0 ratings0% found this document useful (0 votes) 56 views23 pagesDaa Unit 4 PDF
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, 
claim it here.
Available Formats
Download as PDF or read online on Scribd
BRANCH AND Bounp
 
THE METHOD: -
 
“The deen branch and bound yehews 0
All siatespare. tree) search metiods in cont al
childven fie E-made are generated befor
| ey Ke «Tode. can a. the E-mde-
pe" have alacady seen coo raph search eeonique
am ame BES and mae i m eahich The
er ployotton f° new pode cannot begin unh?l]
The pode current! bang expired fs ty
Spore . Both Utes jo branch and 'boung
lak a
Th Branch ard Bound -faminglogy » a BFS tke
Stole Space seath wil be mately" Letet In
Tha out) georh as ‘he Itet Ive modes © 9
Fim in fret out: tor queae)- A "D-seaach like
‘Bole spare Search col be called “wen” clost Th
viet out) georh a the tet tive. nedes
18a. lost etn. “AMT Got Not Cor stack?
astm, The cose bo cetacking . boundeng
funtions axe used io help awid ‘the
ae 5 acl “rat di Nal tontarns
an ansuwa rode-5 Beane. ee
Teaver E;
Prog Sra rT ; :
eps, cat G
¥ thone ane ncibies anel 4 ma if
to othr city f given i
is ed the pee such Bot cack thy
visited exactly Once ond then netwuring- te Atdting eft,
Completes, the tour d aed
Jy dypl transiting Salesperson fuotlern ts represen
|* weighted  paph
— Conbitler an dntinnce for TSP f& given by G an,
| oc 20 30 10
re
Ll
iso 6 ¢ 2
G- |]3 5 0» 2 +#
99 ¢ WB 8 3
of
le + 4 16
—y Hee n> 5 nodes
Hence we can drour ao state Space tree with
5 nodes as shown & the above figure -
CPT-0)90,9.92, 99, 22,929 Pe Pe Oe
dao @SOO ¢ 4 Oo 608006
ze je jz js ie
  
© Gee
is le je |e |s fe Is.
  
je le le le lf |*
OD OOOSD DH @ OO DY DLO OQDY OOOO @
=z ‘Wife €
he Swe sd Cw Y Wey
= WA f Re © Q ©
: Sy
5 E
we €
eSaeat
uy
)and return to soot -
ex &
 
jo node ¥ fi 8. Be: Sees ad
Sy twanch Orc Wound Hokey eat tach "ad
 
 
  
 
computed *
ae had, iy ing the nade wlth epbhuun
cott Hence -
C(x) = cost of toua(a)
where, %—* Leaf node
e'CL) + app hoxtmetbion cost celory ‘the path Rony Site alas
| Row Repwersers *
Yo wdanined sehuhg of TSP using
i phwmach we will reduce Ahe cosl of
in u, by salng fotiourtay feturnla, *
Red-Reus (x) = [
ymin {yl tej- 16 2 " O 9 [2 ©irenerte Repwerion.: |}
[eat
est | |
—"|-¥ In the aloue trample ; aye e@btathe the graph Aare,
h the oulgnat
é oa iS+ het means all torre
ie
| a feng atleast 25
J EL ; eT rake the chotee of \
q |
J | edge fay with efitireum cont
} e f i teu -
5 gs see a — woe of HOt,
attr Ee LLUy,
Step-_ + Pea & bine dpaee ee
ding sok HOIEIT=
 
 
nf Obtain Ae j
St nag and Je column. erties O ag fe optim |
- + cost of connespondg node x with path 'n)
Siep-3:! aac].
test + nredutced cost + HEI gerunade
© bet nace Sei akaaumn ak a Ele pure
See idlinen « Raped atep 1p 4+ PA Completa
wlth @ftimsurn cost the
pe ah Kem
spe tag 0 ec! - note
Bs ate «ng He Tool sete
b
colerslate the or ai
~o 20 jo «10 ii}
ir © 1 + ®
gr ee tet
9 6 Bo 4
oDfy? fovtion of Stele, Space i
fans and 2% solu
Consul path 12° Hake
set H{2J[1]- ©
o 0 2 co wo | Fangte
o © I 2 o | ignore
oO 0 a OO 2 or fgnobe
17 [2 | Fen ote
NH mw 6 iz co |
L bE v L L imore
Fanere Hoe Hntre Fonone (grote
Cost of node 2
25 + 0 + ie}
ih t +
neluced td value of
Cost = GE HD Jez]
a55-
mm oO: And» Modee
st
FOU =
Se 0+ 3 column « ra] and
OP 0A wo
Oo Oo 2 °
3.0 0 2
3 2 oO
o © p
- 4 +i
t
cot = CEI
 
