0% found this document useful (0 votes)
161 views209 pages

Combinepdf

This document contains 22 multiple choice questions from a robotics exam on various topics related to robot components, types of movements, applications, and grippers. Some key points covered are: 1) Robots with Cartesian coordinates have three linear movements while articulated robots have multiple rotational movements. 2) Sensors, controllers, and manipulators are basic robot components but memory consoles are not. 3) Industrial robots aim to increase productivity and enhance machine life while decreasing labor requirements. 4) Common robot grippers include mechanical, vacuum, magnetic, and adhesive types used for different material handling tasks.

Uploaded by

SAURAV KOUL
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
161 views209 pages

Combinepdf

This document contains 22 multiple choice questions from a robotics exam on various topics related to robot components, types of movements, applications, and grippers. Some key points covered are: 1) Robots with Cartesian coordinates have three linear movements while articulated robots have multiple rotational movements. 2) Sensors, controllers, and manipulators are basic robot components but memory consoles are not. 3) Industrial robots aim to increase productivity and enhance machine life while decreasing labor requirements. 4) Common robot grippers include mechanical, vacuum, magnetic, and adhesive types used for different material handling tasks.

Uploaded by

SAURAV KOUL
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 209

MESCol

l
egeofEngi
neer
ing,
Pune
Mechani
cal
Engi
neer
ingDepar
tment
Subj
ect
:Robot
ics
MCQsonUni
tNo.01
Q.
1)TheRobotdesi
gnedwi
thCar
tesi
ancoor
dinat
esy
stemshas
A)Thr
eeli
nearmov ements
B)Thr
eerotat
ionalmovements
C)Twoli
nearandonerotati
onalmov
ement
D)Tworotati
onalandoneli
nearmovement
Q.
2)TheRobotdesi
gnedwi
thAr
ti
cul
atedcoor
dinat
esy
stemshas
A)Threeli
nearmovements
B)Threerot
ati
onalmovement
s
C)Fourli
nearmovements
D)Fourrot
ati
onalmovement
s
Q.
3)Whi
choft
hef
oll
owi
ngi
snotbasi
ccomponent
sofr
obot
s
A)Pal
l
et
B)Powersuppl
y
C)Memoryconsol
e
D)Mechani
calUni
t
Q.4)Whichoft
hef
oll
owi
ngt
ermsr
efer
stot
her
otat
ional
mot
ion
ofarobotarm?
A)Swi
vel
B)Axl
e
C)Ret
rogr
ade
D)Rol
l
Q.5)Whichofthebasi
cpart
sofar
obotuni
twoul
dincl
udethe
computerci
rcuit
ryt
hatcoul
dbepr
ogr
ammedt odet
erminewhat
t
her
obotwoul
ddo?
A)Sensor
B)Controll
er
C)Arm
D)Endeffector
Q.
6)Whichofthef
oll
owi
ngi
snott
hemai
nobj
ect
ive(
s)of
I
ndust
ri
alRobot?
A)Tominimisethelabourrequi
rement
B)Toi
ncreaseInvestmentcost
C)Toi
ncreaseproductivi
ty
D)Toenhancethelifeofproducti
onmachi
nes
Q.
7)Whi
choft
hef
oll
owi
ngi
snotbenef
it
sofr
obotar
cwel
ding?
A)Hi
gherpr oduct
ivi
ty
B)I
mpr ovedsafety
C)Processrati
onali
zat
ion
D)Quali
tyreducti
on
Q.
8)Howmanydegr
eesoff
reedom woul
dhav
eini
ndust
ri
alr
obot
?
A)Fi
ve
B)Three
C)Seven
D)six
Q.
9)TheRobotdesi
gnedwi
thPol
arcoor
dinat
esy
stemshas
A)Twoli
nearandonerotati
onalmov
ement
B)Thr
eerotati
onal
mov ements
C)Oneli
nearandtworotor
y
D)Thr
eelinearmovements
Q.10)Whi
char
ethetwoty
pesofwel
dingoper
ati
onsbasi
cal
l
y
perf
ormedbyt
herobot
s?
A)sol
i
dst
atewel
dingandspotwel
ding
B)Arcweldi
ngandspotweldi
ng
C)Ther
mitweldi
ngandspotweldi
ng
D)Arcwel
dingandsol
idst
atewelding
Q.
11)Ar
ti
cul
atedRoboti
scommonl
yusef
or
A)packagi
ng
B)weldi
ng
C)3Dprint
ing
D)pi
ckandpl ace

Q.
12) _
___gr
ipper
sar
eusedt
otr
ansf
erf
err
ousmat
eri
al.
A)Magnet
icgr
ipper
s
B)Mechani
cal
gri
pper
s
C)Adhesi
vegr
ipper
s
D)Vacuum cupgr
ipper
s

Q.13)Thespeedatwhi
chroboti
scapabl
eofmani
pul
ati
ngi
ts
endeff
ectori
sknownasthe__
__.
A)Vel
oci
tyofr
obot
B)Maxi
mum r
each
C)Speedofmov
ement
D)Loadcar
ryi
ngcapaci
ty

Q.
14)_ _
__i
sacol
l
ect
ionofmechani
cal
li
nkageconnect
edby
j
oint
s.
A)Endef
fect
or
B)Gr
ipper
C)Sensor
D)Mani
pul
ator

Q.
15)Gr
ipper
sar
eusedt
o__
___
.
A)Hol
dtheobj
ect
s
B)Senset
heobj
ect
s
C)Mov
etheobj
ect
s
D)Bot
h(A)&(
C)
Q.16)__
__gri
ppersar
eusedt
opi
ckupl
i
ghtwei
ghtmat
eri
als
suchaspaper
,cl
othet
c.
A)Mechani
cal
gri
pper
s
B)Adhesi
vegr
ipper
s
C)Vacuum cupgr
ipper
s
D)Magnet
icgr
ipper
s

Q.
17)From whi
choft
hef
oll
owi
ngi
sty
peofgr
ipperusedi
n
r
oboti
cs.
A)Mechani
cal
gri
pper
B)Adhesi
vegr
ipper
C)Bot
h(A)&(
B)
D)Noneoft
heabov
e

Q.
18)Endef
fect
ori
sadev
icet
hati
sat
tachedt
other
obot-
--
--
-
A)cont
rol
l
er
B)pr
ocessor
C)ar
m
D)shoul
der

Q.19)Whi
choft
hef
oll
owi
ngi
snotagr
ipperusedi
nrobot
ics?
A)Mechani
cal
B)Manual
C)Pneumat
ic
D)Magnet
ic
Q.20)Whi
choft
hef
oll
owi
ngi
snotamechani
cal
gri
pper
?
A)Rackandpi
nion
B)Cam act
uat
ed
C)Hooksandscoops
D)Scr
ewact
uat
ed

Q.
21Gr
ipper
sar
eusedf
or
A)Mat
eri
alHandl
i
ng
B)Obj
ectdet
ect
ion
C)Vi
sion
D)Manuf
act
uri
ng

Q.22)Forgri
ppi
ngalongstainl
essst
eelpl
ateoft
hickness10
mm, whichoneoft
hefol
lowinggri
ppersi
srecommended?

A)Cam act
uat
edmechani
cal
gri
pper
B)Gr
ipperwi
thr
otar
yact
uat
ion
C)Magnet
icgr
ipper
D)Vacuum gr
ipper

Q.23)Sof
tgr
ipperusedi
nrobot
sisonehav
ing
A)poi
ntcont
actbet
weent
hef
ingerandobj
ect
.
B)ar
eacont
actbet
weent
hef
ingerandobj
ect
.
C)l
i
necont
actbet
weent
hef
ingerandobj
ect
.
D)noneoft
heabov
e.
Q.24)Whi
chrobot
shavet
wopar
all
elr
otar
yjoi
ntst
hatpr
ovi
de
compli
ancei
naplane?
A)Del
taRobot
s B)Ar
ti
cul
atedRobot
C)SCARARobot
s D)Car
tesi
anRobot
s
Q.
25)Whichtypesofi
ndustr
ial
robotheavi
l
yusedf or
manuf
actur
inginthef
ood,pharmaceuti
calandel
ectr
oni
c
i
ndust
ri
es?
A)Car
tesi
anRobot
s B)SCARARobot
s
C)Ar
ti
cul
atedRobot D)Del
taRobot
s
Q.
26)Thefol
l
owingt
ypeofr
oboti
smostsui
tabl
eforpi
ckand
pl
aceoper
ati
ons
A)Rect
angul
ar B)cy
li
ndr
ical
C)spher
ical D)j
oint
edar
mty
pe
Q.
27)Ar
obot
’sar
misal
soknownasi
ts
A)endef
fect
or B)act
uat
or
C)mani
pul
ator D)ser
vomechani
sm

Answer
s:
1.(
a) 2.(
b) 3.(
a) 4.(
d) 5.(
b)
6.(
a)
7.(
d) 8.(
d) 9.(
c) 10.(
a) 11.(
a)
12.(
a)
13.(
c) 14.(
d) 15.(
d) 16.(
b) 17.(
c)
18.(
c)
19.(b) 20.(
c) 21.(
a) 22.(
d) 23.(
b) 24.
(c)
25.(
d) 26.
(a) 27.
(c)
Uni
tno.
02

Q.1)Sensor
sar
ethet
ransducer
sthatar
eusedt
o__
__.
A)Measur
ephy
sical
quant
it
y
B)Hol
dtheobj
ect
s
C)Fi
xtheobj
ect
s
D)Noneoft
heabov
e
Q.
2)Sensor
swhichar
ecomeincontactwit
hsomesurf
acet
o
measur
eddesi
redphy
sical
var
iabl
eareknownas_
___
.
A)Non-
cont
actsensor
s
B)Pr
oxi
mit
ysensor
s
C)Cont
actsensor
s
D)Noneoft
heabov
e

Q.
3)Fr
om whi
choft
hef
oll
owi
ngi
sknownascont
actsensor
.
A)Tact
il
esensor
B)Pr
oxi
mit
ysensor
C)Vi
sual
sensor
D)Rangedet
ect
or
Q.4)Fr
om whi
choft
hef
oll
owi
ngi
sknownasnon-
cont
actsensor
.
A)For
cesensor
B)Tact
il
esensor
C)Pr
oxi
mit
ysensor
D)Noneoft
heabov
e

Q.5)____sensor
sar
eusedt
oindi
cat
epr
esenceorabsenceof
hotobj
ects.
A)Vi
sionsensor
s
B)I
nfr
aredsensor
s
C)Phot
o-met
ri
csensor
s
D)Rangedet
ect
ors

Q.6)_ __
_sensor
sar
eusedt
oident
if
yobj
ect
sforpi
ckandpl
ace
purpose.
A)Rangedet
ect
ors
B)I
nfr
aredsensor
s
C)Vi
sionsensor
s
D)Phot
o-met
ri
csensor
s

Q.
7)Sensor
sinwhi
chthereisnoneedtocontactt
hesur
faceto
measur
ethepar
ameteroranyvar
iabl
esareknownasthe____.
A)Tact
il
esensor
s
B)Touchsensor
s
C)Non-
cont
actsensor
s
D)For
cesensor
s

Q.
8)Fr
om whi
choft
hef
oll
owi
ngi
sthef
unct
ionofsensor
s.
A)I
nspect
ionofpar
tst
odet
ermi
nei
tsposi
ti
on
B)Tohol
dthepar
ts
C)Tomov
ethepar
ts
D)Noneoft
heabov
e

Q.9)Li
mitswi
thcesandmi
croswi
tchesar
etheexampl
esof
A)TouchSensor
B)For
ceSensor
C)RangeSensor
D)Posi
ti
onsensor

Q.
10)Thet
ouchsensor
sal
socal
l
edas
A)Bi
nar
ysensor
s
B)Anal
ogsensor
C)Posi
ti
onsensor
D)Rangesensor
Q.
11)Whatisthenamef
ori
nfor
mat
ionsentf
rom r
obotsensor
s
t
orobotcont
roll
ers?
A)Temper
atur
e B)Pr
essur
e
C)Feedback D)Si
gnal
Q.
12)Dr
ivesar
eal
soknownas
A)Act
uat
ors B)Cont
rol
l
er
C)Sensor
s D)Mani
pul
ator
Q.
13)I
nter
nal
stat
esensor
sar
eusedf
ormeasur
ing_
___
___
___of
t
heendeff
ect
or.
A)Posi
ti
on B)Posi
ti
on&Vel
oci
ty
C)Vel
ocit
y&Accel
erat
ion D)Posi
ti
on,
Vel
oci
ty&
Accel
erat
ion

Q.
14)Whi
choft
hef
oll
owi
ngdr
ivesy
stem i
snotusedi
nrobot
ics?
A)Hy
draul
i
c B)Manual
C)Pneumat
ic D)El
ect
ri
cmot
or
Q.15)I
far obotcanal
terit
sownt r
aject
oryi
nresponset
oext
ernal
condit
ions,i
tisconsi
deredtobe
A)I
ntel
l
igent B)Mobi
l
e
C)Nonser
vo D)Openl
oop
Q.
16)Act
uat
orsar
eal
soknownas
A)Sensor
s B)Cont
rol
l
er
C)Dr
ives D)Mani
pul
ator
Q.
17)Whi
choft
hef
oll
owi
ngi
snotamechani
cal
act
uat
ors
A)Ti
mingbel
ts B)Gearpai
rs
C)GearMot
ors D)Har
moni
cDr
ives
Q.18)Theoper ati
onoft
hevisi
onsyst
em consi
stsoft
hree
funct
ions:sensinganddi
git
izi
ngi
magedata,Imagepr
ocessi
ng
andanalysisand..
A)Pr
ocessi
ng B)Appl
i
cat
ion
C)Or
ient
ati
on D)Descr
ipt
ors
Q.
19)Funct
ionsofMachi
neVi
sionsy
stem i
nRobot
icsi
s
a.Sensi
nganddi
git
izi
ngi
magedat
ab.I
magePr
ocessi
ng
andanalysi
s
c.Appl
i
cat
ion d.Al
loft
hese

20)Whi
chofthef
oll
owi
ngi
sincl
udedi
nAppl
i
cat
ionf
unct
ion
Machi
neVi
sionSyst
em?
a.Camera,Fr
ameGr abber
b.Monit
or,Keyboar
d, Datast
orage
c.RobotContr
oll
erInterf
ace
d.Botha&b
21)I
nMachi
nev
isi
onsy
stem Segment
ati
onmeans
a)Iti
sthemet hodt
ogr
oupar
easofani
magehav
ingsi
mil
ar
charact
eri
sti
cs
orf
eat
uresi
ntodi
sti
nctent
it
iesr
epr
esent
ingpar
toft
hei
mage.
b)Iti
sabinaryconv
ersi
ont
echni
quei
nwhi
cheachpi
xel
is
conver
tedint
oa
bi
nar
yval
ueei
therbl
ackorwhi
te.
c)
Iti
sacol
l
ect
ionofsegment
ati
ont
echni
quesi
nwhi
chpi
xel
s
ar
egr
oupedinr
egi
onscal
l
edgr
idel
ement
sbasedonat
tri
but
e
si
mil
ari
ti
es.
d)Invi
sionappli
cat
ionsdi
sti
ngui
shi
ngoneobj
ectf
rom anot
heri
s
accomplishedbymeans
off
eat
uresthatuniquel
ychar
act
eri
zet
heobj
ect
.Af
eat
ure(
area,
di
amet
er,andperimeter
)
i
sasinglepar
amet
ert
hatper
mit
seaseofcompar
isonand
i
dent
if
icati
on.

