0% found this document useful (0 votes)
114 views7 pages

Laplace Transforms

1. The document defines Laplace transforms and provides 33 problems to find the Laplace transform of various functions. 2. The problems cover basic transforms like sin, cos, e^at as well as more advanced functions involving Bessel functions, integrals, and exponentials. 3. The correct answers to each problem are numbers 1-4, testing the reader's knowledge of Laplace transform tables and properties.

Uploaded by

Shaik Shahid
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
114 views7 pages

Laplace Transforms

1. The document defines Laplace transforms and provides 33 problems to find the Laplace transform of various functions. 2. The problems cover basic transforms like sin, cos, e^at as well as more advanced functions involving Bessel functions, integrals, and exponentials. 3. The correct answers to each problem are numbers 1-4, testing the reader's knowledge of Laplace transform tables and properties.

Uploaded by

Shaik Shahid
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 7

LAPLACE TRANSFORMS

1. Find the value of L ( sin3 t )


3 3 3
1. 2 2. 2 3. 2 4. None of these 3
s +9 s −9 s +9

2. Find the value of L ( sinat ) =¿


a a a s
1. 2 4 2. 2 2 3. 2 4. 2
2 2
s +a s +a s +a s +a

3. Find the value of L ( sinkt ) =¿


k k k s
1. 2. 3. 4. 2
s + k4
2
s + k2
2 2
s +k s + k2
2

4. Find the value of L ( cosat )=¿


a a a s
1. 42 2. 2 2 3. 2 4. 2 2 4
s +a s +a s +a s +a

5. Find the value of L ( sinhat ) =¿


a a a s
1. 2. 3. 4. 2
s −a 4
2
s −a 2
2 2
s −a s −a 2
2

6. Find the value of L ( sinh7 t )=¿


7 7 7 s
1. 2 4 2. 2 2 3. 2 4. 22 2
s −7 s −7 s −7 s −7

7. Find the value of L ( e−kt )=¿


k 1 1 s
1. s +k 2. s−k 3. s +k 4. s +k 3

8. Find the value of L ( coshat )


a a a s
1. 2. 3. 2 4. 4
s −a 4
2 2
s −a 2
s −a s −a 2
2

9. Find the value of L ( e at )=¿


a 1 1 s
1. s +a 2. s−a 3. s +a 4. s +a 2
10. Find the value of L ( e−at ) =¿
a 1 1 s
1. s +a 2. s−a 3. s +a 4. s +a 3

11. . Find the value of L ( e 3 at )


3a 1 1 s
1. s +3 a 2. s +3 a 3. s−3 a 4. s +3 a 3

12. Find the value of L ( t n ) =¿


n! n! n n
1. n−1 2. n+1 3. n−1 4. n+1 2
s s s s

13. Find the value of L ( t 4 )


4! 4! 4 4
1. 2. 3. 4. 2
s 4−1 s 4 +1 s 4−1
s 4 +1

14.If L { F(t ) }=f ( s ) then L {e at f ( s) }=¿

1. f ¿ a) 2. f (s ) 3. f (s +a) 4. None of these 1

15.If L { F(t ) }=f ( s ) then L {e−at f (s) }=¿

1. f (s−a) 2. f (s ) 3. f (s +a) 4. None of these 3

16. If L { F(t ) }=f ( s ) then L { F(at) }=¿


1
1. a f ( a )
s 1
( s)
2. s f a 3. f ( a )
s
4. None of these 1

17.The Laplace transform of L ( t 5 e 3 t )=¿


120 120 120 120
1. 2. 3. 4. 3
( s+ 3 )6 ( s+ 5 )6 ( s−3 )6 ( s−5 )6

18. The Laplace transform of L ( t3 e−3 t ) =¿


6 6 6 6
1. ( s+3 )4 2. ( s+ 5 )4 3. ( s−3 ) 4 4. ( s−5 ) 4 1

19 The Laplace transform of L ( t 3 e 3 t )=¿


6 6 6 6
1. ( s+3 )4 2. ( s+ 5 )4 3. ( s−3 ) 4 4. ( s−5 ) 4 3
{∫ }
t

20 If L { F(t ) }=f ( s ) then L F ( u ) du =¿


0

1 s f (s)
1. a f ( a ) 2. 3.f(s/a) 4. None of these 2
s

21 If L { F(t ) }=f ( s ) then L {( t n F (t )) }=¿ 1


n
n d n d
1.( −1 ) f ( s ) , n=1,2,3 … 2. (−1 ) ds f ( s ) , n=1,2,3 …
dsn
n
d
3. n f ( s ) , n=1,2,3 … 4. None of the above
ds

22. The Laplace transform of t . sinat 2


2as 2 as 2 as
1. 2. 2 2 3. 4.none of the above
s 2 + a2 ( s +a )
2
( s+ a )2

23. The Laplace transform of t coshat 3

s 2 +a2 2 ( s 2+ a2 ) s 2+ a2
1. 2 2 2. 2 3. 2 4.none of the above
s −a ( s2−a2 ) ( s 2−a 2 )

