 7x240 7x240
120 x 160 - - -
distance[mm] 300/500 150/300 150/150 100/150
no. connectors/m2 5,1 7,8 9,8 12,8
45°
no. connectors per beam 12 18 30 42
CTC 7x160 7x240 7x240 7x240
120 x 200 - - -
distance[mm] 250/400 200/300 150/150 100/150
no. connectors/m2 5,2 6,8 10,1 12,7
no. connectors per beam 16 26 30 54
CTC 7x240 7x240 7x240 7x240
140 x 200 - - -
distance[mm] 200/350 150/200 120/250 100/100
Installation at a 45° angle, no. connectors/m2 6,1 8,8 9,1 14,9
without soundproofing no. connectors per beam 14 26 38 60
layer. CTC 7x240 7x240 7x240 7x240
140 x 240 - - -
distance[mm] 250/500 150/300 100/250 100/100
no. connectors/m2 4,7 7,9 10,5 15,2

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013)


Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 10 14 40 -
CTC 7x160 7x240 7x240
120 x 160 - - -
distance[mm] 300/500 180/500 100/100
no. connectors/m2 5,1 6,1 15,2
45° no. connectors per beam 8 12 28 68
CTC 7x160 7x160 7x240 7x240
120 x 200 - - -
distance[mm] 500/500 250/500 120/240 150/150(1)
no. connectors/m2 3,5 4,5 9,4 20,6
no. connectors per beam 12 22 60 96
CTC 7x240 7x240 7x240 7x240
140 x 200 - - -
distance[mm] 300/500 200/200 150/200(1) 150/200(2)
Installation at a 45° angle, no. connectors/m2 4,5 7,4 18,2 26,4
with soundproofing layer. no. connectors per beam 10 20 40 72
CTC 7x240 7x240 7x240 7x240
140 x 240 - - -
distance[mm] 500/500 200/400 100/200 150/200(1)
no. connectors/m2 3,4 6,1 11,0 18,2

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013)


Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 14 36 48 66
CTC 7x160 7x240 7x240 7x240
120 x 160 - - -
distance[mm] 500/500 150/300 120/250 100/200
no. connectors/m2 7,1 15,6 18,2 22,2
45° 45° no. connectors per beam 14 32 52 66 90
CTC 7x160 7x240 7x240 7x240 7x240
120 x 200 - -
distance[mm] 500/500 200/350 120/300 150/150 120/120
no. connectors/m2 6,1 12,1 17,5 20,0 24,8
no. connectors per beam 24 42 68 90 118
CTC 7x160 7x240 7x240 7x240 7x240
140 x 200 - -
distance[mm] 250/500 150/350 100/250 100/150 100/100
Crossed installation at a no. connectors/m2 9,1 14,1 20,6 24,8 29,8
45° angle, with or without no. connectors per beam 36 50 68 88
soundproofing layer. CTC 7x160 7x240 7x240 7x240
140 x 240 - - -
distance[mm] 250/250 150/300 120/240 100/200
no. connectors/m2 12,1 15,2 18,7 22,2

228 | CTC | STRUCTURES


STATIC VALUES CALCULATION STANDARD
NTC 2018 - UNI EN 1995:2014
CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013)
Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 8 18 24 38
CTC 9x160 9x240 9x240 9x240
120 x 160 - - -
distance[mm] 500/500 150/300 120/250 100/150
no. connectors/m2 4,0 7,8 9,1 12,8
45° no. connectors per beam 8 18 28 38 54
CTC 9x240 9x240 9x240 9x240 9x240
120 x 200 - -
distance[mm] 450/500 200/300 120/250 100/200 100/100
no. connectors/m2 3,5 6,8 9,4 11,5 14,9
no. connectors per beam 16 24 34 46 60
CTC 9x240 9x240 9x240 9x240 9x240
140 x 200 - -
distance[mm] 250/250 150/250 100/250 100/150 100/100
Installation at a 45° angle, no. connectors/m2 6,1 8,1 10,3 12,7 15,2
without soundproofing no. connectors per beam 16 26 34 44
layer. CTC 9x240 9x240 9x240 9x240
140 x 240 - - -
distance[mm] 300/300 200/200 120/250 100/200
no. connectors/m2 5,4 7,9 9,4 11,1

CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013)


Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 8 14 32
CTC 9x160 9x240 9x240
120 x 160 - - - -
distance[mm] 500/500 200/350 100/150
no. connectors/m2 4,0 6,1 12,1
45°
no. connectors per beam 8 20 38 60
CTC 9x240 9x240 9x240 9x240
120 x 200 - - -
distance[mm] 400/500 150/300 100/150 150/200(1)
no. connectors/m2 3,5 7,6 12,8 18,2
no. connectors per beam 16 30 52 92
CTC 9x240 9x240 9x240 9x240
140 x 200 - - -
distance[mm] 250/250 150/150 150/250(1) 100/150(1)
Installation at a 45° angle, no. connectors/m2 6,1 10,1 15,8 25,3
with soundproofing layer. no. connectors per beam 16 34 54 80
CTC 9x160 9x160 9x240 9x240
140 x 240 - - -
distance[mm] 300/300 150/150 100/100 150/150(1)
no. connectors/m2 5,4 10,3 14,9 20,2

CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013)


Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 14 28 54
CTC 9x160 9x160 9x160
120 x 160 - - - -
distance[mm] 500/500 200/300 100/250
no. connectors/m2 7,1 12,1 20,5
45° 45° no. connectors per beam 14 30 50 74
CTC 9x160 9x160 9x160 9x240
120 x 200 - - -
distance[mm] 500/500 200/400 130/260 100/200
no. connectors/m2 6,1 11,4 16,8 22,4
no. connectors per beam 24 44 74 90
CTC 9x160 9x160 9x240 9x240
140 x 200 - - -
distance[mm] 250/500 150/300 100/200 100/150
Crossed installation at a no. connectors/m2 9,1 14,8 22,4 24,8
45° angle, with or without no. connectors per beam 30 50 74 98
soundproofing layer. CTC 9x160 9x160 9x240 9x240
140 x 240 - - -
distance[mm] 300/300 150/300 100/250 100/150
no. connectors/m2 10,1 15,2 20,4 24,7

NOTES: min pitch max pitch min pitch


For notes see page 231.

L/4 L/2 L/4

STRUCTURES | CTC | 229


STATIC VALUES CALCULATION STANDARD
EN 1995:2014

PRELIMINARY SIZING OF VB CONNECTORS FOR TIMBER-TO-CONCRETE FLOORS


660
CALCULATION EXAMPLE LOADS 50
ts
distance between joists = 660 mm own weight (gk1) = timber beam + wooden planking + concrete slab
concrete slab thickness C20/25 = 50 mm permanent non-structural load (gk2) = 2 kN/m2 H
strain limit wist = ℓ/400 variable overload (qk) = 2 kN/m2
wnet,fin = ℓ/250 variable load duration = medium B

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013)


Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 8 12 20 32
CTC 7x160 7x240 7x240 7x240
120 x 160 - - -
distance[mm] 500/500 250/500 150/300 100/250
no. connectors/m2 4,0 5,2 7,6 10,8
45°
no. connectors per beam 8 12 22 34
CTC 7x160 7x240 7x240 7x240
120 x 200 - - -
distance[mm] 500/500 250/500 150/350 100/300
no. connectors/m2 3,5 4,5 7,4 10,3
no. connectors per beam 10 18 28 40
CTC 7x240 7x240 7x240 7x240
140 x 200 - - -
distance[mm] 400/500 200/350 130/260 100/200
Installation at a 45° angle, no. connectors/m2 3,8 6,1 8,5 11,0
without soundproofing no. connectors per beam 10 20 28 44
layer. CTC 7x240 7x240 7x240 7x240
140 x 240 - - -
distance[mm] 400/500 200/400 150/300 100/200
no. connectors/m2 3,4 6,1 7,7 11,1

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013)


Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 8 14 40
CTC 7x160 7x240 7x240
120 x 160 - - - -
distance[mm] 500/500 200/400 100/100
no. connectors/m2 4,0 6,1 15,2
45° no. connectors per beam 10 12 28 68
CTC 7x160 7x240 7x240 7x240
120 x 200 - - -
distance[mm] 400/400 300/500 120/240 150/150(1)
no. connectors/m2 4,3 4,5 9,4 20,6
no. connectors per beam 8 22 52 108
CTC 7x240 7x240 7x240 7x240
140 x 200 - - -
distance[mm] 500/500 150/300 150/300(1) 100/100(1)
Installation at a 45° angle, no. connectors/m2 3,0 7,4 15,8 29,8
with soundproofing layer. no. connectors per beam 10 12 34 64
CTC 7x240 7x240 7x240 7x240
140 x 240 - - -
distance[mm] 500/500 400/500 140/200 150/250(1)
no. connectors/m2 3,4 3,6 9,4 16,2

CONNECTOR CTC Ø7 - Glulam GL 24h (EN 14080:2013)


Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 14 26 38 62
CTC 7x160 7x240 7x240 7x240
120 x 160 - - -
distance[mm] 500/500 200/400 150/300 100/250
no. connectors/m2 7,1 11,3 14,4 20,9
45° 45° no. connectors per beam 14 28 44 58 80
CTC 7x240 7x240 7x240 7x240 7x240
120 x 200 - -
distance[mm] 500/500 200/500 150/300 150/200 100/200
no. connectors/m2 6,1 10,6 14,8 17,6 22,0
no. connectors per beam 24 36 66 74 88
CTC 7x240 7x240 7x240 7x240 7x240
140 x 200 - -
distance[mm] 280/500 180/360 100/300 100/250 100/200
Crossed installation at a no. connectors/m2 9,1 12,1 20,0 20,4 22,2
45° angle, with or without no. connectors per beam 26 38 58 78
soundproofing layer. CTC 7x240 7x240 7x240 7x240
140 x 240 - - -
distance[mm] 350/350 200/350 150/250 150/150
no. connectors/m2 8,8 11,5 16,0 19,7

230 | CTC | STRUCTURES


STATIC VALUES CALCULATION STANDARD
EN 1995:2014
CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013)
Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 8 18 20 32
CTC 9x160 9x240 9x240 9x240
120 x 160 - - -
distance[mm] 500/500 150/300 150/300 100/250
no. connectors/m2 4,0 7,8 7,6 10,8
45° no. connectors per beam 8 14 22 28 40
CTC 9x240 9x240 9x240 9x240 9x240
120 x 200 - -
distance[mm] 500/500 250/400 150/300 130/250 100/200
no. connectors/m2 3,5 5,3 7,4 8,5 11,0
no. connectors per beam 12 20 28 40 60
CTC 9x240 9x240 9x240 9x240 9x240
140 x 200 - -
distance[mm] 350/350 200/300 130/250 100/200 100/100
Installation at a 45° angle, no. connectors/m2 4,5 6,7 8,5 2,0 15,2
without soundproofing no. connectors per beam 12 20 30 44
layer. CTC 9x240 9x240 9x240 9x240
140 x 240 - - -
distance[mm] 350/500 200/400 150/250 100/200
no. connectors/m2 4,0 6,1 8,3 11,1

CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013)


Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 8 12 30
CTC 9x160 9x240 9x240
120 x 160 - - - -
distance[mm] 500/500 300/300 100/200
no. connectors/m2 4,0 5,2 11,4
45°
no. connectors per beam 8 12 34 50
CTC 9x240 9x240 9x240 9x240
120 x 200 - - -
distance[mm] 500/500 300/400 100/200 100/100
no. connectors/m2 3,5 4,5 11,4 15,2
no. connectors per beam 12 22 50 72
CTC 9x240 9x240 9x240 9x240
140 x 200 - - -
distance[mm] 350/350 150/300 100/100 150/150(1)
Installation at a 45° angle, no. connectors/m2 4,5 7,4 15,2 19,8
with soundproofing layer. no. connectors per beam 10 26 46 60
CTC 9x240 9x240 9x240 9x240
140 x 240 - - -
distance[mm] 500/500 200/200 100/150 100/100
no. connectors/m2 3,4 7,9 12,7 15,2

CONNECTOR CTC Ø9- Glulam GL 24h (EN 14080:2013)


Plank thickness t s = 21 mm
beam section BxH [mm] span [m]
3 3,5 4 4,5 5 5,5 6
no. connectors per beam 14 24 42
CTC 9x160 9x160 9x160
120 x 160 - - - -
distance[mm] 500/500 250/400 150/250
no. connectors/m2 7,1 10,4 15,9
45° 45° no. connectors per beam 14 26 44 66
CTC 9x160 9x160 9x160 9x160
120 x 200 - - -
distance[mm] 500/500 250/400 150/300 150/150
no. connectors/m2 6,1 9,8 14,8 20,0
no. connectors per beam 22 40 66 80
CTC 9x160 9x240 9x240 9x240
140 x 200 - - -
distance[mm] 300/500 200/250 150/150 100/200
Crossed installation at a no. connectors/m2 8,3 13,5 20,0 22,0
45° angle, with or without no. connectors per beam 34 50 72 88
soundproofing layer. CTC 9x240 9x240 9x240 9x240
140 x 240 - - -
distance[mm] 200/400 150/300 100/300 100/200
no. connectors/m2 11,4 15,2 19,8 22,2

NOTES: GENERAL PRINCIPLES:


(1) Connectors placed in two rows. Pitch means the minimum and maximum spacing values at which the connec-
(2) Connectors placed in three rows. tors are positioned, respectively at the sides (L/4 - minimum spacing) and in
the central part of the beam (L/2 - maximum spacing).
For different calculation configurations, the software is available
(www.rothoblaas.com).

STRUCTURES | CTC | 231


SKR | SKS
CONCRETE SCREW

RAPID DRY SYSTEM


Fast and easy operation. The special threading requires a small pre-
drill and guarantees fastening on concrete without creating expansion
stresses in the concrete. Reduced minimum distances.

SKR - SKS EVO


For some sizes, a version is available with special surface treatment to
improve corrosion resistance of the externally exposed head.

LARGER HEAD
Robust and easy to install, thanks to the increased geometry of the SKR
hexagonal head.

CHARACTERISTICS
FOCUS screw for concrete
HEAD hexagonal and countersunk
DIAMETER from 7,5 to 12,0 mm
LENGTH from 60 to 400 mm

MATERIAL
Galvanized carbon steel. Versions in carbon
steel with C4 EVO coating.

FIELDS OF USE
Fastening of timber or steel elements to con-
crete supports. Service classes 1 and 2.
Versions with C4 EVO coating allow the appli-
cation in service class 3

232 | SKR | SKS | STRUCTURES


SKR - SKS GEOMETRY
Tinst SKR SKS
d1 external diameter of anchor
SW dk L anchor length
tfix t fix maximum fastening thickness
df
h1 minimum hole depth
hnom nominal anchoring depth
L
hnom d 0 hole diameter in the concrete support
d1 h1 df maximum hole diameter in the element to be fastened
SW wrench size SKR
d0 dk SKS head diameter
T inst tightening torque
Tinst

CODES AND DIMENSIONS SKR - SKS


SKR hexagonal head

CODE d1 L tfix h1,min hnom d0 df timber df steel SW Tinst pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [Nm]
SKR7560 60 10 60 50 6 8 8-10 13 15 50
SKR7580 7,5 80 30 60 50 6 8 8-10 13 15 50
SKR75100 100 20 90 80 6 8 8-10 13 15 50
SKR1080 80 30 65 50 8 10 10-12 16 25 50
SKR10100 100 20 95 80 8 10 10-12 16 25 25
SKR10120 10 120 40 95 80 8 10 10-12 16 25 25
SKR10140 140 60 95 80 8 10 10-12 16 25 25
SKR10160 160 80 95 80 8 10 10-12 16 25 25
SKR12100 100 20 100 80 10 12 12-14 18 50 25
SKR12120 120 40 100 80 10 12 12-14 18 50 25
SKR12140 140 60 100 80 10 12 12-14 18 50 25
SKR12160 160 80 100 80 10 12 12-14 18 50 25
12
SKR12200 200 120 100 80 10 12 12-14 18 50 25
SKR12240 240 160 100 80 10 12 12-14 18 50 25
SKR12280 280 200 100 80 10 12 12-14 18 50 25
SKR12320 320 240 100 80 10 12 12-14 18 50 25
SKR12400 400 320 100 80 10 12 12-14 18 50 25

SKS countersunk head

CODE d1 L tfix h1,min hnom d0 df timber dk TX Tinst pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [Nm]
SKS7560 60 10 60 50 6 8 13 TX40 - 50
SKS7580 80 30 60 50 6 8 13 TX40 - 50
SKS75100 100 20 90 80 6 8 13 TX40 - 50
7,5
SKS75120 120 40 90 80 6 8 13 TX40 - 50
SKS75140 140 60 90 80 6 8 13 TX40 - 50
SKS75160 160 80 90 80 6 8 13 TX40 - 50

CODES AND DIMENSIONS SKR - SKS | EVO VERSION 1002


CERTIFIED

C4 COATING COATING
SKR EVO hexagonal head

CODE d1 L tfix h1,min hnom d0 df timber df steel SW Tinst pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [Nm]
SKREVO7560 7,5 60 10 60 50 6 8 8-10 13 15 50
SKREVO1080 10 80 30 65 50 8 10 10-12 16 25 50
SKREVO12100 12 100 20 100 80 10 12 12-14 18 50 25

SKS EVO countersunk head

CODE d1 L tfix h1,min hnom d0 df timber dk TX Tinst pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [Nm]
SKSEVO7580 80 30 60 50 6 8 13 TX40 - 50
SKSEVO75100 7,5 100 20 90 80 6 8 13 TX40 - 50
SKSEVO75120 120 40 90 80 6 8 13 TX40 - 50

STRUCTURES | SKR | SKS | 233


TECHNICAL FEATURES
• Suitable for uncracked concrete • Electrogalvanized carbon steel
• Hexagonal head of increased size • Through fastening
• Thread is suitable for dry fastening • No fastener expansion
• Double version: zinc plated
and C4 EVO coating

ASSEMBLY

1 2 3 SKR 3 SKS

Drill a hole in rotary percus- Clean the hole Position the object to be fixed and install the screw with a pulse
sion mode screw gun

Tinst Tinst

4 SKR 4 SKS 5 SKR 5 SKS

Ensure the anchor head is in complete contact with the object Check the tightening torque Tinst
to be fixed

INSTALLATION
c s

hmin

SKR SKS
Spacing and distances for tensile loads Ø7,5 Ø10 Ø12 Ø7,5
Minimum spacing smin,N [mm] 50 60 65 50
Minimum edge distance cmin,N [mm] 50 60 65 50
Minimum thickness of concrete support hmin [mm] 100 110 130 100
Critical spacing scr,N [mm] 100 150 180 100
Critical edge distance ccr,N [mm] 50 70 80 50

Spacing and distances for shear loads Ø7,5 Ø10 Ø12 Ø7,5
Minimum spacing smin,V [mm] 50 60 70 50
Minimum edge distance cmin,V [mm] 50 60 70 50
Minimum thickness of concrete support hmin [mm] 100 110 130 100
Critical spacing scr,V [mm] 140 200 240 140
Critical edge distance ccr,V [mm] 70 110 130 70
For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

234 | SKR | SKS | STRUCTURES


STATIC VALUES
Valid for a single anchor in thickened C20/25 grade concrete with a thin reinforcing layer when spacing and edge-distance
are not limiting parameters.

ADMISSIBLE VALUES

UNCRACKED CONCRETE

tension shear(1) head pull-through

N1,rec Vrec N2,rec

[kN] [kN] [kN]


7,5 2,13 2,50 1,19 (2)

SKR 10 6,64 6,65 1,86 (2)

12 8,40 8,18 2,83 (2)

SKS 7,5 2,13 2,50 0,72

NOTES: GENERAL PRINCIPLES:


(1) When evaluating the anchor global-strength, the shear strength on the el- • Recommended admissible shear and tensile values are compliant with Cer-
ement to be fastened (e.g. timber, concrete, ...) must be considered sepa- tificate Nr. 2006/5205/1 released from Politecnico di Milano and obtained
rately based on the material adopted. by considering a safety factor of 4 for the failure load.
(2) All values refer to SKR installed with DIN 9021 (ISO 9073) washer.

STRUCTURES | SKR | SKS | 235


SKR-E | SKS-E R120 SEISMIC C2 ETA-19/0100

SCREW ANCHOR FOR CONCRETE CE1

SEISMIC PERFORMANCE
Certified for applications on cracked and non-cracked concrete and in
performance class for seismic actions C1 (M10-M16) and C2 (M12-M16).

IMMEDIATE STRENGTH
Its operating principle allows the load to be applied after zero waiting
times.

FIRE RESISTANCE
Certified for fire exposure class R120 according to Technical Report TR 020.

CHARACTERISTICS
FOCUS screw for concrete
HEAD hexagonal and countersunk
DIAMETER from 7,5 to 16,0 mm
LENGTH from 60 to 400 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
Fastening of timber or steel elements to con-
crete supports. Service classes 1 and 2.

236 | SKR-E | SKS-E | STRUCTURES


SKR-E | SKS-E GEOMETRY
SKR-E SKS-E
Tinst
d1 external diameter of anchor
SW dk L anchor length
tfix t fix maximum fastening thickness
df
h 1 minimum hole depth
hnom nominal anchoring depth
L hef hef effective anchor depth
d1 hnom
h1 d 0 hole diameter in the concrete support
df maximum hole diameter in the element to be fastened
SW wrench size SKR-E
d0 dk SKS-E head diameter
T inst tightening torque

CODES AND DIMENSIONS


SKR-E hexagonal head with mock washer

CODE d1 L tfix h1,min hnom hef d0 df SW Tinst pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [Nm]
SKR8100CE 8 100 40 75 60 48 6 9 10 20 50
SKR1080CE 80 10 85 70 56 8 12 13 50 50
SKR10100CE 10 100 30 85 70 56 8 12 13 50 25
SKR10120CE 120 50 85 70 56 8 12 13 50 25
SKR1290CE 90 10 100 80 64 10 14 15 80 25
SKR12110CE 110 30 100 80 64 10 14 15 80 25
SKR12150CE 150 70 100 80 64 10 14 15 80 25
12
SKR12210CE 210 130 100 80 64 10 14 15 80 20
SKR12250CE 250 170 100 80 64 10 14 15 80 15
SKR12290CE 290 210 100 80 64 10 14 15 80 15
SKR16130CE 16 130 20 140 110 85 14 18 21 160 10

SKS-E countersunk head


CODE d1 L tfix h1,min hnom hef d0 df dk TX Tinst pcs
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [Nm]
SKS75100CE 8 100 40 75 60 48 6 9 16 TX30 20 50
SKS10100CE 10 100 30 85 70 56 8 12 20 TX40 50 50

STRUCTURES | SKR-E | SKS-E | 237


TECHNICAL FEATURES
• CE option 1 for cracked and uncracked concrete • Fire resistance R120
• Seismic performance category C1 (M10-M16) • Through fastening
and C2 (M12-M16) • No fastener expansion
• Electrogalvanized carbon steel
• Flanged head with self-locking knurling (SKR-E)

ASSEMBLY

1 2 3 SKR-E 3 SKS-E

Drill a hole in rotary percus- Clean the hole Position the object to be fixed and install the screw with a pulse
sion mode screw gun

Tinst Tinst

4 SKR-E 4 SKS-E 5 SKR-E 5 SKS-E

Make certain that the screw head is in complete contact with the Check the tightening torque Tinst
object to be fixed

INSTALLATION
c s

hmin

SKR-E/SKS-E
Spacing and minimum distances Ø8 Ø10 Ø12 Ø16

Minimum spacing smin [mm] 45 50 60 80

Minimum edge distance cmin [mm] 45 50 60 80

Minimum thickness of concrete support hmin [mm] 100 110 130 170

Spacing and critical distances Ø8 Ø10 Ø12 Ø16

scr,N (1) [mm] 144 168 192 255


Critical spacing
scr,sp(2) [mm] 160 175 195 255

ccr,N(1) [mm] 72 84 96 128


Critical edge distance
ccr,sp(2) [mm] 80 85 95 130
For spacing and distances smaller than the critical ones, strength values have to be reduced depending on the installation parameters.