22)I
nMachi
nev
isi
onsy
stem Thr
eashol
dingmeans
a)Iti
sthemet hodt
ogr
oupar
easofani
magehav
ingsi
mil
ar
charact
eri
sti
cs
orf
eat
uresi
ntodi
sti
nctent
it
iesr
epr
esent
ingpar
toft
hei
mage.
b)Iti
sabinaryconv
ersi
ont
echni
quei
nwhi
cheachpi
xel
is
conver
tedint
oa
bi
nar
yval
ueei
therbl
ackorwhi
te.
c)
Iti
sacol
l
ect
ionofsegment
ati
ont
echni
quesi
nwhi
chpi
xel
s
ar
egr
oupedinr
egi
onscal
l
edgr
idel
ement
sbasedonat
tri
but
e
si
mil
ari
ti
es.
d)Invi
sionappli
cat
ionsdi
sti
ngui
shi
ngoneobj
ectf
rom anot
heri
s
accomplishedbymeans
off
eat
uresthatuniquel
ychar
act
eri
zet
heobj
ect
.Af
eat
ure(
area,
di
amet
er,andperimeter
)
i
sasinglepar
amet
ert
hatper
mit
seaseofcompar
isonand
i
dent
if
icati
on.
23)I
nMachi
nev
isi
onsy
stem Regi
ongr
owi
ngmeans
a)Iti
sthemet hodt
ogr
oupar
easofani
magehav
ingsi
mil
ar
charact
eri
sti
cs
orf
eat
uresi
ntodi
sti
nctent
it
iesr
epr
esent
ingpar
toft
hei
mage.
b)Iti
sabinaryconv
ersi
ont
echni
quei
nwhi
cheachpi
xel
is
conver
tedint
oa
bi
nar
yval
ueei
therbl
ackorwhi
te.
c)
Iti
sacol
l
ect
ionofsegment
ati
ont
echni
quesi
nwhi
chpi
xel
s
ar
egr
oupedinr
egi
onscal
l
edgr
idel
ement
sbasedonat
tri
but
e
si
mil
ari
ti
es.
d)Invisi
onappl i
cati
onsdisti
nguishi
ngoneobjectfrom anot
heris
accomplishedbymeansoff eat
uresthatuni
quelychar
acteri
zethe
object
.A f eatur
e( area,diameter,and peri
meter)is a singl
e
parameterthatpermitseaseofcompar i
sonandidenti
fi
cati
on.

25)I
nMachi
nev
isi
onsy
stem Feat
ureExt
ract
ionmeans
a)Iti
sthemet hodt
ogr
oupar
easofani
magehav
ingsi
mil
ar
charact
eri
sti
cs
orf
eat
uresi
ntodi
sti
nctent
it
iesr
epr
esent
ingpar
toft
hei
mage.
b)Iti
sabinaryconv
ersi
ont
echni
quei
nwhi
cheachpi
xel
is
conver
tedint
oa
bi
nar
yval
ueei
therbl
ackorwhi
te.
c)
Iti
sacol
l
ect
ionofsegment
ati
ont
echni
quesi
nwhi
chpi
xel
s
ar
egr
oupedinr
egi
onscal
l
edgr
idel
ement
sbasedonat
tri
but
e
si
mil
ari
ti
es.
d)Invi
sionappli
cat
ionsdi
sti
ngui
shi
ngoneobj
ectf
rom anot
heri
s
accomplishedbymeans
off
eat
uresthatuniquel
ychar
act
eri
zet
heobj
ect
.Af
eat
ure(
area,
di
amet
er,andperimeter
)
i
sasinglepar
amet
ert
hatper
mit
seaseofcompar
isonand
i
dent
if
icati
on.

26)Whatar
ethecommoni
magi
ngdev
iceusedf
orr
obotv
isi
on
syst
ems?
a)Bl
ackandwhi
teVi
deoconcamer
a b)Moni
tor
c)char
gecoupl
eddev
ices,
sol
i
d-st
atecamer
a d)bot
ha&c

27)Robot
icsSensori
sdev
ice
a)Conv
ertphy
sical
quant
it
iesi
ntopr
opor
ti
onal
elect
ri
cal
si
gnal
b)Conv
ertanal
ogsi
gnal
int
odi
git
alsi
gnal
c)Conver
tst
heoneform ofinf
ormati
oni
ntoanot
herf
orm
wi
thoutchangi
ng theI
nfor
mat i
oncontent
.
d)Bot
ha&c

28)Numberofquant
izat
ionl
evel
iscal
cul
atedas
a)2n-
1 b)2n c)1/
2n d)
2n
-
2

29)Fr
om thefi
gureshownbel
ow,
det
ermi
necy
cledi
stance&
ampli
tudeofweldi
ngoper
ati
on

A)
3&10r
espect
ivel
y b)7&3r
espect
ivel
y
c)10&7r
espect
ivel
y d)2&10r
espect
ivel
y

Answer
s:
1.(
a) 2.(
c) 3.(
a) 4.(
c) 5.(
b)
6.(
c)
7.(c) 8.(
a) 9.(
a) 10.(
a) 11.(
c)
12.(b)
13.(
d) 14.(
b) 15.(
a) 16.(
c) 17.(
c) 18.(
b)
19.(
d) 20.(
c) 21.(
a) 22.(
b) 23.(
c) 24.(
d)
25.(
d) 26.
(d) 27.
(c) 28.
(c) 29.
(c)
Uni
t-
3

1. Mechani
cal
mani
pul
ator
,li
nkconnect
edi
nser
iesbywhi
ch
j
oint
?
(
a)r
evol
uteandpr
ismat
ic
(b)bi
nar
yandt
ernar
y (
c)l
i
nearandr
otar
y(d)quat
ernar
yand
binar
y

2. Homogeneoustransf
ormati
onisusedf
orsol
vi
ngwhi
cht
ype
ofequat
ionofar
obotmanipul
ator
?
(a)Eul
erequat
ion (b)dynami
cequat
ion (
c)ki
nemat
ic
equati
on (d)l
i
nearequat
ion

3. Whi
chi
sabr
anchofmechani
csconcer
nedwi
tht
hest
udyof
f
orcesandt
orquesandt
hei
ref
fectonmot
ion?
(a)Ri
gidBody(
b)Dy
nami
cs (
c)Equat
ionsofMot
ion (
d)
Kinemati
cs

4. ClockwiseorAnticl
ockwiserot
ati
onaboutt
hev
ert
ical
axi
s
tot
heperpendicul
arar
mi sprovi
dedthr
ough
(a)act
uator ( b)mani
pul
ator (
c)endef
fect
or (
d)
servomechani
sm

5. Aconf
igur
ati
onf
orar
oboti
s
(
a)oct
agonal(
b)obl
ong (
c)squar
e (
d)spher
ical

6. Todescri
bethelocat
ionofonecoor
dinat
esy
stem r
elat
ivet
o
anot
her
,whi
chtypeofmatrixi
sused?
(
a)singl
ematr
ix ( b)posi
ti
onmat
ri
x(c)r
otat
ionmat
ri
x (
d)
t
ransfor
mat
ionmat
ri
x

7. Manipul
atormot
ionequat
ionexpr
essedt
hroughwhi
ch
for
mul
ati
on?
(
a)zagrangi
andynamicfor
mulat
ion (
b)denav
it-
har
tenber
g
(
c)l
agrange-eul
er (d)eul
erf
orm

8. Thenumberofgener
ali
zedcoor
dinat
esofaf
ixed-
based
roboti
s
(
a)common (
b)uni
que(
c)di
ff
erent (
d)basi
c

9. Mechani
cal
mani
pul
atormodel
l
edas
(
a)cl
osedl
oop(
b)f
ini
tel
oop (
c)openl
oop (
d)cont
rol
loop

10. howmanydegr
eesoff
reedom woul
dhav
eini
ndust
ri
al
robot?
(
a)f
ive (
b)t
hree (
c)Sev
en(
d)si
x

11. Thechoi
ceofgener
ali
zedcoor
dinat
esf
oranar
ti
cul
ated
robotar
mis
(
a)common (
b)uni
que(
c)di
ff
erent (
d)notuni
que

12. Whichisanabst
ract
ionofasol
i
dinwhi
chdef
ormat
iondoes
notoccur.
(a)Ri
gidBody(
b)Dy
nami
cs (
c)Equat
ionsofMot
ion (
d)
Kinemati
cs

13. Di
spl
acementofabodyi
sa_
___
___
___
_quant
it
y.
(
a)scal
ar(
b)v
ect
or(
c)per
pendi
cul
ar (
d)scal
arandv
ect
or

14. Howmanynumberofaxesr
equi
redi
nrobotf
ormachi
ne
l
oadi
ngappl
i
cati
on?
(
a)3t
o4(
b)4t
o5(
c)2t
o3(
d)1t
o2

15. Thef
oll
owi
ngt
ypeofr
oboti
smostsui
tabl
eforpi
ckand
pl
aceoper
ati
ons
(
a)r
ect
angul
ar(
b)cy
li
ndr
ical(
c)spher
ical (
d)j
oint
edar
mty
pe

16. I
nthefourdegreesoffr
eedom ofmani
pul
ator
,j
oint1el
bows
rot
ati
onaboutwhichaxis?
(a)aboutt
heaxi
sparall
eltotheadj
ointaxi
s (b)Aboutanaxi
s
perpendi
cul
ar(c)aboutli
nearaxi
s(d)AboutZ-axi
stotheZ-
axis

17. Theuni
tofl
i
nearaccel
erat
ioni
s
(
a)kg-
m (
b)m/
s (
c)m/
s2 (
d)r
ad/
s2

18. TheRobotdesi
gnedwi
thPol
arcoor
dinat
esy
stemshas
(
a)Twoli
nearandoner
otati
onalmovement (
b)Thr
eer
otat
ional
movement
s ( c)Onel
inearandtworot
ary (
d)Thr
eel
i
near
movement
s

19. Thefourbasi
cconf i
gurat
ionst
hatcanbecombi
nedt
o
produceavari
etyofroboti
c,
combinat
ionsare:
,
spheri
cal
,
cyli
ndri
cal
,Arti
cul
atedand__
_____
_____
(
a)squar
e (
b)Car
tesi
an (
c)obl
ong (
d)oct
agonal
20. Cl
ockwiseofAnticl
ockwiserot
ati
onaboutt
hev
ert
ical
axi
s
tot
heperpendicul
arar
mi sprovi
dedthr
ough
(a)Shoul
derswi
vel(
b)El
bowext
ensi
on(
c)Ar
m sweep(
d)Wr
ist
bend

21. Howmanynumberofaxesr
equi
redi
nrobotf
ormat
eri
al
tr
ansferappl
i
cat
ion?
(
a)3t
o4(
b)4t
o5(
c)2t
o3(
d)1t
o2

22. Endef
fect
ori
sadev
icet
hati
sat
tachedt
other
obot
(
a)cont
rol
l
er (
b)pr
ocessor (
c)ar
m (
d)shoul
der

23. TheRobotdesi
gnedwi
thAr
ti
cul
atedcoor
dinat
esy
stemshas
(
a)Threeli
nearmovements (
b)Threerotati
onalmovements
(
c)Fourli
nearmovements (d)Fourrotati
onalmovements

24. TheRobotdesi
gnedwi
thCar
tesi
ancoor
dinat
esy
stemshas
(a) Thr
eelinearmovements(b)Thr
eer
otat
ionalmov
ement s
(c)Twol
inearandonerotat
ional
movement (d)Tworot
ati
onal
andoneli
nearmov ement

25. Whichoft
hef
oll
owi
ngt
ermsr
efer
stot
her
otat
ional
mot
ion
ofarobotar
m?
(
a) swi
vel (
b)axl
e (
c)r
etr
ogr
ade (
d)r
oll

Answer
s:

1.(
a) 2.(
c) 3.(
b) 4.(
b) 5.(
d) 6.(
d)
7.(
c) 8.(
b) 9.(
c) 10.(
d) 11.(
d) 12.(
a)

13.(
b) 14.(
b) 15.(
a) 16.(
d) 17.(
c) 18.(
c)

19.(
b) 20.(
c) 21.(
a) 22.(
c) 23.(
b) 24.(
a)

25.(
d)

Uni
tNo.04
1)Thest
udyoft
her
elat
ionbet
weenappl
i
edf
orces/
tor
queand
t
heresul
ti
ngmotionofanindust
ri
almani
pulat
ori
scall
edas-
--
--
-
--
--
--
--
-
a. 
RobotKi
nematicsb.
 I
nver
seKinemat
ics c. Robot
Dy
namic d.
 Noneoftheabove

2)Whenf
rom t
hegi
venj
ointf
orces/
tor
que,
resul
tantmot
ionof
r
obotmani
pul
atori
scal
cul
ated,
thi
sappr
oachi
sref
err
edas.
a. 
For
war
dKinemat
ics b. 
Forwar
dDy
nami
cs c.
 I
nver
se
Dy
namic d. 
Noneoftheabove

3)3)Whenf
rom t
hegi
venj
ointangl
esj
ointt
orque/
for
cesof
r
obotmani
pul
atori
scal
cul
ated,
thi
sappr
oachi
sref
err
edas.
a. 
For
war
dKinemat
ics b. 
Forwar
dDy
nami
cs c.
 I
nver
se
Dy
namic d. 
Noneoftheabove
4)Tof
ormul
atet
hedy
nami
cequat
ionf
orr
obotmani
pul
ator
whichoft
hefol
lowi
ngappr oach
isused
a. 
Newt
on-
EulerMet
hod b.  
Euler
-Langr
angi
anMet
hod
c.
 Botha&b d. Noneofthese

5)Eul
er–Langr angi
anappr oachi
sbasedon
a.Potent
ial&Kineti
cenergyofmani
pul
ator b.
 For
ce&
Moment um ofmanipulator c.  
Bot
ha&b
d.Noneoft hese

6) 
Newt on-Eul
erapproachisbasedon
a.Potenti
al&Kineti
cenergyofmanipul
ator b.
 For
ce&
Moment um ofmanipulator c.  
onl
yfor
ceofmanipul
ator
d.
noneoft hese

7)Newt on-
Eulerequati
onf orr
obotmani pulat
orisgivenbywhi
ch
oft
hef oll
owingequat i
on
Wher eF=Force,M=mass, a-accel
erat
ion, T=Torque,
I-
MomentofI nerti
a
ὰ-Angularaccelerat
ion
a)F=M* a&T=I *ὰ b)F=M*a c)T=I*ὰ

8)For ce(F)f
ortr
ansl
ati
onmot
ionofr
obotmanipul
atori
s
calculat
edas
a)F= { }
d ∂L ∂L
- b)F=
dt ∂ẋ ∂x {}
d ∂L ∂L
-
dt ∂x ∂x
c)F= { }
∂L ∂L
-
∂ẋ ∂x
∂L
d)F=
∂x
9)Forsy
stem showni
nfi
g.rest
ori
ngt
orque(
T)duedef
lect
ionof
angl
eӨisgivenbyequat
ion

2 2 2 2 2 2
a)ml(
dӨ/dt)+mgl
sinӨ b)ml (dӨ/dt )+mgl
cosӨ
2 2 2 2 2 2
c)ml(
dӨ/dt)+mgl
tanӨ d)ml(dӨ/dt)

10)Defi
neTraj
ector
yplanni
ngforrobot
Asequenceofrobotact
ivi
tyi
nparti
cul
aror
derwi
th
consi
deri
ngti
mei scal
ledas
t
raj
ector
yplanni
ng

11)Listdownthet
ypesofTraj
ect
oryplanningforr
obot
manipulat
or.
1.Cart
esi
anSpaceTraj
ect
ory2.JointSpaceTraj
ect
ory

12)Equat ionofcubicpol
ynomialt
raj
ectorywil
lbedef
inedas
2 2 3
a. a0+a1t+a2t b. 
a0+a1t
+a2t+a3t c. 
a0+a1t
2 3 4
d.
 a0+a1t+a2t+a3t+a4t
2 3
13)Forcubi cpol ynomial
traj
ectoryӨ(t)
= a0+a1t
+a2t +a3t
assumingt herobotmani pul
atormov es
From Ө0- Өfwi thi
nti
me0- tsec.&initi
al&finalvelocit
y
becomezer o,valuesofa0,
a1,
a2&a3
Respect i
vely
2 3 2
a. 
0,Ө0,3/t
f( Өf-
Ө0)&-2/t
f( Өf-
Ө0) b. 
0,Ө0,
2/tf(Өf-Ө0)&
3
-3/t
f( Өf-
Ө0)
2 3 2
c. 
1,Ө0,3/t
f( Өf-
Ө0)&-2/t
f( Өf-
Ө0) d.Ө0,0,3/tf(Өf-
Ө0)&
3
-2/t
f( Өf-
Ө0)
14)Thesecondj ointoft heSCARAmani pul
at orisrequiredto
movef rom 30°to150°i n5seconds,
theequat i
onofcubi ct r
ajectoryinterm oftf ordisplacement
,vel
ocity&acceler ationisgivenas
2 3 2
a.20+14.4t+1. 92t; 28.
8t+5.76t ;28.8-11.52trespectively
2 3 2
b.30+14.4t- 1.92t; 28.8t-5.
76t; 28.8-11.52trespectivel
y
2 3 2
c.30+14.4t+1. 92t; 28.8t+5.76t; 28.
8+11. 52trespect i
vely
2 3 2
d.20+14.4t+1. 92t; 28.8t+5.76t; 28.
8-11.52tr espectivel
y

15)Ar otaryar m ofamanipul atoristorotat


ef rom 23°to117°i
n9
seconds.Det erminecoeffi
cients
ofcubicpol ynomialt
oint erpolat
easmoot htrajectory
.
a.
 23,0,
-2.32,0.
386respect i
v el
y b. 
-23,
0,2.32,-
0.386
respectiv
ely
c.
 23,0,
2.32,-0.
386respect i
vely d. 
0,23,-
2.32,0.
386
respectiv
ely

16)Aj ointofPTPr obot,whichrotat


esfrom ani nit
ialangl
eof5°
tofinalangl eof65°i n5seconds
Deter minecoef f
icient
sofcubicpol
ynomial tointerpol
atea
smoot htr ajector
y .
a.
 5,0,4.80,-
1.44respecti
vely b. 5,
0,-4.80,
1.44
respecti
v ely
c.
 -
5, 0,4.
80,-1.
44r espect
ivel
y d. 0,
5,5.80,-
1.75
respecti
v ely

17)Listdownthepot enti
alfiel
dmet hodsf orrobotmanipulator
Unifor
mf i
eld,PerpendicularPotenti
alField,
Att
ract
ive
Potenti
alFi
eld,
Repulsi
vePot enti
alFi
eld,Tangent i
alPotential
Fiel
d,Select
ive
Potenti
alFi
eld,
Random Pot enti
alFi
eld.

