Main Pattern Cumulative Test-4 (Mct-4) : Course: Vikaas (Ja) - Batch: 01ja, Ia, Jaza
Main Pattern Cumulative Test-4 (Mct-4) : Course: Vikaas (Ja) - Batch: 01ja, Ia, Jaza
1
COURSE : VIKAAS (JA) | BATCH : 01JA, IA, JAZA
Time (le;) : 3 Hours (?k.Vs) Maximum Marks (vf/kdre vad) : 300
Ñi;k bu funsZ'kksa dks /;ku ls i<+saA vkidks 5 feuV fo'ks"k :i ls bl dke ds fy, fn;s x;s gSaA
(Please read the instructions carefully. You are allotted 5 minutes specifically for this purpose).
INSTRUCTIONS TO CANDIDATES
Question paper has three (03) parts: Physics, Chemistry ç'u&i=k eas rhu (03) Hkkx gS % (HkkSfrdh ] jlk;u foKku ,oa
and Mathematics.
xf.kr)
Each part has a total 30 questions divided into two (02) çR;sd Hkkx esa dqy 30 iz'u gS tks nks (02) [kaMks esa foHkkftr gS
sections (Section-1 and Section-2). ¼[kaM 1 vkSj [kaM 2)
Total number of questions in Question paper are 90 and iz'u&i=k esa ç'uksa dh dqy la[;k % 90 ,oa vf/kdre vad % rhu
Maximum Marks are Three Hundred only (300). lkS (300) gSaA
ç'uksa ds çdkj vkSj ewY;kadu ;kstuk,¡ (Type of Questions and Marking Schemes)
[kaM–1 ¼vf/kdre vad : 80½ | SECTION-1 (Maximum Marks : 80)
This section contains TWENTY (20) questions bl [kaM esa chl (20) iz'u gSaA
Each question has FOUR options (1), (2), (3) and (4) izR;sd iz'u esa pkj fodYi (1), (2), (3) rFkk (4) gSaA bu pkj fodYiksa
ONLY ONE of these four option is correct) esa ls ds oy ,d fodYi lgh gSaA
Marking scheme: vadu ;kstuk
Full Marks : +4 If the corresponding to the
answer is darkened
iw.kZ vad % +4 ;fn flQZ lgh fodYi gh pquk x;k gSA
Zero Marks : 0 If none of the options is chosen 'kwU; vad % 0 ;fn fdlh Hkh fodYi dks ugha pquk x;k gS
(i.e. the question is unanswered). ¼vFkkZr~ iz'u vuqÙkfjr gS½A
Negative Marks : –1 In all other cases. _.k vad % –1 vU; lHkh ifjfLFkfr;ksa esaA
There is NO way to erase or "un-darkened bubble. dkys fd;s gq;s cqycq ys dks feVkus dk dksbZ rjhdk ugha gSA
The marking scheme given at the beginning of each section
gj [k.M ds izkjEHk esa nh x;h vadu ;kstuk esa dkys fd;s x;s rFkk dkys
gives details of how darkened and not darkened bubbles are
evaluated.
u fd;s x;s cqycqyksa dks ewY;kafdr djus dk rjhdk fn;k x;k gSA.
For example, if answer ‘SINGLE DIGIT’ integer type below : mnkgj.k ds fy, , ;fn mÙkj ‘,dy vadh;’ iw.kkZad gS rc :
0 1 2 3 4 5 6 7 8 9 0 1 2 3 4 5 6 7 8 9
For example, if answer ‘DOUBLEDIGIT’ integer type below : mnkgj.k ds fy, , ;fn mÙkj ‘f)&vadh;’ iw.kkZad gS rc :
0 0 0 0
1 1 1 1
2 2 2 2
3 3 3 3
4 4 4 4
5 5 5 5
6 6 6 6
7 7 7 7
8 8 8 8
9 9 9 9
FOR DECIMAL TYPE QUESTIONS OMR LOOKS LIKE : n'keyo iw .kkZad@la[;kRed vadksa ds fy, ORS fuEu çdkj gS :
COLUMN COLUMN
1 2 . 3 4 1 2 . 3 4
0 0 0 0 0 0 0 0
1 1 1 1 1 1 1 1
2 2 2 2 2 2 2 2
3 3 3 3 3 3 3 3
4 4 4 4 4 4 4 4
5 5 5 5 5 5 5 5
6 6 6 6 6 6 6 6
7 7 7 7 7 7 7 7
8 8 8 8 8 8 8 8
9 9 9 9 9 9 9 9
st
If answer is 3.7, then fill 3 in either 1st or 2nd column and 7 in ;fn mÙkj 3.7 gS rc 3 dks 1 ;k 2nd dkWye esa Hkjsa rFkk 7 dks 3rd ;k
rd th
3 or 4 column. 4th dkWye esa HkjsaA
If answer is 3.07 then fill 3 in 1st or 2nd column ‘0’ in 3rd column ;fn mÙkj 3.07 gS rks 3 dks 1st dkWye ;k 2nd dkWye esa Hkjsa rFkk ‘0’
and 7 in 4th column. dks 3rd dkWye esa rFkk 7 dks 4th dkWye esa HkjsaA
If answer is, 23 then fill 2 & 3 in 1st and 2nd column ;fn mÙkj 23 gS rc 2 dks 1st dkWye esa ] 3 dks 2nd dkWye esa tcfd
respectively, while you can either leave column 3 & 4 or fill rd
3 vkSj 4th dkWye dks [kkyh NksM+ nsa ;k ‘'kwU; Hkj nsaA
‘0’ in either of them.
PART-A (Hkkx– A)
1. The bob of a simple pendulum executes simple harmonic motion in water with a period t, while the
period of oscillation of the bob is t0 in air. Neglecting frictional force of water and given that the density
of the bob is (4/3) × 1000 kg/m3. What relationship between t and t0 is true?
,d ljy vkorhZ nksyd ty esa vkorZ dky t ds lkFk ljy vkorZ xfr dj jgk gS] tcfd gok esa bldk vkorZ dky
t0 gSA ty dk ?k"kZ.k ux.; ekfu;s rFkk ;g fn;k x;k gS fd nksyd dk ?kuRo (4/3) × 1000 kg/m 3 gS rks t rFkk t0 esa
lgh lEcU/k gksxkA
(1) t = t0 (2) t = t0/2 (3*) t = 2t0 (4) t = 4t0
Sol. The time period of simple pendulum in air
ok;q esa ljy yksyd dk vkorZ dky
T = t0 = 2 ........... (i)
g
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-1
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
– ' '
geff = g = 1 – g
'
t = 2 1 – g (ii)
1
t 1
Thus vr% = =
t0 ' 1000
1–
1 – 4 / 3 1 0 0 0
= 2 t = 2 t0
2. A man can swim certain distance in still water up and down in time t1. If he swims to some distance
down stream the river and returns back to same point he takes time t2. Then :
(1) t1 = t2 (2*) t1 < t2 (3) t1 < t2 (4) t1 & t2 can't be compared
,d O;fDr fLFkj ikuh esa rSjrs gq, fuf'pr nwjh rd tkdj okil vkus esa t1 le; ysrk gSA ;fn og ,d unh esa ikuh
ds cgko dh fn'kk esa leku nwjh rd tkdj okil izkjfEHkd fcUnq rd vkus esa t2 le; ysrk gks rksA
(1) t1 = t2 (2*) t1 < t2 (3) t1 < t2
(4) t1 rFkk t2 dh rqyuk ugh dh tk ldrh gSA
2d d d 2vd 2d
Sol. t1 = t2 = = = 2
v v u v u v
2
u
2
2 u
v
v
2d
t2 =
u
2
v 1
2
v
t2 > t1.
3. A cart of mass M has a block of mass m attached to it as shown in the figure. Co-efficient of friction
between the block and cart is . What is the minimum acceleration of the cart so that the block m does
not fall ?
nzO;eku M dh ,d xkM+h ij m nzO;eku dk ,d xqVdk fp=kkuqlkj tqM+k gSA xkM+h o xqVds ds e/; ?k"kZ.k xq.kkad gSA
xkM+h dks fdrus U;wure Roj.k ls pyk;k tk;s rkfd xqVdk fxjs ughaA
N = ma, mg = N
g
mg = ma a=
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-2
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
4. The system is in equilibrium and at rest. Now mass m is removed from m . Find the time period and
1 2
amplitude of resultant motion. Spring constant is K.
fudk; lkE;koLFkk esa ,oa fLFkj gSA vc nzO;eku m1 dks m2 ls gVk ysrs gSA ifj.kkeh xfr dk vkorZdky ,oa vk;ke
Kkr djksA fLçax fu;rkad K gSA
/ // // // // // // // // // / // // //
m1
m2
m2 m 1g m2 m 2g
(1*) T = 2 ;A= (2) T = 2 ;A=
K K K K
m1 m 2g m1 m 2g
(3) T = 2 ;A= (4) T = ;A=
K K K K
Sol. Initial extension in the spring
fLçax esa izkjfEHkd f[kapko
(m 1 m 2 ) g
x=
K
m 2g
Now, if we remove m , equilibrium position(E.P.) of m will be below natural length of spring.
1 2 K
m 2g
vc , ;fn m1 dks gVk ysrs gS rks m2 dh lkE;koLFkk fLçax dh lkekU; yEckbZ ls uhps gksxhA
K
/ // // // // // // / // // // // // // / // // // // // // / // // // // // //
N .L
m 2g
(m 1+ m 2)g
K
K E .P
m 1g
K
// // // // // // // // // // // // // // // // // // // // // // // // // //
N .L
m 2g
(m 1+ m 2)g
K
K l kE; ko L Fkk
m 1g
K
At the initial position, since velocity is zero i.e. it is the extreme position.