238 | SKR-E | SKS-E | STRUCTURES


STATIC VALUES
Valid for a single anchor in thickened C20/25 grade concrete with a thin reinforcing layer when spacing and edge-distance
are not limiting parameters.

CHARACTERISTIC VALUES
UNCRACKED CRACKED
CONCRETE CONCRETE

tension(3) shear(4) tension(3) shear

NRk,p γ Mp VRk,s γ Ms NRk,p γ Mp VRk,s/Rk,cp γ Ms,Mc


[kN] [kN] [kN] [kN]
8 16 2,1 9,4 1,5 4 2,1 9,4(4) 1,5

10 20 1,8 20,1 1,5 7,5 1,8 15,1(5) 1,5


SKR-E
12 25 2,1 32,4 1,5 9 2,1 32,4(4) 1,5

16 40 2,1 56,9 1,5 16 2,1 56,4(5) 1,5

8 16 2,1 9,4 1,5 4 2,1 9,4(4) 1,5


SKS-E
10 20 1,8 20,1 1,5 7,5 1,8 20,1(4) 1,5

incremental factor for NRk,p(6)


C30/37 1,22
Ψc C40/50 1,41
C50/60 1,58

NOTES: GENERAL PRINCIPLES:


(1) Concrete cone failure mode. • Characteristic values according to ETA-19/0100.
(2) Splitting failure mode. • Design values can be obtained from characteristic values as follows:
(3) Pull-out failure mode. Rd = Rk /γM.
(4) Steel failure mode (V Coefficients γM are listed in the table in accordance with the failure charac-
Rk,s). teristics and product certificates.
(5) Pry-out failure mode (V
Rk,cp). • For the calculation of anchors with reduced spacing, or too close to the
(6) Tensile-strength increment factor (excluding steel failure).
edge, please refer to ETA. Similarly, in case of fastening on concrete-sup-
ports with a better-grade, limited thickness or a thick reinforcing layer
please see ETA.
• When designing anchors under seismic load please refer to the
ETA referral document and information in the EOTA Technical
Report 045.
• For the calculation of anchors subjected to fire refer to the ETA and the
Technical Report 020.

STRUCTURES | SKR-E | SKS-E | 239


OUTDOOR
OUTDOOR
OUTDOOR

KKT COLOR A4 | AISI316 FLAT | FLIP


CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 256 CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296

KKT A4 | AISI316 TVM


CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 260 CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 300

KKT COLOR GAP


CONE-SHAPED CONCEALED HEAD SCREW . . . . . . . . . . . . . . . . 264 CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304

KKZ A2 | AISI304 TERRALOCK


COUNTERSUNK CYLINDRICAL HEAD SCREW. . . . . . . . . . . . . . . 268 CONNECTOR FOR DECKING. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 308

KWP A2 | AISI305 GROUND COVER


CYLINDRICAL HEAD SCREW FOR WPC BOARDS . . . . . . . . . . . . 270 ANTI-VEGETATION TARP FOR SUBSTRATES. . . . . . . . . . . . . . . . . 312

KKA AISI410 NAG


SELF-DRILLING SCREW LEVELING PAD . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 313
TIMBER-TO-TIMBER | TIMBER-TO-ALUMINIUM . . . . . . . . . . . . . 272
GRANULO
KKA COLOR GRANULAR RUBBER SUBSTRATE. . . . . . . . . . . . . . . . . . . . . . . . . . 314
SELF-DRILLING SCREW FOR ALUMINIUM. . . . . . . . . . . . . . . . . . . 274
TERRA BAND UV
EWS BUTYL ADHESIVE TAPE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 316
CONVEX HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
PROFID
KKF AISI410 SPACER PROFILE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
PAN HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280
JFA
SCI A4 | AISI316 ADJUSTABLE SUPPORT FOR TERRACES. . . . . . . . . . . . . . . . . . . . 318
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
SUPPORT
SCI A2 | AISI305 ADJUSTABLE SUPPORT FOR TERRACES. . . . . . . . . . . . . . . . . . . . 322
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 286
ALU TERRACE
SCA A2 | AISI304 ALUMINIUM PROFILE FOR PATIOS. . . . . . . . . . . . . . . . . . . . . . . . . 328
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
STAR
HBS PLATE EVO STAR FOR DISTANCES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
PAN HEAD SCREW FOR PLATES. . . . . . . . . . . . . . . . . . . . . . . . . . . 292
CRAB MINI
HBS EVO PATIO CLAMP. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334
COUNTERSUNK SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 293
SHIM
TBS EVO LEVELLING WEDGES. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 335
OUTDOOR SCREW, FLANGE HEAD. . . . . . . . . . . . . . . . . . . . . . . . 294
BROAD
VGZ EVO COUNTERBORE CUTTER FOR KKT, KKZ, KKA . . . . . . . . . . . . . . . 335
FULL THREAD SCREW WITH CYLINDRICAL HEAD . . . . . . . . . . . 295

OUTDOOR | 243
WOOD SPECIES
ORIGIN AND DENSITY

HE
AT-
TR
EAT
Pi c
S p b ies
ea

ED
450

ru c
a
Pi

e
500
nu
ss

APPROXIMATE DENSITY
550
y lv
P i tr is
es
ne

Q 650
ue
rc 750
us
pe O
tr a a k 850
ea
950

[Kg/m3]
1050
L ar
ix d L a r
e c ch 1150
idu
a

Fagu Bee
s s y lv a c h
ti c a

Ash 1 4 6
Fraxinus excelsior

5
2
3
7

ATED
PREGN
A L IM
THE
RM Pi n e
is
e s tr
u s s y lv
Pi n

E D
L AT
Y
ET
AC
mp P C
te
W
o si
Co
ti c
l as
dP
o
Wo

244 | WOOD SPECIES | OUTDOOR


There is an appropriate timber cladding for each environment:

is
the variety of wood species makes it possible to perfectly meet

s tr
ve
the design and aesthetic requirements.

syl
Pi n e
us
Pin
r
4 da s
4 Ce e d r u
APPROXIMATE 350
5 C
DENSITY 400 6
ce
300-550 [kg/m3] 450
S p ru a b ie s
500
ce a
550
4 Pi

Okoumé
5
Aucoumea klaineana
S i b r ix
e ri si b
La

L a rc x
a n iric
M Pi n

L ari Do
on u

1
u
l ar a

h
P se g l a s
te s ra

udo fir
ch
re d

4
t su
y i at

ga
pi a

O 6 me
ne

co O nzi
te co 600 e si i
a r te 2 650 APPROXIMATE
ub a
ra 3
700 DENSITY
M il 750
550-800 [kg/m3]
i ci a Iro 2
exc ko 800
els
a 5
Enta
drop Sapele
n
hr
c y li n a g m a 5
dricu
m

Beech 4
Quercus petraea

A sh 4
ea
sp a
e tr
Quercu
k 4
Oa
a e a
p e tr
us
erc ak 6
Qu

ba
Te is
d

au
ra n
s it
n ag 5
eto ga i
uru
Tc l i n ch i
M e ub a

i
zila

3
B rri
It a

ga
de
en s

4
ia u
ia n cu

di ju
si s

1
ts a
I n e rb
bi
g u s r a lo

ea
3
aca st

l
M

uc
ci a
u

a APPROXIMATE 6 s
p tu
p se c k l o c
Ba

850
N
a ly ptu s
7
DENSITY 900 c
Eu a ly
ia

u do

800-1000 [kg/m3]
yn

950
3 c
Eu
Bla
r

1000
co

7
Di

a
Garap leiocarpa
i n ia

ia
3
Apule
Ro b
Po

Wengé
to

5
Millettia laur
xy

en tii
lo
M e lag
nm
ela a

B an
S h o gkira i
6
g a n ga

re a
ng i

Di gla
uca
ai

pt
er 6 Ba
y x Cu m 6 Ba m
o d ar b
m oo
or u 1050
bu
at a 3 1100 se
2
APPROXIMATE ae
1150
1 1200
DENSITY
1250 > 1000 [kg/m3]
Ip 6
Tabeb e 1300
uia 3
1350
2

3
a n d ub a
Massar ntata 2
ra bide
Manilka

This list is not intended to be exhaustive, but merely to provide some indications
regarding the most common types of wood.

OUTDOOR | WOOD SPECIES | 245


SELECTION OF THE FASTENING
ENVIRONMENT

austenitic stainless austenitic stainless martensitic stainless


steel A4 steel A2 steel AISI 410

KKT A4
KKT A4 KKT A4 SCI A4 KKZ A2 KWP A2 EWS A2 SCI A2 SCA A2 SBS A2 KKA
KKA AISI KKF
KKF AISI EWS
EWS AISI SHS
SHS AISI
color KKT A4 SCI A4 KKZ A2 KWP A2 EWS A2 SCI A2 SCA A2 SBS A2 410 410 410 410
APPLICATION COLOR AISI 410 AISI 410 AISI 410 AISI 410

horizontal cladding
(e.g. patio)
vertical cladding
(e.g. façade)

CORROSION CLASS ENVIRONMENTAL


(EN 12944)

C1 indoor
environments
C2 rural
areas
C3 urban and
industrial environments
C4 industrial and
coastal areas
C5 areas with aggressive
atmospheres

ENVIRONMENT SERVICE
CLASS

Service class 1

Service class 2

Service class 3
NOTES: * Coating equivalent to Fe/Zn 25c

WOOD USE CLASS

Use class 1

Use class 2

Use class 3

Use class 4

Use class 5

LEGEND: use allowed


use not allowed but possible with specific precautions
use not recommended

246 | SELECTION OF THE FASTENING | OUTDOOR


The work is inserted in a context which cannot be ignored and
with which it interacts: understanding the location and use of
the timber cladding is fundamental for selecting appropriate
fastenings that guarantee performance over time.

EN 1995-1-1 ENVIRONMENT SERVICE CLASSES


carbon steel carbon steel with
with C4 EVO coating organic coating CLASS 1: temperature 20°C/65% humidity u ≈ 12%
all internal rooms
CLASS 2: temperature 20°C/85% humidity u ≈ 18%
elements protected from direct exposure to weather
CLASS 3: climate more humid than class 2 humidity u > 20%
“wet” elements

HBS
EVO
P
HBS P HBS
HBS
EVO
TBS
TBS
EVO
VGZ
VGZ
EVO
KKT
KKT color KKA
KKA
color
EVO EVO EVO EVO COLOR COLOR

EN 335 WOOD USE CLASSES


CLASS 1
Where the wood is inside a build-
ing, not exposed to weather.

CLASS 2
Where the wood is protected
and not exposed to weather, but
where high ambient humidity
may occur.

CLASS 3
Where the wood-based mate-
rial is not in direct contact with
the ground and is exposed to
weather.

* *

CLASS 4
Where the wood is in direct con-
tact with the ground and fresh
water.

CLASS 5
Where the wood is permanent-
ly or regularly immersed in salt
water.

OUTDOOR | SELECTION OF THE FASTENING | 247


SELECTION OF THE FASTENING
SCREWING

WOODS
400 500 600 700 800
kg/m3
A4 | AISI 316

KKT

SCI

KKZ
A2 | AISI304 - AISI305

KWP

EWS

SCI

SCA

EWS
AISI410

KKF
CARBON STEEL

KKT

HBS P EVO
PINE, HEAT-TREATED

LARCH

ASH, HEAT-TREATED

SIBERIAN LARCH
OAK
IROKO

TEAK

ITAUBA

LEGEND: without pre-drilling hole PRE-DRILLING HOLES DIAMETER:


with pre-drilling hole
ØSCREW [mm] 3,5 4,0 4,5 5,0 6,0 8,0
ØPRE-DRILLING HOLE [mm] 2 2 3 3 4 5

248 | SELECTION OF THE FASTENING | OUTDOOR


TESTING CAMPAIGN ON WOODS OF DIFFERENT SPECIES AND DENSITIES

WOODS WPC
800 900 1000 1100 1200 1000 1100 1200
BANGKIRAI

MELAGANGAI

IPE

MASSARANDUBA

BAMBOO, HEAT-TREATED

WPC 1000

WPC 1200

NOTES:
• Screw connections made with 5 x 50 mm screws on substructures of dif- • The bars on the graph indicate the limit for correct screw operation in terms
ferent densities. of tightening integrity and effectiveness; using a higher density substruc-
ture or choosing a longer thread may have a positive effect on fastener
performance.

OUTDOOR | SELECTION OF THE FASTENING | 249


SELECTION OF THE FASTENING
DECORATIVE HEAD FINISH

WOODS
400 500 600 700 800
kg/m3
A4 | AISI 316

KKT

SCI

KKZ
A2 | AISI304 - AISI305

KWP

EWS

SCI

SCA

EWS
AISI410

KKF
CARBON STEEL

KKT

HBS P EVO
PINE, HEAT-TREATED

LARCH

ASH, HEAT-TREATED (2)

SIBERIAN LARCH (1)


OAK
IROKO

TEAK

ITAUBA

LEGEND: excellent finish


good finish
counterbore cutter recommended

250 | SELECTION OF THE FASTENING | OUTDOOR


TESTING CAMPAIGN ON WOODS OF DIFFERENT SPECIES AND DENSITIES

WOODS WPC
900 1000 1100 1200 1000 1100 1200
BANGKIRAI (1)

MELAGANGAI

IPE (1)

MASSARANDUBA (1)
BAMBOO, HEAT-TREATED

WPC 1000

WPC 1200

NOTES:
Screwing operations performed without a counterbore cutter and with pre- (1) Knurled planking surface.
drill, as outlined in the previous graph. (2) Possible brittle fractures due to material heat treatment.

OUTDOOR | SELECTION OF THE FASTENING | 251


CORROSION
TYPES AND TRIGGERING FACTORS

The corrosion phenomenon involves an electrochemical interaction


between a metal and its environment and can lead to degradation of In the analysis of corrosion, as for any chem-
ical reaction, the speed of the reaction must
the material and its properties.
also be taken into account. In fact, it is not only
important to understand whether or not there
Although associated with material degradation, corrosion is not in itself may be corrosion, but also how long it takes
negative. In some cases, for example, it enables metals to form a patina for it to produce significant degradation of the
to protect them from further corrosion. This is the case with stainless material.
steel or COR-TEN steel.

GENERALISED CORROSION
This is the corrosion that affects most metal surfaces exposed to an ag-
gressive environment. A distinction must be made between uniform and
uneven generalised corrosion: in the first case, penetration is the same
over the entire surface while, in the second, the profile may be more or
less regular.

LOCALISED CORROSION - PITTING


Pitting corrosion occurs with extremely localised attacks, called pits;
from the surface, such pitting penetrates the thickness of the metal very
quickly. Pit sizes range from a few tens of microns to a few millimetres;
they are triggered and propagate at individual points, leaving most of the
metal surface exposed to the environment unaltered.

LOCALISED - CREVICE CORROSION


In general, the presence of crevices or surface parts not openly exposed
to the environment is always an aggravating factor for corrosion; the ex-
pression "crevice corrosion" highlights the contribution the geometric
component — in the form of crevices or, more generally, of shielded
areas — makes to corrosion. Corrosion is caused in cracks — those in-
terstices that allow the aggressive environment to enter and yet are so
narrow as to render negligible any diffusive, convective motion between
the inside and outside. Openings ranging from a few hundredths to a few
tenths of a millimetre prove critical.

252 | CORROSION | OUTDOOR


ADDITIONAL POSSIBLE
CORROSION FACTORS
GALVANIC COUPLING
This occurs when metals of different nobility are placed into contact with
one another and are both immersed in an electrolyte.

Contact Metal

Nickel-Chrome_Mo Alloys
Titanium, Silver, Graphite
Graphite, Gold, Platinum
Bronzes, cupro-nickels
Brasses, nickel silvers

Nickel copper alloys


Alluminium & alloys
Magnesium & alloys

HUMIDITY

Lead, tin and alloys


IN THE WOOD

Stainless steels
Steel-carbon
Zinc & alloys

Cadmium

Cast iron

Copper
Nickel
Metal Corroding

Magnesium & alloys


Zinc & alloys
Alluminium & alloys
Cadmium
Steel-carbon
Cast iron PH
OF THE WOOD
Stainless steels
Lead, tin and alloys
Nickel
Brasses, nickel silvers
Copper
Bronzes, cupro-nickels
Nickel copper alloys

Nickel-Chrome_Mo Alloys
Titanium, Silver, Graphite
PROTECTIVE
Graphite, Gold, Platinum
TREATMENTS

FIREPROOFING
OR FLAME-RETARDANT TREATMENTS

To achieve effective corrosion protection, careful design of connection


and construction details is essential. Careful consideration must be given
to environmental conditions such as humidity, temperature, exposure of USE OF FERTILIZERS, DETERGENTS,
the wood, marine air pollution, the presence of chemicals and the type THAWING SALTS OR FUNGICIDES
of wood. It is generally impossible to determine — in advance and be-
yond a shadow of a doubt — where the corrosion will take place and (in
some cases) by what mechanism, as it is a statistical phenomenon.

In order to find the best solution to protect the connectors from corro-
sion, the ideal approach involves the following steps:

1. Analysis of the working environment and environmental conditions;


2. Analysis of the most likely or predominant phenomenon;
3. Selection of the best material taking into account the two previous INSTALLATION GEOMETRY
points;
4. Periodic monitoring.

OUTDOOR | CORROSION | 253


C4 EVO COATING
Is a multilayer coating composed of: EXPERIMENTAL TESTING OF
• An external functional layer of epoxy matrix with aluminium flakes of SCREWS CORROSION
around 15-20 μm, which gives the coating optimum resistance to me- PERFORMANCE
chanical and thermal stresses. The aluminium flakes also serve, when
required, as sacrificial cathodes for the metal base of the screw. Rothoblaas has conducted numerous
experimental tests to evaluate the per-
• A central binding layer for the external functional layer. formance of its connectors under a
• A internal layer of around 4 μm zinc microns which acts as an additio- wide range of exposure conditions and
nal layer of corrosion resistance. to estimate their resistance to corrosion.

Since there is no single test capable of


determining the medium-to-long term
corrosion resistance of a metal fastener
installed in timber elements, reference
was made to the following test proto-
cols so as to characterise corrosion per-
formance using different approaches
and test methods.

TEST PROTOCOLS:

SALT SPRAY
UNI EN ISO 9227:2012
Corrosion tests in artificial atmospheres
Salt spray tests
HBS EVO HBS P EVO TBS EVO VGZ EVO
SULPHURIC OXIDE EXPOSURE
UNI EN ISO 6988:1998
Metallic and other non-organic coatings
Sulfur dioxide test with general condensa-
tion of moisture.

COATING CONTINUOUS CONDENSATION


UNI EN ISO 6270-2:2005
COATING
C4 EVO

Aluminium Paints and varnishes - Determination of


resistance to humidity. Part 2: Procedure
Organic matrix
for exposing test specimens in condensa-
Cohesion layer tion-water atmospheres.

Zn - Zinc PROHESION
ASTM G85-A5:2011
SCREW
BODY

Fe - Carbon Steel Standard Practice for Modified Salt Spray


(Fog) Testing Annex A5, dilute electrolyte
cyclic fog dry test

SALT SPRAY CYCLING TESTING


UNI EN ISO 9227:2012
UNI EN ISO 11997-1:2006
Paints and varnishes - Determination of
resistance to cyclic corrosion conditions
Part 1: Wet (salt fog)/dry/ humidity

+ ASTM B571:2013
Standard Practice for Qualitative Adhesion
Testing of Metallic Coatings
t = 0h t = 1440h

254 | C4 EVO COATING | OUTDOOR


MATERIALS AND COATINGS
THE RIGHT FASTENER FOR EVERY APPLICATION

CORROSION RESISTANCE
KKT A4

AISI 316 (A4)


KKT A4 color

SCI A4

KWP
AISI 305 (A2)
SCI A2

AUSTENITIC
EWS A2

SCA A2
AISI 304 (A2)
KKZ A2

KKZ BRONZE A2

STAINLESS
STEEL AISI 304 (A2)
and carbon SBS
steel (tip)

KKF AISI 410

EWS AISI 410


MARTENSITIC AISI 410
KKA AISI 410

SHS AISI 410

HBS EVO

HBS P EVO
C4 EVO
ANTI-CORROSION COATING TBS EVO

VGZ EVO

KKT
MECHANICAL STRENGTH

ORGANIC ANTI-CORROSION
CARBON STEEL
COATING

KKAN

ZINC PLATED HBS

OUTDOOR | MATERIALS AND COATINGS | 255


KKT COLOR A4 | AISI316 BIT INCLUDED
A4
AISI 316
EN 14592

CONE-SHAPED CONCEALED HEAD SCREW

COLOURED HEAD
Version in A4 | AISI316 stainless steel with brown, grey or black coloured
head. Excellent camouflaging with wood. Ideal for very aggressive envi-
ronments and for chemically treated woods (acetylation).

COUNTER THREAD
The inverse (left-hand) under-head thread guarantees excellent grip.
Small conical head to ensure it is hidden in the timber.

TRIANGULAR BODY
The three-lobed thread makes it possible to cut the wood grain during
screwing. Exceptional timber pull-through.

CHARACTERISTICS
FOCUS excellent grip
HEAD conical, coloured countersunk
DIAMETER 5,0 mm
LENGTH from 40 to 70 mm

MATERIAL
A4 | AISI316 austenitic stainless steel with
coloured organic coating.

FIELDS OF USE
Outdoor use in highly aggressive environ-
ments.
Wooden boards with density of < 550 kg/m3
(without pre-drill) and < 880 kg/m3 (with pre-
drill). WPC boards (with pre-drill). Suitable for
service classes 1-2-3.

256 | KKT COLOR A4 | AISI316 | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS

dk d2 d1

ds
b
L

Nominal diameter d1 [mm] 5,10


Head diameter dK [mm] 6,75
Tip diameter d2 [mm] 3,40
Shank diameter dS [mm] 4,05
Pre-drilling hole diameter(1) dV [mm] 3,0 - 4,0
Notched tip single
Characteristic yield moment My,k [Nm] 5,84
Characteristic
fax,k [N/mm2] 13,7
withdrawal-resistance parameter
Associated density ρa [kg/m3] 350
Characteristic head-pull-through
fhead,k [N/mm2] 23,8
parameter
Associated density ρa [kg/m3] 350
Characteristic tensile strength ftens,k [kN] 7,8
(1) For high density materials, pre-bored holes are recommended based on the wood species.