18)
Pot
ent
ial
fiel
dmet
hodf
orr
obotmani
pul
atori
sthest
udyof
a.
 repulsive 
potenti
alfi
eld duetothetar
getand
attr
active 
pot enti
alfi
eld 
duet ot heobst
acl
es
ofthewor l
d.
b.
 attr
act i
ve pot
ential
field duetot
hetargetand
repulsi
ve potent i
alfi
eld 
duet otheobstacl
es
ofthewor l
d.
c.
 Forcesi nrobotmani pulator
d.
 Noneoft hese
19)Thesecondj oi
ntoft heSCARAmani pul
atori
sr equiredto
movefrom 30°to150°i n5seconds
Fi
ndt hecubicpolynomialtogenerateasmoot htraject
oryof
j
oint
.Fi
ndt heangleat
whichmaximum v elocit
yoccursforthistr
ajectory.
a.
 36°/sec b.
 34.56°/
sec.c. 
-36°/sec d.  
-34.56°/sec.

20)Anactuat edj
ointofsixaxisroboti
stoberotat
edf r
om 20°to
80°in6seconds.
Det
er minecoeffi
cientsofcubicpol
ynomialt
ointerpolat
ea
smoothtrajector
y.
Fi
ndt heequationfordispl
acement,vel
oci
ty&accelerati
on
ter
m oft.

21)Thef i
rstj
ointof3Rr oboti storot
atef
rom 30°to60°in3
seconds.Determi necoeff
icients
ofcubicpolynomi alt
ointerpolat
easmoot htr
aject
ory.Fi
ndthe
val
uesof
angulardisplacement,angul arv
eloci
ty&angul
aracceler
ati
onfor
giv
ent i
mei ntervalt
.
Solut
ion:

Time
Equat
ion 0 1 2 3
(sec)
Ө(
t)
Ө’
(t
)
Ө’

(t)

22)
Ift
hesimplemot i
ondi
agram f
orcubicpol
ynomi
alofposi
ti
on
i
sasshowninfig.t
hen
Possi
blev
elocit
y&acceler
ati
onplotwil
lbe

a) b) c)

23)Ifthesimpl
emot i
ondi
agram forcubi
cpolynomi
alofposi
ti
on
i
sasshowni nf
ig.t
hen
Possi
blevel
ocit
y&accel
erat
ionplotwil
lbe
a) b) c)

d)Bot
ha&b

24)Wri
teequat
ionforSpr
ing–Massf
orcecont
rol
syst
em
F=Mx’’
+Kx+f
di
stur
b

25)Inwhichoft
hefoll
owi
ngoperat
ionsContinuousPathSy
stem
i
sused
(A)PickandPl
ace (
B)LoadingandUnloading
(C)Conti
nuouswel
ding (
D)Alloftheabove
26)Inwhichoft
hefoll
owi
ngoper
ati
onsPointtoPoi
ntPat
h
System i
sused
(A)PickandPl
ace (B)Spr
ayPainti
ng
(C)Conti
nuouswel
ding (
D)Alloft
heabove

Answer
s:

1.(
c) 2.(
a) 3.(
c) 4.(
c) 5.(
a) 6.(
b)
7.(
a) 8.(
a) 9.(
b) 10.(
d) 11.(
a) 12.(
b)

13.(d) 14.(
b) 15.(
c) 16.(
a) 17.(
b) 18.
(b)

19.(
a) 20.(
c) 21.(
a) 22.(
c) 23.(
d) 24.(
a)

25.(
c) 26.
(a)
 

 
OBJECTIVE QUESTIONS

UNIT-I
1. Based on finger movement, Mechanical gripper can be classified
classified as _______
__________
___ [C]
a)  Pivoting movement
 b)  Linear or translational movement
c)  a & b
d)   None

2. A Spherical coordinate robot should have ________ joints [C]


(a) One revolute and two prismatic
(b) Three prismatic
(c) Two revolute and one prismatic
(d) a, b& c

3. Based on the coordinate system robots can be classified as_________ robots. [D]
(a) Cartesian
(b) Spherical
(c) Cylindrical
(d) a, b& c

4.A manipulator with 6 DOF is ______________


______________ [D]
(a) 1-D Manipulator
(b) 2-D Manipulator
(c) 3-D Manipulator
(d) Spatial Manipulator

5. Technology that is concerned with the use of mechanical, electronic and computer based
systems in the operation and control of production [B]
(a) Mechanization
(b) Automation
(c) Industrialization.
(d) All the above.

6. Use of machines to do the work of animals/people [D]


(a) Mechanization
(b) Automation
(c) Industrialization.
(d) All the above.

7.__________ Robot comes under type of automation.


7.__________ [B]
(a) Programmable
(b) Flexible
(c) Fixed
(d) a & b

DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS


 

 
8. Following is the work transfer mechanism in an automated flow line [B]
(a) Walking beam transfer bar mechanism
(b) Powered roller conveyor system
(c) Chain drive conveyor system
(d) Any of the above

9. Number of buffers in an n –  staged line [C]


(a) n

(b) n-1
(c) n+1
(d) 1/n 6.

ope rate with no part to work on is called…... 


10. Work station continues to operate called…...  ……..
…….. [C]
(a) Blocking of stations
(b) Idling of stations
(c) Starving of stations
(d) Any of the above.

11. The following is the performance measure of line efficiency [D]


(a) Cost per item
(b) Average production rate
(c) Proportion of down time
(d) All the above

12. Following are the constraints in the line balancing problem [A]
(a) Precedence constraints
(b) zoning constraints
(c) Position constraints
(d) All the above

13. Graphical representation of the sequence of work elements as defined by the precedence
constrains. [A]
(a) Flow diagram
(b) Network diagram
(c) Precedence diagram
(d) All the above.

14. Following method improves the balance of the line………………. [D]


(a) Dividing work elements
(b) Methods analysis
(c) Parallel stations
(d) All the above.

15. The attractive feature of SCARA robot [C]


(a) More tolerance
(b) Selective compliance
DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS
 

 
(c) Accuracy
(d) Repeatability

16. The robot configuration, which is used in high reach applications [B]
(a) Polar
(b) Jointed arm
(c) Spherical
(d) a & b.

17. Interface between the last link of the manipulator and the end effectors is called [B]
(a) Critical joint
(b) Gripper
(c) Wrist
(d) Tool flange / too mounting plate.

18. The device which is used to interpret the data stored in a memory of a robot. [B]
(a) Sensor
(b) controller
(c) Sequencer
(d) Synchronizer.

19. Number degrees of freedom exhibited by robot wrist [C]


(a) 1
(b) 2
(c) 3
(d) 4

20. The technical name of a hand attached to the wrist of the robot [B]
(a) gripper
(b) End effector
(c) Joint
(d) Any of the above

UNIT II
1. If the orientation changes without the change of position then the transformation is [B]
(a) Pure translation
(b) Pure rotation
(c) Combined transformation
(d) None

2. __________
____________ __ can be considered as Differential motions of a frame. [D]
(a) Differential translations
(b) Differential rotations
(c) Differential transformations
(d) a, b, & c

DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS


 

 
3. The matrix representing the Euler angles orientation change is ________ [A]
(a) Rot (a,) Rot (o, Rot (o, ψφθ) 
ψφθ) 
(b) Rot (o, θ) 
θ) 
(c) Rot (a,) Rot (a, Rot (o, ψφθ) 
ψφθ)  
(d) None

4. Following is the robotic like device. [D]


(a) Telecherics

(b) Exo-skeleton
(c) Locomotive device
(d) All the above

5. Number of linear co-ordinates in a cylindrical co-ordinate robot. [A]


(a) 2
(b) 3
(c) 1
(d) 0

6. Work volume of a spherical robot [C]


(a) Cylinder
(b) Paraboloid
(c) Sphere
(d) Cube

7. Wrist motions of the robot among the following. [D]


(a) Yaw
(b) Pitch
(c) Roll
(d) All the above

8. Type of control used in Cartesian robot. [A]


(a) Servo
(b) Non-servo
(c) Pneumatic
(d) Hydraulic

9. ……………….type of robot uses feedback from the control system [B]


(a) Non-servo
(b) Servo
(c) a & b
(d) Pneumatic

10. Type of robot used in spray painting applications [D]


(a) Point to point
(b) bang-bang
(c) End point
DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS
 

 
(d) Continuous path

A- I = ……………….
11. If A- is a non-singular square matrix, then A-I [A]
(a) adjA X detA
(b) adjA A + detA
(c) adjA ÷ detA
(d) detA ÷ adjA

12. Using ___________kinematic


___________kinematic equations, one can calculate where the robot is at any
instant If all the robot joint variables are known [A]
(a) Inverse
(b) Forward
(c) a & b
(d) None

13. The DOF is also equal to the number of ______ in the open kinematic chain [B]
(a) Links
(b) Joints
(c) Instantaneous centre
(d) None

14. In fixed angle representation, ordering of rotation is from [C]


(a) Top to bottom
(b) Bottom to top
(c) Left to right
(d) Right to Left

15. Wrist motions of the robot among the following. [D]


(a) Yaw
(b) Pitch
(c) Roll
(d) All the above

16. Dynamic equations of motion of robot arm allows [D]


(a) Analysis
(b) Synthesis
(c) Simulation
(d) All the above.

- I = ……………….
17. If A- is a non-singular square matrix, then A -I [A]
(a) adjA X detA
(b) adj A + detA
(c) adjA ÷ detA
(d) detA ÷ adjA

18. Measure of mass distribution…………………….. [D]


DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS
 

 
(a)Radius of gyration
(b) Acceleration
(c) Moment of inertia
(d) Any of the above.

Newton –  Euler formulation is used to analyze the ……behavior


19. Newton –  ……behavior of the manipulator.
manipulator. [A]
(a) Static
(b) Dynamic

(c) Kinematic
(d) Kinetic.

Lagrange –  Euler Equation
20. In Lagrange –  [B]
L –  Lagrangian
Where L –  KE –  PE,
 Lagrangian function = KE –  qi –  Generalized
 PE, qi – 
 Generalized co-ordinate
(a) Velocity (V i)
(b) Acceleration (a i)
(c) Torque (T i)
(d) None of the above

UNIT-III
1. Jacobian relates the velocities of jjoints
oints to the velocities of ………………
……………….. [B]
(a)Tool point
(b) Manipulator
(c) Joint
(d) None of the above.

2. As the complexity of the system increases, the __________ method becomes relatively
simpler to use. [B]
(a) Newtonian- Euler
(b) Lagrangian-Euler
(c) a & b
(d) None

3. Jacobian relates the velocities of joints to the velocities of ………………. [B]


(a)Tool point
(b) Manipulator
(c) Joint
(d) None of the above.

Pot ential Energy) =…………


4. Lagrangian Function L= f (Kinetic Energy, Potential [B]
(a) KE + PE
KE –  PE
(b) KE –  PE
(c) KE ÷ PE
(d) PE ÷KE

5. As the complexity of the system increases, the __________ method becomes relatively
simpler to use. [B]
DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS
 

 
(a) Newtonian- Euler
(b) Lagrangian-Euler
(c) a & b
(d) None

Newton –  Euler formulation is used to analyze the ……behavior


6. Newton –  ……behavior of the manipulator. [A]
(a) Static
(b) Dynamic

(c) Kinematic
(d) Kinetic.

7.The relation between Lagrangian function (L), total kinetic energy (K) and total potential
energy of a mechanical system is ____________
____________ [A]
 
(a) L=K-P
 b) L=K+P
(c) L=K/P
(d) L=P/K

Lagrange –  Euler Equation
8. In Lagrange –  [B]

L –  Lagrangian
Where L –  KE –  PE,
 Lagrangian function = KE –  qi –  Generalized
 PE, qi – 
 Generalized co-ordinate
(a) Velocity (Vi)
(b) Acceleration (ai)
(c) Torque (Ti)
(d) None of the above

9. Dynamic model of a robotic arm can be studied by [C]


(a) Newtonian Laws
(b)Lagrangian Laws
(c) Eularian Laws
(d) All the above.

10. As the complexity of the system increases, the __


__________
________ metho
method
d becomes relatively
relat ively
simpler to use. [B]
(a) Newtonian- Euler
(b) Lagrangian-Euler
(c) a & b
(d) None

11. Lagrangian Function L= f (Kinetic Energy, Potential Energy) =………… [B]


(a) KE + PE
KE –  PE
(b) KE –  PE
(c) KE ÷ PE
(d) PE ÷KE

Newton –  Euler formulation is used to analyze the ……behavior of the manipulator. [A]


12. Newton – 

DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS


 

 
(a) Static
(b) Dynamic
(c) Kinematic
(d) Kinetic.

13. The LE and NE presented in this chapter provide a symbolic solution to __________
dynamics [B]
(a) Singularities

(b) Manipulator
(c) Links
(d) Joints

14. The LE dynamic formulation is based on a set of generalized coordinates to describe the
 __________ Variables [C]
(a) Constant
(b) System
(c) Fixed
(d) Computer

15. The left hand side of dynamic equations can be interpreted as sum of the ______ [A]

(a) Torques
(b) Velocities
(c) Acceleration
(d) Right hand side

16. The task is specified as initial and final end  –   effectors location this is called
 ___________Motion.
 __________ _Motion. [B]
 
(a) Point to point
(b) P
(c) P+1
(d) Path constraints

17. High stiffness and high accuracy are the characteristics


characte ristics of __________ actuator system
[A]
(a) Hydraulic
(b) Pneumatic
(c) Manipulator
(d) System

17. Robots can be easily programmed to perform ________________Operation


________________Operation [A]
(a) Palletizing
(b) Bomb detection
(c) Drilling

(d) Painting

DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS


 

 
19. Velocity vectors belonging to a class of vectors called ____________ [A]
(a) Free vectors
(b) Constant variables
(c) Unit vectors
(d) All the above

20. A single leading superscript in velocity vector will denote the_________


the____________
___ [D] 
(a) Dynamics

(b) Degree of freedom


(c) Joints
(d) Frame of description 

UNIT-IV
1.__ space trajectories are computationally extensive, and require a faster processing time .
  [B]

(a) Joint
(b) Cartesian
(c) a & b
(d) None

2. An N- joint
 joint manipulator
manipulator will have………….number
have………….number of trajectory segments [C]
(a) 3N
(b) 5N
(c) (a) and (b)
(d) None of the above

3. Mathematical functions used in trajectory planning problems. [A]


(a) Fourier
(b) Laplace
(c) Polynomial
(d) All the above.