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-3
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
5. Two men of equal masses stand at opposite ends of the diameter of a turntable disc of a certain mass,
moving with some angular velocity. The two men start moving towards the center of the turntable at
equal rates. Then choose the correct option:
dqN dks.kh; osx ls ?kweus okyh ,d ?kw.khZ pdrh ftldk dqN fuf'pr nzO;eku gS] ds O;kl ds foijhr fljksa ij leku
nzO;eku ds nks O;fDr [kM+s gSA nksuksa O;fDr leku nj ls ?kw.kZu pdrh ds dsUnz dh vksj pyuk izkjEHk djrs gS rks lR;
lgh fodYi dk p;u dhft,A
(1*) kinetic energy of the system will increase.
?kw.kZu dh xfrt ÅtkZ c<+rh gSA
(2) kinetic energy of system will decrease.
?kw.kZu dh xfrt ÅtkZ ?kVrh gSA
(3) Angular momentum of the system will increase.
fudk; dk dks.kh; laosx c<+rk gSA
(4) Angular momentum of the system will decrease.
fudk; dk dks.kh; laosx ?kVrk gSA
Sol. 11 = 22
Since, men move towards middle of turn table decreases hence 2 increases.
pwafd, O;fDr dsUnz dh vksj xfr djrs gS blfy, ?kVsxk QyLo:i 2 c<sxkA
2
L
KE = ; L = constant and decreases so KE increases vr% xfrt ÅtkZ c<sxhA
2
6. A uniform disc of mass m and radius R is resting an a smooth horizontal surface and it is free to rotate
about its own axis which is vertical. A small particle of mass m collides its periphery with a velocity of V
in tangential direction. If the collision is perfectly in-elastic and the particle sticks to the periphery, the
angular velocity of the system just after the collision will be :
m nzO;eku vkSj R f=kT;k dh ,d le:i pdrh fpduh {kSfrt lrg ij j[kh gS vkSj vius Loa; ds Å/okZ/kj v{k ds
lkis{k ?kweus ds fy, Lora=k gSA m nzO;eku dk ,d d.k V pky ls pdrh dh ifj/kh ls Li'kZ js[kh; fn'kk esa Vdjkrk
gSA ;fn VDdj iw.kZ vizR;kLFk gS vkSj VDdj ds ckn d.k pdrh dh ifj/kh ls fpid tk, rks VDdj ds Bhd ckn
fudk; dk dks.kh; osx gksxk%
V 2V 3V V
(1) (2*) (3) (4)
3R 3R 2R R
Li = Lf
mR2 2
O + mvR = mR f
2
2V
3R
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-4
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
7. A uniform metre stick is held vertically with one end on the floor and is allowed to fall. The speed of the
other end when it hits the floor assuming that the end at the floor does not slip :
,d ehVj dh ,d le:i NM+ Å/okZ/kj j[kh tkrh gSA bldk ,d fljk Q'kZ ij gS vkSj ;g fxjus nh tkrh gS ;g
ekurs gq,s fd Q'kZ okyk fljk fQlyrk ugha gSA tc ;g Q'kZ ij Vdjkrh gS rc nwljs fljs dh pky Kkr djks A
(1) 4g (2*) 3g (3) 5g (4) g
Sol.
VA = = 3g = 3g
8. A ball ‘A’ of mass M collides elastically with another identical ball ‘B’ at rest as shown in figure. Initially
velocity of ball ‘A’ is u m/s. After collision :
fp=kkuqlkj M nzO;eku dh ,d xsan 'A', leku xsan ‘B’ tksfd fLFkj gS] ls çR;kLFk VDdj djrh gSA ;fn çkjEHk esa ‘A’
dk osx u m/s gS rks VDdj ds ckn :
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-5
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
vB = ucos
VA = usin
9. A particle of mass 1 kg is thrown vertically upwards with speed 100 m/s. After 5s it explodes into two
parts. One part of mass 400g comes back with speed 25 m/s, what is the speed of other part just after
explosion?
(1*) 100 m/s upwards (2) 600 m/s upwards (3) 100 m/s downward (4) 300 m/s upward
1 kg ds ,d fi.M dks 100 m/s ds osx ls Å/okZ/kj Åij dh vksj Qsadk tkrk gSA 5s i'pkr~ ;g nks [k.Mksa esa
foLQksfVr gks tkrk gSA 400g dk ,d fi.M 25 m/s dh pky ls okfil ykSVrk gS] foLQksV ds rqjUr ckn nwljs [k.M
dk osx gksxk ?
(1*) 100 m/s Åij dh vksj (2) 600 m/s Åij dh vksj (3) 100 m/s uhps dh vksj (4) 300 m/s Åij dh vksj
Sol. Velocity of particle after 5 s
v = u – gt
v = 100 – 10 × 5
= 100 – 50 = 50 m/s (upwards)
Conservation of linear momentum gives
Mv = m1v1 + m2v2 ......(i)
Taking upward direction positive, the velocity v1 will be negative.
v1 = – 25 m/s, v = 50 m/s
Also M = 1 kg, m1 = 400 g = 0.4 kg
and m2 = (M – m1) = 1 – 0.4 = 0.6 kg
Thus, Eq. (i) becomes,
1 – 50 = 0.4 × (–25) + 0.6 v2
or 50 = – 10 + 0.65 v2
or 0.6 v2 = 60
60
or v2 = = 100 m/s
0 .6
As v2 is positive, therefore the other part will move upwards with a velocity 100 m/s.
Sol. 5 lsd.M ckn d.k dk osx]
v = u – gt
v = 100 – 10 × 5
= 100 – 50 = 50 eh@ls (Åij dh vksj)
laosx laj{k.k ds fl)kUr ls
Mv = m1v1 + m2v2 ......(i)
Åij dh fn'kk /kukRed ysus ij] osx v1 _.kkRed gksxk
v1 = – 25 eh@ls, v = 50 m/s eh@ls
rFkk m = 1 kg, m1 = 400 g = 0.4 kg
m2 = (m – m1) = 1 – 0.4 = 0.6 kg
leh- (i) ls
1 × 50 = 0.4 × (–25) + 0.6 v2
or 50 = – 10 + 0.65 v2
or 0.6 v2 = 60
60
or v2 = = 100 eh@ls
0 .6
v2 /kukRed gS vr% nwljs Hkkx dk osx 100 eh@ls gksxk rFkk bldh fn'kk Åij dh vksj gksxhA
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-6
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
10. A thin rod having mass m and length 4 is free to rotate about horizontal axis passing through a point
distant from one of its end, as shown in figure. It is released, from the horizontal position as shown :
m æO;eku o 4 yEckbZ dh ,d leku iryh NM+] blds ,d fljs ls nwjh ls fp=kkuqlkj xqtjus okyh {kSfrt v{k ds
lkis{k ?kweus ds fy, Lora=k gSA bls n'kkZ;h xbZ {kSfrt fLFkfr ls NksM+k tkrk gS :
x
What will be acceleration of centre of mass at this instant
bl {k.k ij æO;eku dsUæ dk Roj.k D;k gksxk \
3g 2g 3g 2g
(1*) (2) (3) (4)
7 7 5 5
Sol. Torque equation
cyk?kw.kZ lehdj.k
Hinge = Hinge
m (4 )2 2
mg = m
12
3g
=
7
3g
Tangential acceleration = =
7
3g
Li'kZ js[kh; Roj.k = =
7
Radial acceleration = 2 = 0
f=kT;h; Roj.k = 2 = 0
3g
Ans.
7
11. When a person throws a meter stick it is found that the centre of the stick is moving with speed 10 m/s
and left end of stick with speed 20 m/s. Both points move vertically upwards at that moment. Then
angular speed of the stick is:
tc ,d vkneh us ,d ehVj NM+ dks QSadk rks ;g ns[kk x;k fd mlds dsUnz dh pky 10 m/s gS vkSj ckb± Nksj dh
pky 20 m/s gSA nksuksa fcUnq ml {k.k Åij dh vksj tk jgs Fks] rks NM+ dh dks.kh; pky gksxh :
(1*) 20 rad/ sec (2) 10 rad/sec
(3) 30 rad/sec (4) none of these buesa ls dksbZ ugha
20 10
Sol. Angular velocity (dks.kh; osx) w = = 20 rad/sec.
0 .5
12. A particle moving on a circular path travels first one third part of circumference in 2 sec & next
n
one third part in 1 sec. Average angular velocity of the particle is (in rad/sec). Then value
9
of n.
o`Rrkdkj ekxZ ij xfr djrk gqvk ,d d.k ifjf/k dk izFke ,d frgkbZ Hkkx 2 sec esa rFkk vxyk ,d frgkbZ
n
Hkkx 1 sec esa r; djrk gSA d.k dk vkSlr dks.kh; osx gks (jsfM;u@lsd.M esa) rks n dk eku gksxkA
9
(1*) 4 (2) 0 (3) 3 (4) 2
to ta l d qy
Sol. arg = <> =
to ta l tim e d qy le;
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-7
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
2 / 3 2 / 3 4
= = rad/sec.