CODES AND DIMENSIONS

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
KKT540A4M 43 25 16 200 5 KKT550A4N 53 35 18 200
KKT550A4M 53 35 18 200 TX 20 KKT560A4N 60 40 22 200
5
TX 20 KKT560A4M 60 40 22 200
KKT570A4M 70 50 27 100

d1 CODE L b A pcs
[mm] [mm] [mm] [mm]

5 KKT550A4G 53 35 18 200
TX 20 KKT560A4G 60 40 22 200

CARBONIZED WOOD
Ideal for fastening wooden planks with a burnt
effect. Can also be used with acetylate-treated
woods.

OUTDOOR | KKT COLOR A4 | AISI316 | 257


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5 5
a1 [mm] 5∙d 25 4∙d 20
a2 [mm] 3∙d 15 4∙d 20
a3,t [mm] 12∙d 60 7∙d 35
a3,c [mm] 7∙d 35 7∙d 35
a4,t [mm] 3∙d 15 7∙d 35
a4,c [mm] 3∙d 15 3∙d 15

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5 5
a1 [mm] 12∙d 60 5∙d 25
a2 [mm] 5∙d 25 5∙d 25
a3,t [mm] 15∙d 75 10∙d 50
a3,c [mm] 10∙d 50 10∙d 50
a4,t [mm] 5∙d 25 10∙d 50
a4,c [mm] 5∙d 25 5∙d 25
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014 considering a • The minimum spacing for all panel-to-timber connections (a1 , a2) can be
timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of multiplied by a coefficient of 0,85.
d = nominal screw diameter.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

258 | KKT COLOR A4 | AISI316 | OUTDOOR


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

timber-to-timber without timber-to-timber thread head pull-through including


geometry
pre-drilling hole with pre-drilling hole withdrawal(1) upper thread withdrawal (2)
legno-legno
con preforo

L
b

d1

d1 L b A RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN]
43 25 16 1,08 1,35 1,98 1,25
53 35 18 1,16 1,40 2,77 1,25
5
60 40 22 1,24 1,53 3,17 1,25
70 50 27 1,35 1,70 3,96 1,25

NOTES: GENERAL PRINCIPLES:


(1) T he axial thread withdrawal resistance was calculated considering a 90° an- • Characteristic values according to EN 1995:2014.
gle between the grain and the connector and for a fixing length of b. • Design values can be obtained from characteristic values as follows:
(2) The axial resistance to head pull-through was calculated using timber ele-
ments also considering the underhead thread. Rk kmod
Rd =
γm
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
• Mechanical strength values and screw geometry according to CE marking
according to EN 14592.
• For the calculation process a timber characteristic density ρk = 420 kg/m3
has been considered.
• Values were calculated considering the threaded part as being completely
inserted into the wood.
• Dimensioning and verification of the timber elements must be carried out
separately.

OUTDOOR | KKT COLOR A4 | AISI316 | 259


KKT A4 | AISI316 BIT INCLUDED
A4
AISI 316
EN 14592

CONE-SHAPED CONCEALED HEAD SCREW

AGGRESSIVE ENVIRONMENTS
Version in A4 | AISI316 stainless steel, ideal for very aggressive environ-
ments and for chemically treated woods (acetylation). KKT X version with
short length and long bit for use with clips.

COUNTER THREAD
The inverse (left-hand) under-head thread guarantees excellent grip.
Small conical head to ensure it is hidden in the timber.

TRIANGULAR BODY
The three-lobed thread makes it possible to cut the wood grain during
screwing. Exceptional timber pull-through.

CHARACTERISTICS
FOCUS excellent grip
HEAD conical, countersunk
DIAMETER 5,0 mm
LENGTH from 20 to 80 mm

MATERIAL
A4 | AISI316 austenitic stainless steel.

FIELDS OF USE
Outdoor use in highly aggressive environ-
ments.
Wooden boards with density of < 550 kg/m3
(without pre-drill) and < 880 kg/m3 (with pre-
drill). WPC boards (with pre-drill). Suitable for
service classes 1-2-3.

260 | KKT A4 | AISI316 | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS

A
ds

dk d2 d1 dk d2 d1

ds
b b
L L

KKT A4 | AISI316 KKT X A4 | AISI316

Nominal diameter d1 [mm] 5,1


Head diameter dK [mm] 6,75
Tip diameter d2 [mm] 3,40
Shank diameter dS [mm] 4,05
Pre-drilling hole diameter(1) dV [mm] 3,0 - 4,0
Notched tip - - single(2)
Characteristic yield
My,k [Nm] 5,84
moment
Characteristic
fax,k [N/mm2] 13,7
withdrawal-resistance parameter
Associated density ρa [kg/m3] 350
Characteristic head-pull-through
fhead,k [N/mm2] 23,8
parameter
Associated density ρa [kg/m3] 350
Characteristic tensile strength ftens,k [kN] 7,8
(1) For high density materials, pre-bored holes are recommended based on the wood species.
(2) Notch present only for screws with L > 25 mm.

CODES AND DIMENSIONS


KKT A4 | AISI316 KKT X A4 | AISI316

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
KKT540A4 43 25 16 200 KKTX520A4( * ) 20 16 4 200
KKT550A4 53 35 18 200 5 KKTX525A4( * ) 25 21 4 200
5 TX 20
KKT560A4 60 40 22 200 KKTX530A4( * ) 30 26 4 200
TX 20
KKT570A4 70 50 27 100 KKTX540A4 40 36 4 200
KKT580A4 80 53 35 100 (*)Not holding CE marking.
Full threaded screw.

LONG BIT INCLUDED code TX2050

KKT X
Ideal for fastening standard Rothoblaas clips
(TVM, TERRALOCK) in outdoor environments.
Long bit included in each package.

OUTDOOR | KKT A4 | AISI316 | 261


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5 5
a1 [mm] 5∙d 25 4∙d 20
a2 [mm] 3∙d 15 4∙d 20
a3,t [mm] 12∙d 60 7∙d 35
a3,c [mm] 7∙d 35 7∙d 35
a4,t [mm] 3∙d 15 7∙d 35
a4,c [mm] 3∙d 15 3∙d 15

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5 5
a1 [mm] 12∙d 60 5∙d 25
a2 [mm] 5∙d 25 5∙d 25
a3,t [mm] 15∙d 75 10∙d 50
a3,c [mm] 10∙d 50 10∙d 50
a4,t [mm] 5∙d 25 10∙d 50
a4,c [mm] 5∙d 25 5∙d 25
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014 considering a • The minimum spacing for all panel-to-timber connections (a1 , a2) can be
timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of multiplied by a coefficient of 0,85.
d = nominal screw diameter.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

262 | KKT A4 | AISI316 | OUTDOOR


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

KKT A4 | AISI316 SHEAR TENSION

timber-to-timber without timber-to-timber thread head pull-through including


geometry
pre-drilling hole with pre-drilling hole withdrawal(1) upper thread withdrawal (2)
legno-legno
con preforo

L
b

d1

d1 L b A RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN]
43 25 16 1,08 1,35 1,98 1,25
53 35 18 1,16 1,40 2,77 1,25
5 60 40 22 1,24 1,53 3,17 1,25
70 50 27 1,35 1,70 3,96 1,25
80 53 35 1,65 1,91 4,20 1,25

KKT X A4 | AISI316 SHEAR SHEAR

intermediate thread
geometry
steel-to-timber plate (3) withdrawal(1)

Splate

L b

d1

d1 L b RV,k Rax,k
[mm] [mm] [mm] [kN] [kN]
20 16 0,71 1,27
SPLATE = 3,0 mm

25 21 0,87 1,66
5
30 26 1,05 2,06

40 36 1,40 2,85

NOTES: GENERAL PRINCIPLES:


(1) T he axial thread withdrawal resistance was calculated considering a 90° an- • Characteristic values according to EN 1995:2014.
gle between the grain and the connector and for a fixing length of b. • Design values can be obtained from characteristic values as follows:
(2) The axial resistance to head pull-through was calculated using timber ele-
ments also considering the underhead thread. Rk kmod
Rd =
(3) The shear resistance characteristics are calculated considering the case of γm
an intermediate plate (0,5 d1 ≤ SPLATE ≤ d1).
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
• Mechanical strength values and screw geometry according to CE marking
according to EN 14592.
• For the calculation process a timber characteristic density ρk = 420 kg/m3
has been considered.
• Values were calculated considering the threaded part as being completely
inserted into the wood.
• Dimensioning and verification of timber elements and steel plates must be
carried out separately.
• The KKT A4 screws with double thread are mainly used for timber-to-timber
joints.
• The KKT X total thread screws are mainly used for steel plates (e.g.
TERRALOCK patio system).

OUTDOOR | KKT A4 | AISI316 | 263


KKT COLOR BIT INCLUDED EN 14592

CONE-SHAPED CONCEALED HEAD SCREW

COLOURED COATING
Carbon steel version with coloured anti-rust coating (brown, grey, green,
sand and black) for outdoor use in service class 3.

COUNTER THREAD
The inverse (left-hand) under-head thread guarantees excellent grip.
Small conical head to ensure it is hidden in the timber.

TRIANGULAR BODY
The three-lobed thread makes it possible to cut the wood grain during
screwing. Exceptional timber pull-through.

CHARACTERISTICS
FOCUS complete range of colours
HEAD conical, countersunk
DIAMETER 5,0 | 6,0 mm
LENGTH from 40 to 120 mm

MATERIAL
Carbon steel with coloured organic anti-rust
coating.

FIELDS OF USE
Outdoor use. Wooden boards with density of <
780 kg/m3 (without pre-drill) and < 880 kg/m3
(with pre-drill). WPC boards (with pre-drill). Suit-
able for service classes 1-2-3.

264 | KKT COLOR | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS
A

dk d2 d1

ds
b
L

Nominal diameter d1 [mm] 5,10 6,00


Head diameter dK [mm] 6,75 7,75
Tip diameter d2 [mm] 3,40 3,90
Shank diameter dS [mm] 4,05 4,40
Pre-drilling hole diameter(1) dV [mm] 3,0 - 4,0 4,0 - 5,0
Notched tip double double
Characteristic yield
My,k [Nm] 8,42 9,97
moment
Characteristic
fax,k [N/mm2] 14,7 14,7
withdrawal-resistance parameter
Associated density ρa [kg/m3] 400 400
Characteristic head-pull-through
fhead,k [N/mm2] 68,8 20,1
parameter
Associated density ρa [kg/m3] 730 350
Characteristic tensile strength ftens,k [kN] 9,6 14,5
(1) For high density materials, pre-bored holes are recommended based on the wood species.

CODES AND DIMENSIONS


d1 CODE L b A pcs d1 CODE L b A pcs
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
KKTM540 43 25 16 200 KKTV550 53 35 18 200
5
KKTM550 53 35 18 200 KKTV560 60 40 22 200
5 TX 20
KKTM560 60 40 22 200 KKTV570 70 50 27 100
TX 20
KKTM570 70 50 27 100
KKTM580 80 53 35 100 d1 CODE L b A pcs
KKTM660 60 40 20 100 [mm] [mm] [mm] [mm]
6 KKTM680 80 50 30 100 KKTS550 53 35 18 200
5
TX 25 KKTM6100 100 50 50 100 KKTS560 60 40 22 200
TX 20
KKTM6120 120 60 60 100 KKTS570 70 50 27 100

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
KKTG540 43 25 16 200 KKTN540( * ) 40 36 16 200
5
KKTG550 53 35 18 200 KKTN550 53 35 18 200
5 TX 20
KKTG560 60 40 22 200 KKTN560 60 40 22 200
TX 20
KKTG570 70 50 27 100 (*) Full threaded screw.
KKTG580 80 53 35 100

KKT N
Ideal for fastening standard Rothoblaas clips
(TVM, TERRALOCK) in outdoor environments.
Bit included in each package.

OUTDOOR | KKT COLOR | 265


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5 6 5 6
a1 [mm] 5∙d 25 30 4∙d 20 24
a2 [mm] 3∙d 15 18 4∙d 20 24
a3,t [mm] 12∙d 60 72 7∙d 35 42
a3,c [mm] 7∙d 35 42 7∙d 35 42
a4,t [mm] 3∙d 15 18 7∙d 35 42
a4,c [mm] 3∙d 15 18 3∙d 15 18

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5 6 5 6
a1 [mm] 12∙d 60 72 5∙d 25 30
a2 [mm] 5∙d 25 30 5∙d 25 30
a3,t [mm] 15∙d 75 90 10∙d 50 60
a3,c [mm] 10∙d 50 60 10∙d 50 60
a4,t [mm] 5∙d 25 30 10∙d 50 60
a4,c [mm] 5∙d 25 30 5∙d 25 30
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014 considering a • The minimum spacing for all panel-to-timber connections (a1 , a2) can be
timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of multiplied by a coefficient of 0,85.
d = nominal screw diameter.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

266 | KKT COLOR | OUTDOOR


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

KKT SHEAR TENSION

timber-to-timber without timber-to-timber thread head pull-through including


geometry
pre-drilling hole with pre-drilling hole withdrawal(1) upper thread withdrawal (2)
legno-legno
con preforo

L
b

d1

d1 L b A RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN]
43 25 16 1,03 1,35 1,91 1,05
53 35 18 1,13 1,47 2,67 1,05
5 60 40 22 1,20 1,57 3,06 1,05
70 50 27 1,31 1,73 3,82 1,05
80 53 35 1,51 1,91 4,05 1,05
60 40 20 1,35 1,79 3,67 1,40
80 50 30 1,59 2,14 4,59 1,40
6
100 50 50 1,94 2,26 4,59 1,40
120 60 60 1,94 2,26 5,50 1,40

KKTN540 SHEAR TENSION

intermediate thread
geometry
steel-to-timber plate (3) withdrawal(1)

Splate

L b

d1

d1 L b RV,k Rax,k
[mm] [mm] [mm] [kN] [kN]
5 40 36 SPLATE = 3,0 mm 1,49 2,75

NOTES:
(1) The axial thread withdrawal resistance was calculated considering a 90° an- • For the calculation process a timber characteristic density ρk = 420 kg/m3
gle between the grain and the connector and for a fixing length of b. has been considered.
(2) The axial resistance to head pull-through was calculated using timber • Values were calculated considering the threaded part as being completely
elements also considering the underhead thread. A characteristic head- inserted into the wood.
pull-through parameter equal to 20 N/mm2 with associated density • Dimensioning and verification of timber elements and steel plates must be
ρa = 350 kg/m3 is considered in the calculation phase for the Ø5 diameter. carried out separately.
(3)The shear resistance characteristics are calculated considering the case of
• The KKT screws with double thread are mainly used for timber to timber
an intermediate plate (0,5 d1 ≤ SPLATE ≤ d1). joints.
• The KKT total thread screws are mainly used for steel plates (e.g. FLAT patio
GENERAL PRINCIPLES: system).

• Characteristic values according to EN 1995:2014.


• Design values can be obtained from characteristic values as follows:
Rk kmod
Rd =
γm
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
• Mechanical strength values and screw geometry according to CE marking
according to EN 14592.

OUTDOOR | KKT COLOR | 267


KKZ A2 | AISI304 BIT INCLUDED
A2
AISI 304
EN 14592

COUNTERSUNK CYLINDRICAL HEAD SCREW

HARD WOODS
Special tip with sword-shaped geometry specially designed to effi-
ciently drill very high density woods without pre-drill (with pre-drill,
over 1000 kg/m 3).

DOUBLE THREAD
The larger diameter right-hand under-head thread ensures an effective grip,
guaranteeing good coupling of the wooden elements. Concealed head.

BURNISHED VERSION
Available in a version in antique-burnished stainless steel, ideal to guar-
antee superb camouflaging in the wood.

CHARACTERISTICS
FOCUS exceptional hardwood perforation
HEAD cylindrical, countersunk
DIAMETER 5,0 mm
LENGTH from 50 to 70 mm

MATERIAL
A2 | AISI304 austenitic stainless steel.

FIELDS OF USE
Outdoor use in highly aggressive environ-
ments.
Wooden boards with density of < 780 kg/m3
(without pre-drill) and < 1240 kg/m3 (with pre-
drill). WPC boards (with pre-drill). Suitable for
service classes 1-2-3.

268 | KKZ A2 | AISI304 | OUTDOOR


GEOMETRY

A
ds

dk d2 d1

t1 b2 b1
L

Nominal diameter d1 [mm] 5


Head diameter dK [mm] 6,80
Tip diameter d2 [mm] 3,50
Shank diameter dS [mm] 4,35
Head thickness t1 [mm] 3,10
Pre-drilling hole diameter(1) dV [mm] 3,5
Characteristic yield
My,k [Nm] 5,3
moment
Characteristic
fax,k [N/mm2] 17,05
withdrawal-resistance parameter
Associated density ρa [kg/m3] 350
Characteristic head-pull-through
fhead,k [N/mm2] 36,79
parameter
Associated density ρa [kg/m3] 350
Characteristic tensile strength ftens,k [kN] 5,71
(1) For high density materials, pre-bored holes are recommended based on the wood species.

CODES AND DIMENSIONS


KKZ A2 | AISI304 KKZ BRONZE A2 | AISI304

d1 CODE L b1 b2 A pcs d1 CODE L b1 b2 A pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
KKZ550 50 22 11 28 200 5 KKZB550 50 22 11 28 200
5 TX 25
KKZ560 60 27 11 33 200 KKZB560 60 27 11 33 200
TX 25
KKZ570 70 32 11 38 100

HARD WOOD
Also tested on very high density woods, such
as IPE, massaranduba or bamboo Microllam®
(over 1000 kg/m3).

OUTDOOR | KKZ A2 | AISI304 | 269


KWP A2 | AISI305 BIT INCLUDED
A2
AISI 305

CYLINDRICAL HEAD SCREW FOR WPC BOARDS

WPC BOARDS
Special geometry specifically designed for fastening WPC (Wood Plas-
tic Composite) boards to a wood or WPC substructure, even without
pre-drilling.

TRIPLE THREAD
The combination of the two under-head threads causes removal of
the WPC fibres. Exceptional penetration into the WPC, even without
pre-drilling.

VOLCANO EFFECT
Removal of plastic fibres from the WPC guarantees an excellent board
finish. Small conical head ensures that it will be concealed in the WPC.

CHARACTERISTICS
FOCUS removal of shavings from WPC boards
HEAD cylindrical, countersunk
DIAMETER 5,0 mm
LENGTH from 60 to 70 mm

MATERIAL
A2 | AISI305 austenitic stainless steel.

FIELDS OF USE
Outdoor use in highly aggressive environ-
ments.
WPC boards (without pre-drill). Wooden
boards with density of < 780 kg/m3 (without
pre-drill) and < 880 kg/m3 (with pre-drill). Suit-
able for service classes 1-2-3.

270 | KWP A2 | AISI305 | OUTDOOR


GEOMETRY

dk d2 d1

t1 b3 b2 b1
L

Nominal diameter d1 [mm] 5


Head diameter dK [mm] 6,75
Tip diameter d2 [mm] 3,30
Head thickness t1 [mm] 2,30
Pre-drilling hole diameter dV [mm] 3,00

CODES AND DIMENSIONS


d1 CODE L b1 b2 b3 A pcs
[mm] [mm] [mm] [mm] [mm] [mm]

5 KWP560 60 36 15 6,5 25 200


TX 20 KWP570 70 46 15 6,5 25 100

WOOD PLASTIC COMPOSITE (WPC)


Ideal for fastening WPC boards, both solid and
perforated, even without pre-drilling.

OUTDOOR | KWP A2 | AISI305 | 271


KKA AISI410 BIT INCLUDED
410
AISI

SELF-DRILLING SCREW
TIMBER-TO-TIMBER | TIMBER-TO-ALUMINIUM

TIMBER-TO-ALUMINIUM
Self-perforating timber-to-metal tip with special bleeder geometry. Ideal
for fastening timber or WPC boards to aluminium substructures.

TIMBER-TO-TIMBER
Also ideal for fastening timber or WPC boards to thin wooden substruc-
tures, they, too, made with wooden boards. AISI410 stainless steel.

METAL-TO-ALUMINIUM
Short version ideal for fastening clips, plates and angle brackets to alu-
minium substructures. Can be used to fix aluminium-aluminium overlaps.

CHARACTERISTICS
FOCUS self-drilling, timber-aluminium
HEAD cylindrical, countersunk
DIAMETER 4,0 | 5,0 mm
LENGTH from 20 to 50 mm

MATERIAL
AISI410 martensitic stainless steel.

FIELDS OF USE
Outdoor use. Wooden boards with density of
< 880 kg/m3 on aluminium with a thickness of
< 3.2 mm (without pre-drill). Suitable for ser-
vice classes 1-2-3.

272 | KKA AISI410 | OUTDOOR


GEOMETRY

s A
t1 s t1 s

dk d2 d1 dk d2 d1

ds
b Lp b2 b1 Lp
L L

KKA Ø4 KKA Ø5

Nominal diameter d1 [mm] 4 5


Head diameter dK [mm] 6,30 6,80
Tip diameter d2 [mm] 2,80 3,50
Shank diameter dS [mm] - 4,35
Head thickness t1 [mm] 3,10 3,35
Tip length Lp [mm] 5,50 6,50

CODES AND DIMENSIONS


d1 CODE L b1 b2 A s pcs d1 CODE L b1 b2 A s pcs
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

4 5 KKA540 40 15,5 11 29 2÷3 100


KKA420 20 11,4 - - 1÷2.5 200
TX 20 TX 25 KKA550 50 20,5 11 39 2÷3 100

thickness, steel plate S235/St37


s
thickness, aluminium plate

ALU TERRACE
Ideal for fastening timber or WPC boards, clips
or angle brackets to aluminium substructures.

OUTDOOR | KKA AISI410 | 273


KKA COLOR BIT INCLUDED

SELF-DRILLING SCREW FOR ALUMINIUM

ALUMINIUM
Self-perforating tip with special bleeder geometry. Ideal for fastening
clips to aluminium substructures.

COLOURED COATING
Black anti-rust coating for outdoor use in service class 3. Concealed ef-
fect on dark substructures and clips.

METAL-TO-ALUMINIUM
Short version ideal for fastening clips, plates and angle brackets to steel
or aluminium substructures. Can be used to fix metal-metal overlaps.

CHARACTERISTICS
FOCUS self-drilling aluminium
HEAD cylindrical, countersunk
DIAMETER 4,0 and 5,0 mm
LENGTH from 20 to 40 mm

MATERIAL
Carbon steel with coloured organic anti-rust
coating.

FIELDS OF USE
Outdoor use. Aluminium thickness < 3,2 mm
(without pre-drill). Suitable for service classes
1-2-3.

274 | KKA COLOR | OUTDOOR


GEOMETRY

s A
t1 s t1 s

dk d2 d1 dk d2 d1

b Lp b Lp
L L

KKAN Ø4x20 KKAN Ø4x30 - KKAN Ø4x40 - KKAN Ø5x40

Nominal diameter d1 [mm] 4 5


Head diameter dK [mm] 6,30 6,80
Tip diameter d2 [mm] 2,80 3,50
Head thickness t1 [mm] 3,10 3,35
Tip length Lp [mm] 5,50 6,50

CODES AND DIMENSIONS


d1 CODE L b A s pcs
[mm] [mm] [mm] [mm] [mm]
KKAN420 20 10 - 2÷3 200
4
KKAN430 30 20 22 2÷3 200
TX 20
KKAN440 40 30 32 2÷3 200
5
KKAN540 40 29 29 2÷3 200
TX 25

thickness, steel plate S235/St37


s
thickness, aluminium plate

TVM COLOR
Ideal for fastening standard Rothoblaas clips
(TVMN) on aluminium. Long bit included in
each package.