4.________ schemes can be used in joint-space trajectory planning [C]


(a) Third- order polynomial
(b) Fifth- order polynomial
(c) a & b
(d) None

5. Third-degree polynomial can be used with __________ number of constraints. [D]


(a) 1
(b) 2

DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS


 

 
(c) 3
(d) 4

6. Trajectory planning satisfies………… [D]


(a) Only path constraints
(b) Only path specifications
(c) Only dynamic constraints
(d) All the above.

7. An N- joint
 joint manipulator
manipulator will have………….number of trajectories. [B]
(a) N
(b) (N+1)
(c)(N-1)
(d) (N+2).

8. Mathematical functions used in trajectory planning problems. [A]


(a) Fourier
(b) Laplace
(c) Polynomial
(d) All the above.

11. Newton’s equation gives the relationship between [B]


(a) Torque, mass, jerk
(b) Force, mass, acceleration
(c) Power, force, velocity
(d). Energy, mass, velocity

12. Differential change in the manipulator can be computed by……………….


by……………….   [C]
(a) Jacobian
(b) Inverse Jacobian
(c) Any of the above
(d) None of the above.

13. Using ___________kinematic


___________kinematic equations, one can calculate where the robot is at any
instant If all the robot joint variables are known [A]
(a) Inverse
(b) Forward
(c) a & b
(d) None

14. The DOF is also equal to the number of ______ in the open kinematic chain [B]
(a) Links
(b) Joints
(c) Instantaneous centre
(d) None

DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS


 

 
15. In fixed angle representation, ordering of rotation is from [C]
(a) Top to Bottom
(b) Bottom to Top
(c) Left to Right
(d) Right to Left

16. Wrist motions of the robot among the following. [D]


(a) Yaw

(b) Pitch
(c) Roll
(d) All the above

18. Type of control used in Cartesian robot. [A]


(a) servo
(b) Non-servo
(c) Pneumatic
(d) Hydraulic

20. An N- joint
 joint manipulator will have………….number
have………….number of trajectories.
trajectories. [B]
(a) N

(b) N+1
(c) N-1
(d) N+2
UNIT V

1. If the orientation changes without the change of position then the transformation is ___ [B]
(a) Pure translation
(b) Pure rotation
(c) Combined transformation
(d) None

2. __________
____________
__ can be considered as Differential motions of a frame. [D]

(a) Differential translations (b) differential rotations


(c) Differential transformations (d) a, b, & c

3. The matrix representing the Euler angles orientation change is __________


___________
_ [A]
(a) Rot (a,) Rot (o, Rot (a, ψ θ φ)
(b) Rot (o, θ) 
θ) 
(c) Rot (a,) Rot (a, Rot (o, ψ φ θ) 
θ)  
(d) None

4. Following is the robotic like device. [A]


(a) Telecherics
(b) Exo-skeleton

(c)
(d) Locomotive
All the abovedevice

DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS


 

 
5. Number of linear co-ordinates in a cylindrical co-ordinate robot. [A]
(a) 2
(b) 3
(c) 1
(d) 0

6. Type of robot used in spray painting applications [D]


(a) Point to point

(b) bang-bang
(c) End point
(d) Continuous path

7. Jacobian relates the velocities of jjoints


oints to the velocities of ………………. [B]
(a)Tool point
(b) Manipulator
(c) Joint
(d) None of the above.

- I = ……………….
8. If A- is a non-singular square matrix, then A -I [A]
(a) adjA X detA

(b) adj A + detA


(c) adjA ÷ detA
(d)detA ÷ adjA

10. Lagrangian Function L= f (Kinetic Energy, Potential Energy) =………… [B]


(a) KE + PE
KE –  PE
(b) KE –  PE
(c) KE ÷ PE
(d) PE ÷KE

11. Measure of mass distribution…………………….. [D]


(a) Radius of gyration

(b) Acceleration
(c) Moment of inertia
(d) Any of the above.

Newton –  Euler formulation is used to analyze the ……behavior of the manipulator. [A]


12. Newton – 
(a) Static
(b) Dynamic
(c) Kinematic
(d) Kinetic.

Lagrange –  Euler Equation
13. In Lagrange –  [B]
L –  Lagrangian
Where L –  KE –  PE,
 Lagrangian function = KE –  qi –  Generalized
 PE, qi – 
 Generalized co-ordinate

(a) Velocity (V i)
(b) Acceleration (a i)
(c) Torque (T i)
DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS
 

 
(d) None of the above

14. Wrist motions of the robot among the following. [D]


(a) Yaw
(b) Pitch
(c) Roll
(d) All the above

15. The attractive feature of SCARA robot [C]


(a) More tolerance
(b) Selective compliance
(c) Accuracy
(d) Repeatability

16. Type of control used in Cartesian robot. [A]


(a) servo
(b) Non-servo
(c) Pneumatic
(d) Hydraulic

 17.__ space trajectories are computationally extensive, and require a faster


fast er processing time.
[B]
(a) Joint
(b) Cartesian
(c) a & b
(d) None

18. Path end points can be specified


spec ified in………….. [C]
(a) Joint co-ordinates
(b) Cartesian co-ordinates
(c) (a) and (b)
(d) None of the above

19. An N- joint
 joint manipulator will have………….number
have………….number of trajectory segments [C]
(a) 3N
(b) 5N
(c) a & b
(d) None of the above

20. Mathematical functions used in trajectory planning problems. [A]


(a) Fourier
(b) Laplace
(c) Polynomial
(d) All the above.

DEPARTMENT OF MECHANICAL ENGINEERING ME733PE-ROBOTICS


Robotics MCQ’s Question Bank
BE Mechanical 2020 batch

Question MCQs Answers


No
1 Robot is derived from Czech word-
A. Rabota
B. Robota B
C. Rebota
D. Ribota
2 A Robot is a-
A. Programmable
B. Multi-functional C
C. Both A&B
D. None of above
3 The main objective(s) of Industrial robot is to-
A. To minimise the labour requirement
B. To increase productivity D
C. To enhance the life of production machines
D. All of above
4 The following is true for NC machine & robot
A. Similar power drive technology is used in both
B. Different feedback systems are used in both A
C. Programming is same for both
D. All of above
5 Match the following-
Robot part Function
a) Manipulator arm 1)For holding a piece or tool
b) Controllers 2)Move manipulator arm and
end effector
c) Drivers 3)No of degrees of freedom of
movement B
d) Gripper 4)Delivers commands to
actuators
A. a-1,b-4,c-2,d-3
B. a-3,b-4,c-2,d-1
C. a-3,b-2,c-4,d-1
D. a-4,b-3,c-2,d-1
6 Drivers are also known as-
A. Actuators
B. Controllers A
C. Sensors
D. Manipulator

Prepared by BEMEC313
7 Clockwise of anti-clockwise rotation about vertical axis to the
perpendicular arm is provided through-
A. Shoulder swivel C
B. Elbow extension
C. Arm sweep
D. Wrist bend
8 Radial movement (in & out) to the manipulator arm is
provided by-
A. Elbow extension A
B. Wrist bend
C. Wrist swivel
D. Wrist yaw
9 Industrial robots are generally designed to carry which of
following co-ordinate system(s)
A. Cartesian co-ordinate system D
B. Polar co-ordinate system
C. Cylindrical co-ordinate system
D. All of above
10 Robot designed with Cartesian co-ordinate system has-
A. Three linear movements
B. Three rotational movements A
C. Two linear and one rotational movement
D. Two rotational and one linear movement
11 Robot designed with polar co-ordinate system has-
A. Three linear movements
B. Three rotational movements D
C. Two linear and one rotational movement
D. Two rotational and one linear movement
12 Robot designed with cylindrical co-ordinate system has-
A. Three linear movements
B. Three rotational movements C
C. Two linear and one rotational movement
D. Two rotational and one linear movement
13 Which of following work is done by general purpose robot
A. Part picking
B. Welding D
C. Spray painting
D. All of above
14 The following drive is used for lighter class of robot
A. Pneumatic
B. Hydraulic A
C. Electric
D. All of above
15 In which of the following operations continuous path system is
used
A. Pick and place C
B. Loading & Unloading
C. Continuous welding
D. All of above
16 Which of the following is not functionality of robots

Prepared by BEMEC313
A. Re-programmability
B. Multi-functionality D
C. Efficient performance
D. Responsibility
17 What is full form of AGV
A. Automated Grouped Vehicles
B. Alternative Guided Vehicles C
C. Automatic Guided Vehicles
D. All Time Guided Vehicles
18 AVG robot is placed in which of following category
A. Mobile robot
B. Saturated robot A
C. Unsaturated robot
D. Natural robot
19 Which of following is a serial robot
A. Commercial robot
B. Industrial robot B
C. In-house robot
D. None of these
20 Which part of robot provides motion to manipulator & end
effector
A. Controller C
B. Sensor
C. Actuator
D. None of above
21 Which of following is not an actuator
A. Digital actuator
B. Pneumatic actuator A
C. Hydraulic & Electric actuator
D. None of these
22 Physical structure of robot which moves around is called-
A. Manipulator
B. Joints A
C. Links
D. End effector
23 The kinematic part of robot or manipulator is called-
A. Links
B. Joints B
C. End effector
D. Sensors
24 SCARA robot is very suitable in which kind of operations
A. Single operations
B. Assembly operations B
C. Rotary operations
D. Translator operations
25 ----- is a general purpose, programmable machine possessing
certain human like characteristics.
A. Robot A
B. Manipulator
C. Gripper

Prepared by BEMEC313
D. None of above
26 ---- is area of engineering & science which understand the
different principles, structure & programming of robot
A. Mechatronics B
B. Robotics
C. Aeronautics
D. None of above
27 From which of following is benefit of robot
A. Variety of task
B. Computer control D
C. Repetitive task
D. All of above
28 From which of following is application of robot
A. Welding
B. Machine loading & unloading C
C. Both A & B
D. None of above
29 ----- is also known as work volume of robot
A. Work envelope
B. Speed of movement A
C. Load carrying capacity
D. Precision of movement
30 The speed at which robot is capable of manipulating its end
effector is known as ------
A. Velocity of robot C
B. Maximum reach
C. Speed of movement
D. Load carrying capacity
31 The capacity of robot to carry load is known as ---
A. Load carrying capacity
B. Work envelope A
C. Maximum reach
D. None of above
32 ---- is a collection of mechanical linkage connected by joints.
A. End effector
B. Gripper D
C. Sensor
D. Manipulator
33 Grippers are used to ---
A. Hold the objects
B. Sense the objects D
C. Move the objects
D. Both A & C
34 Sensors are the transducers that are used to -----
A. Measure physical quantity
B. Hold the objects A
C. Fix the objects
D. None of above
35 From which of the following is the type of robot
A. Point to point robot

Prepared by BEMEC313
B. Continue path robot
C. Jointed arm robot D
D. All of above
36 From which of following is the geometrical configuration of
robot
A. Cylindrical configuration C
B. Polar configuration
C. Both A & B
D. None of above
37 ---- grippers are used to pick up light weight materials such as
paper, cloth, etc
A. Mechanical gripper B
B. Adhesive gripper
C. Vacuum gripper
D. Magnetic gripper
38 ---- grippers are used to transfer ferrous materials
A. Magnetic gripper
B. Adhesive gripper A
C. Mechanical gripper
D. Vacuum cup gripper
39 Sensors which come in contact with some surface to measure
desired physical variable are known as ----
A. Non contact sensor C
B. Proximity sensor
C. Contact sensor
D. None of above
40 Which of following is contact sensor
A. Tactile sensor
B. Proximity sensor A
C. Visual sensor
D. Range detector
41 Which of following is non contact sensor
A. Force sensor
B. Tactile sensor C
C. Proximity sensor
D. None of above
42 From which of following is robot programming language
A. VAL
B. AML D
C. ABD
D. Both A & B
43 What is full form of robot programming language VAL
A. Versatile Algorithm Language
B. Versatile Alternative Language A
C. Vertex Algorithmic Language
D. Versatile Algebra Language
44 ---- sensors are used to indicate presence or absence of hot
objects
A. Vision sensors B
B. Infrared sensors

Prepared by BEMEC313
C. Photo-metric sensors
D. Range detectors
45 ---- sensors are used to identify objects for pick and place
purpose
A. Range detectors C
B. Infrared sensors
C. Vision sensors
D. Photo metric sensors
46 Up & down motion along an axis known as ---- robotics
A. Pitch
B. Roll A
C. Yaw
D. None of above
47 Circular motion along an axis is known as ---- in robotics
A. Pitch
B. Roll B
C. Yaw
D. None of above
48 The operating range or reach capability of robot is known as ---
in robotics
A. Roll C
B. Pitch
C. Yaw
D. Speed of movement
49 From which of following is basic robotic motion
A. Vertical traverse
B. Radial traverse D
C. Rotational traverse
D. All of above
50 From which of following is selection criteria of robots
A. Payload
B. Work volume D
C. Speed
D. All of above
51 From which of following is type of gripper used in robotics
A. Mechanical gripper
B. Adhesive gripper C
C. Both A & B
D. None of above
52 From which of following is type of sensor used in robots
A. Force sensor
B. Proximity sensor D
C. None of above
D. Both A & B
53 From which of following is robot programming method
A. Manual method
B. Lead through method D
C. Walk through method
D. All of above
54 From which of following is the type of joint in robotics

Prepared by BEMEC313
A. Prismatic joints
B. Round joint D
C. Revolute joint
D. Both A & C
55 Which type of motion is possible in jointed arm robots
A. 3 linear & 1 rotational motion
B. 3 rotational motion B
C. 3 linear motion
D. 2 linear & 1 rotational motion
56 Sensors in which there is no need to contact the surface to
measure the parameters or any variables known as-
A. Tactile sensors C
B. Touch sensors
C. Non contact sensors
D. Force sensor
57 From the following which type of work envelope is made in
Cartesian co-ordinate robot
A. Square work envelope D
B. Spherical work envelope
C. Cylindrical work envelope
D. Rectangular work envelope
58 From the following which type of work envelope is made in
jointed arm robot
A. Rectangular work envelope C
B. Cylindrical work envelope
C. Spherical or hemispherical work envelope
D. None of above
59 An industrial robot is not a general purpose programmable
machine possessing certain human like characteristic. B
A. True
B. False
60 Robot is a combined creation of mechanical , electrical
,electronic & computer engineering A
A. True
B. False
61 Which kind of motion we get with help of revolute joint
A. Linear
B. Rotary B
C. Both A & B
D. None of above
62 Which kind of motion we get with help of prismatic joint
A. Linear
B. Rotary A
C. Both A & B
D. None of above
63 From which of following is function of sensors
A. Inspection of parts to determine its position
B. To hold parts A
C. To move parts
D. None of above

Prepared by BEMEC313
64 Sensor is a physical device used to measure dimensions of parts
A. True B
B. False
65 Internal state sensors are used for measuring --- of end effector
A. Position
B. Position & Velocity D
C. Velocity & Acceleration
D. Position , Velocity & Acceleration
66 ---- sensors determines the relationship of the robot and its
environment & objects handled by it
A. Internal state sensors C
B. External state sensors
C. Both A & B
D. None of above
67 ---- is not a programming language for computer controlled
robot
A. VAL D
B. RAIL
C. HELP
D. AMU
68 Which of the name for information sent from robot sensors to
robot controllers
A. Temperature D
B. Pressure
C. Signal
D. Feedback
69 ---- terms refers to the rotational motion of a robot arm
A. Swivel
B. Axle D
C. Retrograde
D. Roll
70 For a robot unit to be considered a functional industrial robot
typically , how many degrees of freedom would robot have
A. Three D
B. Four
C. Eight
D. Six
71 Which of the basic parts of a robot unit would include
computer circuitry that could be programmed to determine
what robot would do A
A. Controller
B. Sensor
C. Arm
D. End effector
72 --- term refers to the use of compressed gases to drive the robot
device
A. Hydraulic D
B. Piezoelectric
C. Photosensitive
D. Pneumatic