2 1 9
13. A mass M, attached to a horizontal spring, executes SHM with a amplitude A 1. When the mass M
passes through its mean position then a smaller mass m is placed over it and both of them move
A1
together with amplitude A2. The ratio of
is :
A2
,d {kSfrt dekuh ls c¡/kk ,d nzO;eku M vk;ke A1 ls ljy vkorZ xfr dj jgk gSA tc nzO;eku M viuh ek/;
voLFkk ls xqtj jgk gS] rc ,d NksVk nzO;eku m blds Åij j[k fn;k tkrk gS vkSj vc nksukas vk;ke A2 ls xfr
A1
djrs gSA
dk vuqikr gS :
A2
1/ 2 1/ 2
M M m M M m
(1) (2) (3) (4*)
M m M M m M
Ans. (4)
Sol. C.O.L.M.
js[kh; laosx laj{k.k ls (C.O.L.M.)
MVmax = (m + M)Vnew , Vmax = A1 1
M Vm ax
Vnew =
(m M )
vc, Vnew = A2.2
M .A 1 K K
= A 2
(m M ) M (m M )
1/ 2
M A1 m M
A2 = A1
(m M ) A 2
M
14. A parachutist drops freely from an aeroplane for 10 s before the parachute opens out. Then he
descends with a net retardation of 2.5 ms–2. If he bails out of the plane at a height of 2495 m and
g = 10 ms–2, his velocity on reaching the ground will be
(1) 2.5 ms–1 (2) 7.5 ms–1 (3*) 5 ms–1 (4) 10 ms–1
,d isjkW'kwV/kkjh] isjkW'kqV [kksyus ls 10 s iwoZ rd ok;q;ku ls LorU=krkiwoZd fxjrk gSA blds ckn og 2.5 ms–2 ds
ifj.kkeh eanu ls uhps vkrk gSA ;fn og 2495 m dh Åpk¡bZ ij isjkW'kwV dks [kksyrk gS rks mldk tehu ij igq¡pus ds
le; osx gksxk g = 10 ms–2 :
(1) 2.5 ms–1 (2) 7.5 ms–1 (3*) 5 ms–1 (4) 10 ms–1
Sol. Suppose the man drops at A, from A to B he is falling freely & than at B parachute opens out & he falls
with a retardation of 2.5 m/s2.
A 2
a 1 = – 1 0 m /s
B
2495 m
2
a 2 = 2 . 5 m /s
C
AB = 1/2 × 10 × 102 = 500 m
BC = AC – AB = 2495 – 500 = 1995 m.
Velocity at B,
VB = gt = 10 × 10 = 100 m/s
Velocity at C,
2 2
VC = VB 2 a y = 100 2 2 .5 ( 1 9 9 5 ) = 25 = 5 m/s.
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-8
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
Sol. ekuk fd O;fDr A ij dwn tkrk gS rFkk xq:Ro ds v/khu LorU=k :i ls fxj jgk gSA tc ;g B ij igq¡p tkrk gS rc
isjk'kwV [kqyrk gS rFkk 2.5 m/s2 dk eUnu mRiUu gksrk gSA.
A 2
a 1 = – 1 0 m /s
B
2495 m
2
a 2 = 2 . 5 m /s
C
AB = 1/2 × 10 × 102 = 500 m
BC = AC – AB = 2495 – 500 = 1995 m.
B ij osx,
VB = gt = 10 × 10 = 100 m/s
C ij osx,
2 2
VC = VB 2 a y = 100 2 2 .5 ( 1 9 9 5 )
= 25 = 5 m/s .
15. A rigid body rotates about a fixed axis with variable angular velocity equal to – t, at the time t, where
, are constants. The angle through which it rotates before its stops ?
,d n`<+ fi.M fLFkj v{k ds lkis{k ?kwe jgk gS vkSj bldk dks.kh; osx le; ds lkFk – t dh rjg ls ifjofrZr gks
jgk gS tgka , fLFkjkad gSaA :dus ls igys ;g fi.M fdruk dks.k ?kwesxk\
2 2 2 2 2
– – ( – )
(1*) (2) (3) (4)
2 2 2 2
16. For the equilibrium condition shown, the cords are strong enough to withstand a maximum tension
100 N. What is the largest value of W (in newton) that can be suspended :
çnf'kZr lkE;koLFkk dh fLFkfr esa Mksjh vf/kdre 100 N dk ruko lgu dj ldrh gSA W dk vf/kdre eku (U;wVu
esa) gksxk tks vkyfEcr fd;k tk ldrk gS :
53°
A
53°
W
(1) 100 N (2*) 35 N (3) 80N (4) 55 N
Sol.
100N
53°
53°
T
w
W = 35 N
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-9
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
17. STATEMENT–1 : For a particle performing SHM, its speed decreases as it goes away from the mean
position.
STATEMENT–2 : In SHM, the acceleration is always opposite to the velocity of the particle.
oDrO;–1 : ljy vkorZ xfr dj jgs ,d d.k dh pky de gksrh gS tc ;g ek/; fLFkfr ls nwj tkrk gSA
oDrO;–2 : ljy vkorZ xfr esa Roj.k lnSo d.k ds osx dh foijhr fn'kk esa gksrk gSA
(1) Statement-1 is True, Statement-2 is True; Statement-2 is a correct explanation for Statement-1
(2) Statement-1 is True, Statement-2 is True; Statement-2 is NOT a correct explanation for Statement-1
(3*) Statement-1 is True, Statement-2 is False
(4) Statement-1 is False, Statement-2 is True.
(1) oDrO;-1 lR; gS, oDrO;-2 lR; gS; oDrO;-2 oDrO; -1 dk lgh Li"Vhdj.k gSA
(2) oDrO;-1 lR; gS, oDrO;-2 lR; gS ; oDrO;-2 oDrO;-1 dk lgh Li"Vhdj.k ugha gSA
(3*) oDrO; -1 lR; gS, oDrO;-2 vlR; gSA
(4) oDrO; -1 vlR; gS , oDrO;-2 lR; gSA
Sol. Acce is opposite to displacement therefore when it moves away from mean its velocity decreases.
Since velocity and acceleration are opposite in direction.
Roj.k foLFkkiu ds foifjr gS vr% tc d.k ek/; fLFkfr ls nwj tkrk gS] rks osx ?kVrk gS] vkSj osx rFkk Roj.k foifjr
fn'kk esa gksrs gSA
18. A metre stick swinging about its one end oscillates with frequency f 0. If the bottom half of the stick was
cut off, then its new oscillation frequency will be :
,d fljs ds lkis{k >wy jgh ,d ehVj NM+ f0 vko`fÙk ls nksyu djrh gSA vxj NM+ dk uhps dk vk/kk Hkkx dkV fn;k
tk, rks nksyuksa dh u;h vko`fÙk D;k gksxh &
(1) f0 (2*) 2 f0 (3) 2f0 (4) 2 2 f0
1 mg
Sol. f0 =
2
where, is distance between point of suspension and centre of mass of the body.
Thus, for the stick of length L and mass m :
L
m .g.
1 2 1 3g
f0 = =
2 2
(m L / 3 ) 2 2L
1 mg
Sol. f0 =
2
m L
.g.
1 2 4 1 3g
f 0’ = = = 2 f0 Ans
2 m (L / 2 )
2
2 L
2 3
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-10
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
19. The total work done on a particle is equal to the change in its kinetic energy.
,d d.k ij fd;k x;k dqy dk;Z bldh xfrt ÅtkZ esa ifjorZu ds cjkcj gksrk gS
(1*) always
(2) only if the forces acting on the body are conservative
(3) only if the forces acting on the body are gravitational
(4) only if the forces acting on the body are elastic.
(1*) lnSo
(2) ;fn d.k ij dsoy laj{kh cy yxrs gaSA
(3) ;fn d.k ij dsoy xq:Rokd"kZ.k cy yxrs gaSA
(4) ;fn d.k ij dsoy çR;kLFk cy yxrs gSaA
Sol. By work energy theorem
W all = K
20. Figure shows a plot of potential energy function U(x) = kx 2 where x = displacement and k = constant.
Identify the correct conservative force function F(x)
fn;k x;k fp=k fLFkfrt ÅtkZ dk Qyu U(x) = kx2 tgk¡ x = foLFkkiu rFkk k = fu;rkad gSA laj{kh cy F(x) dk lgh
Qyu gSA
dU
Sol. F= –
dx
U(x) = kx2
F = –2kx
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-11
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
iw.kZ vad % +4 ;fn flQZ lgh fodYi gh pquk x;k gSA
'kwU; vad % 0 vU; lHkh ifjfLFkfr;ksa esaA
21. Block A of mass m after sliding from an inclined plane, strikes elastically another block B of same mass
at rest. Find the minimum height H so that ball B just completes the circular motion (R = 5m).
m nzO;eku dk ,d CykWd ur ry ls fQlydj] fojkekoLFkk esa fLFkr leku nzO;eku ds nwljs CykWd B ls izR;kLFk
VDdj djrk gSA U;wure Å¡pkbZ H dk eku Kkr djks] ftlls fd CykWd B, o`Ùkh; xfr dks iwjk dj ldsA(R = 5m)
Ans. H = 12.50 m
Sol.
For the just completing the circular motion, minimum velocity at bottom in
vB = 5 g R
Energy conservation b/w point A and B
1
MgH + 0 = 0 + mvB2
2
1
MgH = m (5gR)
2
5R
H=
2
gy
o`Ùkh; xfr dks iwjk djus ds fy;s ry ij U;wure osx
vB = 5gR
22. A force F = (10 + 0.50 x) acts on a particle in the xdirection. Find the work done by this force during a
displacement from x = 0 to x = 2.0 m.