OUTDOOR | KKA COLOR | 275


EWS BIT INCLUDED EN 14592

CONVEX HEAD SCREW

CONVEX HEAD
Countersunk teardrop shaped head with curved surface for a pleasant
look and firm grip with the bit.

ROBUST BODY
The increased shank diameter with high torsional strength for a strong,
safe screwing even in high density woods.

STAINLESS STEEL AISI410 E A2 | AISI305


EWS AISI410 can be used, without pre-drill, in woods having a maximum
density of 880 kg/m3. EWS A2 | AISI305 can be used, without pre-drill, in
woods having a maximum density of 550 kg/m3.

CHARACTERISTICS
FOCUS increased diameter for hardwoods
HEAD convex with ribs
DIAMETER 5,0 mm
LENGTH from 50 to 80 mm

MATERIAL
Austenitic stainless steel A2 | AISI305 and mar-
tensitic stainless steel AISI410.

FIELDS OF USE
Outdoor use. WPC boards (with pre-drill). EWS
A2 | AISI305: wooden boards with density of
< 550 kg/m3 (without pre-drill) and < 880 kg/m3
(with pre-drill). EWS AISI410: wooden boards
with density of < 880 kg/m3 (without pre-drill).
Suitable for service classes 1-2-3.

276 | EWS | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS

dk d2 d1

ds
t1 b
L

EWS AISI410 EWS A2 | AISI305


Nominal diameter d1 [mm] 5,3 5,3
Head diameter dK [mm] 8,00 8,00
Tip diameter d2 [mm] 3,90 3,90
Shank diameter dS [mm] 4,10 4,10
Head thickness t1 [mm] 3,65 3,65
Pre-drilling hole diameter dV [mm] 3,50 3,50
Characteristic yield moment My,k [Nm] 14,3 9,7
Characteristic
fax,k [N/mm2] 16,46 16,62
withdrawal-resistance parameter
Associated density ρa [kg/m3] 350 350
Characteristic head-pull-through
fhead,k [N/mm2] 21,05 21,44
parameter
Associated density ρa [kg/m3] 350 350
Characteristic tensile strength ftens,k [kN] 13,74 7,35

CODES AND DIMENSIONS


EWS AISI410 410 EWS A2 | AISI305 A2
AISI AISI 305

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
EWS550 50 30 20 200 EWSA2550 50 30 20 200
5
5 EWS560 60 36 24 200 EWSA2560 60 36 24 200
TX 25
TX 25 EWS570 70 42 28 100 EWSA2570 70 42 28 100
EWS580 80 48 32 100

TECHNICAL DOCUMENTATION
Values available for compliance with nation-
al unified technical documents for outdoor
wooden decking.

OUTDOOR | EWS | 277


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain angle α = 0° Load-to-grain angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 5 5
a1 [mm] 5∙d 25 4∙d 20
a2 [mm] 3∙d 15 4∙d 20
a3,t [mm] 12∙d 60 7∙d 35
a3,c [mm] 7∙d 35 7∙d 35
a4,t [mm] 3∙d 15 7∙d 35
a4,c [mm] 3∙d 15 3∙d 15

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 5 5
a1 [mm] 12∙d 60 5∙d 25
a2 [mm] 5∙d 25 5∙d 25
a3,t [mm] 15∙d 75 10∙d 50
a3,c [mm] 10∙d 50 10∙d 50
a4,t [mm] 5∙d 25 10∙d 50
a4,c [mm] 5∙d 25 5∙d 25
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are in accordance with EN 1995:2014 considering a
timber characteristic density of ρk ≤ 420 kg/m3.

278 | EWS | OUTDOOR


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

EWS AISI410 SHEAR TENSION

geometry timber-to-timber thread withdrawal(1) head pull-through(2)

d1

without with
pre-drilling hole pre-drilling hole
d1 L b A RV,k RV,k Rax,k Rhead,k
[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN]
50 30 20 1,38 1,84 2,86 1,56
60 36 30 1,54 2,07 3,43 1,56
5
70 42 40 1,75 2,27 4,00 1,56
80 48 50 1,81 2,27 4,57 1,56

EWS A2 | AISI305 SHEAR TENSION

geometry timber-to-timber thread withdrawal(1) head pull-through(2)

d1

without with
pre-drilling hole pre-drilling hole
d1 L b A RV,k RV,k Rax,k Rhead,k
[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN]
50 30 20 1,39 1,80 2,88 1,59
5 60 36 30 1,55 2,08 3,46 1,59
70 42 40 1,68 2,14 4,04 1,59

NOTES: GENERAL PRINCIPLES:


(1) T he axial thread withdrawal resistance was calculated considering a 90° an- • Characteristic values according to EN 1995:2014.
gle between the grain and the connector and for a fixing length of b. • Design values can be obtained from characteristic values as follows:
(2) The axial resistance to head pull-through was calculated using timber ele-
ments. Rk kmod
Rd =
γm
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
• Mechanical strength values and screw geometry according to CE marking
according to EN 14592.
• For the calculation process a timber characteristic density ρk = 420 kg/m3
has been considered.
• Values were calculated considering the threaded part as being completely
inserted into the wood.
• Dimensioning and verification of the timber elements must be carried out
separately.

OUTDOOR | EWS | 279


KKF AISI410 BIT INCLUDED
410
AISI
ETA-11/0030

PAN HEAD SCREW

PAN HEAD
The flat under-head accompanies absorption of the shavings, preventing
the wood from cracking and thus ensuring excellent surface finish.

LONGER THREAD
Special asymmetric “umbrella” thread with increased length (60%) for high-
er grip. Fine thread for the utmost precision when tightening is complete.

AISI410
Martensitic stainless steel with an excellent balance between mechanical
resistance and corrosion resistance. Can be inserted without requiring a
pre-drill.

CHARACTERISTICS
FOCUS excellent versatility of use
HEAD pan head
DIAMETER from 4,0 to 6,0 mm
LENGTH from 20 to 120 mm

MATERIAL
AISI410 martensitic stainless steel.

FIELDS OF USE
Outdoor use. Wooden boards with density
< 780 kg/m3 (without pre-drill). WPC boards
(with pre-drill). Suitable for service classes 1-2-3.

280 | KKF AISI410 | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS
A

d2 d1

KK F

X X
dk

ds
t1 b
L
Nominal diameter d1 [mm] 4 4,5 5 6
Head diameter dK [mm] 7,70 8,70 9,65 11,65
Tip diameter d2 [mm] 2,60 3,05 3,25 4,05
Shank diameter dS [mm] 2,90 3,35 3,60 4,30
Head thickness t1 [mm] 5,0 5,0 6,0 7,0
Pre-drilling hole diameter(1) dV [mm] 2,5 2,5 3,0 4,0
Characteristic yield
My,k [Nm] 2,0 2,8 4,5 8,2
moment
Characteristic withdrawal-resistance
fax,k [N/mm2] 11,7 11,7 11,7 11,7
parameter(2)
Associated density ρa [kg/m3] 350 350 350 350
Characteristic head-pull-through
fhead,k [N/mm2] 16,5 16,5 16,5 16,5
parameter(2)
Associated density ρa [kg/m3] 350 350 350 350
Characteristic tensile strength ftens,k [kN] 5,0 6,4 7,9 11,3
(1)
Pre-drilling valid for softwood.
(2)
Valid for softwood - maximum density 440 kg/m3.
For applications with different materials or with high density please see ETA-11/0030.

CODES AND DIMENSIONS

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
KKF430 30 18 12 500 KKF540 40 24 16 200
KKF435 35 20 15 500 KKF550 50 30 20 200
4
KKF440 40 24 16 500 KKF560 60 35 25 200
TX 20 5
KKF445 45 30 15 200 KKF570 70 40 30 100
TX 25
KKF450 50 30 20 200 KKF580 80 50 30 100
KKF4520( * ) 20 15 5 200 KKF590 90 55 35 100
KKF4540 40 24 16 200 KKF5100 100 60 40 100
4,5 KKF4545 45 30 15 200 KKF680 80 50 30 100
TX 20 6
KKF4550 50 30 20 200 KKF6100 100 60 40 100
TX 30
KKF4560 60 35 25 200 KKF6120 120 75 45 100
KKF4570 70 40 30 200 (*) Not holding CE marking.

TERRALOCK PP
Ideal for fastening standard Rothoblaas clips
in outdoor environments. Long bit included in
each package.

OUTDOOR | KKF AISI410 | 281


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain Load-to-grain
angle α = 0° angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE (1) SCREWS INSERTED WITH PRE-DRILLING HOLE (1)
d1 [mm] 4 4,5 5 6 4 4,5 5 6
a1 [mm] 5∙d 20 23 5∙d 25 30 4∙d 16 18 4∙d 20 24
a2 [mm] 3∙d 12 14 3∙d 15 18 4∙d 16 18 4∙d 20 24
a3,t [mm] 12∙d 48 54 12∙d 60 72 7∙d 28 32 7∙d 35 42
a3,c [mm] 7∙d 28 32 7∙d 35 42 7∙d 28 32 7∙d 35 42
a4,t [mm] 3∙d 12 14 3∙d 15 18 5∙d 20 23 7∙d 35 42
a4,c [mm] 3∙d 12 14 3∙d 15 18 3∙d 12 14 3∙d 15 18

characteristic density: ρ k ≤ 420 kg/m3


SCREWS INSERTED WITHOUT PRE-DRILLING HOLE (2) SCREWS INSERTED WITHOUT PRE-DRILLING HOLE (2)
d1 [mm] 4 4,5 5 6 4 4,5 5 6
a1 [mm] 10∙d 40 45 12∙d 60 72 5∙d 20 23 5∙d 25 30
a2 [mm] 5∙d 20 23 5∙d 25 30 5∙d 20 23 5∙d 25 30
a3,t [mm] 15∙d 60 68 15∙d 75 90 10∙d 40 45 10∙d 50 60
a3,c [mm] 10∙d 40 45 10∙d 50 60 10∙d 40 45 10∙d 50 60
a4,t [mm] 5∙d 20 23 5∙d 25 30 7∙d 28 32 10∙d 50 60
a4,c [mm] 5∙d 20 23 5∙d 25 30 5∙d 20 23 5∙d 25 30

characteristic density: 420 ≤ ρ k ≤ 500 kg/m3


SCREWS INSERTED WITHOUT PRE-DRILLING HOLE(3) SCREWS INSERTED WITHOUT PRE-DRILLING HOLE(3)
d1 [mm] 4 4,5 5 6 4 4,5 5 6
a1 [mm] 15∙d 60 68 15∙d 75 90 7∙d 28 32 7∙d 35 42
a2 [mm] 7∙d 28 32 7∙d 35 42 7∙d 28 32 7∙d 35 42
a3,t [mm] 20∙d 80 90 20∙d 100 120 15∙d 60 68 15∙d 75 90
a3,c [mm] 15∙d 60 68 15∙d 75 90 15∙d 60 68 15∙d 75 90
a4,t [mm] 7∙d 28 32 7∙d 35 42 9∙d 36 41 12∙d 60 72
a4,c [mm] 7∙d 28 32 7∙d 35 42 7∙d 28 32 7∙d 35 42
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
(1) The minimum distances comply with the EN 1995:2014 standard in accord- • In the case of OSB-timber joints, the minimum spacings (a1 , a2) can be mul-
ance with ETA-11/0030. tiplied by a coefficient of 0,85.
(2) The minimum distances are in accordance with EN 1995:2014, according to • In the case of Douglas fir elements (Pseudotsuga menziesii), the minimum
ETA-11/0030, considering a timber element mass density of ρ ≤ 420 kg/m3.
k distances parallel to the grain (a1 , a3,t, a3,c) must be multiplied by a coef-
(3) The minimum distances comply with EN 1995:2014, according to ETA- ficient of 1,5.
11/0030, considering a timber element mass density of 420 ≤ ρk ≤ 500 kg/m3.

282 | KKF AISI410 | OUTDOOR


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION

geometry timber-to-timber panel-to-timber(1) thread withdrawal(2) head pull-through (3)

d1

d1 L b A RV,k RV,k Rax,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN]
30 18 12 0,78 0,77 0,97 1,13
35 20 15 0,88 SPAN = 15 mm 0,88 1,08 1,13
4 40 24 16 0,92 0,88 1,30 1,13
45 30 15 0,89 0,88 1,62 1,13
50 30 20 0,98 0,88 1,62 1,13
20 15 5 0,49 0,49 0,91 1,44
SPAN = 15 mm

40 24 16 1,08 1,00 1,46 1,44


45 30 15 1,06 1,00 1,83 1,44
4,5
50 30 20 1,19 1,00 1,83 1,44
60 35 25 1,22 1,00 2,13 1,44
70 40 30 1,22 1,00 2,44 1,44
40 24 16 1,27 1,16 1,62 1,78
50 30 20 1,41 1,16 2,03 1,78
SPAN = 15 mm

60 35 25 1,55 1,16 2,37 1,78


5 70 40 30 1,57 1,16 2,71 1,78
80 50 30 1,57 1,16 3,38 1,78
90 55 35 1,57 1,16 3,72 1,78
100 60 40 1,57 1,16 4,06 1,78
80 50 30 2,19 1,50 4,06 2,59
15 mm
SPAN =

6 100 60 40 2,27 1,50 4,87 2,59


120 75 45 2,27 1,50 6,09 2,59

NOTES:
(1) The characteristic shear strength are calculated considering an OSB panel • For the calculation process a timber characteristic density ρk = 420 kg/m3
or particle board with a SPAN thickness. has been considered.
(2) The axial thread withdrawal resistance was calculated considering a 90° an- • Values were calculated considering the threaded part as being completely
gle between the grain and the connector and for a fixing length of b. inserted into the wood.
(3) The axial resistance to head pull-through was calculated using timber ele- • Sizing and verification of the timber elements and panels must be done
ments. separately.
GENERAL PRINCIPLES: • The characteristic shear resistances are calculated for screws inserted with-
out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
• Characteristic values comply with the EN 1995:2014 standard in accord- greater resistance values can be obtained.
ance with ETA-11/0030.
• Design values can be obtained from characteristic values as follows:
Rk kmod
Rd =
γm
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.
• For the mechanical resistance values and the geometry of the screws, ref-
erence was made to ETA-11/0030.

OUTDOOR | KKF AISI410 | 283


SCI A4 | AISI316 BIT INCLUDED
A4
AISI 316

COUNTERSUNK SCREW

SPECIAL GEOMETRY
Self-perforating tip with setback notch, asymmetric “umbrella” thread,
elongated cutter and sharp under-head ribs.

SUPERIOR STRENGTH
Geometric details provide the screw with greater torsional strength for
more secure screwing.

A4 | AISI316
A4 | AISI316 austenitic stainless steel for high corrosion resistance. Ideal
for seaside environments.

CHARACTERISTICS
FOCUS details designed for high performance
HEAD countersunk with ribs
DIAMETER 5,0 mm
LENGTH from 50 to 100 mm

MATERIAL
A4 | AISI316 austenitic stainless steel.

FIELDS OF USE
Outdoor use in highly aggressive environ-
ments.
Wooden boards with density of < 470 kg/m3
(without pre-drill) and < 620 kg/m3 (with pre-
drill). Suitable for service classes 1-2-3.

284 | SCI A4 | AISI316 | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS

X X
d2 d1

SC I
dk 90°

ds
t1 b
L

Nominal diameter d1 [mm] 5


Head diameter dK [mm] 10,00
Tip diameter d2 [mm] 3,40
Shank diameter dS [mm] 3,65
Head thickness t1 [mm] 4,65
Pre-drilling hole diameter dV [mm] 3,0
Characteristic yield moment My,k [Nm] 3,9
Characteristic withdrawal-resistance parameter fax,k [N/mm2] 17,9
Associated density ρa [kg/m3] 440
Characteristic head-pull-through parameter fhead,k [N/mm2] 17,6
Associated density ρa [kg/m3] 440
Characteristic tensile strength ftens,k [kN] 4,3
Mechanical parameters from experimental tests.

CODES AND DIMENSIONS

d1 CODE L b A pcs
[mm] [mm] [mm] [mm]
SCI5050A4 50 24 26 200
SCI5060A4 60 30 30 200

5 SCI5070A4 70 35 35 100
TX 25 SCI5080A4 80 40 40 100
SCI5090A4 90 45 45 100
SCI50100A4 100 50 50 100

TURNED WASHER SCB A4 | AISI316

dSCI CODE D1 D2 h pcs


D2 D1 h
[mm] [mm] [mm] [mm]
dSCI
6 SCB6 7,5 20,0 4,0 100

MARINE ENVIRONMENTS
Can be used in aggressive environments and
in areas near the sea thanks to the A4 | AISI316
stainless steel.

OUTDOOR | SCI A4 | AISI316 | 285


SCI A2 | AISI305 BIT INCLUDED
A2
AISI 305
EN 14592

COUNTERSUNK SCREW

SPECIAL GEOMETRY
Self-perforating tip with setback notch, asymmetric “umbrella” thread,
elongated cutter and sharp under-head ribs.

SUPERIOR STRENGTH
Geometric details provide the screw with greater torsional strength for
more secure screwing. Very broad range of measurements.

A2 | AISI305
Austenitic stainless steel A2 | AISI305 for high corrosion resistance. Ideal
for aggressive environments.

CHARACTERISTICS
FOCUS details designed for high performance
HEAD countersunk with ribs
DIAMETER from 3,5 to 8,0 mm
LENGTH from 25 to 320 mm

MATERIAL
A2 | AISI305 austenitic stainless steel.

FIELDS OF USE
Use in aggressive outdoor environments.
Wooden boards with density of < 470 kg/m3
(without pre-drill) and < 620 kg/m3 (with pre-
drill). Suitable for service classes 1-2-3.

286 | SCI A2 | AISI305 | OUTDOOR


GEOMETRY AND MECHANICAL CHARACTERISTICS

X X
d2 d1

SC I
dk 90°

ds
t1 b
L

Nominal diameter d1 [mm] 3,5 4 4,5 5 6 8


Head diameter dK [mm] 7,00 8,00 9,00 10,00 12,00 14,50
Tip diameter d2 [mm] 2,25 2,55 2,80 3,40 3,95 5,40
Shank diameter dS [mm] 2,45 2,75 3,15 3,65 4,30 5,80
Head thickness t1 [mm] 3,50 3,80 4,25 4,65 5,30 6,00
Pre-drilling hole diameter dV [mm] 2,0 2,5 3,0 3,0 4,0 5,0
Characteristic yield moment My,k [Nm] 1,26 1,96 2,77 4,37 8,22 17,60
Characteristic withdrawal-resistance parameter fax,k [N/mm2] 19,1 17,1 17,2 17,9 11,6 14,8
Associated density ρa [kg/m3] 440 410 410 440 420 410
Characteristic head-pull-through parameter fhead,k [N/mm2] 16,0 13,4 18,0 17,6 12,0 12,5
Associated density ρa [kg/m3] 380 390 440 440 440 440
Characteristic tensile strength ftens,k [kN] 2,21 3,23 4,40 5,01 6,81 14,10

CODES AND DIMENSIONS


d1 CODE L b A pcs d1 CODE L b A pcs
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
SCI3525( * ) 25 18 7 500 SCI5040 40 20 20 200
3,5 SCI3530( * ) 30 18 12 500 SCI5045 45 24 21 200
TX 15 SCI3535( * ) 35 18 17 500 SCI5050 50 24 26 200
SCI3540( * ) 40 18 22 500 5 SCI5060 60 30 30 200
SCI4030 30 18 12 500 TX 25 SCI5070 70 35 35 100
SCI4035 35 18 17 500 SCI5080 80 40 40 100
4 SCI4040 40 24 16 500 SCI5090 90 45 45 100
TX 20 SCI4045 45 30 15 400 SCI50100 100 50 50 100
SCI4050 50 30 20 400 SCI6060 60 30 30 100
SCI4060 60 35 25 200 SCI6080 80 40 40 100
SCI4535 35 24 11 400 6 SCI60100 100 50 50 100
SCI4540 40 24 16 400 TX 30 SCI60120 120 60 60 100
SCI4545 45 30 15 400 SCI60140 140 75 65 100
4,5
SCI4550 50 30 20 200 SCI60160 160 75 85 100
TX 20
SCI4560 60 35 25 200 SCI80120 120 60 60 100
SCI4570 70 40 30 200 SCI80160 160 80 80 100
SCI4580 80 40 40 200 8 SCI80200 200 80 120 100
(*) TX 40 SCI80240 240 80 160 100
Not holding CE marking.
SCI80280 280 80 200 100
SCI80320 320 80 240 100

TURNED WASHER SCB A4 | AISI316

dSCI CODE D1 D2 h pcs


[mm] [mm] [mm] [mm]
D2 D1 h
6 SCB6 7,5 20,0 4,0 100
dSCI
8 SCB8 8,5 25,0 5,0 100

OUTDOOR | SCI A2 | AISI305 | 287


MINIMUM DISTANCES FOR SHEAR LOADS

Load-to-grain Load-to-grain
angle α = 0° angle α = 90°

SCREWS INSERTED WITH PRE-DRILLING HOLE SCREWS INSERTED WITH PRE-DRILLING HOLE
d1 [mm] 3,5 4 4,5 5 6 8 3,5 4 4,5 5 6 8
a1 [mm] 5∙d 18 20 23 5∙d 25 30 40 4∙d 14 16 18 4∙d 20 24 32
a2 [mm] 3∙d 11 12 14 3∙d 15 18 24 4∙d 14 16 18 4∙d 20 24 32
a3,t [mm] 12∙d 42 48 54 12∙d 60 72 96 7∙d 25 28 32 7∙d 35 42 56
a3,c [mm] 7∙d 25 28 32 7∙d 35 42 56 7∙d 25 28 32 7∙d 35 42 56
a4,t [mm] 3∙d 11 12 14 3∙d 15 18 24 5∙d 18 20 23 7∙d 35 42 56
a4,c [mm] 3∙d 11 12 14 3∙d 15 18 24 3∙d 11 12 14 3∙d 15 18 24

SCREWS INSERTED WITHOUT PRE-DRILLING HOLE SCREWS INSERTED WITHOUT PRE-DRILLING HOLE
d1 [mm] 3,5 4 4,5 5 6 8 3,5 4 4,5 5 6 8
a1 [mm] 10∙d 35 40 45 12∙d 60 72 96 5∙d 18 20 23 5∙d 25 30 40
a2 [mm] 5∙d 18 20 23 5∙d 25 30 40 5∙d 18 20 23 5∙d 25 30 40
a3,t [mm] 15∙d 53 60 68 15∙d 75 90 120 10∙d 35 40 45 10∙d 50 60 80
a3,c [mm] 10∙d 35 40 45 10∙d 50 60 80 10∙d 35 40 45 10∙d 50 60 80
a4,t [mm] 5∙d 18 20 23 5∙d 25 30 40 7∙d 25 28 32 10∙d 50 60 80
a4,c [mm] 5∙d 18 20 23 5∙d 25 30 40 5∙d 18 20 23 5∙d 25 30 40
d = nominal screw diameter

stressed end unloaded end stressed edge unload edge


-90° < α < 90° 90° < α < 270° 0° < α < 180° 180° < α < 360°

a2 α F
F
a2 α α a4,t a4,c
F α
F
a1 a1 a3,t a3,c

NOTES:
• The minimum distances are compliant with EN 1995:2014 considering a • The minimum spacing for all panel-to-timber connections (a1 , a2) can be
timber characteristic density of ρk ≤ 420 kg/m3 and calculation diameter of multiplied by a coefficient of 0,85.
d = nominal screw diameter.
• The minimum spacing for all steel-to-timber connections (a1 , a2) can be
multiplied by a coefficient of 0,7.