24. If L { F(t ) }=f ( s ) then L { } F(t )


t
=¿ 4

∞ ∞ s

1. ∫ f ( s ) ds 2.∫ f ( s ) ds 3. ∫ f ( s ) ds 4. None of the above


0 s 0

t
sinx
25. The Laplace transform of ∫ dx 2
0 x

tan −1 ( s ) cot−1 ( s )
1. 2. 3.cot−1 ( x ) 4. None of the above
s s

sint
26.∫ dt=¿ 3
0 t

π π
1. 4 2. π 3. 2 4.2 π

∞ −6 t −3 t
e −e
27. ∫ dt=¿ 2
0 t
1. log 2 2 .log 2 () 1
3. log 2 () 3
4. None of the above

cosat
28.Laplace transform of t
is 4

1. cot
−1
( as ) 2. tan
−1
( as ) 3. tan−1 ( s ) 4. Does not exist

29.∫ t e−3 t sint dt=¿ 3


0

13 13 3
1. 15 2. 50 3. 50 4. None of the above

30. ∫ t 3 e−t sint dt=¿ 3


0

1. 1 2.−1 3.0 4. ∞

31.The Laplace transform of J o ( t ) is 1


1 s 1
1. 2. 3. 4. None of the above
√ s +1
2
√ s +12
√ s 2−1
32. The Laplace transform of J 1 ( t ) is 3
s s 1
1. 2. 1− 3. 1− 4. None of the above
√ s +1 2
√s +1
2
√ s 2+ 1
33. The Laplace transform of J o ( at ) is 1
1 1 a s
1. 2. 3. 4.
√s +a2 2
√ s +1 2
√s +a
2 2
√ s +a2
2

34. The Laplace transform of J 1 ( at ) is 1


1
1. a 1− [ s
√s +a
2 2 ] [ 1
2. a 1+ 2 2 3. a 1+ 2 2
√ s +a
s
√ s +a ] [ 1 1
] 4. ¿

x n
e d ( −x n )
35. If Ln x = n ! n e x then L ( Ln (t)) =¿
( ) 2
dx

( s+1 )n ( s−1 )n ( s−1 )n ( s+ 1 )n


1. n+1 2. n−1 3. n+1 4. n−1
s s s s

36. The Laplace transform of t sinhat 2


2 2
2 as 2 as s +a 2
s +a
2
1. 2 2 2. 2 2 3. 2 2 4.
( s 2 +a ) ( s 2−a ) ( s 2−a ) 2
s −a
2


sinx
37.If S ( t ) =∫ dx then L { S (t ) }= 2
t x

tan −1 ( s ) cot−1 ( s ) 1
1. 2. 3. s tans 4. None of the above
s s

cosx
38. .If C ( t )=∫ dx then L { C ( t ) }=¿ 2
t x

1 1 1
1. 2 log ( s +1 ) 2. log ( s + 1 ) 4. None of the above
2 2
3.
2 s log ( s +1 ) 2 s
2

∞ −x
e
39. .If E ( t )=∫ dx then L { E ( t ) } =¿ 3
t x

1 1 1 1
1. 2 s log ( s+ 1 ) 2. 2 s log ( s−1 ) 3. s log ( s +1 ) 4. s log ( s−1 )

40. Find the value of L ( e 6 t )=¿ 2


1 1 s s
1. s +6 2. s−6 3. s +6 4. s−6

41. Find the value of L ( t 4 )=¿ 2


12 24 12 24
1. 2. 3. 4.
s4 s5 s5 s4

42. Find the value of L {t } = 1


n

n! n! n!
1. 2. 3. n 4. None
S n+1 S n−1 S
1 1
43.Find the value of L {1} = 41. 2 2.-1/2 3. s 4. s

44. Find the value of L { 2 } = 3


−2 2
1.s 2. s 3. s

45. Find the value of L { 100 } = 4


3 1 10 100
1. s 2. s 3. s 4. s
46. Find the value of L {t 2 } = 1
2! 3! 1! 0!
1. 3 2. 3 3. 3 4. 3
S S S S

47. Find the value of L {t 5 } = 2


42 120 24 24
1. 5 2. 6 3. 4.
S S S5 S4

48. Find the value of L {t }


7
= 4
6! 8! 5! 7!
1. 8 2. 6 3. 8 4. 8
S S S S

49. Find the value of L {t } =


0
3
1 −1 1
1. 2. 3. s 4.
2 s s

50. Find the value of L {e at } = 2


1 1 −1 −1
1. s +a 2.
s−a
3. s−a 4. s +a

51. Find the value of L {e−at } = 1


1 1 −1 −1
1. s +a 2.
s−a
3. s−a 4. s +a

52. Find the value of L {e 2 t } = 3


−1 −1 1 1
1. s +2 2. s−2 3.
s−2
4. s +2

53. Find the value of L {e−4 t} = 4


−1 1 −1 1
1. s +4 2.
s−4
3. s−4 4. s +4

54. Find the value of L {sin at } = 2


−a a s −s
1. 2 2
2. 2 2 3. 4.
s +a s +a s + a2
2
s 2 + a2

55. Find the value of L {cos at } = 3


−a a s −s
1. 2. 3. 4.
s2 +a 2 s −a 2
2
s + a2
2
s 2+ a2

56. Find the value of L {sin 2 t } = 4


−2 s 4 2
1. 2 2. 2 3. 2 4. 2
s +4 s +4 s +4 s +4

57. Find the value of L {cos 3 t } = 2


9 s −s s
1. 2 2. 2 3. 4.
s +9 s +9 s 2+ 9 2
s −9

58 Find the value of L {sinh at } = 3


a s a s
1. 22 2. 2
2
3. 2 2 4. 22
s +a s −a s −a s +a

59. Find the value of L {cosh at } = 2


a s a s
1. 2 2
2. 2 2 3. 4.
s +a s −a s −a 2
2
s + a2
2

60. Find the value of L {t e } =


n at
3
n! ( n+1 ) ! n!
1. n+1 2. n+1 3. n+1 4. None
(s +a) ( s−a) ( s−a)

You might also like