,d d.k ij xfn'kk esa ,d cy F = (10 + 0.50 x) yxrk gSA bl cy ds }kjk x = 0 ls x = 2.0 m rd foLFkkiu esa
fd;k x;k dk;Z Kkr djksA
Ans. 21.00
2
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-12
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
2
d x x
23. If a simple harmonic motion is represented by 2
+ = 0, Find out its time period :
dt 100
2
d x x
;fn fdlh ljy vkorZ xfr dks 2
+ =0 ds }kjk fu:fir fd;k tkrk gS] rks bldk vkorZdky Kkr djksA :
dt 100
Ans. 62.80 sec
2
d x x
Sol. 2
= ........ (i)
dt 100
2
d x
We know ge tkurs gS fd a = 2
= – 2x ........ (ii)
dt
From Eq. (i) and (ii), we have
lehdj.k (i) o (ii) ls]
1
2 =
100
1
=
10
2 1
or ;k = T = 20= 62.8
T 10
24. A particle moves along a straight line. A force acts on the particle which produces a constant power.
It starts with initial velocity 3 m/s and after moving a distance 252 m its velocity is 6 m/s. Find the time
taken (approximately).
,d d.k ljy js[kk ij xfr djrk gSA d.k ij ,d cy yxrk gS] tks fu;r 'kfDr iznku djrk gSA ;g 3 m/s ds
izkjfEHkd osx ls xfr vkjaHk djrk gS rFkk 252 m nwjh pyus ds i'pkr~ bldk osx 6 m/s gks tkrk gSA bl nkSjku
fy;k x;k yxHkx le; Kkr djksA
Ans. 96.00 s
1
Sol. ma .252 = m (36–9)
2
2 252
where a = 2
t
t = 96 s
25. The acceleration of a certain simple harmonic motion is given by a(in m/s 2) = 50 sin 5t. Find the
amplitude (in meter) of simple harmonic motion.
fdlh ljy vkorZ xfr dk Roj.k a (in m/s2) = 50 sin 5t }kjk O;Dr fd;k tkrk gSA bl ljy vkorZ xfr dk vk;ke
(ehVj ek=kd esa) Kkr dfj,A
Ans. 02.00
Sol. 2A = 50
52A = 50
25 × A = 50
A = 2m
26. A uniform block A of mass 25 kg and length 6m is hinged at C and is supported by a small block B as
shown in the Figure. A constant force 'F' of magnitude 400N is applied to block B horizontally. What is
the speed of B after it moves 1.5 m? The mass of block B is 2.5 kg & the coeffcient of friction for all
contact surfaces is 0.3. [ use n (3/2) 0.41 and g = 10 ms2 ]
25 kg nzO;eku vkSj 6m yEckbZ dk ,d leku CykWd A dks C ij dhyfdr (hinged) fd;k x;k gS rFkk bls ,d NksVs
CykWd B }kjk fp=kkuqlkj lgkjk iznku fd;k x;k gSA 400N ifjek.k dk ,d cy 'F' dks CykWd B ij {kSfrt :i ls
vkjksfir fd;k tkrk gSA blds 1.5 m xfr ds i'pkr~ B dh pky D;k gS\ CykWd B dk nzO;eku 2.5 kg gS vkSj lHkh
lEidZ lrgksa ds fy, ?k"kZ.k xq.kkad 0.3 gSA [ fn;k gqvk gS n (3/2) 0.41 vkSj g = 10 ms2 ]
28. A ball collides elastically with a massive wall moving towards it with a velocity of v as shown. The
collision occurs at a height of h above ground level and the velocity of the ball just before collision is 2v
in horizontal direction. Then the distance between the foot of the wall and the point on the ground
2h
where the ball lands (at the instant the ball lands) is n v , where n is :
g
fp=k esa n'kkZ;s vuqlkj ,d xsan ] ,d Hkkjh nhokj tks xsan dh rjQ v osx ls xfr'khy gS ] ls çR;kLFk VDdj djrh gSA
VDdj i`Foh ry esa h špkbZ ij gksrh gS rFkk VDdj ls Bhd iwoZ xsan dk {kSfrt fn'kk esa osx 2v gSA rc nhokj ds
vk/kkj (foot) ,oa /kjkry ij fLFkr ij ml fcUnq ds e/; dh nwjh ¼/kjkry ij xsan ds fxjus ds {k.k ij½ tgk¡ xsan
2h
fxjrh gS] n v gS] tgkW n gksxk &
g
v 2v
Ans. 03.00
Sol. Solve in the reference frame fixed to the wall.
Before collision, velocity of ball = 3v towards it.
After elastic collision of ball = 3v away from it (here we have used the result that a light mass is
reversed by a heavy body at rest).
2h
Time of flight =
g
2h
Distance between wall and ball = 3 v. .
g
2h
fxjrs oDr nhokj vkSj ckWy ds chp nwjh = 3 v. .
g
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-14
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
29. An old record player of 10 cm radius turns at 10 rad/s while mounted on a 30° incline as shown in the
figure. A particle of mass m can be placed any where on the rotating record. If the least possible
coefficient of friction that must exist for no slipping to occur is , find 2 3 .
,d iqjkus fjdkWMZ Iys;j dh f=kT;k 10 cm gS tks fp=kkuqlkj 30° urry ij 10 rad/s ls ?kwe jgh gSA m nzO;eku ds
,d d.k dks ?kweus okys fjdkWMZ ij dgh Hkh j[kk tk ldrk gSA d.k o fjdkWMZ esa fQlyu ugha gksus ds fy, lEHko
U;wure ?k"kZ.k xq.kkad dk eku gS, rc 2 3 Kkr dhft,A
30°
Ans. 06.00
Sol. f mg sin + mr2
µ mg cos mg sin + mr2
r
2
or ;k µ tan +
g cos
mg sin+ mr 2
30. In the system shown blocks A and B have masses 5m and m respectively. The pulley has moment of
inertia and there is no slip between the string and the pulley. If the inner and outer radius of the pulley
g
are r and 2r respectively then the angular acceleration of the pulley is , find N. [Take = 2mr2]
Nr
iznf'kZr fp=k esa CykWd A rFkk B ds nzO;eku Øe'k% 5m rFkk m gSA f?kjuh dk tM+Rok?kw.kZ gS rFkk f?kjuh ,oa jLlh ds
e/; dksbZ fQlyu ugh gSA ;fn f?kjuh dh vkUrfjd rFkk ckgjh f=kT;k,W Øe'k% r rFkk 2r gks rks bldk dks.kh; Roj.k
g
gSA N dk eku Kkr djksA [ = 2mr2 ekusA]
Nr
Ans. 11.00
Sol. For A : 5m(r) = 5 mg sin37º – T1
5mr = 3mg – T1 .............(i)
For B : m2r = T2 – mg .............(ii)
For pulley,
= T1r – T22r
= (3mg – 5mr)r – (mg + mg 2r)2r
= 3mgr – 5mr2 – 2mgr – 4mr2
= mgr – 9mr2
( + 9mr2) = mgr
m gr m gr
= 2
= 2
9m r 1 1m r
g
= .
11 r
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
P01JAMCT4271220C1-15
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
MAIN PATTERN CUMULATIVE
TEST-4 (MCT-4)
TARGET : JEE (MAIN+ADVANCED) 2022
COURSE : VIKAAS| BATCH : 01JA
QUESTIONS, HINTS & SOLUTIONS
PART : II CHEMISTRY
PAPER
SECTION – 1 : (Maximum Marks : 80)
This section contains TWENTY (20) questions.
Each question has FOUR options (1), (2), (3) and (4) ONLY ONE of these four option is correct
Marking scheme :
Full Marks : +4 If ONLY the correct option is chosen.
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks : –1 In all other cases
[kaM 1 : (vf/kdre vad : 80)
bl [kaM esa chl (20) iz'u gSaA
izR;sd iz'u esa pkj fodYi (1), (2), (3) rFkk (4) gSaA bu pkjksa fodYiksa esa ls dsoy ,d fodYi lgh gSaA
vadu ;kstuk :
iw.kZ vad % +4 ;fn flQZ lgh fodYi gh pquk x;k gSA
'kwU; vad % 0 ;fn dksbZ Hkh fodYi ugha pquk x;k gS ¼vFkkZr~ iz'u vuqÙkfjr gS½A
_.k vad % –1 vU; lHkh ifjfLFkfr;ksa esaA
31. The number of moles of Cr2O72 needed to oxidize 0.03 moles of N2H5 by the reaction
H
N2H5 + Cr2O72 N2 + Cr3+ + H2O is :
fuEu vfHkfØ;k }kjk 0.03 eksy N2H5 dks vkWDlhÑr djus ds fy, fdrus eksy Cr2O72 dh vko';drk gksxh \
H
N2H5 + Cr2O72 N2 + Cr3+ + H2O
(1) 0.13 mol (2) 0.27 mol (3) 0.04 mol (4*) 0.02 mol
Sol. 3 N2H5 + 2 Cr2O72– + 13H+ 3N2 + 4Cr3+ + 14H2O
32. Dihydrogen gas is obtained from natural gas by partial oxidation with steam as per following
endothermic reaction.