288 | SCI A2 | AISI305 | OUTDOOR


STATIC VALUES CHARACTERISTIC VALUES
EN 1995:2014

SHEAR TENSION
timber-to-timber head pull-through
geometry timber-to-timber legno-legno thread withdrawal(1) head pull-through(2)
with washer with washer(2)
con rondella

d1

d1 L b A RV,k RV,k Rax,k Rhead,k Rhead,k


[mm] [mm] [mm] [mm] [kN] [kN] [kN] [kN] [kN]
25 18 7 0,41 - 1,08 0,79 -
30 18 12 0,55 - 1,08 0,79 -
3,5
35 18 17 0,62 - 1,08 0,79 -
40 18 22 0,64 - 1,08 0,79 -
30 18 12 0,62 - 1,17 0,85 -
35 18 17 0,68 - 1,17 0,85 -
40 24 16 0,69 - 1,56 0,85 -
4
45 30 15 0,67 - 1,95 0,85 -
50 30 20 0,76 - 1,95 0,85 -
60 35 25 0,79 - 2,28 0,85 -
35 24 11 0,76 - 1,77 1,31 -
40 24 16 0,88 - 1,77 1,31 -
45 30 15 0,87 - 2,21 1,31 -
4,5 50 30 20 0,95 - 2,21 1,31 -
60 35 25 1,04 - 2,58 1,31 -
70 40 30 1,04 - 2,94 1,31 -
80 40 40 1,04 - 2,94 1,31 -
40 20 20 1,04 - 1,61 1,58 -
45 24 21 1,13 - 1,93 1,58 -
50 24 26 1,21 - 1,93 1,58 -
60 30 30 1,35 - 2,41 1,58 -
5
70 35 35 1,35 - 2,82 1,58 -
80 40 40 1,35 - 3,22 1,58 -
90 45 45 1,35 - 3,62 1,58 -
100 50 50 1,35 - 4,02 1,58 -
60 30 30 1,48 1,58 1,95 1,55 4,31
80 40 40 1,77 2,03 2,60 1,55 4,31
100 50 50 1,77 2,19 3,25 1,55 4,31
6
120 60 60 1,77 2,35 3,90 1,55 4,31
140 75 65 1,77 2,46 4,87 1,55 4,31
160 75 85 1,77 2,46 4,87 1,55 4,31
120 60 60 2,84 3,93 6,76 2,38 7,02
160 80 80 2,84 4,00 9,01 2,38 7,02
200 80 120 2,84 4,00 9,01 2,38 7,02
8
240 80 160 2,84 4,00 9,01 2,38 7,02
280 80 200 2,84 4,00 9,01 2,38 7,02
320 80 240 3,19 4,35 9,01 2,38 7,02

NOTES:
(1) T he axial thread withdrawal resistance was calculated considering a 90° an- • Mechanical strength values and screw geometry according to CE marking
gle between the grain and the connector and for a fixing length of b. according to EN 14592.
(2) The axial resistance to head pull-through, with and without a washer, was • For the calculation process a timber characteristic density ρk = 385 kg/m3
calculated using timber elements. In the case of steel-to-timber connec- has been considered.
tions, generally the steel tensile strength is binding with respect to head • Values were calculated considering the threaded part as being completely
separation or pull-through. inserted into the wood.
• Dimensioning and verification of the timber elements must be carried out
separately.
GENERAL PRINCIPLES:
• The characteristic shear resistances are calculated for screws inserted with-
• Characteristic values according to EN 1995:2014. out pre-drilling hole. In the case of screws inserted with pre-drilling hole,
• Design values can be obtained from characteristic values as follows: greater resistance values can be obtained.

Rk kmod
Rd =
γm
The coefficients γM and kmod should be taken according to the current
regulations used for the calculation.

OUTDOOR | SCI A2 | AISI305 | 289


SCA A2 | AISI304 A2
AISI 304

COUNTERSUNK SCREW

COST/PERFORMANCE
Simple geometry, optimised to provide good performance at a low cost.

SMOOTH UNDER-HEAD
Ideal for fastening stainless steel clips and hinges thanks to the smooth,
countersunk head.

SIMPLE BOX
Packaging optimised to reduce material wastes in the building site.
Increased number of pieces for package.

CHARACTERISTICS
FOCUS use with stainless steel clips
HEAD countersunk without ribs
DIAMETER from 3,5 to 5,0 mm
LENGTH from 25 to 70 mm

MATERIAL
A2 | AISI304 austenitic stainless steel.

FIELDS OF USE
Use in aggressive outdoor environments.
Wooden boards with density of < 470 kg/m3
(without pre-drill) and < 570 kg/m3 (with pre-
drill). Suitable for service classes 1-2-3.

290 | SCA A2 | AISI304 | OUTDOOR


GEOMETRY

dk d1 d1

ds
t1 b
L

Nominal diameter d1 [mm] 3,5 4 4,5 5


Head diameter dK [mm] 6,80 8,00 9,00 10,00
Tip diameter d2 [mm] 2,25 2,55 2,80 3,40
Shank diameter dS [mm] 2,50 2,75 3,15 3,65
Head thickness t1 [mm] 3,50 3,80 4,25 4,65
Pre-drilling hole diameter dV [mm] 2,0 2,5 3,0 3,0

CODES AND DIMENSIONS

d1 CODE L b A pcs d1 CODE L b A pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

3,5 SCA3525 25 18 7 500 4,5 SCA4550 50 30 20 200


TX 10 SCA3535 35 24 11 500 TX 20 SCA4560 60 36 24 200

4 SCA440 40 24 16 200 SCA550 50 30 20 200


TX 20 5
SCA450 50 30 20 200 SCA560 60 36 24 200
TX 25
SCA570 70 42 28 200

GAP
Ideal for fastening standard Rothoblaas clips
in outdoor environments.

OUTDOOR | SCA A2 | AISI304 | 291


HBS PLATE EVO 1002
CERTIFIED

C4 COATING BIT INCLUDED COATING ETA-11/0030

PAN HEAD SCREW FOR PLATES

C4 EVO COATING
20 μm multilayer coating with a surface treatment of epoxy resin and
aluminium flakes. No rust after 1440 hours of salt spray exposure, as per
ISO 9227.

OUTDOOR ENVIRONMENT
Can be used in service class 3 outdoor applications and under class C4
atmospheric corrosion conditions.

NOTE: codes, techniques and further information on page 98. GEOMETRY

CHARACTERISTICS
P
FOCUS corrosiveness class C4
X X
BS

HEAD shoulder for plate


DIAMETER from 5,0 to 10,0 mm
LENGTH from 40 to 180 mm

MATERIAL
Carbon steel, with a 20 μm coating, highly re-
sistant to corrosion.

FIELDS OF USE
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
• aggressive woods (containing tannin)
• chemically treated woods
Service classes 1, 2 and 3.

292 | HBS PLATE EVO | OUTDOOR


HBS EVO 1002
CERTIFIED

C4 COATING BIT INCLUDED COATING ETA-11/0030

COUNTERSUNK SCREW

C4 EVO COATING
20 μm multilayer coating with a surface treatment of epoxy resin and
aluminium flakes. No rust after 1440 hours of salt spray exposure, as per
ISO 9227.

OUTDOOR ENVIRONMENT
Can be used in service class 3 outdoor applications and under class C4
atmospheric corrosion conditions.

NOTE: codes, techniques and further information on page 46. GEOMETRY

CHARACTERISTICS
S
FOCUS corrosiveness class C4
X X
B
H

HEAD countersunk with under-head ribs


DIAMETER from 5,0 to 8,0 mm
LENGTH from 80 to 320 mm

MATERIAL
Carbon steel, with a 20 μm coating, highly re-
sistant to corrosion.

FIELDS OF USE
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
• aggressive woods (containing tannin)
• chemically treated woods
Service classes 1, 2 and 3.

OUTDOOR | HBS EVO | 293


TBS EVO 1002
CERTIFIED

C4 COATING BIT INCLUDED COATING ETA-11/0030

OUTDOOR SCREW, FLANGE HEAD

C4 EVO COATING
20 μm multilayer coating with a surface treatment of epoxy resin and
aluminium flakes. No rust after 1440 hours of salt spray exposure, as per
ISO 9227.

OUTDOOR ENVIRONMENT
Can be used in service class 3 outdoor applications and under class C4
atmospheric corrosion conditions.

NOTE: codes, techniques and further information on page 84. GEOMETRY

CHARACTERISTICS
FOCUS corrosiveness class C4
HEAD flange
DIAMETER 6,0 and 8,0 mm
LENGTH from 60 to 240 mm

MATERIAL
Carbon steel, with a 20 μm coating, highly re-
sistant to corrosion.

FIELDS OF USE
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
• aggressive woods (containing tannin)
• chemically treated woods
Service classes 1, 2 and 3.

294 | TBS EVO | OUTDOOR


VGZ EVO 1002
CERTIFIED

C4 COATING BIT INCLUDED COATING ETA-11/0030

FULL THREAD SCREW WITH CYLINDRICAL HEAD

C4 EVO COATING
20 μm multilayer coating with a surface treatment of epoxy resin and
aluminium flakes. No rust after 1440 hours of salt spray exposure, as per
ISO 9227.

OUTDOOR ENVIRONMENT
Can be used in service class 3 outdoor applications and under class C4
atmospheric corrosion conditions.

NOTE: codes, techniques and further information on page 170. GEOMETRY

CHARACTERISTICS
FOCUS corrosiveness class C4 Z
X
G

X
V

HEAD cylindrical, countersunk


DIAMETER from 5,3 to 9,0 mm
LENGTH from 80 to 360 mm

MATERIAL
Carbon steel, with a 20 μm coating, highly re-
sistant to corrosion.

FIELDS OF USE
• timber based panels
• solid timber and glulam
• CLT, LVL
• high density woods
• aggressive woods (containing tannin)
• chemically treated woods
Service classes 1, 2 and 3.

OUTDOOR | VGZ EVO | 295


FLAT | FLIP
CONNECTOR FOR DECKING

INVISIBLE
Completely hidden. The version in aluminium with black coating guar-
antees an attractive result; the galvanized steel version offers good per-
formance at low cost.

FAST INSTALLATION
Fast, easy installation thanks to the single-screw fastening and the in-
tegrated spacer-tab for precise spacing. Ideal for application with the
PROFID spacer.

SYMMETRICAL GROOVING
Makes it possible to install deck planks regardless of the position of
the grooving (symmetrical). Ribbed surface provides high mechanical
strength.

CHARACTERISTICS
FOCUS extremely precise joints
CLADDING black anti-rust coating | zinc plated
BOARDS symmetrical grooving
JOINTS 7.0 mm
FASTENERS KKTN540 , KKAN440

MATERIAL
Aluminium with coloured organic coating and
carbon steel with zinc plated.

FIELDS OF USE
Outdoor use. Fastening timber or WPC boards
on substructures in wood, WPC or aluminium.
Suitable for service classes 1-2-3.

296 | FLAT | FLIP | OUTDOOR


GEOMETRY
FLAT COLOR FLIP
2 4 2 4

8,5 45° 8 42°

8,5 5 54 5 8 6 54 6

Ø5,3 Ø5,3
27 7 27 7

27 27 27 27

B B

s s
P P

CODES AND DIMENSIONS


FLAT COLOR FLIP
CODE material PxBxs pcs CODE material PxBxs pcs
[mm] [mm]
FLAT black alluminum 54 x 27 x 4 200 FLIP zinc-plated steel 54 x 27 x 4 200

KKT COLOR KKA COLOR


fastening on wood and WPC for FLAT and FLIP fastening on aluminium for FLAT and FLIP

d1 CODE L pcs d1 CODE L pcs


[mm] [mm]
[mm] [mm]
5
KKTN540 40 200 KKAN420 20 200
TX 20
4
KKAN430 30 200
TX 20
KKAN440 40 200
5
KKAN540 40 200
TX 25

WOOD PLASTIC COMPOSITE (WPC)


Ideal for fastening WPC boards. Can also be
used for fastening on aluminium using KKA
COLOR screws (KKAN440).

OUTDOOR | FLAT | FLIP | 297


GROOVING GEOMETRY
7 7

SYMMETRICAL GROOVING
F F Min. thickness F 4 mm
H H
Min. recommended height H H free

PROFID KKTN PROFID KKTN

INSTALLATION

01 02

Position the PROFID spacer at the joist centerline. First board: fix Insert the FLAT/FLIP fastener into the groove cut so that the spacer
it with suitable screws, left visible or hidden thanks to specific ac- tab adheres to the board.
cessories.

03 04

Position the next board by inserting it into the FLAT/FLIP fastener. Using the CRAB MINI clamp, tighten the two boards until the gap
between them is 7 mm (see product page 334).

05 06

Fix the fastener to the joist underneath by using the KKTN screw. Repeat the operations for the remaining boards.
Last board: repeat step 01.

298 | FLAT | FLIP | OUTDOOR


CALCULATION EXAMPLE
INCIDENCE ESTIMATE FORMULA PER m2
f
L
1m2/i/(L + f) = pcs of FLAT/FLIP at m2

i = joists spacing
L = board width
i f = gap width

PRACTICAL EXAMPLE
NUMBER OF BOARDS AND JOISTS
A=6m
A=6m PATIO SURFACE

S = A ∙ B = 6 m ∙ 4 m = 24 m2

WOODEN PLANKING
140 mm L = 140 mm
18 mm s = 18 mm
f = 7 mm
mm
=4

JOISTS
=4
BB

60 mm
b = 60 mm
30 mm h = 30 mm
i= 0,6 m

no. boards = [B/(L+f)]


= [4/(0,14+0,007)]= 27 boards
0,6 m 0,6 m 0,54 m
0,6 m 0,6 m 0,54 m no. 4 m boards = 27 boards
no. 2 m boards = 27 boards
no. battens = [A/i] + 1 = (6/0,6) +1 = 11 battens
27 boards 4 m 27 boards 2 m

SCREW SELECTION

Head thickness Sscrew head 2,8 mm


Grooving thickness F 4 mm
Grooving dimension H (s-F)/2 7 mm
PROFID thickness SPROFID 8 mm

Pull-through length L pen 4∙d 20 mm

f MINIMUM SCREW LENGTH


F = Sscrew head + F + H + SPROFID + Lpen
H
BOARD
FLAT/FLIP = 2,8 + 4 + 7 + 8 + 20 = 41,8 mm
PROFID KKTN
PROFID
JOIST CHOICE OF SCREW KKTN550

FLAT / FLIP NUMBER CALCULATION

QUANTITY FOR INCIDENCE FORMULA QUANTITY FOR THE NUMBER OF INTERSECTIONS

I = S/i/(L + f) = pcs of FLAT/FLIP I = No. boards with FLAT/FLIP no. battens = pcs. of FLAT/FLIP
I = 24 m2/0,6 m/(0,14 m + 0,007 m) = 272 pcs FLAT/FLIP no. boards with FLAT/FLIP = (number of boards - 1)
= (27 - 1) = 26 boards
waste coefficient = 1,05 no. of joists = (A/i) + 1 = (6/0.6) + 1 = 11 joists
I = 272 ∙ 1,05 = 286 pcs FLAT/FLIP no. intersections = I = 26 ∙ 11 = 286 pcs FLAT/FLIP
I = 286 pcs FLAT/FLIP I = 286 pcs FLAT/FLIP

FLAT/FLIP NUMBER = 286 pcs SCREWS NUMBER = No. FLAT/FLIP = 286 pcs KKTN550

OUTDOOR | FLAT | FLIP | 299


A2
TVM AISI 304

CONNECTOR FOR DECKING

FOUR VERSIONS
Different sizes for applications on boards with different thickness and
gaps of varying width. Black version for complete concealment.

DURABILITY
The stainless steel ensures high corrosion-resistance. The micro-venti-
lation between the boards helps the durability of the wooden elements.

ASYMMETRIC GROOVING
Ideal for boards with asymmetrical “female-female” groove cuts. Ribbing
on the surface of the connector ensures excellent stability.

CHARACTERISTICS
FOCUS excellent grooving versatility
BOARDS symmetrical grooving
JOINTS from 7,0 to 9,0 mm
FASTENERS KKTX520A4, KKA420, KKAN420

MATERIAL
A2 | AISI304 austenitic stainless steel and
stainless steel with coloured organic coating.

FIELDS OF USE
Use in aggressive outdoor environments. Fas-
tening timber or WPC boards on substructures
in wood, WPC or aluminium. Suitable for ser-
vice classes 1-2-3.

300 | TVM | OUTDOOR


GEOMETRY
TVM1 TVM2 TVM3 TVMN4
10 10 12 15
1,5 2,4 1,5 2,4 1 2,4 1 2,4
6,5 8 8,1 9,6 8,6 11 12 14,4
12 14 14
17

22,5 22,5 30
23

31 8 27,8 9,6 29,4 9,6 36 13


TVM3

P B P B P B P B

CODES AND DIMENSIONS


TVM A2 | AISI304 TVM COLOR
CODE material PxBxs pcs CODE material PxBxs pcs
[mm] [mm]
TVM1 A2 | AISI304 22,5 x 31 x 2,5 500 A2 | AISI304
TVMN4 23 x 36 x 2.5 500
TVM2 A2 | AISI304 22,5 x 28 x 2,5 500 with black coating

TVM3 A2 | AISI304 30 x 29,4 x 2,5 500

KKT X KKT COLOR


fastening on timber and WPC for TVM A2 | AISI304 fastening on timber and WPC for TVM COLOR

d1 CODE L pcs d1 CODE L pcs


[mm] [mm] [mm] [mm]
KKTX520A4 20 200 5
KKTN540 40 200
KKTX525A4 25 200 TX 20
5
TX 20 KKTX530A4 30 200
KKTX540A4 40 200

KKA AISI410 KKA COLOR


fastening on aluminium for TVM A2 | AISI304 fastening on aluminium for TVM COLOR

d1 CODE L pcs d1 CODE L pcs


[mm] [mm] [mm] [mm]

4 4
KKA420 20 200 KKAN420 20 200
TX 20 TX 20

KKA
Can also be used for fastening on alumini-
um profiles using KKA AISI410 or KKA COLOR
screws.

OUTDOOR | TVM | 301


GROOVING GEOMETRY
7 7
ASYMMETRICAL GROOVING

F F Min. thickness F 3 mm
H H Min recommended height TVM1 H 8 mm
Min recommended height TVM2 H 10 mm
PROFID KKT PROFID KKT
Min recommended height TVM3 H 10 mm
Min recommended height TVMN H 13 mm

INSTALLATION

01 02

Position the PROFID spacer at the joist centerline. First board: fix Insert the TVM fastener into the groove cut so that the side fin
with suitable screws which are left visible. adheres to the groove in the board.

03 04

Position the next board by inserting it into the TVM fastener. Using the CRAB MINI clamp, tighten the two boards until the gap
between them is 7 mm (see product page 334).

05 06

Fix the fastener to the joist underneath by using the KKTX screw. Repeat the operations for the remaining boards.
Last board: repeat step 01.

302 | TVM | OUTDOOR


CALCULATION EXAMPLE
INCIDENCE ESTIMATE FORMULA PER m2
f
L
1m2/i/(L + f) = pcs of TVM at m2

i = joists spacing
L = board width
i f = gap width

PRACTICAL EXAMPLE
NUMBER OF BOARDS AND JOISTS
A=6m
A=6m PATIO SURFACE

S = A ∙ B = 6 m ∙ 4 m = 24 m2

WOODEN PLANKING
140 mm L = 140 mm
s = 21 mm
21 mm
f = 7 mm
mm
=4

JOISTS
=4
BB

60 mm
b = 60 mm
30 mm h = 30 mm
i= 0,6 m

no. boards = [B/(L+f)]


= [4/(0,14+0,007)]= 27 boards
0,6 m 0,6 m 0,54 m
0,6 m 0,6 m 0,54 m no. 4 m boards = 27 boards
no. 2 m boards = 27 boards
no. battens = [A/i] + 1 = (6/0,6) +1 = 11 battens
27 boards 4 m 27 boards 2 m

SCREW SELECTION

Head thickness Sscrew head 2,8 mm


Grooving thickness F 4 mm
Grooving dimension H (s-F)/2 8 mm
PROFID thickness SPROFID 8 mm

Pull-through length L pen 4∙d 20 mm

f
MINIMUM SCREW LENGTH
F = Sscrew head + H + SPROFID + Lpen
BOARD H
TVM = 2.8 + 8 + 8 + 20 = 38.8 mm
PROFID KKTX
PROFID
JOIST CHOICE OF SCREW KKTX540A4

TVM NUMBER CALCULATION

QUANTITY FOR INCIDENCE FORMULA QUANTITY FOR THE NUMBER OF INTERSECTIONS

I = S/i/(L + f) = pcs of TVM I = no. boards with TVM no. battens = pcs. of TVM
I = 24 m2/0,6 m/(0,14 m + 0,007 m) = 272 pcs TVM no. boards with TVM = (number of boards - 1)
= (27 - 1) = 26 boards
waste coefficient = 1,05 no. of joists = (A/i) + 1 = (6/0.6) + 1 = 11 joists
I = 272 ∙ 1,05 = 286 pcs TVM no. intersections = I = 26 ∙ 11 = 286 pcs TVM
I = 286 pcs TVM I = 286 pcs TVM

TVM NUMBER = 286 pcs SCREWS NUMBER = No. TVM = 286 pcs KKTX540A4

OUTDOOR | TVM | 303


GAP
CONNECTOR FOR DECKING

TWO VERSIONS
Available in A2 | AISI304 stainless steel for excellent corrosion strength
(GAP3) or in galvanized carbon steel (GAP4) for good performance at a
low cost.

NARROW JOINTS
Ideal for making floors with narrow joints between boards (from 3.0
mm). Fastening is performed before the board is positioned.

WPC AND HARDWOODS


Ideal for symmetrically grooved boards such as those in WPC or
high-density wood.

CHARACTERISTICS
FOCUS narrow joints
BOARDS symmetrical grooving
JOINTS from 3,0 to 5,0 mm
FASTENERS SCA3525, SBA3932

MATERIAL
Austenitic stainless steel A2 | AISI304 and car-
bon steel with zinc plated.

FIELDS OF USE
Outdoor use. Fastening timber or WPC boards
on substructures in wood, WPC or aluminium.
Suitable for service classes 1-2-3.