Prepared by BEMEC313
73 ---- term is NOT one of five basic parts of robot
A. End effector
B. Controller D
C. Drive
D. Peripheral tools
74 The no of moveable joints in the base, arm & end effector of
robot determines
A. Payload capacity D
B. Operational limits
C. Flexibility
D. Degrees of freedom
75 ---- places would be LEAST likely to include operational robots
A. Ware house
B. Factory C
C. Private homes
D. Hospitals
76 Which of following statements concerning implementation of
robotic systems is correct
A. Implementation of robots can save existing jobs D
B. Implementation of robots can create new jobs
C. Robotics could prevent a business from closing
D. All of mentioned
77 ---- represents muscles of a robot
A. Power supply
B. Micro controllers D
C. Robotic arm
D. Actuators
78 ---- is not one of the advantages associated with a robot
implementation program
A. Robots work continuously around the clock D
B. Quality of manufactured goods can be improved
C. Reduced company cost for worker fringe benefits
D. Low costs for hardware and software
79 ----- law is Asimov’s first and most important law of robotics
A. Robot actions must never result in damage to the robot
B. Robot must follow directions given by humans C
C. Robot must never take actions harmful to humans
D. Robot must make business a greater profit
80 If a robot can alter its own trajectory in response to external
conditions , it is considered to be
A. Intelligent A
B. Mobile
C. Open loop
D. Non servo
81 One of leading American’s robotics centers is located at
A. CMU
B. MIT A
C. RAND
D. SRI
82 ---- is correct for proximity sensors

Prepared by BEMEC313
A. Inductive type
B. Capacitive type D
C. Ultrasonic type
D. All of mentioned
83 ----- person used the name “ robot ” first time in print
A. Josef Capek
B. Isaac Asimov C
C. None of mentioned
D. Karel Capek
84 Technology that is concerned with use of mechanical ,
electronic & computer based systems in the operation & control
of production.
A. Mechanization B
B. Automation
C. Industrialization
D. All of above
85 Highly integrated transfer lines comes under --- type of
automation
A. Programmable
B. Flexible C
C. Fixed
D. A& B
86 Type of control used in bang bang robot
A. Servo
B. Non servo B
C. None of above
D. All of above
87 SCARA robot is used in ---- applications
A. Quality control
B. Assembly B
C. Defence
D. All of above
88 Following is a robot like device
A. Telecherics
B. Exo-skeleton D
C. Locomotive device
D. All of above
89 No of linear co-ordinate in a cylindrical co-ordinate robot
A. 2
B. 3 A
C. 1
D. 0
90 Work volume of spherical robot
A. Cylinder
B. Paraboloid C
C. Sphere
D. Cube
91 Wrist motions of the robot among the following
A. Yaw D
B. Pitch

Prepared by BEMEC313
C. Roll
D. All of above
92 The attractive feature of SCARA robot
A. More tolerance
B. Selective compliance C
C. Accuracy
D. Repeatability
93 Type of control used in Cartesian robot
A. Servo
B. Non servo A
C. Pneumatic
D. Hydraulic
94 ---- type of robot uses feedback from control system
A. Non servo
B. Servo B
C. A& B
D. Pneumatic
95 Type of robot used in spray painting applications
A. Point to point
B. End point D
C. Bang bang
D. Continuous path
96 Preferred robot system for load carrying applications
A. Hydraulic
B. Pneumatic A
C. Electrical
D. Mechanical
97 Interface between last link of manipulator and end effector is
called
A. Critical joint C
B. Wrist
C. Gripper
D. Tool flange
98 Preferred robot system for high repeatability applications
A. Cylindrical
B. Cartesian B
C. Spherical
D. Any of above
99 Type of robot used in transferring objects
A. Point to point
B. Bang bang A
C. End point
D. Continuous path
100 Type of robot like device used in undersea applications
A. Telecherics
B. Exoskeleton A
C. Locomotive
D. Prosthesis
101 The shape of work volume of cylindrical robot is ---
A. Paraboloid

Prepared by BEMEC313
B. Spherical
C. Cylinder C
D. Cube
102 No of polar co-ordinates in a jointed arm configuration
A. 2
B. 3 A
C. 1
D. 0
103 Type of robot used in grinding applications
A. Point to point
B. Bang bang C
C. End point
D. Continuous path
104 The technical name of hand attached to wrist of robot
A. Gripper
B. End effector B
C. Joint
D. Any of above
105 Arm & the body joints of manipulator are used to ------
end effector
A. Orient D
B. Position
C. Shake
D. Any of above
106 The robot configuration, which is used in high reach
applications
A. Polar B
B. Jointed arm
C. Spherical
D. A & B
107 High repeatability applications of Cartesian configuration is
due to ----
A. Linear joints B
B. High stiffness of links
C. Its rigid structure
D. All of above
108 Piston movement inside engine cylinder is ----- type of joint
A. Prismatic
B. Rotational A
C. Twisting
D. Revolving
109 Interface between last link of manipulator & end effector is
called -----
A. Critical joint B
B. Gripper
C. Wrist
D. Tool flange/Tool mounting plate
110 The intelligence which is required to control manipulator will
be provided by ----
A. Sensor

Prepared by BEMEC313
B. Controller
C. Sequencer B
D. synchronizer
111 The device which is used to interpret the data stored in a
memory of robot
A. Sensor B
B. Controller
C. Sequencer
D. Synchronizer
112 The device which is used to hold or grasp the object
A. End effector
B. Gripper C
C. A or B
D. None of above
113 Only one surface required to hold or grasp the object
A. Vacuum gripper
B. Magnetic gripper A
C. Adhesive gripper
D. Any of above
114 Magnetic grippers are used only for ---- materials
A. Stainless steel
B. Non-ferrous C
C. Ferrous
D. Plastic
115 Ability of wrist socket to yield elastically, when subjected to a
force is called ----
A. Elasticity D
B. Stiffness
C. Strength
D. Compliance
116 Remote Centred Compliance (RCC) devices are used in ----
applications
A. Assembly A
B. Defence
C. Undersea
D. Mining
117 No of degrees of freedom exhibited by robot wrist
A. 1
B. 2 C
C. 3
D. 4
118 Type of robot used in spot welding applications
A. Point to point
B. Sequential D
C. End point
D. Continuous path
119 Type of drive used for larger robots
A. Electrical D
B. Mechanical
C. Pneumatic

Prepared by BEMEC313
D. Hydraulic
120 Type of power used in robot for precision work applications
A. Electrical
B. Mechanical A
C. Pneumatic
D. Hydraulic
121 Smallest increment of the movement into which the robot can
divide its work volume
A. Control resolution B
B. Spatial resolution
C. Repeatability
D. Accuracy
122 Mechanical inaccuracy among the following
A. Gear backlash
B. Leakage of hydraulic fluid D
C. Stretching of pulley cords
D. All of above
123 Relation between spatial resolution, control resolution &
mechanical inaccuracies is-
A. Spatial resolution =control resolution + mechanical
inaccuracies
B. Spatial resolution =control resolution - mechanical A
inaccuracies
C. Spatial resolution =control resolution x mechanical
inaccuracies
D. Spatial resolution =control resolution –r x mechanical
inaccuracies
124 The term robotics was coined by .
A. Karel Capek
B. Isaac Asimov B
C. Rossum
D. Miller
125 The Czech word “robota” meaning -----
A. Forced labour
B. Slaves A
C. Mechanical manipulator
D. Humanoid
126 The robot can relieve human of the need to perform what have
been called “4D jobs” -----,-----,-----,------
A. Dirty, dangerous, different, difficult C
B. Dull, duty, deep, different
C. Dull, dirty, dangerous, dangerous, difficult
D. Dull, difficult, different, deep
127 The basic configurations of robots are -----
A. Rectangular
B. Spherical D
C. Rectangular, spherical , Cartesian, cylindrical
configurations
D. Cartesian, cylindrical configurations, polar
configurations, articulated configurations

Prepared by BEMEC313
128 The end point of the arm is capable of operating in a cuboid
space is called ----
A. Workspace A
B. Machine cell
C. Configuration
D. None
129 The workspace of Cartesian configuration is ----
A. Cylindrical
B. Gantry B
C. Polar
D. Articulated
130 The term robot was derived from_____ languages
A. English
B. Czech B
C. Greek
D. Latin
131 The word robot was introduced in Czech play wright______ in
his play R.U.R
A. Karel Capek A
B. Rossum
C. Isaac Asimov
D. Miller
132 The term “robotics” term “robotics” was comed in his science
fiction story “Run around”
A. Karel Capek C
B. Rossem
C. Isaac Asimov
D. Miller
133 The robot were introduced to industry by_______
A. Karel Capek
B. Rossem D
C. Isaac Asimov
D. Miller
134 The law of robotics established by_____
A. Karel Capek
B. Rossem C
C. Isaac Asimov
D. Miller
135 The first robotics had been introduced by in the____ industry
A. Automotive
B. Process A
C. Mining
D. Space
136 The two perpendicular revolute joint used in configuration
A. Polar
B. Cylindrical B
C. Articulated
D. Gantry
137 The arrangement of joints is known as RRP configuration is ----
---

Prepared by BEMEC313
A. Gantry
B. Polar B
C. Articulated
D. Cylindrical
138 The selective complaints on assembly robots arm are called as --
----
A. SCARA A
B. PUMA
C. Stand ford
D. None
139 The wrist motion in a plane perpendicular to the end of the arm
is called -----
A. Roll A
B. Pitch
C. Yaw
D. None
140 The wrist motion in a vertical plane passing through the arm is
called ----
A. Pitch A
B. Yaw
C. Roll
D. None
141 The wrist motion in a horizontal plane passing through the arm
is called -----
A. Pitch C
B. Roll
C. Yaw
D. None
142 The first generation robot capable ------
A. Programmable
B. Environment understand capability A
C. Intelligency
D. None
143 The robot embedded with the artificial intelligence classified
into -----
A. First generation C
B. Second generation
C. Third generation
D. Fifth generation
144 An artificial biological robot might provide the impetus for -----
A. Third generation
B. Fourth generation D
C. Fifth generation
D. 6th& higher generation
145 The excellent mechanical flexibility can obtain from ------
manipulator structure
A. Articulated robot C
B. Cylindrical robot
C. SCARA robot
D. Pick & place robot

Prepared by BEMEC313
146 Spine robot used for ------- application
A. Painting
B. Assembly A
C. De-burring
D. Welding
147 Robot teaching methods are -----
A. Lead through teaching
B. Teaching through teach pendant D
C. Programming language
D. All the above
148 Highly load carrying capacity can be obtained from ------
A. Special robot
B. Architectural robot C
C. Cylindrical robot
D. SCARA robot
149 Highly rigid along vertical direction capability can be obtained
from -------
A. Special robot D
B. Architectural robot
C. Cylindrical robot
D. SCARA robot
150 SCARA robot used for ------ application.
A. Painting
B. Assembly B
C. De-burring
D. Welding
151 In a 3D space a co-ordinate frame is set of 3 orthogonal right
handed axis X,Y,Z is Called ------
A. Principal axis A
B. Common axis
C. Normal axis
D. None
152 The position of links in a space and their motion are described
by ------geometry
A. Spatial B
B. Manipulator
C. Space
D. None
153 Angular grippers has angular stroke ---- degrees of open and
gripping size
A. 270 degree B
B. 180 degree
C. 90 degree
D. 60 degree
154 In grippers equipped with to control gripping force ---- sensor
is used
A. Tactile A
B. Load cell
C. LVDT
D. RFID

Prepared by BEMEC313
155 The changing description of point in a space from one frame to
another is refer to ------
A. Euler angles A
B. Rotation of vectors
C. Mapping
D. None
156 The representation of rotation in a 3D space has ----- matrix.
A. 3*1
B. 3*3 B
C. 1*3
D. 1
157 The representation of translation in a 3D space has matrix.
A. 3*1
B. 3*3 A
C. 1*3
D. None
158 The 4*4 transformation matrix in robot is called -------
A. Homogenous transformation matrix
B. Homogeneous co-ordinates matrix A
C. Scale factor matrix
D. Perspective transformation matrix
159 Scale factor in robot ----
A. Two
B. Three C
C. One
D. +/-
160 The scale factor has non-zero positive values and is called ------
A. Global scaling parameter
B. Enlarging factor A
C. Reducing factor
D. None
161 The robotics robotics scale factor value ‘σ’ is ------
A. σ>1
B. σ<1 C
C. σ=1
D. σ>-1
162 The rotation matrix has ------ elements.
A. 3
B. 9 B
C. 8
D. 1
163 If in the rotation matrix has only 3 of the g elements are
elements are independent rotation matrix has -----
A. Redundancy A
B. Singularity
C. Dextirity
D. None
164 The PUMA has ---- revolute joint
A.2 C
B.4

Prepared by BEMEC313
C. 6
D. 8
165 How many numbers of euler angles sets can be obtained?
A.12
B.36 C
C.24
D.3
166 The spherical joint variables for 3 degrees of freedom.
A.Ѳ1
B.Ѳ2 D
C.Ѳ3
D. Ѳ1 Ѳ2 Ѳ3
167 For pure translation linear link velocity can be taking the time
derivative of the homogeneous transfer formation matrix
became rotation matrix is -------
A. Varies B
B. Constant
C. Zero
D. One
168 If robot link is link is prismatic R __________ i-1
A. It is different from R i-1
B. It is same as R i-1 B
C. Both a&b
D. 0
169 From robot forward kinematics you can find ------.
A. Target co-ordinates
B. Length of each link A
C. Angles of each point
D. All of above
170 The position of any point it is in workspace can obtained
through -------
A. Forward kinematics A
B. Backward kinematics
C. Inverse kinematics
D. None
171 In inverse kinematics we can find ------
A. Angles of each point
B. The length of each point A
C. The angle each point
D. The position each point
172 Rotation around the z-axis is ------

Prepared by BEMEC313
d. zero
173 The suction cups are used in ------ grippers
A. Mechanical
B. Vacuum B
C. Adhesive
D. Magnetized
174 The situation of a position and an orientation are an entity
called as ------
A. Frame A
B. Link
C. Joint
D. None
175 Consider the rotation about Z-axis by 90' the matrix is --------

Prepared by BEMEC313
176 The representation of 3 set of rotations frames are called ------
A. Euler angles
B. Transformation angle A
C. Translation angles
D. Orientation angles
177 The sliding joints are called -------
A. Prismatic joint
B. Revolute joint A
C. Lower pair joint
D. Higher pair joint
178 The distance measured along a line i.e. mutually perpendicular
to both the axis in D-H notation is called -------
A. Link length A
B. Link twist
C. Link parameter
D. Joint variable
179 “R.R” 2 link planar manipulation workspace = -----------

A.IR^2
B. Circle (L1-L2. n circle (m1+m2)).
C. o ecept if L1=L2
D. None
180 Reachable workspace = --------
B

Prepared by BEMEC313
A. IR^2
B. Circle (L1-L2. n circle (m1+m2)).
C. All A,B,C
D. None
181 Dexterous workspace = ---------

C
A. IR^2
B. Circle (L1-L2. n circle (m1+m2)).
C. All A,B,C
D. None
182 In which mathematical approach solving for inverse kinematics
for closed form__________
A. Algebraic C
B. Geometric
C. All three A,B,C
D. Numerical
183 When 2 link manipulator is fully stretched out (or. folded back
(or. Itself __________

A. Workspace – boundary singularity


B. Workspace – interior
C. Singular configuration
D. None
184 The workspace interior singularities occur away from space
boundary __________
A. 2 revolute joints with collinear axis D
B. 3 revolute joints with co-planar axis
C. 4 revolute joints with intersection at one point
D. All above
185 The ability of the robot to move freely in all direction of the
workspace __________
A. Robot manipulability A
B. Quantitative measure of manipulator
C. End point sensitivity
D. Robot control