CH4(g) + H2O (g) CO(g) + 3H2(g)
33. One mol of an ideal gas was taken from A B as shown in given figure. Magnitude of work involved in
25 J
process is (R = ):
3 mol K
,d vkn'kZ xSl dk ,d eksy fn, x;s fp=k esa n'kkZ, vuqlkj A B rd fy;k x;k A izØe es fufgr dk;Z dk
25 J
ifjek.k gksxk (R = ):
3 mol K
V
10L B
A
5L
T
300K 600K
(1) 5 KJ (2) 7.5 KJ
(3*) 2.5 KJ (4) None of these buesa ls dksbZ ugha
Sol. w = – nRT
25
=–1× × 300
3
= – 2500 J
34. Chlorine is prepared in the laboratory by treating manganese dioxide with aqueous hydrochloric acid
according to the reaction
HCl + MnO2 MnCl2 + Cl2 + H2O
Amount of HCl which reacts with 17.4 g manganese dioxide is:
fuEu vfHkfØ;k ds vuqlkj tyh; gkbMªksDyksfjd vEy ds lkFk eSaxuht MkbZvkWDlkbM dks mipkfjr djus ls
iz;ksx'kkyk esa DYkksjhu curh gSA
HCl + MnO2 MnCl2 + Cl2 + H2O
17.4 g eSxuht MkbZvkWDlkbM ds lkFk HCl dh fdruh ek=kk fØ;k djrh gS\
(1) 14.6 g (2) 7.3 g (3*) 29.2 g (4) 10.95 g
Sol. 4HCl + MnO2 2H2O + MnCl2 + Cl2
Moles of MnO2 = 0.2
Moles of HCl required = 0.8
Weight of HCl = 0.8 × 36.5 = 29.2 g
gy% 4HCl + MnO2 2H2O + MnCl2 + Cl2
MnO2 ds eksy = 0.2
HCl ds vko';d eksy = 0.8
HCl dk Hkkj = 0.8 × 36.5 = 29.2 g
1
35. Number of electrons which will be present in the sub-shells having m = 0 & ms = – for n = 4 are:
2
1
n = 4 ds fy, m = 0 rFkk ms = – eku j[kus okys midks'kksa esa mifLFkr bysDVªkWuksa dh la[;k gksxh &
2
(1) 8 (2*) 4 (3) 16 (4) 6
Sol. 4s, 4p, 4d & 4f each subshell will have one orbital with m = 0.
4s, 4p, 4d rFkk 4f izR;sd midks'k m = 0 ds lkFk ,d d{kd j[ksxkA
36. pq r s t u v
2 5
4s 3d
If the spin quantum number of 'p' and 'u' is same. The group of electrons (Given in the same bracket in
options) having at least three quantum numbers same are :
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
C01JAMCT427122020C1-2
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
;fn 'p' rFkk 'u' dh pØ.k Dok.Ve la[;k leku gS rks de ls de rhu Dok.Ve la[;k j[kus okys bysDVªkWuks dk lewg
(fodYiksa esa leku dks"Bd es fn;s x;s) gaS&
(1) (pq) (rst) (tup) (2) (pr) (qs) (stu) (3*) (pq) (rst) (tuv) (4) None of these buesa ls dksbZ ugha
Sol. pq r s t u v
2 5
4s 3d
n 4 3
0 2
m 0 –2, –1, 0, 1, 2
pØ.k spin
37. A gas consists of 3 molecules with velocity 3 m/s, 5 molecules with a velocity 5 m/s and 8 molecules
with velocity 8 m/s. The ratio of rms velocity and average velocity of the molecule is :
,d xSl esa 3 m/s osx ;qDr 3 v.kq] 5 m/s osx ;qDr 5 v.kq rFkk 8 m/s osx ;qDr 8 v.kq mifLFkr gSA v.kq ds rms osx
rFkk vkSlr osx dk vuqikr gS&
(1) 1.75 (2) 1.55 (3) 1.35 (4*) 1.05
33 55 88 n v n2v 2 n3 v 3
Sol. vavg = = 6.125 vavg = 1 1
358 n1 n2 n3
n1v12 n2 v 22 n3 v 32 (3 9) (5 25) (8 64) 664
vrms = = = = 6.44
n1 n2 n3 16 16
v rms 6.44
= = 1.05
v avg 6.125
(1*) work is being done on the gas (2) work is being done by the gas
(3) net work done is zero (4) data insufficient
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
C01JAMCT427122020C1-3
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
fuEu pØh; izØe 1-2-3-4-1 esa
(1*) xSl ij dk;Z fd;k x;k gSA (2) xSl }kjk dk;Z fd;k x;k gSA
(3) fd;k x;k dqy dk;Z 'kwU; gSA (4) vkadM+s vi;kZIr gSA
Sol. (1)
okekorZ pØh; izØe gS] vr% xSl ij dk;Z fd;k x;k gSA
40. At moderate pressure, the compressibility factor for a particular gas is given by:
170P
Z = 1 + 0.34 P – ( P in bar and T in Kelvin)
T
The Boyle's temperature of this gas is :
e/;orhZ nkc ij fdlh fo'ks"k xSl ds fy, laihM~;rk xq.kkad fuEukuqlkj gS&
170P
Z = 1 + 0.34 P – (P ckj es rFkk T dsfYou esa)
T
rks bl xSl dk ckW;y rki gS&
(1) 298 K (2) 170 K (3*) 500 K (4) 340 K
Sol. At Boyle's temperature, z = 1
ckW;y rki ij, z = 1
170
T= = 500 K
0.34
41. Which of the following set of compound follow Lewis octel rules.
fuEu esa ls dkSulk ;kSfxdks dk leqPp; v"Vd fu;e dh ikyuk djrk gSA
(1*) SiF4 , NH3, BF4– (2) ICl3 , BF3, PCl5 (3) BCl3, SF6, SF4 (4) BCl3, BeCl2, PCl5
Sol. SiF4 , NH3, BF4–
42. In which of the following species, each atom carries same number of lone pair of electrons on it?
fuEu esa ls fdl iztkfr esa izR;sd ijek.kq ij ,dkdh bysDVªku ;qXeksa dh la[;k leku gSA
(1) XeO3 (2*) XeF2 (3) CO32– (4) O3
Xe
Sol. (1)
O O
O
(2) all three atoms carry 3 lp each (blesa izR;sd ijek.kq ij 3 ,dkdh ;qXe gS)
O
(3) C O
O
(4)
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
C01JAMCT427122020C1-4
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
43. The s and p characters in the bond formed by the central atom is equal in :
fuEu esa ls fdlesa dsUnzh; ijek.kq }kjk fufeZr cU/k esa s o p vfHky{k.k leku gS &
(1) CH3 (2) CH3 (3*) CH CH (4) CH4
Sol. sp hybridisation has 25% s–character and 75% p– character. sp hybridisation has 33% s – character
3 2
and 67% p–character. While sp–hybridisation has 50% s–character and 50% p–character.
sp3 ladj.k esa 25% s–vfHky{k.k o 75% p–vfHky{k.k gksrs gSA sp2 ladj.k esa 33% s–vfHky{k.k o 67% p– vfHky{k.k
gksrs gSA tcfd sp–ladj.k esa 50% s– vfHky{k.k o 50% p– vfHky{k.k gksrs gSA
44. A nonpolar molecule AX4 have all bond angles equal then which of the following conclusion is
incorrect?
,d v/kzqoh; v.kq AX4 esa lHkh cU/k dks.k leku gS rc fuEu esa ls dkSulk fu"d"kZ lgh ugha gSa\
(1) Molecule may be tetrahedral.
(2) Molecule may be square planar.
(3*) Central atom 'A' must have at least six valence electrons.
(4) Central atom 'A' has either zero lone pair or two lone pairs.
(1) v.kq prq"Qydh; gks ldrk gSA
(2) v.kq oxZ leryh; gks ldrk gSA
(3*) dsfUnz; ijek.kq 'A' ij de ls de N% l;ksth bysDVªkWu gksus pkfg,A
(4) dsfUnz; ijek.kq 'A' ij 'kwU; vFkok nks ,dkdh ;qXe gksus pkfg,A
Sol. For AX4 type molecule
If = 0, it is non-polar. It must be tetrahedral (or) square planar.
Ex : CH4, SiH4 tetrahedral (Zero lone pairs)
XeF4, ICl4 square planar (Two lone pairs)
Sol. AX4 izdkj ds v.kq ds fy,
;fn = 0 ;g v/kzoh; gSA ;g prq"Qydh; vFkok oxZ leryh; gksuk pkfg,A
mnk% : CH4, SiH4 prq"Qydh; ('kwU; ,dkdh ;qXe)
XeF4, ICl4 oxZ leryh; (nks ,dkdh ;qXe)
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
C01JAMCT427122020C1-5
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
47. The correct decreasing order of bond order of Si–O, P–O, S–O and Cl–O in SiO44–, PO43–, SO42– and
ClO4– is :
SiO44–, PO43–, SO42– rFkk ClO4– esa Si–O, P–O, S–O rFkk Cl–O ds cU/k Øe dk ?kVrk gqvk lgh Øe gS &
(1*) ClO4– > SO42– > PO43– > SiO44– (2) PO43– > SiO44– > SO42– > ClO4–
(3) SiO44– > PO43– > SO42– > ClO4– (4) SO42– > SiO44– > PO43– > ClO4–
Sol. This is due to increasing extent of back bonding.