|
Consile, path V+
| oe om 0 oF oO
Db o H © o
03 0 0 *
mw IF @o 0
oo 8 @ be
ott ade & = ast oto
=a 2o 5
5 Considat path "1S
| eo 0 0 2
jn oo Wt Cl aac
; 9 3° @ eg
me a a
2 9 ‘0= 2 isof stad space PE wo ile, bee nade
opti Gt
Boas
ab ee
a6
BRR?
BROS
1
Cot of rele G = ard M[4,2.]
= e7t3
= 28>
Gonaa path Ved foe rate #8 P ilad ge
Fl
fo %- tek 4 column, rd estamn bo «St
fet HEHICI] = H(3IC1) = 90
A 1 0 0
12 o © « O 2
Oo GZ Oo OD
Oo @ CO OQ of
 
Wie ie; BOE
-
Utpede t= OF 413+ Ml4](3]
R412
“ Conuilor path dpa. dev nade: as
   
  
ft
oO 0 ap S
IR 0 Il 2 oo
am)
0 8 @ G8
oOo oo oh Oo
Oo @p 02
Cost of node § = 2s+ II
= 36
 
36
28
Fig: Pectubn of
Now as cost of role
am G-nade: Hence gentitte chitdsen Te!
Conmfelia pot 42,3 40 node F: bet
aM row to.
to o-
get © column,
fet MELE], weLi27,H{43) @ 9.
 
2% cotunn ancl
stole Space tee .
@ ft mbhibuwn, nede 6 Lecomet |
node 6- Nade
4 and 10 ane children nodes of rude ©.
i
Pros, 0,
gmt column4 ieee
oe
eo a 2 a
pam el 1B
1 «© 0 @ 0
t
It
tot of mode 9 = 28
; 4 13 + e
Optimum ctl edacectead — 2ST
= §2.
Cordldes path |,2,2,5 fer ned “
i, 12,5 ety fet 1 now, tour,
Fug to 0 - fh
he tN eotumn pan éotumnn and 5% Column to
OG-F = HCl) HfAesJe oowe set path
A 1 ag 1,4,2,5,3- Je complete
chun te | Hence the State Space we EP,
 
+ Sette §pacce. pee -
Fig A
dence dhe ophmun tott of the Four fe 28.a
: ack ler. Using Braxb g Bowe
Of _krapeacs foes ae roto + ee rr
gd “tits tues te. use bounding. fare
Subtrea-
i : i
px ae athens, “foro ies in & different ” s
: cy can be ee cls, bis
ea {a bpd thesg
“the Search
t— dé bar branching qunction whi
BV GE has a boundin dunetino, whic
so fenstbiliy be 0 a rea to pre eAictently
eee wehave te coleulete ine ¥ latest bound,
ean Tobe
doarmt take. ey
ttiond
froblemy— |
Ac we kmw oft knapsack. (s a bag in which wwe shall
TE wily Some wetyht obfects whose Weight awe leasthio
f -eoual te meget Weigor |
= ney Ruta k Pa Pu= (to, 10, ite)
(1,609, uh, Wy) < (a4, 9) %
meh Cenapanck use ight)pei atts =
Vole ystonject =1r-2=18 | OPP bound = Wht
‘a don yu =4 =lb4io4 ne
i on =13 ae nt =3L
gid a 24-6=3
Se { ©" (parte bounds 10+ 104
gh et i meet Wert Bie
= Bk.
} Comestion man
a Yate mo, we get 1K
UB=-37
(Bo as.
UBs-3e
LR=-38
wef =0
a
LB= (3) 3) MBe-2e
LB=-2 (B= -3.. i
el Fy ees .
for oder, _
UB= AARIB UB= RAR= lota=a9g = 17
= lotloq\n .
(6= to
= lO-o+
ene ANE Corte main
B. lonoHatSwe “a ene
3 236 =a.
calculae ditleren a blw (BS UB in Noda & Nok 2
for node 8= —3.+(-3¢)< ¢
node 2 2 3.
Ghj)etoEw nede®)
   
i eae
: d=0
OR= Warp.
ANOt hE don nodes) pie bi,
moe —UBs It? =
ABS Or DHT Bat
 
Aa\e = al
=—3k LOe joriat af
=-3e
Dt\ference
tt rT
to Mode y , d= 32.48% = 6
For mde $, d= -p tee fy
for node t, dir node,
DB= letis tie - UBe lox tot = 3p
= 48n
’ WE 4+ Ay
Be ADH § vy Fils wae
“2
=-377
! Pierce
| dev Mode 6x ~ar+ax og
{ov node Fu-Bf438 =0,jor ode © %y=I tos neded, %y=0
OB= t+ fo220
[Be 10410 =20
UB = 104 fot B= -BE
(Be 1 Hoty xls =-38
Difjevens,
fore poder , = 364 =o
ox Oude oy | = -lofts0<0
Ak -nede@, we got moaritrnuns Upperbound ,
[3 28—2yu —3 4-28
ATL hy My, on |
ye
 