304 | GAP | OUTDOOR


GEOMETRY
GAP 3 A2 | AISI304 GAP 4

11 9,8
1 1,5
9 11 8,8 11,8
1 1,5
15
4 6,5
12 16
16 19
12 40 41,5
16 19
12 16
4 6,5
30 11 42,5 11,3

s
s

P P B
B

CODES AND DIMENSIONS


GAP 3 A2 | AISI304 A2 GAP 4
AISI 304

CODE material PxBxs pcs CODE material PxBxs pcs


[mm] [mm]
GAP3 A2 | AISI304 40 x 30 x 11 500 GAP4 zinc-plated steel 41,5 x 42,5 x 12 500

SCA A2 | AISI304 HTS


fastening on timber and WPC for GAP 3 fastening on timber and WPC for GAP 4

d1 CODE L pcs d1 CODE L pcs


[mm] [mm] [mm] [mm]

3,5 SCA3525 25 500 3,5 HTS3525 25 1000


TX 10 SCA3535 35 500 TX 15 HTS3535 35 500

SBN A2 | AISI304 SBN


fastening on aluminium for GAP 3 fastening on aluminium for GAP 4

d1 CODE L pcs d1 CODE L pcs


[mm] [mm] [mm] [mm]

3,5 3,5
SBNA23525 25 1000 SBN3525 25 500
TX 15 TX 15

WOOD PLASTIC COMPOSITE (WPC)


Ideal for fastening WPC boards. Can also be
used for fastening on aluminium using SBN
A2 | AISI304 screws.

OUTDOOR | GAP | 305


GAP 3 GROOVE GEOMETRY

SYMMETRICAL GROOVING
F
H Min. thickness F 2 mm

Min recommended height GAP 3 H 8 mm


SCA

GAP 3 INSTALLATION

01 02

First board: fix it with suitable screws, left visible or hidden thanks Insert the GAP3 fastener into the groove cut so that the clip’s cen-
to specific accessories. tral tab adheres to the groove in the board.

03 04

Fix the screw in the central hole. Position the next board by inserting it into the GAP3 fastener so
that the two tabs adhere to the groove in the board.

05 06

Using the CRAB MINI clamp, tighten the two boards until the gap Repeat the operations for the remaining boards.
between them is 3 or 4 mm depending on aesthetic requirements Last board: repeat step 01.
(see product page 334).

306 | GAP | OUTDOOR


GAP 4 GROOVE GEOMETRY

SYMMETRICAL GROOVING
F
H Min. thickness F 2 mm

Min recommended height GAP 4 H 7 mm


HTS

GAP 4 INSTALLATION

01 02

First board: fix it with suitable screws, left visible or hidden thanks Insert the GAP4 fastener into the groove cut so that the clip’s cen-
to specific accessories. tral tabs adhere to the groove in the board.

03 04

Secure the screws in the two available holes. Position the next board by inserting it into the GAP4 fastener so
that the two tabs adhere to the groove in the board.

05 06

Using the CRAB MINI clamp, tighten the two boards until the gap Repeat the operations for the remaining boards.
between them is 3 or 4 mm depending on aesthetic requirements Last board: repeat step 01.
(see product page 334).

OUTDOOR | GAP | 307


TERRALOCK
CONNECTOR FOR DECKING

INVISIBLE
Completely concealed, guarantees a highly attractive result. Ideal for
both terraces and façades. Available in metal and plastic.

VENTILATION
The micro-ventilation under the boards prevents water stagnation, en-
suring excellent durability. The larger bearing surface ensures that the
substructure is not crushed.

INGENIOUS
Assembly stop for an accurate and simple installation of the fastener.
Slotted holes to follow movements of the wood. Allows replacement of
individual boards.

CHARACTERISTICS
FOCUS extremely versatile joints and grooves
CLADDING aluminium coating, grey, black
VIDEO
BOARDS without grooving Scan the QR Code and watch
JOINTS from 2,0 to 10,0 mm the video on our YouTube
channel
FASTENERS KKTX520A4, KKAN430, KKF4520

MATERIAL
Carbon steel, with coloured anti-rust coating,
and brown polypropylene.

FIELDS OF USE
Outdoor use. Fastening timber or WPC boards
on substructures in wood, WPC or aluminium.
Suitable for service classes 1-2-3.

308 | TERRALOCK | OUTDOOR


GEOMETRY
TERRALOCK TERRALOCK PP

5 5 5 5
8 8 8 8
60 180 60 180
45 15 165 15 45 15 165 15

5 5
3 5 5 20 10 5 10 5 10
20 5 10 5 10 5 5
5 5
5 20 20 15 85 20 15 85
5 20 20 15 85 20 15 85
board L min = 100 mm
board L min = 100 mm
20 board L min = 145 mm
board L min = 145 mm

s s
s s
P P
P P
B B B B

CODES AND DIMENSIONS


TERRALOCK TERRALOCK PP
CODE material PxBxs pcs CODE material PxBxs pcs
[mm] [mm]
TER60ALU zinc-plated steel 60 x 20 x 8 100 TER60PPM brown nylon 60 x 20 x 8 100
TER180ALU zinc-plated steel 180 x 20 x 8 50 TER180PPM brown nylon 180 x 20 x 8 50
TER60ALUN zinc-plated steel, black 60 x 20 x 8 100
Upon request also available in A2 | AISI304 stainless steel for quantities over
TER180ALUN zinc-plated steel, black 180 x 20 x 8 50 20.000 pcs. (code TER60A2 e TER180A2).

KKT A4 | AISI316/KKT COLOR KKF AISI410


fastening on wood and WPC for TERRALOCK fastening on wood and WPC for TERRALOCK PP

d1 CODE L pcs d1 CODE L pcs


[mm] [mm] [mm] [mm]
KKTX520A4 20 200 4,5 KKF4520 20 200
KKTX525A4 25 200 TX 20
5 KKF4540 40 200
KKTX530A4 30 200
TX 20
KKTX540A4 40 200
KKTN540 40 200

KKA COLOR SBN A2 | AISI304


fastening on aluminium for TERRALOCK fastening on aluminium for TERRALOCK PP

d1 CODE L pcs d1 CODE L pcs


[mm] [mm] [mm] [mm]
4 3,5
KKAN430 30 200 SBN3525 25 1000
TX 20 TX 15

TERRALOCK PP
Version in plastic, ideal for creating patios near
aquatic environments. Durability in time guar-
anteed by microventilation under the boards.
Totally concealed fastening.

OUTDOOR | TERRALOCK | 309


CONNECTOR SELECTION
TERRALOCK 60 TERRALOCK PP 60
A. TERRALOCK fastener 60: 2 pcs A. fastener TERRALOCK PP 60: 2 pcs
B. top screws: 4 pcs B. top screws: 4 pcs
C. bottom screws: 1 pc C. bottom screws: 1 pc

L L

B B

C C
B B
C C
A A
S S
B B
H H

L L

top screw minimum board bottom minimum joist top screw minimum board bottom minimum joist
type thickness screw type height type thickness screw type height

B C B C
KKTX 5 x 20 S > 21 mm KKT 5 x 40 H > 40 mm KKF 4,5 x 20 S > 19 mm KKF 4,5 x 40 H > 38 mm

KKTX 5 x 25 S > 26 mm KKT 5 x 50 H > 50 mm

KKTX 5 x 30 S > 31 mm KKT 5 x 60 H > 60 mm

TERRALOCK 180 TERRALOCK PP 180


A. TERRALOCK fastener 180: 1 pc A. fastener TERRALOCK PP 180: 1 pc
B. top screws: 2 pcs B. top screws: 2 pcs
C. bottom screws: 1 pc C. bottom screws: 1 pc

L L

B B

C C
B B
C C
A A
S S
H H

L L

top screw minimum board bottom minimum joist top screw minimum board bottom minimum joist
type thickness screw type height type thickness screw type height

B C B C
KKTX 5 x 20 S > 21 mm KKT 5 x 40 H > 40 mm KKF 4,5 x 20 S > 19 mm KKF 4,5 x 40 H > 38 mm

KKTX 5 x 25 S > 26 mm KKT 5 x 50 H > 50 mm

KKTX 5 x 30 S > 31 mm KKT 5 x 60 H > 60 mm

310 | TERRALOCK | OUTDOOR


TERRALOCK 60 INSTALLATION

01 02 03 04

Position two connectors per Turn the board over and Fix each fastener to the It is recommended to use
each fixing node. slide it under the previously sub-structure by inserting STAR spacers inserted be-
fastened board fixed to the a KKTX screw in one of the tween the boards.
sub-structure. two slotted holes.

TERRALOCK 180 INSTALLATION

01 02 03 04

For each board arrange one Turn the board over and Fix each fastener to the It is recommended to use
fastener and fix it by means slide it under the previously sub-structure by inserting STAR spacers inserted be-
of two KKTX screws. fastened board fixed to the a KKTX screw in one of the tween the boards.
sub-structure. two slotted holes.

CALCULATION EXAMPLE

i = i = joist spacing| L = board width | f = joint width


f
L TERRALOCK 60 TERRALOCK 180
i = 0,60 m | L = 140 mm | f = 7 mm i = 0,60 m | L = 140 mm | f = 7 mm

1m2 / i / (L + f) ∙ 2 = pcs at m2 1m2/i/(L + f) =pcs at m2


1m2/ 0,6 m / (0,14 m + 0,007 m) ∙ 2 = 23 pcs /m2 1m2/ 0,6 m/(0,14 m + 0,007 m) = 12 pcs /m2
i + 46 pcs. top screws type B/m2 + 24 pcs. top screws type B/m2
+ 12 pcs. bottom screws type C/m2 + 12 pcs. bottom screws type C/m2

DECKS WITH COMPLEX GEOMETRIES


Thanks to its special geometric configuration, the TERRALOCK fastener allows to create decks with complex geometric layouts that will meet
any aesthetic requirement. The two slotted holes and optimal positioning of the end stop allow for assembly on inclined substructures.

OUTDOOR | TERRALOCK | 311


GROUND COVER
ANTI-VEGETATION TARP FOR SUBSTRATES

PERMEABLE
The anti-vegetation tarp prevents the growth of grasses and roots, pro-
tecting the patio substructure from the ground. Permeable to water, al-
lowing it to flow off.

STRONG
The polypropylene non-woven fabric (50 g/m2) effectively separates the patio
substructure from the ground. Dimensions optimised for patios (1.6 m x 10 m).

CODES AND DIMENSIONS

CODE material g/m2 HxL A pcs


[m] [m2]
COVER50 NWF 50 1.6 x 10 10 1

Tensile strength MD/CD 95/55 N


Elongation MD/CD 35/80 %

MATERIAL
Non-woven fabric (NWF) in polypropylene (PP).

FIELDS OF USE
Separates substructure from ground.

312 | GROUND COVER | OUTDOOR


NAG
LEVELING PAD

OVERLAPPABLE
Available in 3 thicknesses (2,0, 3,0 and 5,0 mm), can also be overlapped
to obtain different thicknesses and thus effectively level the patio sub-
structure.

DURABILITY
The EPDM material guarantees excellent durability, is not subject to sag-
ging in time and does not suffer from exposure to sunlight.

GEOMETRY
CODES AND DIMENSIONS

CODE BxLxs density shore pcs


[mm] [kg/m3]
NAG60602 60 x 60 x 2 1220 65 50 s
NAG60603 60 x 60 x 3 1220 65 30
L
NAG60605 60 x 60 x 5 1220 65 20 B

Operating temperature -35°C | +90°C.

MATERIAL
EPDM, black.

FIELDS OF USE
Substructure levelling.

OUTDOOR | NAG | 313


GRANULO
GRANULAR RUBBER SUBSTRATE

THREE FORMATS
Available in sheet (GRANULOMAT 1,25 x 10 m), roll (GRANULOROLL and
GRANULO100) or pad (GRANULOPAD 8 x 8 cm). Extremely versatile
thanks to the variety of formats.

GRAINY RUBBER
Made of granules of recycled rubber thermal-bonded with polyurethane.
Resistant to chemical interactions, maintains its characteristics in time
and is 100% recyclable.

ANTI-VIBRATION
The thermal-bonded rubber granules dampen vibrations, thus insulating
the noise produced by footsteps. Also ideal as a wall barrier and resilient
strip for acoustic separation.

CHARACTERISTICS
FOCUS water-permeability and vibration-dampening
THICKNESS from 4,0 to 10,0 mm
DIMENSIONS mat, roll, PAD
substrate for substructures in wood,
USE
aluminium, WPC and PVC

MATERIAL
Rubber granules thermo-bound with PU.

FIELDS OF USE
Substrate for substructures in wood, alumini-
um, WPC and PVC. Outdoor use. Suitable for
service classes 1-2-3.

314 | GRANULO | OUTDOOR


GEOMETRY
B

L s B s
B
B

GRANULO PAD GRANULO ROLL - GRANULO 100 GRANULO MAT

TECHNICAL DATA

Properties standard value


Hardness - 50 shore A
Density - 750 kg/m3
Apparent dynamic stiffness s’t ISO 29052-1 66 MN/m3
Theoretical estimate of the degree of impact sound attenuation ∆Lw (1) ISO 12354-2 22,6 dB
System resonance frequency f0(1) ISO 12354-2 116.3 Hz
Compression deformation stress
10% deformation - 21 kPa
25% deformation - 145 kPa
Elongation at failure - 27 %
Thermal conductivity (λ) UNI EN 12667 0,033 W/mK
(1) The load considered is m’=125 kg/m2.

CODES AND DIMENSIONS

CODE s B L pcs
[mm] [mm] [m]
GRANULOPAD 10 80 0,08 20
GRANULOROLL 8 80 6 1
GRANULO100 4 100 15 1
GRANULOMAT 6 1250 10 1

SOUNDPROOFING
Ideal as a substrate for patio substructures.
Permeable to water, ideal for outdoor use.

OUTDOOR | GRANULO | 315


TERRA BAND UV
BUTYL ADHESIVE TAPE

DECKS AND FACADES


Ideal for protecting joists from water and UV rays. Can be used for both
patios and façades, protecting and extending the life of the wooden
joists.

PERMANENT UV STABILITY
The black aluminized butyl-based compound guarantees unlimited re-
sistance to UV radiation that can penetrate between the joints between
patio and façade boards.

CODES AND DIMENSIONS


CODE s B L pcs
[mm] [mm] [m]
TERRAUV75 0,8 75 10 1
TERRAUV100 0,8 100 10 1
TERRAUV200 0,8 200 10 1

s: thickness | B: base| L: length

MATERIAL
Butyl-based compound coated with a black
aluminium separating film.

FIELDS OF USE
Protection against water and UV radiation.

316 | TERRA BAND UV | OUTDOOR


PROFID
SPACER PROFILE

VENTILATION
The square EPDM profile must be applied over the joists. Creates mi-
cro-ventilation under the boards and thus prevents water stagnation and
ensures excellent patio durability.

STRENGTH
The EPDM guarantees excellent durability. With a density of over
1200 kg/m 3 , it guarantees high crushing resistance and is also ideal
for high loads.

GEOMETRY

CODES AND DIMENSIONS


CODE s B L density shore pcs
[mm] [mm] [m] kg/m3 L s
PROFID 8 8 40 1220 65 8
B
s: thickness | B: base| L: length

MATERIAL
EPDM.

FIELDS OF USE
Microventilation under the board.

OUTDOOR | PROFID | 317


JFA
ADJUSTABLE SUPPORT FOR TERRACES

LEVELLING
The height-adjustable support can easily adapt to variations in substrate
level. The rise also allows for ventilation under the joists.

DOUBLE REGULATION
Can be adjusted both from below, with a SW 10 wrench, or from above,
using a flat-tip screwdriver. Fast, convenient, versatile system.

SUPPORT
The TPE plastic support base reduces the noise produced by footsteps.
The ball-joint can adapt to uneven surfaces.

CHARACTERISTICS
FOCUS can be adjusted from above and below
HEIGHT 4,0 | 6,0 | 8,0 mm
DIMENSIONS Ø8 mm
USE raising and levelling of the structure

MATERIAL
Carbon steel with zinc plated and austenitic
stainless steel A2 | AISI304.

FIELDS OF USE
Raising and levelling of the substructure. Out-
door use. Suitable for service classes 1-2-3.

318 | JFA | OUTDOOR


GEOMETRY

16
L
H
5757 5757 7777 7777 5757 5757
SW 10
404040
40
14
20
25 252525
25 252525
25 252525
25 252525
25
50 Ø8
JFA840 JFA860 JFA880 JFA860A2

TECHNICAL DATA

CODE JFA840 JFA860 JFA880 JFA860A2


Material carbon steel carbon steel carbon steel A2 | AISI304
Screw Ø x L [mm] 8 x 40 8 x 60 8 x 80 8 x 40
Assembly height R [mm] 25 ≤ R ≤ 40 25 ≤ R ≤ 57 25 ≤ R ≤ 77 25 ≤ R ≤ 57
Angle +/- 5° +/- 5° +/- 5° +/- 5°
Pre-drill for bush [mm] Ø10 Ø10 Ø10 Ø10
Adjustment nut SW 10 SW 10 SW 10 SW 10
Total height H [mm] 51 71 91 71
Admissible capacity Fadm kN 0,8 0,8 0,8 0,8

CODES AND DIMENSIONS


JFA JFA A2 | AISI304 A2
AISI 304

CODE material screw Ø x L pcs CODE material screw Ø x L pcs


[mm] [mm]
JFA840 carbon steel 8 x 40 100 JFA860A2 stainless steel 8 x 60 100
JFA860 carbon steel 8 x 60 100
JFA880 carbon steel 8 x 80 100

STAINLESS STEEL
Available also in A2 | AISI304 stainless steel to
for particularly aggressive environments.

OUTDOOR | JFA | 319


JFA INSTALLATION WITH ADJUSTMENT FROM BELOW

01 02 03 04

Trace the joist midline, The depth of the pre-drill Use a hammer to insert the Screw the support into the
indicating the position of the depends on the assembly bushing. bushing and turn the joist.
holes and then pre-drill a height R and must be at least
10 mm diameter hole. 16 mm (bushing size).

05 06

Place the joist on the sub- Adjust the height of the sup- Detail of adjustment from Follow the course of the
strate, parallel to the one port from the bottom using a below. ground by acting inde-
previously laid. 10 mm SW wrench. pendently on the individual
supports.

JFA INSTALLATION WITH ADJUSTMENT FROM ABOVE

01 02 03 04

Trace the joist midline, We recommend a maximum Use a hammer to insert the Screw the support into the
indicating the position of the of 60 cm between supports, bushing. bushing and turn the joist.
holes and then pre-drill a 10 to be checked according to
mm diameter through hole. depending on the load.

H
05 06

Place the joist on the sub- Adjust the height of the sup- Detail of adjustment from Follow the course of the
strate, parallel to the one port from above using a flat above. ground by acting inde-
previously laid. screwdriver. pendently on the individual
supports.

320 | JFA | OUTDOOR


CALCULATION EXAMPLE
The number of supports per m2 is to be assessed according to the load magnitude and
the joist spacing.
INCIDENCE OF SUPPORTS ON SURFACE (I):
q = load [kN/m2]
I = q/Fadm = pcs of JFA at m2
Fadm = admissible JFA capacity [kN]

MAXIMUM DISTANCE BETWEEN SUPPORTS (a):


amax, JFA
a a= min
i amax, batten

with: amax, JFA = 1/pcs/m2/i


i = between battens spacing
flim = instantaneous strain limit between
3 supports
E ∙ J ∙384
amax, batten = E = material elastic modulus
flim ∙ 5 ∙ q ∙ i J = joist section inertia modulus

PRACTICAL EXAMPLE
PROJECT DATA

A=6m
PATIO SURFACE
S = A x B = 6 m x 4 m = 24 m2

JOISTS
50 mm b = 50 mm
h = 30 mm
30 mm
i= 0,50 m
B=4m

LOADS

Overload
Category of use: q 4,00 kN/m2
category A (balconies)
(EN 1991-1-1)

Admissible JFA Fadm 0.80 kN


support capacity
0,50 m

Joist material C20 (EN 338:2016)

Limit for instantaneous deflection between supports flim a/400 -


Material elastic moment E0,mean 9,5 kN/mm2
Moment of joist section inertia J (b ∙ h3)/12 112500 mm4
Maximum joist deflection fmax (5/384) ∙ (q ∙ i ∙ a4)/(E ∙ J) -

JFA NUMBER CALCULATION


INCIDENCE NUMBER OF JFA SUPPORTS
I = q/Fadm = pcs of JFA at m2 n = I ∙ S ∙ waste coeff. = pcs. of JFA
I = 4,0 kN/m2/0,8 kN = 5,00 pcs/m2 n = 5,00 pcs/m2 ∙ 24 m2 ∙ 1,05 = 126 pcs of JFA
waste coefficient = 1,05

CALCULATION OF MAXIMUM DISTANCE BETWEEN SUPPORTS


JOIST FLEXURAL LIMIT SUPPORT STRENGTH LIMIT
3
E ∙ J ∙384 amax, JFA = 1/n/i
flim = fmax therefore: amax, batten =
amax, JFA = 1/5,00/0,5 = 0,40 m
400 ∙ 5 ∙ q ∙ i

3
9,5 ∙ 112500 ∙ 384
amax, batten = ∙ 10-3 = 0,47 m
400 ∙ 5 ∙ (4,0 ∙ 10-6) ∙ 500

amax, JFA 0,40 m


a = min = min = 0.40 m maximum distance between JFA supports
amax, batten 0,47 m

OUTDOOR | JFA | 321


SUPPORT
ADJUSTABLE SUPPORT FOR TERRACES

THREE VERSIONS
The Small version (SUP-S) can be raised by up to 37 mm, the Medium
version (SUP-M) by up to 220 mm and the Large version (SUP-L) by up to
1020 mm. All versions are height adjustable.

STRENGTH
Sturdy system suitable for heavy loads. The Small (SUP-S) and Medium
(SUP-M) versions can handle up to 400 kg. The Large version (SUP-L)
can handle up to 800 kg.

COMBINABLE
All versions can be combined with a special head to facilitate lateral fas-
tening to the joist, which may be made of either wood or aluminium.
A tile adapter is also available on request.

CHARACTERISTICS
FOCUS extreme versatility in levelling
HEIGHT from 22 to 1020 mm
LOWER BASE SUP-S Ø150 mm SUP-M and SUP-L Ø200 mm
STRENGTH from 400 to 800 kg

MATERIAL
Polypropylene (PP).

FIELDS OF USE
Raising and levelling of the substructure.
Outdoor use. Suitable for service classes 1-2-3.

322 | SUPPORT | OUTDOOR


DURABILITY
UV-resistant and suitable also for aggressive
environment conditions. Ideal for use in com-
bination with ALU TERRACE.

ALU TERRACE
Ideal for use in combination with ALU TERRACE,
fixed laterally with KKA screws. System with ex-
cellent durability.

OUTDOOR | SUPPORT | 323


Fastening wooden joists on SUP-M support with head.

Patio made with ceramic tiles


on SUP-M with special adapter
(code SUPMHEAD4 available upon request).