,slk i'p cU/ku ds izlkj esa o`f) ds dkj.k gksrk gSA
O O
O Si O O P O
O O
Bond order = 1.0 Bond order = 1.25
cU/k Øe = 1.0 cU/k Øe = 1.25
O O
O S O O Cl O
O O
Bond order = 1.5 Bond order = 1.75
cU/k Øe = 1.5 cU/k Øe = 1.75
48. Total number of bond pair of electrons and lone pair of electrons in CO2 are-
CO2 esa cU/kh bysDVªkWu ;qXe o ,dkdh bysDVªkWu ;qXe dh dqy la[;k gSa &
(1) 2, 8 (2*) 4, 4 (3) 4, 7 (4) 3, 6
Sol. O C O
Total bond pairs = 4
dqy cU/k ;qXe = 4
Total lone pairs = 8
dqy cU/k ;qXe = 8
50. Among the followig, the species with identical bond order are
fuEu ;qXeksa esa ls fdl ;qXe esa ,dleku vkca/k Øe ¼ bond order½ ik;k tkrk gS&
(1) CO and N2– (2) O2– and CO (3*) O22– and B2 (4) CO and N2+
(1) CO vkSj N2– (2) O2– vkSj CO (3*) O22– vkSj B2 (4) CO vkSj N2+
Sol.
Number of electron Bond order
O22– 18 10 8
BO = =1
2
B2 10 64
BO = =1
2
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
C01JAMCT427122020C1-6
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
Sol.
bysDVªkWu dh la[;k ca/k Øe
O22– 18 10 8
BO = =1
2
B2 10 64
BO = =1
2
51. If the percentage yield of given reaction is 40%, how many total moles of the gases will be produced, if
8 moles of NaNO3 are taken initially
NaNO3(s) Na2O(s) + N2 + O2
;fn fn x;h vfHkfØ;k dh izfr'kr yfC/k 40% gS ;fn izkjEHk esa NaNO3 ds 8 eksy fy, tk, rc eqDr ;k mRiUu xSlksa
ds dqy eksyksa dh la[;k D;k gksxh \
NaNO3(s) Na2O(s) + N2 + O2
Ans: 05.60
52. The ionization energy of He+ is x times that of H. The ionization energy of Li2+ is y times that of H. Find
|y–x|.
He+ dh vk;uu ÅtkZ H dh vk;uu ÅtkZ dh x xquk gSA Li2+ dh vk;uu ÅtkZ H dh vk;uu ÅtkZ dh y xquk gSA
|y–x| Kkr dhft,A
Ans. 05.00
Sol. x = 4, y = 9 I.E. = 13.6 Z2
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
C01JAMCT427122020C1-7
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
veksfu;e gkbMªkstu lYQkbM fuEu lehdj.k ds vuqlkj fo;ksftr gksrk gS &
NH4HS(s) NH3(g) + H2S (g)
lkE; ij 400 K ij dqy nkc 1 atm izkIr gksrk gSA
vfHkfØ;k dk lkE; fu;rkad Kp 1 atm2 gS rc x dk eku gS&
x
Ans. (04.00)
Sol. NH4HS(s) NH3(g) + H2S(g)
0 0
P P
Total pressure = P + P = 1 atm
2P = 1 atm
1
P = atm
2
1 1 1
Kp = (pNH3 )(pH2S ) atm2
2 2 4
Hence x = 4
Sol. NH4HS(s) NH3(g) + H2S(g)
0 0
P P
dqy nkc = P + P = 1 atm
2P = 1 atm
1
P = atm
2
1 1 1
Kp = (pNH3 )(pH2S ) atm2
2 2 4
blfy, x = 4
54. The number of completely filled orbitals in 29Cu which have total number of nodes equal to two is :
29Cu esa dqy nks uksM j[kus okys iw.kZiwfjr d{kdksa dh la[;k gSa&
Ans. 09.00
29Cu 1s
Sol. 2 2s2 2p6 3s2 3p6 3d10 4s1
Total nodes 0 1 1 2 2 2 3
(n–1)
Orbitals 1 3 5
So, 9.
dqy uksM 0 1 1 2 2 2 3
(n–1)
d{kd 1 3 5
blfy,, 9.
3
55. A monoatomic gas (CV = R) is allowed to expand adiabatically and reversibly from initial volume of 8
2
L at 300 K to a volume of V2 at 240 K. The value of V2 is : [(5)1/2 = 2.236]
3
,d ,dyijekf.od xSl (CV = R) dks izkjfEHkd vk;ru 8 L o rki 300 K ls vafre vk;ru V2 o rki 240 K
2
rd :)ks"e rFkk mRØe.kh; :i ls izlkfjr fd;k tkrk gSA V2 dk eku D;k gS\ [(5)1/2 = 2.236]
Ans. 11.18
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
C01JAMCT427122020C1-8
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
Sol. TV–1 = constant fu;rakd
5 2
= –1=
3 3
300 × (8)2/3 = 240 × (V2)2/3 (V2)2/3 = 5
V2 = (5)3/2 = 5 × 2.236 = 11.18 L
56. By assuming that there are 9 periods in the periodic table, maximum how many elements would be
present in 9th period.
;g ekurs gq, fd vkorZ lkj.kh esa 9 vkorZ gS] fdrus vf/kdre rRo 9th vkorZ esa mifLFkr gksxsa \
Ans. 50.00
Sol. In 9th period, the following subshells should be filled.
9th vkorZ esa] fuEu midks'k Hkjs gksus pkfg,A
9s, 6g, 7f, 8d, 9p
(2e–), (18), (14), (10, (6)
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
C01JAMCT427122020C1-9
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
Ans. 02.00
Sol. The number of positive overlap = 4(a,b,c,d)
The number of negative overlap = 4(e,f,g,h)
The number of zero overlap = 2(I,j)
/kukRed vfrO;kiu dh la[;k = 4(a,b,c,d)
_.kkRed vfrO;kiu dh la[;k = 4(e,f,g,h)
'kwU; vfrO;kiu dh la[;k = 2(I,j)
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
C01JAMCT427122020C1-10
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
58. How many lone pair of electrons are present in XeF2.
XeF2 esa fdrus ,dkdh bysDVªkWu ;qXe mifLFkr gSaA
Ans. 09.00
Sol. F—Xe—F
59. In PCl5 90º bond angles are X and maximum number of atoms in same plane are Y. Report your
answer as X – Y.
PCl5 esa 90º ca/k dks.k X gS rFkk leku ry es ijek.kqvks dh vf/kdre la[;k Y gSA viuk mÙkj X – Y ds :i es
nhft,A
Ans. 02.00
Sol. X = 6, Y = 4
60. In how many of the following triatomic molecules/ions, the linear molecules(s)/ion(s) are, where the
hybridization of the central atom does not have contribution from the d-orbital(s) :
BeCl2 , N3– , I3– , XeF2 , CO2 , SO2, ICl2–, SnCl2 and BeF2
fuEu esa ls fdrus f=kijekf.od v.kq@vk;u esa js[kh; v.kq@vk;u gSa tgk¡ dsUnzh; ijek.kq ds ladj.k esa d-d{kd dk
;ksxnku ugh gksrk gSA
BeCl2 , N3– , I3– , XeF2 , CO2 , SO2, ICl2–, SnCl2 and (o) BeF2
Ans. 04.00
Sol. Cl– Be–Cl , , BeF2 , CO2
sp sp
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
C01JAMCT427122020C1-11
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
MAIN PATTERN CUMULATIVE
TEST-3 (MCT-3)
TARGET : JEE (MAIN+ADVANCED) 2022
COURSE : VIKAAS |
BATCH : 01JA, 01,02,03-iJA
PART : I (MATHEMATICS)
SECTION – 1 : (Maximum Marks : 80)
This section contains TWENTY (20) questions.
Each question has FOUR options (1), (2), (3) and (4) ONLY ONE of these four option is correct
Marking scheme :
Full Marks : +4 If ONLY the correct option is chosen.
Zero Marks : 0 If none of the options is chosen (i.e. the question is unanswered).