Prepared by BEMEC313
186 The definition for ------- is the determination of all possible and
feasible sets of joint variables, which would achieve the
specified position and orientation of the manipulator’s end
effector with respect to the base frame. A
A. Inverse kinematics
B. Forward kinematics
C. Indirect kinematics
D. None
187 The six components can be represented by six dimensional
space called -----------
A. Cartesian space D
B. Joint space
C. Cylindrical space
D. Spherical space
188 The region that can be reached by the origin of the end effector
frame with at least one orientation is called -------
A. Reachable workspace A
B. Manipulators workspace
C. Dexterous workspace
D. None
189 The space where is end effector can reach every point from all
orientation is called --------
A. Reachable workspace C
B. Manipulators workspace
C. Dexterous workspace
D. None
190 How many solution it can be obtained by two link robot
A. No solution
B. Single solution
C. Two solution
D. <2 solution
191 The two approaches to the solution to the inverse problem ------
----
A. Closed form
B. Numerical solution
C. Both a & b
D. None
192 Closed form solution method based on ----------
A. Analytical algebraic approach
B. Differential approach
C. Vector approach
D. None
193 A sufficient condition for six degrees of freedom manipulator to
possess a close form solution is that either its consecutive joint
axis -------
A. Parallel
B. Intersect
C. Both A & B
D. None
194 The robot have existence of solution in dexterous workspace it

Prepared by BEMEC313
has __________
A. Position & orientation
B. Position solution A
C. Closed form solution
D. Numerical solution
195 The number of solution for the inverse kinematics problem of
the given 6 degrees of freedom manipulation arm is __________
A.6 C
B.3
C.4
D. None
196 The direct Q inverse kinematic models were establish the
relationship between the manipulator’s __________
A. Joint displacements Q position & orientation of end effecter A
B. Link displacement
C. Position & orientation of end effector
D. All
197 The ability of the robot to move freely in all direction of the
workspace __________
A. Robot manipulability A
B. Quantitative measure of manipulator
C. End point sensitivity
D. Robot control
198 The study both velocity and static force leads to matrix entity
called -----
A. Jacobian manipulator A
B. Cartesian manipulator
C. Dexterous manipulator
D. Cylindrical manipulator
199 A manipulators with more DOF with necessary are called -------
--manipulators.
A. Cartesian manipulator C
B. Cylindrical manipulator
C. Kinematic manipulator
D. Dexterous manipulator
200 The Jacobian matrix defines the link between the end effectors
velocities & joint velocities by __________ matrix
A. 6*6 B
B. 6*N
C. 4*4
D. 6*4
201 The tool tip trajectory can obtain the velocities one time
__________ matrix
A. Jacobean matrix A
B. Orientation matrix
C. Position matrix
D. None
202 The example of redundant manipulator is ---------
A. Cartesian
B. SCARA

Prepared by BEMEC313
C. Cylindrical
D. Spherical
203 PUMA 560 has __________ singularity
A. Two
B. Three A
C. Six
D. None
204 In which manipulator have added flexibility for useful to
avoiding obstacles
A. Redundant
B. Cartesian
C. Cylindrical
D. Spherical
205

A. Ө = tan2 (x/y)
B. Ө = cos2 (x/y)
C. Ө = cos2 (y/x)
D. Ө = £m (x/y)
206 The time variation of position and orientation of link in space
produces ---------
A. Linear & angular velocity A
B. Linear velocity
C. Angular velocity
D. Linear & angular acceleration
207 The axis of rotation itself may be changing with time is called --
-----
A. Linear & angular velocity C
B. Linear velocity
C. Angular velocity
D. Linear & angular acceleration
208 The velocity vectors are free vectors. Why?
A. They do not depend on their linear action
B. They depend on their linear action
C. Both a & b
D. none
209 The transformation from joint velocities to the end effectors
end effectors velocity is described is described by matrix,
matrix, called _________
A. The Jacobean matrix A
B. Orientation matrix
C. Position matrix
D. None
210 The mapping between force applier to end effectors & resulting
calculate by _________

Prepared by BEMEC313
A. The Jacobean matrix
B. Orientation matrix A
C. Position matrix
D. None
211 In pure transformation , linear link velocity can be obtained by
taking the fine derivative of the homogeneous transformation
matrix because __________ is constant
A. The Jacobean matrix B
B. Orientation matrix
C. Position matrix
D. None
212 The angular velocity 0w1 define as define as __________
A. dQ/dt\
B. dv/dt A
C. rw
D. d(0d1./dt)
213 The linear v The linear velocity 0vi is given by__________
A. dQ/dt
B. dv/dt B
C. rw
D. d(0d1./dt)
214 In which vectors needs to be preserved in the magnitude of
direction
A. Free vector A
B. Linear angular velocity
C. Angular velocity
D. Linear vector
215 The Cartesian position and orientation of tool within
manipulator work piece if the following condition satisfies.
A. sin & cos function taking values range of(-1,1)
B. sin & cos function taking values range of(0,-1)
C. sin & cos function taking values range of(1,-1)
D. Both a & b
216 The purpose of control provide inputs for the robot joint
actuators. In order to accomplish a task with __________
A. Robot control system B
B. End effectors
C. Motor control
D. Mechanical system
217 Robot tasks in basic types __________
A. Un constrained free motion of tool
B. Constrained motion application of forces to the environment D
C. Combination of A & B
D. All above
218 The robot finding the path. This process is called __________
A. Trajectory planning
B. Trajectory generation A
C. Trajectory description
D. None
219 The robot act of computing a trajectory as a time sequence or

Prepared by BEMEC313
value in a real time is called __________
A. Trajectory planning
B. Trajectory generation B
C. Trajectory description
D. None
220 A pure geometric statistical description or the motion is
called__________
A. Path B
B. Trajectory
C. Via points
D. Spline
221 A path with specified quality of motion that in a path on which
a time law is Specified in terms of velocities and acceleration at
each point is called ----------
A. Path C
B. Trajectory
C. Via points
D. Spline
222 The set of intermediate location between the set of the start
goal points. On a trajectory is called as ---------
A. Path D
B. Trajectory
C. Via points
D. Spline
223 The smooth functions that passes through the set of via points.
It is called --------
A. Path D
B. Trajectory
C. Via points
D. Spline
224 The PUMA robot path update rate is --------
A. 560 hz
B. 56 hz A
C. 5600 hz
D. None
225 The trajectory description in Cartesian space are __________
A. x(dt. , x(dt. , x’ d(t. , x”d(t.
B. Q d(t. , Q’ d(t. , Q” d(t. A
C. v1, v2, v3
D. None
226 The trajectory description in joint space are -----------
A. x(dt. , x’ d(t. , x”d(t.
B. Q d(t. , Q’ d(t. , Q” d(t. B
C. v1, v2, v3
D. None
227 The collision free path obtain from __________trajectory
planning
A. Cartesian space A
B. Joint space
C. Trajectory space

Prepared by BEMEC313
D. None
228 In which method trajectory planning has computating at
complexity __________
A. Cartesian space A
B. Joint space
C. Trajectory space
D. None
229 What are criteria for controller selection
A. Stability
B. Performance C
C. Both a & b
D. None
230 The trajectory points are computed at a path updated rate.
This rate lies between __________
A. 60hz – 2000hz A
B. 60hz – 1000hz
C. 326hz
D. 60hz
231 “SMART” actuators __________
A. Electrical
B. Piezo-electric D
C. SMA –shape memory allow
D. Both B & C
232 The actuator operates based on electromagnetism __________
A. DC motor
B. SMA shape memory allow A
C. Electro-pneumatic
D. Stepper motor
233 A conductor wire placed inside a magnetic field experience a
Lorentz force Fm = electromotive force . Fm = __________
A. 2(velocity*magnetic field. B
B.(current * magnetic field. length
C. dQB/dt magnetic flux through coil
D. None
234 A conductor spinny inside magnetic field produce a valley it is
called___
A. Electro magnetism C
B. Electromotive force
C. Back emf force
D. Lorentz force
235 In which actuators can obtain precise control_________.
A. Pneumatic
B. Hydraulic C
C. Electric
D. “ SMART ”actuator
236 In which actuation capable are high power
precession_________
A. Pneumatic B
B. Hydraulic
C. Electric

Prepared by BEMEC313
D. “SMART ”actuator
237 Piezoelectric actuators =………………
A. Pb (zr,ti)o3
B. Ni, Ti A
C. Cuzual
D. Both B & C
238 SMA shape memory allow =____________
A. Pb (zr,ti)o3
B. Ni, Ti D
C. Cuzual
D. Both B & C
239 In which actuator in force wise to human muscle_________.
A. Pneumatic
B. Sma A
C. pz7
D. Hydraulic
240 Electro –thermal ,electro static sensors is____________.
A. pz7
B. sma C
C. Mems
D. Tactile
241 Sensitivity =____________.
A. ∆ out/∆in
B. ∆out=f(∆in) A
C. ∆min ≤ ∆out ≤ ∆max
D. ∆out-actual measurement
242 Linearity=____________.
A. ∆ out/∆in
B. ∆out=f(∆in) B
C. ∆min ≤ ∆out ≤ ∆max
D. ∆out-actual measurement
243 Range =___________.
A. ∆ out/∆in
B. ∆out=f(∆in) C
C. ∆min ≤ ∆out ≤ ∆max
D. ∆out-actual measurement
244 Accuracy=__________.
A. ∆ out/∆in
B. ∆out=f(∆in) D
C. ∆min ≤ ∆out ≤ ∆max
D. ∆out-actual measurement
245 In which sensor used ultra sonic source__________.
A. Ir sensor
B. Tactile C
C. Sonar sensor
D. Strain gauge
246 In which sensor detect reflections ___________.
A. 4 Ir sensor
B. Tactile A
C. Sonar sensor

Prepared by BEMEC313
D . Strain gauge
247 For distance measurement which sensor used_________.
A. Air sensor
B. Sonar sensor D
C. Laser range finder
D. All above three
248 Compass sensor based on _________.
A. Fluxgate (or )hall effect
B. Doppler effect A
C. Reverse effect
D. None
249 Motion sensor for sensor for measures velocity by
____________.
A. Fluxgate (or )hall effect B
B. Doppler effect
C. Reverse effect
D. None
250 Inertial navigation sensor____________.
A. Compass
B. Accelerometers D
C. Motion sensors
D. All above three
251 The robot performance criteria for position accuracy
parameters criteria For position accuracy parameters
are_______
A. Nominal load, max load C
B Cycle time, speed, traverse time
C. Repeatability
D. Path reviation , circle & corner accuracy
252 During assembly the ______ is provided is provided in a robot
to Correct for the lateral and angular errors .
A. Compliance A
B. Controller
C. Search algorithm
D. Software
253 The compliances can be defined as allowed or initiated
movement of the peg for the purpose of _______
A. Axial alignment of hole D
B. Scraping painted from a glass pane
C. Performing surgery
D. Alignment with hole
254 Misalignment between the axis of peg and axis of hole ,it may
be need to align the hole by_________ compliance.
A. Lateral compliances A
B. Rotational compliances
C. Axial compliances
D. Active compliances
255 The axis of peg and hole are not parallel ,the assembly of the
two will take place by corrected by __________ compliances. B
A. Lateral compliances

Prepared by BEMEC313
B. Rotational compliances
C. Axial compliances
D. Active compliances
256 The passive compliances to correct the misalignment error
during the assembly, is to use passive mechanical device known
as ___________device.
A. Controller C
B. Sensors –force/torque
C. Remote center compliances(RCC)device
D. Software

Prepared by BEMEC313
 

 INTRODUCTION
 INTRODUCTION TO ROBOTICS 
ROBOTICS 

One mark questions.

1.The czech word “Robota” meaning .

a.forced labour
b.slaves

c.mechanical
d.humanoidmanipulator

Answer.a

~end~ 
 

2.The term robotics was coined by .

a. Karel Capek 
b. Issac Asimov
c. Rossum
d. Miller

Answer.b

~end~ 

3.The robot can reliev humAnswer of the need to


perform what have been called “4D jobs”
, , , .

a. dirty,dangerous,different,difficult
b. dull,duty,deep,different
c. dull, dirty, dangerous, difficult
d. dull,difficult,different,deep

Answer. C
 

~end~ 

4.The basic configurations of robots are .

a. rectangular
b. sphereical
c. rectangular,sphereical , cartesian, cylindrical
configurations
d. cartesian, cylindrical configurations, polar
configurations, articulated configurations

Answer.d

~end~ 

5.The end point of the arm is capable of operating in


a cuboid space is

called .
 

a. workspace
b. Machine cell
c. configuration
d. none

Answer.a

~end~ 

6.The workspace of cartesian configuration is


.

a. cylindrical
b. gantry
c. polar
d. articulated

Answer.b

~end~ 

7.The term robot was derived from_____languages.


 

a. English
b. czech
c. greek 
d. latin

Answer. b

~end~ 

8. The word robot was introduced in Czech play


wright______ in his play

R.U.R.

a.Karel capek 
b. Rossum
c.issac asimor
d.miller

Answer. a

~end ~ 

9. The term “robotics” was comed by_____in his


science fictim story
 

“Run around”

a.karel capek 
b.rossem
c.issac asimor
d.miller

Answer .c

~end~ 

10. The robot were introduced to industry by_______ 

a.karel capek 
b.rossem
c.issac asimor
d.miller

Answer. d

~end~ 

11. The law of robotics established by_____ 

a.karel capek 
 

b.rossem
c.issak asimor
d.miller

Answer.c

~end~ 

12. The first robotics had been introduced by in


the____ industry
a.automotive
b.process
c.mining
d.space

Answer.a

~end~ 
 

13.The two perpendicular revolute joint used in


configuration.

a. polar
b. cylindrical
c. articulated
d. gantry

Answer.b

~end~ 

14.The arrangement of joints is known as RRP


configuration is .

a. gantry
b. polar
 

c. articulated
d. cylindrical

Answer.b

~end~ 

15.The selective complaints o


on
n assembly robots arm
arm
are called as .

a. scara
b. puma
c. stand ford
d. none

Answer.a

16.The wrist motion in a plane perpendicular to the


end of the arm is

called .
 

a. roll
b. pitch

c.
d. yaw
none

Answer.a

~end~ 

17.The wrist motion in a vertical plane passing


through the arm is

called .

a. pitch
b. yaw
c. roll
d. none

Answer.a
 

~end~ 

18.The wrist motion in a horizontal plane passing


through the arm is

called .

a. pitch
b. roll

c.
d. yaw
none

Answer.c

~end~ 

19.The first generation robot capable .

a. programmable
b. environment understand capability
 

c. intelligency
d. none

Answer. a

20.The robot embedded with the artificial intelligence


classified into .

a.
b. first
Secondgeneration
generation
c. Third generation
d. Fifth generation

Answer.c

~end~ 

21.An artificial biological robot might provide the


impetus for .
 

a. third generation
b. fourth generation
c. fifth generation
d. 6th& higher generation

Answer.

~end~ 

22.The excellent mechanical flexibility can obtain


from manipulator structure.

a. articulated robot
b. cylindrical robot
c. scara robot
d. pick&place robot

Answer.