ACCESSORY CODES AND DIMENSIONS

HEAD FOR SUP-S EXTENSION FOR SUP-M

CODE Ø Ø1 pcs CODE H pcs


Ø1 Ø
[mm] [mm] [mm] H

SUPSLHEAD1 70 3 x 14 20 SUPMEXT30 30 25

HEAD FOR SUP-M EXTENSION FOR SUP-L


Ø
CODE Ø pcs CODE H pcs
[mm] [mm] H
SUPMHEAD1 120 25 SUPLEXT100 100 20

HEAD FOR SUP-M Ø1


h
CODE BxP H Ø1 pcs
[mm] [mm] [mm] SLOPE ADAPTER FOR SUP-M AND SUP-L
P B
SUPMHEAD2 120 x 90 30 3 x 14 25

HEAD FOR SUP-L CODE Ø pcs


Ø
[mm]
CODE Ø Ø1 pcs Ø
Ø1 SUPCORRECT1 200 1% 20
[mm] [mm] SUPCORRECT2 200 2% 20
SUPSLHEAD1 70 3 x 14 20 SUPCORRECT3 200 3% 20

324 | SUPPORT | OUTDOOR


CODES AND DIMENSIONS - SUP-S
Ø

CODE Ø H pcs
[mm] [mm]
SUPS2230 150 22 - 30 20
SUPS2840 150 28 - 40 20

CODES AND DIMENSIONS - SUP-M

CODE Ø H pcs
[mm] [mm]
SUPM3550 200 35 -50 25
SUPM5070 200 50 - 70 25
SUPM65100 200 65 - 100 25
SUPM95130 200 95 - 130 25
SUPM125160 200 125 - 160 25
SUPM155190 200 155 - 190 25
SUPM185220 200 185 - 220 25

CODES AND DIMENSIONS - SUP-L

Ø +H

CODE Ø H pcs CODE Ø H pcs


[mm] [mm] [mm] [mm]
SUPL3550 200 35 - 50 20 SUPL415520 200 415 - 520 20
SUPL5075 200 50 - 75 20 SUPL515620 200 515 - 620 20
SUPL75120 200 75 - 120 20 SUPL615720 200 615 - 720 20
SUPL115220 200 115 - 220 20 SUPL715820 200 715 - 820 20
SUPL215320 200 215 - 320 20 SUPL815920 200 815 - 920 20
SUPL315420 200 315 - 420 20 SUPL9151020 200 915 - 1020 20

OUTDOOR | SUPPORT | 325


SUP-S INSTALLATION

01 02 03

Simply set the joist on the SUP-S or screw it to the SUP-S with 4,5 mm diameter KKF screws.

INSTALLATION OF SUP-S WITH SUPSLHEAD1

01 02 03 04

KF
K

X
KF
K

KK

F
X

KK

F
X

Place the head SUPSLHEAD1 on the SUP-S and fix the joist with 4,5 mm diameter KKF screws.

INSTALLATION OF SUP-M WITH SUPMHEAD2

01 02 03 04

KF
K

KK
F

KK
F

Place the head SUPMHEAD2 on the SUP-M and fix the joist laterally with 4,5 mm diameter KKF screws.

INSTALLATION OF SUP-M WITH SUPMHEAD1

01 02 03 04
KF

X
K

KF

X
K

Place the head SUPMHEAD1 on the SUP-M and fix the joist with KKF 4,5 mm diameter screws.

326 | SUPPORT | OUTDOOR


INSTALLATION OF SUP-L WITH SUPSLHEAD1

01 02 03 04

360°

H KK

F
X

KK

F
X

Place the head SUPSLHEAD1 on the SUP-L, adjust the height of the base as needed and fix the joist laterally with 4,5 mm diameter KKF
screws.

INSTALLATION OF SUP-L WITH SUPSLHEAD1

01 02 03 04

360°

KK

F
X

KK

F
X

Add the SUPLEXT100 extension to the SUP-L support and then position the SUPSLHEAD1 head. Adjust the height of the base as needed
and fix the joist laterally with 4,5 mm diameter KKF screws.

CODES AND DIMENSIONS - FASTENING


KKF AISI410

d1 CODE L pcs
[mm] [mm]
KKF4520 20 200
KF

KKF4540 40 200
K

KK
F

4,5 KKF4545 45 200


TX 20 KKF4550 50 200
KKF4560 60 200
KKF4570 70 200

OUTDOOR | SUPPORT | 327


ALU TERRACE
ALUMINIUM PROFILE FOR PATIOS

TWO VERSIONS
ALUTERRA30 version for standard loads. ALUTERRA50 version, in black,
for very high loads; can be used on both sides.

SUPPORT EVERY 1.10 m


ALUTERRA50 designed with a very high inertia so that the SUPPORTS
can be positioned every 1,10 m (along the profile midline), even with high
loads (4,0 kN/m2).

DURABILITY
The substructure made of aluminium profiles guarantees excellent patio
durability. The drainage channel allows water to run off and generates
effective micro-ventilation.

CHARACTERISTICS
FOCUS excellent durability and strength
SECTIONS 53 x 30 mm and 63 x 50 mm
THICKNESS 1,8 mm | 2,2 mm

MATERIAL
Versions in aluminium and in anodized alu-
minium (class 15) in graphite black.

FIELDS OF USE
Patio substructure. Outdoor use. Suitable for
service classes 1-2-3.

328 | ALU TERRACE | OUTDOOR


DISTANCE 1.10 m
With an inter-profile distance of 80 cm (load:
4.0 kN/m2), the SUPPORTS can be spaced
1,10 m apart and placed along the ALUTER-
RACE50 midline.

COMPLETE SYSTEM
Ideal for use in combination with SUPPORT,
fixed laterally with KKA screws. System with
excellent durability.

OUTDOOR | ALU TERRACE | 329


Stabilization of ALUTERRA50 with stainless steel plates and KKA screws.

Aluminium substructure made with ALUTERRA30


and resting on GRANULO PAD

ACCESSORY CODES AND DIMENSIONS


s
s

s H
s H
P M
M P P
M M P

LBVI15100 WHOI1540 FLIP FLAT

CODE material s M P H pcs CODE material pcs


[mm] [mm] [mm] [mm]
LBVI15100 A2 | AISI304 1,75 15 100 -- 200 FLAT black alluminum 200
WHOI1540 A2 | AISI304 1,75 15 40 40 200 FLIP zinc-plated steel 200

KKA AISI410 KKA COLOR

d1 CODE L pcs d1 CODE L pcs


[mm] [mm] [mm] [mm]
4 KKAN420 20 200
KKA420 20 200
TX 20 4
KKAN430 30 200
KKA540 40 100 TX 20
5
KKAN440 40 200
TX 25 KKA550 50 100
5
KKAN540 40 200
TX 25

330 | ALU TERRACE | OUTDOOR


GEOMETRY

12 36 12 12 36 12 s
5 43 5 5 43 s
19 5 19

18,5 15,5 5018,5 15,5 50


30 H 30 MH
P 15,5 15,5 P
11,5 11,5

53 60 53 B 60
B
ALU TERRACE 30 ALU TERRACE 50

CODES AND DIMENSIONS

CODE s B P H pcs CODE s B P H pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
ALUTERRA30 1,8 53 2200 30 1 ALUTERRA50 2,5 63 2200 50 1

NOTES: upon request, P= 3000 mm version is available.

EXAMPLE OF FASTENING WITH SCREWS AND ALUTERRA30

01 02 03 04

Place the ALU TERRACE Fix the ALU TERRACE with Fix the wooden or WPC Repeat the operations for
on the SUP-S fit with head 4,0 mm diameter KKAN. boards directly on the the remaining boards.
SUPSLHEAD1. ALU TERRACE with 5,0 mm
diameter KKA screws.

EXAMPLE OF FASTENING WITH CLIP AND ALUTERRA50

01 02 03 04

Place the ALU TERRACE Fix the ALU TERRACE with Fix the boards using FLAT Repeat the operations for
on the SUP-S fit with head 4,0 mm diameter KKAN. concealed clips and 4,0 mm the remaining boards.
SUPSLHEAD1. diameter KKAN screws.

OUTDOOR | ALU TERRACE | 331


EXAMPLE PLACEMENT ON GRANULO PAD

01 02

Several ALUTERRA30 units can be connected lengthwise using Line up the ends of 2 aluminium profiles.
stainless steel plates. Connection is optional.

03 04

Place the LBVI15100 stainless steel plate on the aluminium profiles Do this on both sides to maximize stability.
and fix with 4,0 x 20 KKA screws.

EXAMPLE PLACEMENT ON SUPPORT

01 02

KF
K

X
KF
K

Several ALUTERRA50 units can be connected lengthwise using Connect the aluminium profiles with KKAN screws (diameter:
stainless steel plates. Connection is optional if the joint coincides 4,0 mm) and place 2 aluminium profiles end to end.
with placement on the SUPPORT.

03 04

Place the LBVI15100 stainless steel plate on the lateral holes in Do this on both sides to maximize stability.
the aluminium profiles and fix with 4,0 x 20 KKA screws or KKAN
4,0 mm diameter.

332 | ALU TERRACE | OUTDOOR


MAXIMUM DISTANCE BETWEEN SUPPORTS (a)
ALU TERRACE 30

ALU TERRACE 30

SUPPORT

a i
i = joists spacing
a
a = distance between supports
i

OPERATING i
LOAD [m]
[kN/m2] 0,4 0,45 0,5 0,55 0,6 0,7 0,8 0,9 1,0
2,0 0,77 0,74 0,71 0,69 0,67 0,64 0,61 0,59 0,57
3,0 0,67 0,65 0,62 0,60 0,59 0,56 0,53 0,51 0,49
4,0 0,61 0,59 0,57 0,55 0,53 0,51 0,48 0,47 0,45
5,0 0,57 0,54 0,53 0,51 0,49 0,47 0,45 0,43 0,42

ALU TERRACE 50

ALU TERRACE 50

SUPPORT

a i
i = joists spacing
a
a = distance between supports
i

OPERATING i
LOAD [m]
[kN/m2] 0,4 0,45 0,5 0,55 0,6 0,7 0,8 0,9 1,0
2,0 1,70 1,64 1,58 1,53 1,49 1,41 1,35 1,30 1,25
3,0 1,49 1,43 1,38 1,34 1,30 1,23 1,18 1,14 1,10
4,0 1,35 1,30 1,25 1,22 1,18 1,12 1,07 1,03 1,00
5,0 1,25 1,21 1,16 1,13 1,10 1,04 1,00 0,96 0,92

NOTES:
• Example with deformation L/300; The calculation was performed with a static diagram on a simple support
• Useful load according to EN 1991-1-1: span and considering a uniformly distributed load.

- Category A areas = 2,0 ÷ 4,0 kN /m²;


- Areas susceptible to category C2 crowding = 3,0 ÷ 4,0 kN/m²;
- Areas susceptible to category C3 crowding = 3,0 ÷ 5,0 kN/m²;

OUTDOOR | ALU TERRACE | 333


STAR
STAR FOR DISTANCES

CODES AND DIMENSIONS

CODE thickness pcs


[mm]
STAR from 4 to 8 1

CRAB MINI
PATIO CLAMP

CODES AND DIMENSIONS

CODE opening compression pcs


[mm] [kg]
CRABMINI 263 - 415 max. 200 1

334 | STAR | CRAB MINI | OUTDOOR


SHIM
LEVELLING WEDGES

CODES AND DIMENSIONS

CODE colour LxPxs pcs


[mm]
SHBLUE blue 100 x 22 x 1 500
SHBLACK black 100 x 22 x 2 500
SHRED red 100 x 22 x 3 500
SHWHITE white 100 x 22 x 4 500
SHYELLOW yellow 100 x 22 x 5 500

Also available in the LARGE version.

BROAD
COUNTERBORE CUTTER FOR KKT, KKZ, KKA

CODES AND DIMENSIONS

CODE Øbit Øcounterbore Lbit TL pcs


cutter
[mm] [mm] [mm] [mm]
BROAD1 4 6,5 41 75 1
BROAD2 6 9,5 105 150 1

OUTDOOR | SHIM | BROAD | 335


TIMBER-TO-METAL
TIMBER-TO-METAL
TIMBER-TO-METAL

SBS - SPP
SELF-DRILLING TIMBER-TO-METAL SCREW . . . . . . . . . . . . . . . . 340

SBS A2 | AISI304
SELF-DRILLING TIMBER-TO-METAL SCREW . . . . . . . . . . . . . . . . 342

SBN - SBN A2 | AISI304


SELF-DRILLING METAL SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . 344

WBAZ
STAINLESS STEEL WASHER WITH SEALING GASKET. . . . . . . . . . 346

TBS EVO
FLANGE HEAD SCREW. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 348

MTS A2 | AISI304
SCREWS FOR SHEET METAL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 349

MCS A2 | AISI304
SCREW WITH WASHER FOR SHEET METAL. . . . . . . . . . . . . . . . . . 350

TIMBER-TO-METAL | 339
SBS - SPP BIT INCLUDED

SELF-DRILLING TIMBER-TO-METAL SCREW

TIMBER-TO-METAL TIP
Special self-perforating tip with bleeder geometry for excellent drilling
capacity both in aluminium (thickness: up to 10 mm) and steel (thickness:
up to 8 mm).

CUTTING FINS
The fins protect the screw thread during penetration into the wood. They
guarantee maximum threading efficiency in metal and perfect adhesion
between the thickness of the wood and the metal.

WIDE RANGE
The SPP version, with partially thread, is ideal for fastening sandwich
panels, even thick ones, to steel. Very sharp under-head ribs for a perfect
surface finish on the wooden element.

CHARACTERISTICS
FOCUS self-perforating tip with protective fins
HEAD countersunk with under-head ribs
DIAMETER from 4,2 to 6,3 mm
LENGTH from 32 to 240 mm

MATERIAL
Galvanized carbon steel.

FIELDS OF USE
Direct fastening, without pre-drill, of wooden
elements to steel (maximum thickness 8,0 mm)
or aluminium (maximum thickness 10,0 mm)
substructures.

340 | SBS - SPP | TIMBER-TO-METAL


GEOMETRY
A A
s s
SB S

SP P
dk d2 d1 dk d2 d1

t1 b Lp t1 b Lp
L L

SBS SPP
SBS SPP
Nominal diameter d1 [mm] 4,2 4,8 5,5 6,3 6,3
Head diameter dK [mm] 8,00 9,25 10,50 12,00 12,50
Tip diameter d2 [mm] 3,30 3,50 4,15 4,85 4,85
Head thickness t1 [mm] 3,50 4,20 4,80 5,30 5,30
Tip length Lp [mm] 10,0 10,5 11,5 15,0 20,0

INSTALLATION
01 02 03

Recommended screwing:
≈ 1000 - 1500 rpm (steel plate)
≈ 600 - 1000 rpm (aluminium plate)

CODES AND DIMENSIONS


SBS SPP

d1 CODE L b A s1 s2 pcs d1 CODE L b A s1 s2 pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
4,2 SBS4232 32 19 17 1÷3 2÷4 500 SPP63125 125 60 96 6÷8 8÷10 100
TX 20 SBS4238 38 25 23 1÷3 2÷4 500 SPP63145 145 60 116 6÷8 8÷10 100
4,8 SBS4838 38 23 21 2÷4 3÷5 200 SPP63165 165 60 136 6÷8 8÷10 100
TX 25 SBS4845 6,3
45 30 28 2÷4 3÷5 200 SPP63180 180 60 151 6÷8 8÷10 100
TX 30
5,5 SBS5545 45 29 26 3÷5 4÷6 200 SPP63200 200 60 171 6÷8 8÷10 100
TX 30 SBS5550 50 34 31 3÷5 4÷6 200 SPP63220 220 60 191 6÷8 8÷10 100
SBS6360 60 40 36 4÷6 6÷8 100 SPP63240 240 60 211 6÷8 8÷10 100
6,3 SBS6370 70 50 46 4÷6 6÷8 100 s1 thickness, steel plate S235/St37
TX 30 SBS6385 85 65 61 4÷6 6÷8 100 s2 thickness, aluminium plate

SBS63100 100 80 76 4÷6 6÷8 100

SIP PANELS
The SPP version is ideal for fastening SIP pan-
els and sandwich panels thanks to the com-
plete range of lengths (up to 240 mm).

TIMBER-TO-METAL | SBS - SPP | 341


SBS A2 | AISI304 BIT INCLUDED
A2
AISI 304

SELF-DRILLING TIMBER-TO-METAL SCREW

BIMETAL SCREW
The head and body are made of A2 | AISI304 stainless steel, thus pro-
viding high resistant to corrosion. The tip is made of carbon steel for
excellent drilling performance.

TIMBER-TO-METAL TIP
Special self-perforating tip with bleeder geometry for excellent drilling
capacity both in aluminium and steel. The fins protect the screw thread
during penetration into the wood.

STAINLESS STEEL
The A2 | AISI304 stainless steel head and body make it ideal for outdoor
applications. Very sharp under-head ribs for a perfect surface finish on
the wooden element.

CHARACTERISTICS
FOCUS self-perforating tip with protective fins
HEAD countersunk with under-head ribs
DIAMETER from 4,8 to 6,3 mm
LENGTH from 45 to 120 mm

MATERIAL
A2 | AISI304 stainless steel.

FIELDS OF USE
Use in aggressive outdoor environments. Suit-
able for service classes 1-2-3. Direct fastening,
without pre-drill, of wooden elements to steel
(maximum thickness 6,0 mm) or aluminium
(maximum thickness 8,0 mm) substructures.

342 | SBS A2 | AISI304 | TIMBER-TO-METAL


GEOMETRY

A
s

dk d2 d1

t1 b Lp
L

Nominal diameter d1 [mm] 4,8 5,5 6,3


Head diameter dK [mm] 9,25 10,50 10,50
Tip diameter d2 [mm] 3,50 4,15 4,80
Head thickness t1 [mm] 4,25 4,85 4,50
Tip length Lp [mm] 10,25 10,00 12,00

INSTALLATION

01 02 03

Recommended screwing:
≈ 1000 - 1500 rpm (steel plate)
≈ 600 - 1000 rpm (aluminium plate)

CODES AND DIMENSIONS

d1 CODE L b A s1 s2 pcs d1 CODE L b A s1 s2 pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

4,8 6,3 SBSA26370 70 53 49 3 ÷6 4 ÷8 100


SBSA24845 45 31 30 1 ÷3 2 ÷3 200
TX 25 TX 30 SBSA263120 120 103 99 3 ÷6 4 ÷8 100
s1 thickness, steel plate S235/St37
5,5
SBSA25555 55 39 37 2 ÷5 3 ÷5 200 s2 thickness, aluminium plate
TX 25

OUTDOOR ENVIRONMENT
The A2 | AISI304 stainless steel makes it ideal
for use outdoors or in aggressive environments.

TIMBER-TO-METAL | SBS A2 | AISI304 | 343


SBN - SBN A2 | AISI304 A2
AISI 304

SELF-DRILLING METAL SCREW

TIP FOR METAL


Special self-perforating tip for iron and steel in thicknesses ranging from
0,7 mm to 5,25 mm. Ideal for fastening overlapping sections of metal
and sheet metal.

FINE THREAD
Fine thread ideal for precise fastening on sheet metal or for met-
al-to-metal or timber-to-metal couplings.

STAINLESS STEEL
Also available in a bimetal version with head and body in A2 | AISI304
stainless steel and tip in carbon steel. Ideal for outdoor fastening of clips
on aluminium supports.

CHARACTERISTICS
FOCUS self-perforating bit with protective fins
HEAD countersunk with under-head ribs
DIAMETER from 3,5 to 5,5 mm
LENGTH from 25 to 50 mm

MATERIAL
Galvanized carbon steel or stainless steel
A2 | AISI304.

FIELDS OF USE
Direct fastening, without pre-drill, of met-
al structural elements to metal substructures
(maximum thickness: 5,25 mm).

344 | SBN - SBN A2 | AISI304 | TIMBER-TO-METAL


GEOMETRY

A
s

dk d1

t1 b Lp
L

Nominal diameter d1 [mm] 3,5 3,9 4,2 4,8 5,5


Head diameter dK [mm] 6,90 7,50 8,20 9,50 10,80
Head thickness t1 [mm] 2,60 2,80 3,05 3,55 3,95
Tip length Lp [mm] 5,00 4,70 5,40 6,40 7,20

CODES AND DIMENSIONS


SBN SBN A2 | AISI304

d1 CODE L b A s pcs d1 CODE L b A s pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]

3,5 3,5
SBN3525 25 16 16 0.7 ÷ 2.25 500 SBNA23525 25 16 18 0.7 ÷ 2.25 1000
TX 15 TX 15

3,9 3,9
SBN3932 35 27 26 0.7 ÷ 2.40 200 SBNA23932 32 24 25 0.7 ÷ 2.40 1000
TX 15 TX 15

4,2
SBN4238 38 30 29 1.75 ÷ 3.00 200
TX 20

4,8
SBN4845 45 34 32 1.75 ÷ 4.40 200
TX 25

5,5
SBN5550 50 38 34 1.75 ÷ 5.25 200
TX 25

SBN A2 | AISI304
Ideal for outdoor fastening to standard Roth-
oblaas aluminium clips.

TIMBER-TO-METAL | SBN - SBN A2 | AISI304 | 345


WBAZ
STAINLESS STEEL WASHER WITH SEALING
GASKET

WATERPROOF
Perfect watertight closure and excellent sealing thanks to the EPDM
sealing gasket.

RESISTANT TO UV RAYS
Excellent resistance to UV rays. Ideal for outdoor use thanks to the ad-
aptability of the EPDM gasket and washer in stainless steel A2 | AISI304.

VERSATILITY
Ideal for use on sheets (thickness: up to 0,7 mm) in combination with
TBS EVO Ø6 screws, that can be installed without pre-drill, or with
MTS A2 | AISI304 screws, installed with pre-drill.

CHARACTERISTICS
FOCUS water-tightness and UV strength
GASKET EPDM
SCREWS DIAMETER from 6,0 to 6,5 mm
FASTENING TBS EVO, MTS A2 | AISI304

MATERIAL
A2 | AISI304 stainless steel.

FIELDS OF USE
Watertight and UV-resistant fastening of
metal sheets to wooden substructures using
TBS EVO or MTS screws.

346 | WBAZ | TIMBER-TO-METAL


CODES AND DIMENSIONS

D1

CODE screw D2 H D1 pcs


H [mm] [mm] [mm] [mm]
WBAZ25A2 6,0 - 6,5 25 15 6,5 100

D2

INSTALLATION
TBS EVO + WBAZ fastening package
ØxL [mm]
6 x 60 min. 0 - max. 40
A
A 6 x 80 min. 10 - max. 60
6 x 100 min. 30 - max. 80
6 x 120 min. 50 - max. 100
6 x 140 min. 70 - max. 120
6 x 160 min. 90 - max. 140
6 x 180 min. 110 - max. 160
6 x 200 min. 130 - max. 180

MTS A2 + WBAZ fastening package


ØxL [mm]
6 x 80 min. 10 - max. 60
6 x 100 min. 30 - max. 80
6 x 120 min. 50 - max. 100

Correct tightening Excessive tightening Insufficient tightening Tightening


off axis

NOTES: The thickness of the washer after installation is approximately 8-9 mm.

FAUX ROOFING TILE


Can also be used on sandwich panels, corru-
gated panels and faux roofing tiles.

TIMBER-TO-METAL | WBAZ | 347


TBS EVO 1002
CERTIFIED

C4 COATING BIT INCLUDED COATING ETA-11/0030

FLANGE HEAD SCREW

EVO C4 COATING
20 μm multilayer coating with a surface treatment of epoxy resin and
aluminium flakes. No rust after 1440 hours of salt spray exposure, as per
ISO 9227. Can be used in service class 3 outdoor applications and under
class C4 atmospheric corrosion conditions.