Negative Marks : –1 In all other cases
[kaM 1 : (vf/kdre vad : 80)
bl [kaM esa chl (20) iz'u gSaA
izR;sd iz'u esa pkj fodYi (1), (2), (3) rFkk (4) gSaA bu pkjksa fodYiksa esa ls dsoy ,d fodYi lgh gSaA
vadu ;kstuk :
iw.kZ vad % +4 ;fn flQZ lgh fodYi gh pquk x;k gSA
'kwU; vad % 0 ;fn dksbZ Hkh fodYi ugha pquk x;k gS ¼vFkkZr~ iz'u vuqÙkfjr gS½A
_.k vad % –1 vU; lHkh ifjfLFkfr;ksa esaA
61. The value of “ ” for which region x + y + 0 and circle x2 + y2 – 6x + 8y + 23 = 0 have exactly one
point common is
“ ” dk eku gksxk ftlds fy, x + y + 0 vkSj o`Ùk x2 + y2 – 6x + 8y + 23 = 0 ds {ks=kQy esa Bhd ,d
mHk;fu"B fcUnq gS -
(1) 3 (2) – 3 (3) 1 (4*) – 1
Sol. This is possible only when line is tangent
;g laHko gksxk dsoy tc js[kk Li'kZ js[kk gSA
perpendicular dist. From center = Radius
dsUnz ls yEcor~ nqjh = f=kT;k
3 4
2
2
1 2
3 or 1
But when 3 then infinite points are common
jUrq tc 3 gks vuUr mHk;fu"B fcUnq gSA
So blfy,, 1
Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.) - 324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
M01JAMCT427122020C1-1
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
62. The area of triangle formed by positive x-axis and normal and tangent to circle x2 + y2 = 4 at (1, 3 ) is
o`Ùk x2 + y2 = 4 ds fcUnq (1, 3 ) ij Li'kZ js[kk vkSj vfHkyEc js[kk rFkk /kukRed x-v{k ls cuk;s x;s f=kHkqt dk
{ks=kQy gS -
1
(1) 3 (2*) 2 3 (3) (4) 4 3
3
Sol. Equation of Tangent is x 3y 4
Equation of Normal is y 3x
1
Hence area of ABC (4)( 3)
2
Hindi Li'kZ js[kk dh lehdj.k x 3y 4
vfHkyEc dh lehdj.k y 3x
1
vr% ABC = (4)( 3)
2
2 3
63. If from origin a chord is drawn to the circle x 2 + y2 – 2x = 0, then the locus of the mid point of the chord
is
;fn ewy fcUnq ls o`Ùk x2 + y2 – 2x = 0 ij ,d thok [khph tkrh gS rc thok ds e/; fcUnq dk fcUnqiFk gS -
(1) x2 + y2 + x + y = 0 (2) x2 + y2 + 2x + y = 0 (3*) x2 + y2 – x = 0 (4) x2 + y2 – 2x + y = 0
Sol. T = S1
hx + ky – (x + h) = h2 + k2 – 2h
(0, 0)
– h = h2 + k2 – 2h
x 2 + y2 – x = 0
64. Line 3x + 4y = 12 meets coordinate axes at A and B. A square ABCD is constructed on the side away
from origin. The center of square is (a,b), then a + b is
js[kk 3x + 4y = 12 funsZ'kkad v{kks dks A rFkk B ij feyrh gSA ,d oxZ ABCD Hkqtk ij] ewy fcUnq ls nwj] nwljh rjQ
cuk;k tkrk gS oxZ dk dsUnz (a, b) gS rc a + b dk eku gS - 303
(1) 5 (2) 6 (3*) 7 (4) 8
Sol.
y C
D(4+5cos, 0+5sin)
B(0,3) (a,b)
5
x
O A(4,0)
4 3
Slope of AD = tan cos
3 5
4
AD dh izo.krk = tan
3
3 4
x 4 5 cos = 4 5 7 sin
5 5
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-2
y=0+ 5sin 4
70 7 43 7
a b
2 2 2 2
7 7
ab 7
2 2
2
66. Let ABC be a triangle with BAC & AB = x such that (AB) (AC) = 1. If x varies then the longest
3
possible length of the angle bisector AD is:
2
ekuk ABC ,d f=kHkqt gS ftlesa BAC rc AB = x, (AB) (AC) = 1 ;fn x pj gS rc dks.k v)Zd AD dh
3
vf/kdre laHkkfor yEckbZ gS -
3
(1) 2 (2) 1 (3*) 1/2 (4)
2
2bc A bx
Sol. AD cos pawfd (as c x )
bc 2 bx
1
ijUrq bx = 1 b
x
x 1
AD 2
1 x 1
x
x
1
AD(max) = since min value of denominator is 2 if x > 0
2
1
AD(max) = pwfd gj dk U;wure eku 2 gS ;fn x > 0
2
67. Triangle ABC is right angled at A. The points P and Q are on the hypotenuse BC such that
BP = PQ = QC. If AP = 3 and AQ = 4 then which of the following is incorrect
f=kHkqt ABC, A ij ledks.k gSA fod.kZ BC ij fLFkr fcUnq P rFkk Q bl izdkj gS fd BP = PQ = QC. ;fn
AP = 3 rFkk AQ = 4 rc fuEu esa ls dkSulk fodYi vlR; gS &
c
9 = c2 + x2 – 2cx cosB; but ijUrq cosB =
3x
c
9 = c2 + x2 – 2cx
3x
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-3
c2 b2
9 = x2 + ....(1) ; ||| ly 16 = x2 + ....(2)
3 3
Equation lehdj.k (1) + (2)
1 2
25 = 2x2 + (b + c2) = 2x2 + 3x2
3
5x2 = 25 x= 5 ; BC = 3 5 = 45
c2
From equation lehdj.k (1) 9 5 c= 12
3
b2
From equation lehdj.k (2) 16 5 b= 33
3
68. Number of proper divisors of 32.53 which are odd, is p then find the value of (p-5)
32.53 ds Loa; ds vykok Hkktdksa dh la[;k p gks rks (p-5) dk eku gS &
(1*) 6 (2) 5 (3) 7 (4) 8
Sol. obvious
69. The sum of all 4 digit numbers formed by using 2, 3, 4 and 7 if repetition of digits is not allowed, belongs
to the interval:
vadks 2, 3, 4 rFkk 7 ls cuus okys lHkh pkj vadks okyh la[;vksa dk ;ksx fdl leqPp; esa gS ¼vadksa dh iqukjko`fÙk u gks½
(1) (106000, 106300) (2) (106300, 106600)
(3*) (106600, 106900) (4) (106900, )
4!
Sol. (2 3 4 7)(100 101 10 2 103 )
4
24
= (16 )(1111) = 106656
4
’70. If n is the number of positive integral solutions of x 1 x2 x3 x4 = 210, then which of the following is incorrect
?
(1) n must be a perfect square (2) n must be a perfect 4th power
(3) n must be a perfect 8th power (4*) n must be divisible by an odd prime number
;fn x1 x2 x3 x4 = 210 ds lHkh /kukRed iw.kk±d gyksa dh la[;k n gks rks fuEu esa ls dkSulk fodYi vlR; gS &
(1) n ,d iw.kZ oxZ gS (2) n ,d prqFkZ ?kkr gS
Sol. x1 x2 x3 x4 = 210 = 2 × 3 × 5 × 7
no. of positive integral solutions
=4×4×4×4
= 44
–5
1
71. The coefficient of x20 in the expression of (1 + x2)40 x 2 2 2 is
x
–5
1
(1 + x2)40 x 2 2 2 ds foLrkj esa x20 dk xq.kkad gS -
x
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-4
(1) 30C10 (2*) 30C25 (3) 1 (4) 0
–10
1
Sol. Expression = (1 + x2)40 x
x
= (1 + x2)30x10
coefficient of x20 in x10(1 + x2)30
= coefficient of x10 in (1 + x2)30
= 30C5
–10
1
Hindi O;atd = (1 + x2)40 x
x
= (1 + x2)30x10
x10(1 + x2)30 esa x20 dk xq.kkad
= 30C5
72. The value of k which satisfies the equation 1! + 2! + 3! + ...... + (x – 1)! + x! = k2 and k is
k dk eku tks lehdj.k 1! + 2! + 3! + ...... + (x – 1)! + x! = k2, tgk¡ k dks larq"V djrk gS &
(1) 0 (2*) 1 (3) 2 (4*) 3
2
73. The values of x between 0 and 2 which satisfy the equation sin x 8 cos x 1 are in A.P. The
common difference of the A.P. is
2
0 ,oa 2 ds e/; fLFkr x ds ,sls eku tks lehdj.k sin x 8 cos x 1 dks larq"B djrs gS] l-Js- esa gks rks bl l-
Js- dk lkoZvUrj gksxk -
3 5
(1) (2*) (3) (4)
8 4 8 8
Sol. From the given equation we have
2sin x | cos x | 1/ 2 sin2x 1/ 2 if cos x > 0
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-5
tks l-Js- cukrs gS ftldk lkoZvUrj / 4 gS
3 1 1 5
(1) – y (2) y1 (3) – y1 (4*) –1 < y < 1
2 2 2 3
1
– cos 2x sin 2 2x
4 1 – 4 cos 2x – cos 2 2x
Sol. y= =
1 3 cos 2 2x
1 – sin 2 2x
4
(1 + y)cos22x + 4cos 2x + 3y – 1 = 0
D0
5
– y1
3
but when y = 1
ijUrq tc y = 1
x= which is not permissible
2
x= tks fd laHko ugh gSA
2
4n k(k 1)
75. Let Sn =
k 1
(–1) 2 k2 . Then Sn can take value(s)
[4 6 12 14 20 22 .....]
2n in
= 2[(4 + 12 + 20 ......) + (6 + 14 + 22 ........)]
n terms n terms
n in n in
n n
= 2 (4 2 (n 1)8) (2 6 (n 1)8) = 2[n(4 + 4n – 4) + n(6 + 4n – 4)]
2 2
= 2(4n2 + (4n + 2)n) = 2(8n2 + 2n) = 4n(4n + 1)
(1) 1056 = 32 × 33 n=8
(2) 1088 = 32 × 34
(3) 1120 = 32 × 35
(4) 1332 = 36 × 37 n=9
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-6
76. If a and b are respectively the first and the last terms of an A.P. as well as of an H.P. both having n
terms. Product of the rth terms of the first series and (n – r + 1)th term of the second series, is
(1*) independent of both n and r and equals ab
(2) independent of both n and r and equals a2b
(3) independent of both n and r and equals ab2
(4) dependent on n and r.
;fn a rFkk b Øe'k% ,d lekUrj Js.kh vkSj ,d gjkRed Js.kh nksuksa ds izFke rFkk vfUre in gS ftuesa inksa dh la[;k
n gSA lekUrj Js.kh ds rosa in rFkk gjkRed Js.kh ds (n – r + 1)osa in dk xq.kuQy gS &
b–a
b = a + (n – 1)d d =
n–1
Tr of A.P. = a + (r – 1)d
(r – 1)(b – a) an – a (r – 1)(b – a) an r (b – a) – b
=a+ = =
n –1 (n – 1) n –1
1 1 1
H.P. . ..........