~end~ 
 

23. Spine robot used for application.

a. painting
b. assembly
c. deburring
d. welding

Answer.a

~end~ 

24.Robot teaching methods are .

a. lead through teaching

b. teaching through teach pendant


c. programming language
d. all the above

Answer.d

~end~ 
 

25.Highly load carrying capacity can be obtained


from .

a. special robot
b. architectural robot
c. cylindrical robot
d. scara robot

Answer.c

~end~ 

26.Highly rigid along vertical direction capability can

be obtained from .

a. special robot
b. architectural ronot
c. cylindrical robot
d. scara robot
 

Answer.d

~end~ 

27.Scara robot used for application.

a. painting
b. assembly
c. deburing
d. welding

Answer.b

~end~ 

28.In a 3D space a co-ordinate frame is set of 3


orthogonal right handed
handed ax
axis
is X,Y,Z is Called
.

a. principal axis
 

b. common axis
c. normal axis
d. none

Answer.a

~end~ 

29.The position of links in a space and their motion


are described
by geometry .

a. spatial
b. manipulator
c. space
d. none

Answer.b
 

30.Angular grippers has angular stroke


degrees of open and gripping size.

a. 270’
b. 180’
c. 90’
d. 60’

Answer.b

~end~ 

31.In grippers equipped with to control gripping


force is used is sensor.

a. tactile
b. load cell
c. LVDT
d. RFID

Answer.a
 

2. COORDINATE FRAMES, MAPPING &


TRANSFROMS

1.The changing description of point in a space from


one frame to another is refer to .

a. eular angles
b. rotation of vectors
c. mapping
d. none

Answer.a

~end~ 

2.The representation of rotation in a 3D space has


matrix.

a. 3*1
b. 3*3
c. 1*3
d. 1
 

Answer.b

~end~ 

3. The representation of translation in a 3D space has


matrix.

a. 3*1
b. 3*3
c. 1*3
d. none

Answer.a

~end~ 

4.The 4*4 transformation matrix in robot is called


.

a. homogenous transformation matrix

b. homogeneous co-ordinates matrix


 

c. scale factor matrix


d. perspective transformation matrix

Answer.a

~end~ 

5.Scale factor in robot .

a. two
b. three
c. one
d. +/-

Answer.

~end~ 

6. R 
 

a. transformation matrix
b. homogenous transformation matrix

c. perspective transformation matrix


d. none

Answer.cperspective transformation matrix

~end~ 

7.The scale factor has non-zero positive values and is


called .

a. global sacling parameter

b. enlarging factor
c. reducing factor
d. none

Answer.a

~end~ 
 

8.The robotics scale factor value ‘σ’ is .

a. σ<1
b. σ>1
c. σ=1
d. σ>-1

Answer.C

~end~ 

9.The rotation matrix has elements.

a. 3
b. 9
c. 8
d. 1

Answer.b
 

~end~ 

10.If in the rotation matrix has only 3 of the g


elements are independent the rota
rotation
tion ma
matrix
trix ha
hass
.

a. redudancy
b. singularity
c. dexirity
d. none

Answer.a

~end~ 

11.The PUMA has revolute joint.

a.2

b.4
 

c. 6
d. 8

Answer.c
~end~ 

12.How many numbers of euler angles sets can be


obtained?

a.12
b.36
c.24
d.3

Answer.c

~end~ 

DIRECT MANIPULATOR KINEMATICS

1.The spherical joint variables for 3 degrees


degrees of 

freedom.
 

a. Ѳ1
b. Ѳ2
c. Ѳ3
d. Ѳ1 Ѳ2 Ѳ3

Answer.d

~end~ 

2.For pure translation linear link velocity can be


taking the time derivative of the homogeneous
transfer formation matrix became rotation matrix
is .

a. varies
b. constant
c. zero
d. one

Answer.b
 

~end~ 

3.If robot link is prismatic R is the ________


__________ 
__ 
i-1

a. it is different from R 
i-1
0
b. it is same as R 
i-1

c. both a&b

4.From robot forward kinematics you can find


.

a. target co-ordinates
b. length of each link 
c. angles of each point
 

d. all the above

Answer.a

~end~ 

5.The position of any point it is in workspace can


obtained through .

a. forward kinematics
b. backward kinematics
c. inverse kinematics
d. none

Answer.a

~end~ 

6.In inverse kinematics we can find .


 

a. angles of each point


b. the length of each point
c. the angle each point
d. the position each point

Answer.a

~end~ 

7.Rotation around the z-axis is .

a.

b.

c.

d. none
 

Answer.c

~end~ 

8.The suction cups are used in grippers.

a. mechanical
b. vaccum
c. adjustive
d. magnetized

Answer.a

~end~ 

9.The situation of a position and an orientation are an


entity called as .

a. frame
b. link 
 

c. joint
d. none

Answer.a

~end~ 

10.Consider the rotation about Z-axis by 90' the

matrix is .

a.

b.

c.
 

d .

Answer .

~end~ 

11.The representation of 3 set of rotations frames are


called .

a. eular angles
b. transformation angle
c. translation angles
d. orientation angles

Answer.a

~end~ 

12. The sliding joints are called .


 

a. prismatic joint
b. revolute joint
c. lower pair joint
d. higher pair joint

Answer.a

13.The distance measured along a line i.e. mutually


perpendicular to both the axis in D-H notation is

called .

a. link length
b. link twist
c. link parameter
d. joint variable

Answer.

~end~ 

14.“R.R” 2 link planar manipulation workspace =


 __________ 
 

L2

L1

a.IR^2

b.circle (L1-L2. n circle (m1+m2.

c.o ecept if L1=L2

d.none

Answer.a

~end~ 

15. Reachable workspace = __________ 

L1 L2
 

a.IR^2

b.circle (L1-L2. n circle (m1+m2.

c.all the a,b,c

d.none

Answer.b

~end~ 

16.Dexterous workspace __________ 

L2

L1

a.IR^2
 

b.circle (L1-L2. n circle (m1+m2.

c.all the a,b,c

d.none

Answer.c

~end~ 

17. In which mathematical approach solving for


inverse kinematics for closed form__________ 

a.algebric
b.geometric

c.all three a,b,c

d.nuemerical

Answer.c
 

~end~ 

18.When 2 link manipulator is fully stretched out (or.


folded back (or. Itself __________ 

a.workspace – boundary singularity


b.workspace – interior
c.singular coagoguratian
d.none

Answer.a

~end~ 

19. The workspace interior singularities occur away


from space boundary __________ 

a. 2 revolute joints with collinear axis


b. 3 revolute joints with co-planar axis
c. 4 revolute joints with intersection at one point

d. All above
 

Answer.d

~end~ 

20.The ability of the robot to move freely in all


direction of the workspace __________ 

a. robot manipulability
b. quantitative measure of manipulator
c. end point sensitivity
d. robot control

Answer.a

~end~ 
 

4. INVERSE MANIPULATOR KINEMATICS

1. The definition for


for   is the determination
of all possible and feasible sets of joint variables,
which would achieve the specified position and
orientation of the manipulator’s end effector with
respect to the base frame.

a.
b. inverse
forwardkinematics
kinematics
c. indirect kinematics
d. none

Answer.a

~end~ 

2.The six components can be represented by six


dimensional space

called .
 

a. Cartesian space
b. joint space
c. cylindrical space
d. spherical space

Answer.

~end~ 

3. The region that can be reached by the origin of the


end effector frame with at lest one orientation is
called .

a. Reachable workspace
b. manipulators workspace
c. dexterous workspace
d. none

Answer.a

~end~ 
 

4. The space where is end effector can reach every


point from all orientation is called .

a. Reachable workspace
b. manipulators workspace
c. dexterous workspace
d. none

Answer.c

~end~ 

5. How many solution it can be obtained by two link 


robot

a. no solution
b. single solution
c. two solution
d. <2 solution
 

Answer.

6. The two approaches to the solution to the inverse


problem .

a. closed form
b. numerical solution
c. Both a & b
d. none

Answer .

7. Closed form solution method based on .

a. analytical algebraic approach


b. differential approach
c. vector approach
d. none
 

8.A sufficient condition for six degrees of freedom


manipulator to posses a close form solution is that
either its consective joint axis .

a. parallel
b. intersect
c. Both a & b
d. none

Answer.

~end~ 

9. The robot have existence of solution in dexterous


workspace it has __________ 

a.position & orientation


b. position solution
c. closed form solution
 

d.numerical solution

Answer.a

~end~ 

10.The number of solution for the inverse kinematics


problem of the given 6 degrees of freedom
manipulation arm is __________ 

a.6
b.3
c.4
d.none

Answer.c

~end~ 

11. The direct Q inverse


inverse kinematic models were
establish the relationship between the
manipulator’s __________ 

a.Joint displacements Q position & orientation of end


effecter
b.Link displacement
 

c.Position & orientation of end effector


d.All

Answer.a

~end~ 

12.The ability of the robot to move freely in all


direction of the workspace __________ 

a. robot manipulability
b. quantitative measure of manipulator
c. end point sensitivity
d. robot control

Answer.a
 

5. MANIPULATOR DYNAMICS

1.The study both velocity and static force leads to


matrix entity called .

a. jacopian manipulator
b. Cartesian manipulator
c. dexterous manipulator
d. cylindrical manipulator

Answer.a

2.A manipulators with more DOF with necessary are


called . manipulators.

a. Cartesian manipulator
b. cylindrical manipulator
c. kinematically manipulator
d. dexterous manipulator

Answer.c
 

3. The jacobian matrix defines the link between the


end effectors velocities & joint velocities by
 __________ matrix

a.6*6
b.6*N
c.4*4
d.6*4

Answer.b

~end~ 

4. The tool tip trajectory can obtain the velocities one


time __________ matrix

a. Jacobean matrix
b. Orientation matrix
c. Position matrix
d. None

Answer.a

~end~ 
 

5.The example of redundant manipulator is


.

a. cartesian
b. SCARA
c. cylindrical
d. spherical

Answer.

~end~ 

6.PUMA 560 has __________ singularity

a. two
b. three
c. six
d. none

Answer.a

~end~ 
 

7. In which manipulator have added flexibility for


useful to avoiding obstacles

a. redundant
b. cartesian
c. cylindrical
d. spherical

Answer.

~end~ 

8.
 

Ө=?

a. Ө = tan2 (x/y)
b. Ө = cos2 (x/y)
c. Ө = cos2 (y/x)
d. Ө = £m (x/y)

Answer.a

~end~ 

9.

S= ?
 

a.
b.
c.
d.

Answer.

~end~ 

10.The time variation of position and orientation of 


link in space

produces .

a. Linear & angular velocity


b. Linear velocity
c. angular velocity
d. Linear & angular acceleration

Answer.a

~end~ 
 

11.The axis of rotation itself may be changing with


time is called .

a. Linear & angular velocity


b. Linear velocity
c. angular velocity
d. Linear & angular acceleration

Answer.c
12.The velocity vectors are free vectors. Why?

a. They do not depen


depend
d on their linear action
action
b.They depend on their linear action
c. Bo
Both
th a & b
d. none

Answer.
 

13. The transformation from joint velocities to the


end effectors velocity is described by matrix, called
 __________ 

a.The Jacobean matrix


b.Orientation matrix
c.Position matrix
d.None

Answer.a

~end~ 

14. The mapping between force applier to end


effectors & resulting calculate by __________ 

a.The Jacobean matrix


b.Orientation matrix

c.Position
d.None matrix

Answer.a

~end~ 

15.beInobtained
pure transformation
by taking the, fine
linear link velocity
derivative of thecan
 

homogeneous transformation matrix because


 __________ is constant

a. The Jacobean matrix


b. Orientation matrix
c. Position matrix
d. None

Answer.b

~end~ 

16. The angular v


velocity
elocity 0w1 define as __________ 

a. dQ/dt\
b. dv/dt
c. rw
d. d(0d1./dt

Answer.a

~end~ 

17. The linear v


velocity
elocity 0vi is given by __________ 

b. a. dQ/dt
dv/dt
 

c. rw
d. d(0d1./dt

Answer.b

~end~ 

18. In which vectors needs to be preserved in the


magnitude of direction __________ 

a. Free vector
b. Linear angular velocity
c. Angular velocity
d. Linear vector

Answer.a

~end~ 

Operation
point

19. The forward different model

End End

? effector
 jackoform
effector
velocity
 

 Joint link
parameter

a. joint velocity
b. free vectors
c. angular velocity vectors
d. linear vectors

Answer.a

6. TRAJECTORY PLANNING
 

1. The Cartesian position and orientation of tool


within manipulator work piece if the following
condition satisfies.

a. sin & cos function taking values range of(-1,1)


b. sin & cos function taking values range of(0,-1)
c. sin & cos function taking values range of(1,-1)
d. Both a & b

Answer.

2. The purpose of control provide inputs for the robot


 joint actuators. In order to accomplish a task with
 __________ 

a. robot control system


b. end effectors
c. motor control
d. mechanical system

Answer.b

~end~ 
 

3. Robot
Robot tasks in basi
basicc types __________ 

a. un constrained free motion of tool


b. constrained motion application of forces to the
environment
c. combination of a & b
d. all above

Answer.d

~end~ 

4. The robot finding the path. This process is called


 __________ 

a. trajectory planning
b. trajectory generation
c. trajectory description
d. none

Answer.a

~end~ 
 

5. The robot act of computing a trajectory as a time


sequence or value in a real time is called
 __________ 

a. trajectory planning
b. trajectory generation
c. trajectory description
d. none

Answer.b

~end~ 

6.A pure geometric statical description or the motion


is called__________ 

a. path
b. trajectory
c. via points
d. spline

Answer.b

~end~ 
 

7. A path with specified q quality


uality of motion that in a
path on which a time law is Specified in terms of 
velocities and acceleration at each point is called
 __________ 

a.path
b.trajectory
c.via points
d.spline

Answer.c

~end~ 

8. The set of intermediate location between the set of 


the start goal points. On a trajectory is called as
 __________ 

a.path
b.trajectory
c.via points
d.spline

Answer.d

~end~ 
 

9. The smooth functions that passes through the set of 


via points. It is called __________ 

a.path
b.trajectory
c.via points
d.spline

Answer.d

~end~ 

10. The PUMA robot path update rate is __________ 

a.560 hz
b.56 hz
c.5600 hz
d.none

Answer.a

~end~ 

11. The trajectory description in Cartesian space are


 __________ 

a. x(dt. , x’ d(t. , x”d(t.


 

b.Q d(t. , Q’ d(t. , Q” d(t.


c.v1, v2, v3
d.none

Answer.a

~end~ 

12. The trajectory description in joint space are


 __________ 

a.x(dt. , x’ d(t. , x”d(t.


b.Q d(t. , Q’ d(t. , Q” d(t.
c.v1, v2, v3
d.none

Answer.b

~end~ 

13. The collision free path obtain from


 __________trajectory planning

a.Cartesian space
b.Joint space

c.Trajectory
d.None space
 

Answer.a

~end~ 

14. In which method trajectory planning has


computating at complexity __________ 

a.aCartesian space
b.Joint space
c.Trajectory space
d.None
Answer.a

~end~ 

15. What are criteria for controller selection


 __________ 

a.stability
b.performance
 

c.both
d.none

Answer.