Malmo py our pees, 2
my PA ALPE A My Pa Fy Py !
= ECs) 4110) + OCD 41) = (OF IO ATE x,
I —of { knapsack prbler ate branch § Bound '-
Ala L Bound Cobol. prnjtt, total wt, b)
A total parit denolés cument poi
A total wt denotes cement total wetght
“HK denotes tinder A, Rirmoved object-
| eid de “represent profit ot abject i.
! ‘ Ie the “welght capacity q knapsack
pr <— total tit
tov (i ket ty a) dowe Hae wl
on thon pe pk +A
ae cpr ai Gorm) uted et)
( han pes
.
y Bound (total proqity totally kyrn)
a profit denolés current pryit
i] jota) we denotes current total wueight
Ik denolés fader of nernoved object
|JwGd denote weight oF weaved object
felt “apne papi: oF object 1
J is rhuerghl: Copactty ot Koaprack
{
Pr <— tolal-peofit
wk < total-wk;
for (TERA to odo
if (we-+ wo) carn} then
{
pe < pt-pt]:
whe—wt tuff];
5
4
Fehuun pt, 4
b(Consicloubians§ —————]
ap hnaicanee—ie aa |
=> ane Can Pose several questions concerning the |
performance choveckeristics of Branch and Bound |
olgettin's that Find Leack cost answer nodes: |
1. Cree the use do better Ateatting value for upper olkoayy|
clecvease the number nodes genevalta ?
=. 4k is possible to decreme the number
by expanding dome nodes estth TL supper?
of o better B always nesulbine® | |
e in) the number]
d nodes ope
3: Does the use
decrease in (ov at deast nok an fneweas!
dq ‘nodes generaltte ?
4. Does the use of
Gn the genevadion d move nodes dhat
be generale ?
=> AU the Following dheovemea Gmume dhoat the
| branch and bound algerie ga to Bnd the minimum
|
|
dominance nelokiens ever nesutt
would athersise |
Coat solution node.
| Theorem Eas tek ty be a eholk space bree. the fais of. |
RRR i
| nodes qd t generated by Figo, LIFO and LO branch and
bound algorithms Cannot be clecreased by dhe eupansion |
q ony pode w with €G5 > upper where upper is dhe
| Current upper bound on dhe cost q a mistmum- coat |
Splukion node In the treet \‘Peco? :- The dheorem follows Ram dhe absewation that!
cthe Value | upper Cannot be clecreaned by €xpandling ys
x as CCW Upper). Hence , Such an expansion Cannol
ablect dhe operation ¢ the algorithm on dhe nemelinder |
A Abe hee”
| Theovem 2 let Ur and Us, U,, be two imbal upper
hounds on dhe cosk qo minimum cost Solulon
I nede in the alah space tee , then FIFO, LIFO and ic
| branch and bound algeith ms begining with Up coil
| Geneva no more Node then dhey would 7f they Atenled
“ tyith Uz as the inital upper bound.
Proo:- dP they have sented with uv, they might
generale nodes.
Theavem ‘- the number a nodes genevaled during a
Figo or CIFO branch and bound seanch for oe
cost daolubton node ney fnevease when a Shenger
clominance elation fs tecl.
Prk Consider the efali space ree the only Adtation
nedes ane deal? nodes: their cost % covitten eulgels |
the ‘node. for the areal atn Nodes dhe Numbeyn
Gulstce each node fe ia ‘ce’ value. the tuo ownuvt |
SONI He AB BRS. (Gi =P pal Sen oaks
Clearly D2 78 slvonger ¢han DP, and a ec
general uaing D, nadher than Pisx |fa alco
=xample :-
By s - @ .
od Abobodidd
( D ODO LKOOHH 6 @ HH
Theorern i- 4P a better a Lunction te tued ina le.
byand and bound algoridhen, the number q nodes
generalitd mney tnerease-
Proof :- Consider the chalk space bee . All teof redes
ane Salulion nodes: The value outside each teak is Hs
Coat. From these values %t Pyttows that clr) =claj=3 |
and c(S)=4- outaide each d nedes 41,2 and 3 ig q |
|
Pair q numbers. cle & 18 0 belter function |
 
 
 
a
ij
 
 
 
chen & - However G 7s wed, node 2 can become the
E-node before node 3-85 (2) = F(a) |
Ee alt