A A D A (n – 1)D
1 1
where = a and =b
A A (n – 1)D
1 1 1
A + (n – 1) D = + (n – 1) D =
b a b
a–b
D=
ab(n – 1)
1 1 ab(n – 1)
Tn – r + 1 = = = ………(2)
A (n – r)D 1 (n – r)(a – b) an r(b – a) – b
a ab(n – 1)
product = ab
77. If one root of the equation x2 + px + q = 0 is 2 3 where p, q I and roots of the equation rx2 + x + q =
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-7
x2 + px + q = 0 dk ,d ewy 2 3 gS rc vU; ewy = 2 3 gSA
P
sum of roots ewyksa dk ;ksx = = 2 3 2 3
1
P = –4 …(i)
q
product of roots ewyksa dk xq.ku =
1
= 2 3 2 3
q=1 …(ii)
now vc rx2 + x + q = 0
roots are ewy gS tan (268) = tan (180 + 88) = tan 88 and vkSj cot 88
q
Product of roots ewyksa dk xq.ku = tan 88 . cot 88 =
r
q
1=
r
q=r …(iii)
p + q + r = –4 + 1 + 1 = – 2
78. If the equations x 2 + ax + b = 0 and x 2 + bx + a = 0 hav e a common root, then the v alue
of a + b is
;fn x 2 + ax + b = 0 rFkk x 2 + bx + a = 0 dk ,d mHk;fu"B ewy gS] rks a + b dk eku gS&
80. If 2 5 7 6 a 4 5 6 b is divisible by 15 then
(1) a = 6 and b = 5 (2*) a = 4 and b = 0 (3) a = 4 and b = 5 (4) a = 3 and b = 0
;fn 2 5 7 6 a 4 5 6 b, 15 ls foHkkftr gks] rks
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-8
(1) a = 6 rFkk b = 5 (2*) a = 4 rFkk b = 0 (3) a = 4 rFkk b = 5 (4) a = 3 rFkk b = 0
Sol. Sum of the digits vadksa dk ;ksxQy = a + b + 35
it is divisible by 15 if a = 4, b = 0 (from options) to be divisible by 15, it must be divisible by 3 & 5
To be divisible by 5, b = 0 or 5 and to be divisible by 3, a + b = 4 a = 4, b = 0
a + b = 7 a = 7, b = 0 or a = 2, b = 5
which are not available in options
81. If a vertex of a triangle is (1, 1) and the mid points of two sides through this vertex are (–1, 2) & (3, 2).
Then centroid of triangle is 1, . then value of is.
3
;fn f=kHkqt dk ,d 'kh"kZ (1, 1) gS rFkk bl 'kh"kZ ls tkus okyh nks Hkqtkvksa ds e/; fcUnq (–1, 2) vkSj (3, 2) gSA rc
f=kHkqt dk dsUnz 1, gS rc dk eku Kkr dhft,A
3
Ans. 07.00
(1, 1)
(–3, 3) (5, 3)
x y 7
Centroid = i , i = 1, =7
3 3 3
82. If the straight lines joining the origin and the points of intersection of the curve
5x2 + 12xy 6y2 + 4x 2y + 3 = 0 and x + ky 1 = 0 are equally inclined to the x-axis, then find the
value of | k |.
oØ 5x2 + 12xy 6y2 + 4x 2y + 3 = 0 ,oa js[kk x + ky 1 = 0 ds izfrPNsn fcUnqvksa dks ewy fcUnq ls feykus
okyh ljy js[kk,¡ x-v{k ls leku dks.k ij >qdh gqbZ gks] rks | k | dk eku gS&
Ans. 01.00
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-9
Sol. Homogenize 5x2 + 12xy – 6y2 + 4x – 2y + 3 = 0 by x + ky = 1
5x2 + 12xy – 6y2 + 4x(x + ky) – 2y (x + ky) + 3(x + ky)2 = 0
it is equally indined with x-axes hence coeff. xy = 0 12 + 4k – 2 + 6k = 0 k = – 1
Hindi. 5x2 + 12xy – 6y2 + 4x – 2y + 3 = 0 dks x + ky = 1 dh lgk;rk ls le?kkr cukus ij
5x2 + 12xy – 6y2 + 4x(x + ky) – 2y (x + ky) + 3(x + ky)2 = 0
;s js[kk,sa x-v{k ls leku dks.k ij >qdh gS vr% xy dk xq.kkad = 0 12 + 4k – 2 + 6k = 0 k = 1
3 sin A ab 3
83. In ABC, sin(A – B) = , = 2 and = then value of is
5 sinB c
3 sin A ab 3
ABC esa sin(A – B) = , = 2 vkSj = rc dk eku cjkcj gS -
5 sinB c
Ans. 05.00
A B
2 tan
Sol. sin (A – B) = 2 = 3
A B 5
1 tan2
2
10x = 3 + 3x2 3x2 – 10x + 3 = 0
10 8 1
x = = 3,
6 3
A B a b C
tan = a b cot 2
2
1 2b b C
= cot C = 90°
3 2b b 2
b2 + 4b2 = c2
c = 5 b
3b ab
=
5b c
84. There are 15 seats in a row numbered as 1 to 15. If number of ways in which 4 persons can be seated
such that seat number 6 is always occupied and no two persons sit on the adjacent seats is 384, then
determine .
,d iafä esa 1 ls 15 rd vafdr 15 LFkku gSA ;fn 4 O;fDr bl izdkj cSBsa rkfd LFkku Øekad lnSo Hkjk gks vkSj
mlds nk;sa rFkk ck;sa LFkku ij dksbZ O;fDr uk cSBs rks blds dqy rjhds 384 gks rks dk eku gS &
Ans. 08.00
Sol. Case-I : 2 left to 6 and 1 right to 6 two can sit in the ways (1, 3), (1, 4), (2, 4) and one who sit right to 6
can sit in 8 ways
total number of ways = 24
Case-II : 1 left to 6 and 2 right to 6 the person left to 6 in 4 ways
Two right to 6 can be done in following way
x1 + x2 + x3 = 7
x1 1, x2 1, x3 0
Number of integral solution = 21
total ways 21 × 4 = 84 ways
Case-III : All 3 right to 6
x1 + x2 + x3 + x4 = 6(x1 1, x2 1, x3 1, x4 1)
coefficient t3 in (1 – t)–4 6C3 = 20
Case-I+ Case-II + Case-III = 128
Total arrangements = 128 × 4! = 384
Hence = 8
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-10
85. If the tangents at the point P on the circle x2 + y2 + 6x + 6y = 2 meets the straight line 5x – 2y + 6 = 0 at
a point Q on the y axis, then the length of PQ is
;fn o`Ùk x2 + y2 + 6x + 6y = 2 ds fcUnq P ij Li'kZ js[kk,a] ljy js[kk 5x – 2y + 6 = 0 dks y v{k ij fcUnq Q ij
feyrh gS] rc PQ dh yEckbZ gS&
Ans. 05.00
Sol.
At point Q, x = 0
fcUnq Q ij, x = 0
in line 5x – 2y + 6 = 0
js[kk 5x – 2y + 6 = 0
put x = 0 j[kus ij y=3
Q (0,3)
PQ = 02 32 6(0) 6(3) – 2 5
Ans. 06.00
sin x sin 3 x sin 9 x
Sol. + + =0
cos 3 x cos 9 x cos 27 x
2 sin x cos x 2 sin 3 x cos 3 x 2 sin 9 x cos 9x
+ + =0
2 cos 3 x cos x 2 cos 9 x cos 3 x 2 cos 27 x cos 9x
sin(3 x – x ) sin(9 x – 3 x ) sin(27 x – 9 x)
+ + =0
2 cos 3 x cos x 2 cos 9 x cos 3 x 2 cos 27 x cos 9x
(tan 3x – tanx) + (tan 9x – tan3x) +(tan27x – tan9x) = 0
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-11
n
tan27x = tanx 27x = n+ x x= n
26
2 3 4 5 6
x= , , , ,
26 26 26 26 26 26
1 1 1 1
88. If Sn = 1 + + 2 + ...... + n 1 , n N, then least value of n such that 2 – Sn < is
2 2 2 100
1 1 1 1
;fn Sn = 1 + + 2 + ...... + n 1 , n N rc n dk U;wure eku gksxk tks 2 – Sn < dks larq"B djrk gS -
2 2 2 100
Ans. 08.00
1 n
1
2 n 1 n 1
1 1 1
Sol. Sn = ; Sn = 2 – <
1 2 2 100
1
2
n – 17 n 8
1 1
89. If and are roots of equation x2 – 7x + 1 = 0, then the value of 2
+ is
( – 7) ( – 7)2
1 1
;fn vkSj lehdj.k x2 – 7x + 1 = 0 ds ewy gSa] rks 2
+ dk eku gS&
( – 7) ( – 7)2
Ans. 47.00
Sol. 2 – 7 + 1 ( – 7) = – 1
1
– 7 = –
1 1
2
+ = 2 + 2
( – 7) ( – 7)2
= ( + )2 – 2 = 47
® Reg. & Corp. Office : CG Tower, A-46 & 52, IPIA, Near City Mall, Jhalawar Road, Kota (Raj.)-324005
Website : www.resonance.ac.in | E-mail : contact@resonance.ac.in
Toll Free : 1800 258 5555 | CIN: U80302RJ2007PLC024029
M03iJAMCT3271220C1-12