SELF-DRILLING FOR SHEET METAL


Direct fastening on sheet metal (thickness: up to 0,7 mm) without requir-
ing any pre-drill. Ideal in combination with WBAZ washer.

CODES AND DIMENSIONS

d1 CODE L b A pcs
[mm] [mm] [mm] [mm]
TBSEVO660 60 40 20 100 GEOMETRY
TBSEVO680 80 50 30 100
TBSEVO6100 100 60 40 100
6 TBSEVO6120 120 75 45 100
A
TX 30 TBSEVO6140 140 75 65 100 A
TBSEVO6160 160 75 85 100
TBSEVO6180 180 75 105 100
TBSEVO6200 200 75 125 100
NOTE: codes, techniques and further information on page 84.

MATERIAL
Carbon steel with bright zinc plated.

FIELDS OF USE
Can be installed on sheets up to 0,7 mm thick
without pre-drilling. Suitable for service class-
es 1-2-3. Ideal in coupling with WBAZ washer.

348 | TBS EVO | TIMBER-TO-METAL


MTS A2 | AISI304 A2
AISI 304

SCREWS FOR SHEET METAL

HEXAGONAL HEAD
Ideal for use in combination with WBAZ washers to achieve water-tight
fastening to sheet metal; requires a pre-drill. The hexagonal head facili-
tates any subsequent removal.

STAINLESS STEEL
The A2 | AISI304 stainless steel ensures high resistance to corrosion and
excellent durability, even in very aggressive environments.

GEOMETRY
CODES AND DIMENSIONS dUK

SW
d1 CODE SW dUK L b A pcs A
A
[mm] [mm] [mm] [mm] [mm]
MTS680 SW 8 12,5 80 58 20÷40 100
6
MTS6100 SW 8 12,5 100 58 40÷60 100
SW 8
MTS6120 SW 8 12,5 120 58 60÷80 100

MATERIAL
A2 | AISI304 stainless steel.

FIELDS OF USE
Can be used outdoors in aggressive environ-
ments. Suitable for service classes 1-2-3. Ideal
in coupling with WBAZ washer.

TIMBER-TO-METAL | MTS A2 | AISI304 | 349


MCS A2 | AISI304 A2
AISI 304

SCREW WITH WASHER FOR SHEET METAL

INTEGRATED WASHER
A2 | AISI304 stainless steel screw with integrated A2 | AISI304 stainless
steel washer and EPDM gasket.

STAINLESS STEEL
The A2 | AISI304 stainless steel ensures high resistance to corrosion. Also
available in various colours: copper or chocolate brown.

TORX BIT
Convex head with Torx slot for secure fastening of sheet metal on wood
or plaster. Ideal for fastening gutters to wood and corrugated sheet metal.

CHARACTERISTICS
FOCUS washer with integrated EPDM gasket
WASHER A2 | AISI304 stainless steel
GASKET EPDM
DIAMETER 4,5 mm
LENGTH from 25 to 120 mm

MATERIAL
A2 | AISI304 stainless steel.

FIELDS OF USE
Can be used outdoors in aggressive environ-
ments. Suitable for service classes 1-2-3. Fas-
tening metal structural elements to wooden
substructures.

350 | MCS A2 | AISI304 | TIMBER-TO-METAL


GEOMETRY

D dk d1

Nominal diameter d1 [mm] 4,5


Head diameter dK [mm] 8,30
Diameter of washer D [mm] 20,00

CODES AND DIMENSIONS


MCS A2: stainless steel MCS CU: copper finish

d1 CODE L pcs d1 CODE L pcs


[mm] [mm] [mm] [mm]
MCS4525A2 25 200 MCS4525CU 25 200
MCS4535A2 35 200 MCS4535CU 35 200
MCS4545A2 45 200 MCS4545CU 45 200
4,5 4,5
MCS4560A2 60 200 MCS4560CU 60 200
TX 20 TX 20
MCS4580A2 80 200 MCS4580CU 80 200
MCS45100A2 100 200 MCS45100CU 100 100
MCS45120A2 120 200 MCS45120CU 120 200

MCS M: RAL 8017 - chocolate brown MCS B: RAL 9002 - light grey

d1 CODE L pcs d1 CODE L pcs


[mm] [mm] [mm] [mm]
MCS4525A2M 25 200 MCS4525A2B 25 200
4,5 4,5
MCS4535A2M 35 200 MCS4535A2B 35 200
TX 20 TX 20
MCS4545A2M 45 200 MCS4545A2B 45 200

PERGOLAS
Ideal for fastening corrugated sheet metal on
the wooden pergolas and outdoor structures.

TIMBER-TO-METAL | MCS A2 | AISI304 | 351


COMPLEMENTARY PRODUCTS
COMPLEMENTARY PRODUCTS
COMPLEMENTARY
PRODUCTS

A 10 M
CORDLESS DRILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

A 18 M BL
CORDLESS DRILL. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 356

KMR 3373
AUTOMATIC LOADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

KMR 3372
AUTOMATIC LOADER . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357

KMR 3338
SCREWDRIVER WITH AUTOMATIC LOADER. . . . . . . . . . . . . . . . . 358

KMR 3352
SCREWDRIVER WITH AUTOMATIC LOADER. . . . . . . . . . . . . . . . . 358

IMPULS
PULSE SCREW GUN. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

B 13 B
POWERED SCREWDRIVER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 359

BIT
TORX BITS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360

JIG ALU STA


DRILLING TEMPLATE FOR ALUMIDI
AND ALUMAXI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

JIG ALU SBD


MARKING TEMPLATE FOR ALUMIDI
AND ALUMINI. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 361

D 38 RLE
4-SPEED CORDLESS SCREWDRIVER. . . . . . . . . . . . . . . . . . . . . . . 362

DRILL STOP
COUNTERBORE CUTTER WITH DEPTH STOP. . . . . . . . . . . . . . . 363

BIT STOP
DRIVER BIT HOLDER WITH END STOP . . . . . . . . . . . . . . . . . . . . . 363

LEWIS
DRILL BITS FOR DEEP DRILLING IN SOFT
AND EUROPEAN HARDWOODS. . . . . . . . . . . . . . . . . . . . . . . . . . . 364

SNAIL HSS
TWIST DRILL BITS FOR HARDWOOD,
MELAMINE-FACED BOARDS AND OTHER MATERIALS. . . . . . . . 366

JIG VGZ 45°


TEMPLATE FOR 45° SCREWS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

JIG VGU
TEMPLATE FOR VGU WASHER. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 367

COMPLEMENTARY PRODUCTS | 355


A 10 M
CORDLESS DRILL

• Soft / hard torque: 17/34 Nm


• Nominal minimum 1st gear: 0 - 360 (1/min)
• Nominal minimum 2nd gear: 0 - 1400 (1/min)
• Nominal tension: 10,8 V
• Weight: 0.8 kg

CODES AND DIMENSIONS

CODE description pcs


MA919901 MIDIMAX IN T-MAX 1
MA919902 MAXIMAX IN T-MAX 1

A 18 M BL
CORDLESS DRILL

• Soft / hard torque: 44/90 Nm


• Nominal minimum 1st gear: 0 - 600 (1/min)
• Nominal minimum 2nd gear: 0 - 2050 (1/min)
• Nominal tension: 18 V
• Weight: 1.7 kg

CODES AND DIMENSIONS

CODE description pcs


MA91A001 MIDIMAX IN T-MAX 1
MA91A040 MAXIMAX IN T-MAX 1

356 | A 10 M | A 18 M BL | COMPLEMENTARY PRODUCTS


KMR 3373
AUTOMATIC LOADER

• Screw length: 25 - 50 mm
• Screw diameter: 3.5 - 4.2 mm
• Compatible with A 18 M BL

CODES AND DIMENSIONS

CODE description pcs


HH3373 loader for cordless screwdriver 1
HH14411591 1 metre extension 1

KMR 3372
AUTOMATIC LOADER

• Screw length: 40 - 80 mm
• Screw diameter: 4.5 - 5 mm
• Compatible with A 18 M BL

CODES AND DIMENSIONS

CODE description pcs


HH3372 loader for cordless screwdriver 1
HH14411591 1 metre extension 1

COMPLEMENTARY PRODUCTS | KMR 3373 | KMR 3372 | 357


KMR 3338
SCREWDRIVER WITH AUTOMATIC LOADER

• Screw length: 40 - 80 mm
• Screw diameter: 4.5 - 5 mm
• Performance: 0 - 2850/750 (1/min/W)
• Weight: 2.9 kg

CODES AND DIMENSIONS

CODE description pcs


HH3338 automatic screwdriver 1
HH14411591 1 metre extension 1

KMR 3352
SCREWDRIVER WITH AUTOMATIC LOADER

• Screw length: 25 - 50 mm
• Screw diameter: 3.5 - 4.2 mm
• Performance: 0 - 2850/750 (1/min/W)
• Weight: 2.2 kg

CODES AND DIMENSIONS

CODE description pcs


HH3352 automatic screwdriver 1
HH14411591 1 metre extension 1

358 | KMR 3338 | KMR 3352 | COMPLEMENTARY PRODUCTS


IMPULS
PULSE SCREW GUN

• Torque: 50 - 140 - 205 Nm


• Loadless speed: 0 - 2300 rpm
• Battery capacity - Li-ion: 3.0 Ah
• Nominal tension: 18 V
• Weight: 1.35 kg
• Connection: 1/2" (inches)

CODES AND DIMENSIONS

CODE description pcs


PANIMP18 pulse screw gun 1

B 13 B
POWERED SCREWDRIVER

• Rated power consumption: 760 W


• Screw without pre-drill: 11 x 400 mm screws
• Torque: 120 Nm
• Weight: 2.8 kg
• Neck Ø: 43 mm
• Rpm under load in

1st, 2nd speed: 170 - 1320 U/min

CODES AND DIMENSIONS

CODE description pcs


DUB13B powered screwdriver 1

COMPLEMENTARY PRODUCTS | IMPULS | B 13 B | 359


BIT
TORX BITS

CODES AND DIMENSIONS


BITS C 6.3

L CODE bit colour geometry pcs


[mm]
TX1025 TX 10 yellow 10

TX1525 TX 15 white 10

TX2025 TX 20 orange 10

25 TX2525 TX 25 red 10

TX3025 TX 30 purple 10

TX4025 TX 40 blue 10

TX5025 TX 50 green 10

TX1550 TX 15 white 5

TX2050 TX 20 orange 5

TX2550 TX 25 red 5
50
TX3050 TX 30 purple 5

TX4050 TX 40 blue 5

TX5050 TX 50 green 5

TX1575 TX 15 white 5

75 TX2075 TX 20 orange 5

TX2575 TX 25 red 5

BITS 6.3

L CODE bit colour geometry pcs


[mm]
TXE3050 TX 30 purple 5
50
TXE4050 TX 40 blue 5

LONG BITS

L CODE bit colour geometry pcs


[mm]
150 TX25150 TX 25 red 1

200 TX30200 TX 30 purple 1

350 TX30350 TX 30 purple 1

150 TX40150 TX 40 blue 1

200 TX40200 TX 40 blue 1

350 TX40350 TX 40 blue 1

520 TX40520 TX 40 blue 1

150 TX50150 TX 50 green 1

DRIVER BIT HOLDER

CODE description geometry pcs

TXHOLD 60 mm - magnetic 5

360 | BIT | COMPLEMENTARY PRODUCTS


JIG ALU STA
DRILLING TEMPLATE FOR ALUMIDI
AND ALUMAXI
• Position, drill, done! With the drilling template you can drill holes for
the dowels easily, quickly and precisely
• With the JIG ALU template it is also possible to drill holes for the
ALUMIDI and ALUMAXI brackets

CODES AND DIMENSIONS

CODE B L s pcs
[mm] [mm] [mm]
JIGALUSTA 164 298 3 1

JIG ALU SBD


MARKING TEMPLATE FOR ALUMIDI
AND ALUMINI
• Template for marking of the position of the holes for SBD dowels
• Using SBD self-drilling dowels the connection is almost completely
concealed

CODES AND DIMENSIONS

CODE B L pcs
[mm] [mm]
JIGALUSBD 110 280 1

COMPLEMENTARY PRODUCTS | JIG ALU STA | JIG ALU SBD | 361


D 38 RLE
4-SPEED CORDLESS SCREWDRIVER

• Rated power consumption: 2000 W


• Drilling Ø on:
• steel with solid drill bit: up to 32 mm
• wood with solid drill bit: up to 130 mm
• polypropylene with LS hole cutter: up to 600 mm
• Rpm under load in
1st, 2nd, 3rd and 4th speed: 120 - 210 - 380 - 650 U/min
• Weight: 8.6 kg
• Mandrel connection: conical MK 3

CODES AND DIMENSIONS

CODE description pcs


DUD38RLE 4-speed screwdriver 1

ACCESSORIES
FRICTION SCREW HANDLE MANDREL
• Tightening torque 200 Nm • Increased safety • Opening 1-13 mm
• Square connection 1/2”

CODE pcs CODE pcs CODE pcs


DUVSKU 1 DUD38SH 1 ATRE2014 1

ADAPTER 1 ADAPTER 2 SLEEVES


• For MK3 • For sleeve • For RTR

CODE Ø pcs
CODE pcs CODE pcs ATCS007 16 mm 1
ATRE2019 1 ATCS2010 1 ATCS008 20 mm 1

362 | D 38 RLE | COMPLEMENTARY PRODUCTS


DRILL STOP
COUNTERBORE CUTTER WITH DEPTH STOP

• Particularly indicated for build terraces


• The depth stop with rotating support, is fixed element in working,
leaving no traces on the material

CODES AND DIMENSIONS

CODE Ø tip Ø counterbore cutter pcs


[mm] [mm]
F3577040 4 12 1
F3577050 5 12 1
F3577060 6 12 1
F3577504 set 4, 5, 6 12 1

BIT STOP
DRIVER BIT HOLDER WITH END STOP

• With O-ring to prevent wood damage at end of travel


• The internal device automatically stops the driver bit holder when it
reaches the preset depth

CODES AND DIMENSIONS

CODE Ø tip Ø counterbore cutter pcs


[mm] [mm]
AT4030 adjustable depth 5 1

COMPLEMENTARY PRODUCTS | DRILL STOP | BIT STOP | 363


LEWIS
DRILL BITS FOR DEEP DRILLING IN SOFT AND EUROPEAN HARDWOODS

• In alloy tool steel


• With round-section twist flute, threaded tip, very high quality main cutting edge and roughing tooth
• Version with independent head and hex shank (starting from Ø8 mm)

CODES AND DIMENSIONS

CODE Ø tip Ø shank TL SL pcs CODE Ø tip Ø shank TL SL pcs


[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
F1410205 5 4,5 235 160 1 F1410305 5 4,5 320 255 1
F1410206 6 5,5 235 160 1 F1410306 6 5,5 320 255 1
F1410207 7 6,5 235 160 1 F1410307 7 6,5 320 255 1

F1410208 8 7,8 235 160 1 F1410308 8 7,8 320 255 1

F1410210 10 9,8 235 160 1 F1410309 9 8 320 255 1

F1410212 12 11,8 235 160 1 F1410310 10 9,8 320 255 1


F1410312 12 11,8 320 255 1
F1410214 14 13 235 160 1
F1410314 14 13 320 255 1
F1410216 16 13 235 160 1
F1410316 16 13 320 255 1
F1410218 18 13 235 160 1
F1410318 18 13 320 255 1
F1410220 20 13 235 160 1
F1410320 20 13 320 255 1
F1410222 22 13 235 160 1
F1410322 22 13 320 255 1
F1410224 24 13 235 160 1
F1410324 24 13 320 255 1
F1410228 28 13 235 160 1
F1410326 26 13 320 255 1
F1410230 30 13 235 160 1
F1410328 28 13 320 255 1
F1410232 32 13 235 160 1 F1410330 30 13 320 255 1
F1410242 42 13 235 160 1 F1410332 32 13 320 255 1

364 | LEWIS | COMPLEMENTARY PRODUCTS


CODE Ø tip Ø shank TL SL pcs CODE Ø tip Ø shank TL SL pcs
[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]
F1410407 7 6,5 460 380 1 F1410014 14 13 1080 1010 1
F1410408 8 7,8 460 380 1 F1410016 16 13 1080 1010 1
F1410410 10 9,8 460 380 1 F1410018 18 13 1080 1010 1
F1410412 12 11,8 460 380 1 F1410020 20 13 1080 1010 1
F1410414 14 13 460 380 1 F1410022 22 13 1080 1010 1
F1410416 16 13 460 380 1 F1410024 24 13 1080 1010 1
F1410418 18 13 460 380 1 F1410026 26 13 1080 1010 1
F1410420 20 13 460 380 1 F1410028 28 13 1080 1010 1
F1410422 22 13 460 380 1 F1410030 30 13 1080 1010 1
F1410424 24 13 460 380 1 F1410032 32 13 1080 1010 1
F1410426 26 13 460 380 1 F1410134 34 13 1000 380 1
F1410428 28 13 460 380 1 F1410136 36 13 1000 380 1
F1410430 30 13 460 380 1 F1410138 38 13 1000 380 1
F1410432 32 13 460 380 1 F1410140 40 13 1000 380 1
F1410440 40 13 450 380 1 F1410145 45 13 1000 380 1
F1410450 50 13 450 380 1 F1410150 50 13 1000 380 1
F1410612 12 11,8 650 535 1
F1410614 14 13 650 535 1
F1410616 16 13 650 535 1
F1410618 18 13 650 535 1 TL total length
F1410620 20 13 650 535 1 EL effective length
F1410622 22 13 650 535 1 SL spiral length

F1410624 24 13 650 535 1 TL


F1410626 26 13 650 535 1
F1410628 28 13 650 535 1
SL
F1410630 30 13 650 535 1
F1410632 32 13 650 535 1 EL

LEWIS - SET

CODES AND DIMENSIONS

CODE Ø set TL SL pcs


[mm] [mm] [mm]
F1410200 10, 12, 14, 16, 18, 20, 22, 24 235 160 1
F1410303 10, 12, 14, 16, 18, 20, 22, 24 320 255 1
F1410403 10, 12, 14, 16, 18, 20, 22, 24 460 380 1

COMPLEMENTARY PRODUCTS | LEWIS | 365


SNAIL HSS
TWIST DRILL BITS FOR HARDWOOD, MELAMINE-FACED BOARDS
AND OTHER MATERIALS
• Very high quality polished drill bits, with 2 main cutting edges and 2 roughing teeth
• Special twist with smoothed flute for improved chip evacuation
• Ideal for free hand and stationary use

CODES AND DIMENSIONS

CODE Ø tip Ø shank TL SL pcs CODE Ø tip Ø shank TL SL pcs

[mm] [mm] [mm] [mm] [mm] [mm] [mm] [mm]


F1594020 2 2 49 22 1 F1599209 9 9 250 180 1
F1594030 3 3 60 33 1 F1599210 10 10 250 180 1
F1594040 4 4 75 43 1 F1599212 12 12 250 180 1
F2108005 5 5 85 52 1 F1599214 14 13 250 180 1
F2108006 6 6 92 57 1 F1599216 16 13 250 180 1
F2108008 8 8 115 75 1 F1599405 5 5 400 300 1
F1594090 9 9 125 81 1 F1599406 6 6 400 300 1
F1594100 10 10 130 87 1 F1599407 7 7 400 300 1
F1594110 11 11 140 94 1 F1599408 8 8 400 300 1
F1594120 12 12 150 114 1 F1599409 9 9 400 300 1
F1599205 5 5 250 180 1 F1599410 10 10 400 300 1
F1599206 6 6 250 180 1 F1599412 12 12 400 300 1
F1599207 7 7 250 180 1 F1599414 14 13 400 300 1
F1599208 8 8 250 180 1 F1599416 16 13 400 300 1

SNAIL HSS - SET

CODES AND DIMENSIONS

CODE Ø set pcs


[mm]
F1594805 3, 4, 5, 6, 8 1
F1594510 3, 4, 5, 6, 8, 10, 12, 13, 14, 16 1

366 | SNAIL HSS | COMPLEMENTARY PRODUCTS


JIG VGZ 45°
TEMPLATE FOR 45° SCREWS

• For diameters from 7 to 11 mm


• Screw length indicators
• Screws can be inserted in double 45° mitre cuts

CODES AND DIMENSIONS

CODE description pcs


steel template
JIGVGZ45 1
for VGZ screws at 45°
For detailed information on the use of the template, please see the installation
manual on our website (www.rothoblaas.com).

JIG VGU
TEMPLATE FOR VGU WASHER

• For diameters from 9 to 13 mm

CODES AND DIMENSIONS

CODE washer dh dV pcs


[mm] [mm] [mm]
JIGVGU945 VGU945 5,5 5 1
JIGVGU1145 VGU1145 6,5 6 1
JIGVGU1345 VGU1345 8,5 8 1

NOTE:Further information on page 200.

COMPLEMENTARY PRODUCTS | JIG VGZ 45° | JIG VGU | 367


Rotho Blaas Srl does not guarantee the legal and/or design conformity of data and calculations,
as Rotho Blass provides indicative tools such as technical-commercial service within the sales
activity.
Rotho Blaas Srl follows a policy of continuous development of its products, thereby reserving
the right to modify their characteristics, technical specifications and other documentation
without notice.
The user or the designer are responsible to verify, at each use, the conformity of the data
to the regulations in force and to the project. The ultimate responsibility for choosing the
appropriate product for a specific application lies with the user/designer.
The values resulting from "experimental investigations" are based on the actual test results and
valid only for the test conditions specified.
Rotho Blaas Srl does not guarantee and in no case can be held responsible for damages,
losses and costs or other consequences, for any reason (warranty for defects, warranty for
malfunction, product or legal responsibility, etc.) deriving from the use or inability to use the
products for any purpose; from non-conforming use of the product;
Rotho Blaas Srl is not liable in any way for any errors in printing and/or typing. In the event
of differences between the contents of the catalogue versions in the various languages, the
Italian text is binding and takes precedence with respect to the translations.
Pictures are partially completed with accessories not included. Images are for illustration
purposes only. Packaged quantities may vary.
This catalogue is private property of Rotho Blaas Srl and may not be copied, reproduced or
published, totally or in part, without prior written consent. All violations will be prosecuted
according to law.
The general purchase conditions of Rotho Blaas Srl are available on the website
www.rothoblaas.com.

All rights reserved.


Copyright © 2020 by Rotho Blaas Srl
All renderings © Rotho Blaas Srl
FASTENING
AIRTIGHTNESS AND WATERPROOFING
SOUNDPROOFING
FALL PROTECTION
TOOLS AND MACHINES

Rothoblaas is the multinational Italian company that has


made innovative technology its mission, making its way to
the forefront for timber buildings and construction safety
in just a few years. Thanks to its comprehensive product
range and the technically-prepared and widespread sales
network, the company promotes the transfer of its know-
how to the customers and aims to be a prominent and
reliable partner for developing and innovating products
and building methods. All of this contributes to a new
culture of sustainable construction, focused on increasing
comfortable living and reducing CO2 emissions.
10|20

Rotho Blaas Srl


01SCREWS2EN

Via dell‘Adige N.2/1 | 39040, Cortaccia (BZ) | Italia


Tel: +39 0471 81 84 00 | Fax: +39 0471 81 84 84
info@rothoblaas.com | www.rothoblaas.com

COD

You might also like