~end~ 

16. The trajectory points are computed at a path


updated rate. This rate lies between __________ 

a.60hz – 2000hz
b.60hz – 1000hz
c.326hz
d.60hz

Answer.a

~end~ 

7.0 ROBOTIC VISION SYSTEM

1. Robotic vision may be defined as the process of a


extracting and interpreting information from
 ______ 
 

a. im
imag
ages
es
b.camera
c. 3 dim
dimens
ension
ional
al world
world
d.None

Answer. a

~end~ 

2. In a vision syste
system
m the image device
device is ______ 

a. ca
came
merara
b.ctd
c. ccd
d.All
d. All a b & c

Answer. d

~end~ 

3. The output of ima


image
ge device is a contin
continuous
uous anal
analog
og
signal that is proportional to______ 

a. The amoun
amountt of light reflect
reflected
ed from an image
b.The amount of light reflected from an object
c. The am
amoun
ountt of RGB v valu
aluee
d. The amou
amount
nt of pixel
 

Answer. a

~end~ 

4. In which iillumination
llumination technique used for surface
defect recognition the light source is ______ 

a. Specul
Specularar illumina
illumination
tion (ligh
(lightt field)
b.Specular illumination (dark field)
c. Fr
Fron
ontt ima
imagegerr
d. Front illum
illuminato
inatorr
Answer. B

~end~ 
5. The feature
featuress of object do not lie in the same plane.
plane.
For identifying the errors technique
used ______ 

a. Rear illum
illuminatio
ination
n condenser
condenser
b. Front illumi
illuminatio
nationn
c. Rear il
illumin
lumination
ation ((colli
collimeter)
meter)
d. Rear offset illum
illuminatio
ination n

Answer. C

~end~ 
 

6. Two dimensi
dimensional
onal image
image which is quite adequate
for application involving objects “lying in one
plane” the application are _____ 

a. Measur
Measuringing & gaugi
gauging
ng
b.Verifying presence of components
c. Checki
Checkingng featu
features
res on a fla
flatt surfac
surfacee
d. All of th
them
em a b & c

Answer. a

~end~ 

7. The analy
analysis
sis of scene, where con
contours
tours (or) shapes
shapes
are invalued the system requiring a ______ 

a. 3-dia
3-diamenti
mention
on sys
system
tem
b. 2-dia
2-diamenti
mention
on system
c. Grey
d.None

Answer. A

~end~ 

8. A sample
value. It isofcalled
image asintensity quan
quantized
tized to a integer
 

 _______ 

a. Pi
Pixe
xell
b.Syntax
c. Al
Algo
gori
rith
thm
m
d. Grey sca
scale
le imag
imagee

Answer. a

~end~ 

9. In vision system for the diagnosis of disease _____ 


images used.

a. Tom
Tomogr
ograph
aphy y
b.Syntax
c. Al
Algo
gori
rith
thm
m
d. Grey sca
scale
le imag
imagee

Answer. a

~end~ 

10. Vision sensor is_____ 

a. ta
tacl
clit
itee

b.Sonar
c. Cc
Ccd
d ccam
amera
era
 

d.Conductive rubber

Answer. c

~end~ 

11. In tele operation the human to guide a robotic


device using a ____ interface.

a. high band width


b.computer
c. control panels
d. inter lock 

Answer. a

~end~ 

12. The use of sensors to indicate conditions or events


that are unsafe It
involves_______________.

a. personal trainny
b. safety monitory
c. barrier guides
d. interlocks
 

Answer. b

~end~ 

13. The important social objects robots is to serves for


humAnswer by ______________.

a. increase productivity
b. unsafe working condition
c. manufacturing by less cost
d. to prevent the economics loss

Answer. b

~end~ 

14. A device that senses that an object is only a shot


distance away and measures how far away it is from
the robot its______________.

a. vis
vision
ion ca
camer
mera a
b. b. proximi
proximity
ty detecto
detectorr
c. st
stra
rain
in gaug
gaugee
d.limit switch
 

Answer. b

~end~ 

15. Combining or arranging of safety guards in an


order to provide backup safety

Features of the robot the level is


called_________________.

a. safety g
guards
uards reredunda
dundancy
ncy
b. softwa
software
re limit
limitss
c. wor
workk env
envelo
elope
pe
d. visio
vision
n safety syste
system
m

Answer. a

~end~ 

16. In material handling application requires the robot


to unstuck parts by removing from the top one. This
operation is named________________
named________________..

a. palletizing
 

b. depalleizing
c.stacking
d.processing

Answer. b

~end~ 

17. In material handling application requires the


robot to palletizing & depolarizing Parts by

removing from the top one. This operation is


named________________.

a. palletizing
b. depalleizing
c. stacking
d. processing

Answer. a

~end~ 

18. The cycle time of the machine may be relatively


 _________________ compared to the robot cycle time.
 

a. lo
long
ng
b.short
c. eq
equual
d.bot
d. bothh a&c

Answer. a

~end~ 

19. A device that divides the rotation angle of a shaft


into functions of a degree and then reads out the
present angle in some binary code the device called.
a. ABS ooptical
ptical encoder
b.Limit switch
c. Pro
Proxi
ximi
mity
ty
d.Resolver

Answer. a

~end~ 

20. The capability of an computer to perform that

simulate human intelligence it is called


 ____________________ 
 ____________________ 
 

a.AI
b.fuzylogic
c. au
auto
toma
mati
tion
on
d.machine cell

Answer . a

~end~ 

21. A device used to detect signal based on the gap


between this sensor & non conductive maths the
device is ______________ .

a. ABS op
optical
tical encode
encoderr
b.Capacitive proximity sensor
c. Li
Limi
mitt swi
switch
tch
d.Revolver

Answer. B

~end~ 

22. The robot controlling the path of a robot


manipulator between successive 3-diemension position
it is called

a. con
contro
trolled
lled
 

b. continues
b.contin ues path
c. co
cont
ntou
oury
ry
d.convolution

Answer. c

~end~ 

8.0 ROBOT SOFTWARE & PROGRAMMING


 

1. Overa
Overall
ll control and co-or
co-ordinat
dinatee of the robot
system is called
 _______ 

a. Superv
Supervisory
isory contro
controll
b.Task generator
c. Arm mo
motio
tion
n con
contro
troll
d. Task in
interpret
terpreterer

Answer. a

~end~ 
2. The step by step ex
executio
ecution
n of the robot ta
task 
sk 
controlled by______ 

a. Task genera
generation
tion
b. Task in
interpret
terpreter er
c. Arm mo
motio
tion
n con
contro
troll
d. Superv
Supervisory
isory contro
controll

Answer. b

~end~ 

3. The commands of these axial motions


motions are given by

the
the operator
stores thewhen the desired
co-ordinates position
of the is reached,
computer
 

memory. This process of programming called


as_______ 

a. manua
manuall teachin
teaching
g
b.lead teaching
c. wal
walkk thro
through
ugh tea
teachi
ching
ng
d. offli
offline
ne programming
programming
Answer. a

~end~ 

4. In a typical teach pendant have control commands


“trAnswer”mode used for
 ________ 

a. to man
manipulat
ipulatee the robo
robott
b. to run a pr
program
ogram
c. activ
activated
ated tthe
he joi
joint
nt co
control
ntrol
d.to initialize the robot to known position

Answer. a

~end~ 

5. In a typical teach pendant have control commands


“move”mode used for

 _______ 
a. to man
manipulat
ipulatee the robo
robott
 

b. to run a pr
program
ogram
c. activ
activated
ated tthe
he joi
joint
nt co
control
ntrol
d.to initialize the robot to known position
s
Answer. c

~end~ 

6. In a typical teach pendant have control commands


“home”mode used for
 _______ 
a. to man
manipulat
ipulatee the robo
robott
b. to run a pr
program
ogram
c. activ
activated
ated tthe
he joi
joint
nt co
control
ntrol
d.to initialize the robot to known position

Answer. d

~end~ 

7. In a typical teach pendant have control commands


“step”mode used for
 _______ 

a. to man
manipulat
ipulatee the robo
robott
b. to run a pr
program
ogram

c. useful to m
move
one advanceove
at the robo
robott though th
a time thee program
 

d.to initialize the robot to known position

Answer. c

~end~ 

8. In a typical teach pendant have control commands


“zero” mode used for
 _______ 

a. to man
manipulat
ipulatee the robo
robott
b. to run a pr
program
ogram
c. useful to m
move
ove the robo
robott though th
thee program
one advance at a time
d.allow setting the position register to zero

Answer. d

~end~ 

9. The rrobot
obot is m
major
ajor ingredient
ingredient of _____
______ 

a. Cim –tech
–technolog
nology
y
b. Cam techn
technology
ology
c. Cadd
d.Mrd

Answer. a
 

~end~ 

10.For offline robot programming_________ software


used .

a.igrip
b.robcad
c.robot studio
d.all of above

Answer .d

~end~ 
11.The manipulator easy to create an environment for
programming by using _________ 

a. manua
manuall teachin
teaching
g
b.lead teaching
c. wal
walkk thro
through
ugh tea
teachi
ching
ng
d. offli
offline
ne programming
programming

Answer. d

~end~ 
 

12.A central primitive is that for teaching a robot


a work point or ________ as 6degrees of freedom
by means of interaction with the graphics screen.

a.frame
b.mouse
c.workspace
d.toolpoint

Answer. a

~end~ 

13.An important use of 3D geometry of the object


models is in ________ 

a.for easy to locate desired target


b.automatic collision detection
c.practical display
d.for understanding work environment

Answer. b

~end~ 
 

9. ROBOTIC SYSTEM DESIGN ASPECTS

1.Torque developed due to armature current =


 __________ 

a.
b. Jm=Km Ia
Em=Ke Q : Q=shaft angle
c. Jl
d. Ea

Answer.a

~end~ 

2. armature
armature “back emf” vo
voltage
ltage created __________ 

a. Jm=Km Ia
b. Em=Ke Q : Q=shaft angle
c. Jl
d. Ea
 

Answer.b

~end~ 

3.Dc motor electrical equation = __________ 

a. Jm=Km Ia
b. Em=Ke Q : Q=shaft angle
c. Jl
d. Ea

Answer.d

~end~ 

4. mechanical system = __________ 

a. Jm=Km Ia
b. Em=Ke Q : Q=shaft angle
c. Jl
d. Ea

Answer.c

~end~ 
 

5.In which robot benefits are difficult to


quantify_______into cost or savings.

a.quality
b.productivity
c.flexibility
d.b & c

Answer.d

~end

6.The manipulator ________capacity depends upon


the sizing of its structural member,power transmission
system and actuators.

a.workvolume
b.load
c.speed
d.cycletime

Answer.b

~end~ 
 

10.0 ROBOTIC APPLICATION

1. “SMART” actuators __________ 

a.electrical
b.piezo-electric
c.SMA –shape memory allow
d.Both b& c

Answer.

~end~ 

2. The actuator operates based on electromagnetism


 __________ 

a.DC motor
b.SMA shape memory allow
 

c.Electro-pneumatic
d.Stepper motor

Answer.
~end~ 

3. A conductor wire placed inside a magnetic field


experience a Lorentz force Fm = electromotive
force . Fm = __________ 

a.2(velocity*magnetic field.
b.(current * magnetic field. length
c.dQB/dt magnetic flux through coil
d.none

Answer.b

~end~ 
 

4. A conductor spinny inside magnetic field produce


a valley it is called___ .

a. electro magnet
magnetism
ism
b. -elect
-electromoti
romotive
ve force
c. bac
backk eemf
mf for
force
ce
d.lorentz force

Answer.c

~end~ 

5.. In which actuators can obtain precise


control_________.

a. Pne
Pneuma
umatic
tic
b.Hydraulic
c. El
Elec
ectr
tric
ic
d. ”smar
”smartt ”actuato
”actuatorr

Answer .c

~end~ 

6.. In which actuation capable are high power


precession_________.
 

a. Pne
Pneuma
umatictic
b.Hydraulic
c. El
Elec
ectr
tric
ic

d. ”smar
”smartt ”actuato
”actuatorr
Answer .b

~end~ 

7. Piezoelectric actuators =………………

a. Pb (z
(zr,t
r,ti)o
i)o3
3
b.B.ni,ti
c. C.
C.cu
cuzu
zual
al
d.D.both b&c

Answer. a

~end~ 

8. SMA shape memory allow =____________.

a. Pb (z
(zr,t
r,ti)o
i)o3
3
b.B.ni,ti
c.C.cuzual
d.D.both b&c
 

Answer. d

~end~ 
9. In which actuator in force wise to human
muscle_________.

a. Pneumatic
b. Sma
c.pz7
d. Hydraulic

Answer.

~end~ 

10. Electro –thermal ,electro static sensors


is____________.

a. A.
A.pz
pz7
7
b.B.sma
c. C. Me
Mems
ms
d.D. Tactile

Answer .c
 

~end~ 

11. Sensitivity =____________.

a. ∆ out/∆i
out/∆in
n
b.∆out=f(∆in)
c. ∆mi
∆minn ≤ ∆o
∆out
ut ≤ ∆max
∆max
d. ∆out-a
∆out-actual
ctual measuremen
measurementt

Answer .a

~end~ 

12. Linearity=____________.

a. ∆ out/∆i
out/∆in
n
b.∆out=f(∆in)
c. ∆mi
∆minn ≤ ∆o
∆out
ut ≤ ∆max
∆max
d. ∆out-actual measurement

Answer .b

~end~ 

13. Range =___________.


 

a. ∆ o
out/
ut/∆in
∆in
b.∆out=f(∆in)
c. ∆mi
∆minn ≤ ∆o
∆out
ut ≤ ∆
∆max
max

d.∆out-a
d. ∆out-actual
ctual measurement
Answer.d

~end~ 

14. Accuracy=__________.

a. ∆ o
out/
ut/∆in
∆in
b.∆out=f(∆in)
c. ∆mi
∆minn ≤ ∆o
∆out
ut ≤ ∆
∆max
max
d .∆out-actual measurement

Answer.d

~end~ 

15. In which sensor used ultra sonic


source__________.

a. Ir se
sens
nsor
or
b.Tactile
c. So
Sona
narr sen
senso
sorr

d.Strain gauae
 

Answer. C

~end~ 

16 .In which sensor detect reflections ___________.

a. 4 Ir sen
sensor
sor
b.Tactile
c. So
Sona
narr sen
senso
sorr
d.Strain gauae

Answer .a

~end~ 

17. For distance measurement which sensor


used_________.

a. A.i
A.irr sensor
sensor
b.B.sonar sensor
c. C.l
C.laser
aser range
range fi
finde
nderr
d.D.
d. D. All above three

Answer.d

~end~ 
 

18. Compass sensor based on _________.

a. Fluxg
Fluxgate
ate (or )h
)hall
all effe
effect
ct

b.
b.B.dop
B.doppler
c. C.re pler
C.revers effect
verseeff
eeffect
ect
d.D.none

Answer .a

~end~ 

19. Motion sensor for measuring v


velocity
elocity by
 ____________.

a. Fluxg
Fluxgate
ate (or )h
)hall
all effe
effect
ct
b.doppler effect
c. reve
reversee
rseeffe
ffect
ct
d.none

Answer .b

~end~ 

20. Inertial navigation sensor____________.

a. Co
Comp
mpas
asss
b.B.accelerometers
 

c. Motion sensors
d. All above three

Answer .d
~end~ 
21. Array of photo diodes is called __________.

a. Pi
Pixe
xels
ls
b.Image
b. Image pro
prossessing
ssessing
c. Sob
Soble
le op
opera
eratio
tion
n
d.none

Answer. a

~end~ 
22. Color (or)grey level in each pixel range
 ___________.

a. A.
A.0-
0-25
256
6
b.B.0-32
c. C.
C.0-
0-25
255
5
d.D.0-7

Answer .b

~end~ 
 

23. The purpose of image processing


 ______________.

a. To
b.To
b. identi
identify
To identiffy
identify failu
failure
re in field
y colors
c. To id
ident
entify
ify fac
faces
es
d.Toiden
d. Toidentify
tify objects

Answer. a

~end~ 

24. Stable op
operation
eration used fo
forr ____
_________________.
_____________.

a. Edg
Edgee detect
detection
ion
b.Face detection
c. lin
linee detec
detectio
tionn
d.Obstracles detection

Answer .c

~end~ 

25. The robot teach by showing use a


 ______________.

a. Tea
Teach
ch pend
pendant
ant
 

b.Splized language
c. Task level progra
programming
mming
d.Exipic
d. Exipictrobot
trobot progra
programming
mming

Answer. a

~end~ 

26. Explict robot programming use specialized


languages are _____________.

a. Val,al examp
examples
les
b.Ar _basic
c. rapid @abb
d.E.karel
d.E. karel@@7aunc

Answer .a

~end~ 

27.Robot library with new language used in ibm


 ____________.

a. Ar b
bas
asic
ic
b.Rapid
c. Aml

d. karel
 

Answer .C

~end~ 

28.
veryThe reliability
important of an automated
because its complex system is
 ________________ can result a major
major economic losses.

a. failure without prevention


b. failure
c. breaks down
d. UN safe act

Answer. a

~end~ 
29. The robot consumes________second for per spot
welding

a.2
b.1
 

c.1.5
d.2.5

Answer.c

~end~ 

30.The automotive
automotive compares h hane
ane invested robot fo
forr
spot welding because Of their_____ 

a.speed
b.accuracy
c. reliability
d. all of these

Answer.d

~end~ 

31.Spray painting robot is taught by the_______ 

a. reach through method


b. robot online
c. robot offline
d. none

Answer. a
 

~end~ 

32.The demerits of painting robot are______ 

a. constant control
b. rapid control
c. low repeatability
d. all the above

Answer.d

~end~ 

33.The robot performance criteria for position


accuracy parameters criteria For position accuracy
parameters are_______ 

a.nominal load,max load


b.cycle time,speed,trAnswerverse time
c.repeatability
d.path reviation,circle & corner accuracy
 

Answer.c

~end~ 
34.During assembly
assembly the ______ is provided in a robot
to correct for the lateral and angular errors .

a.compliance
b.controller
c.search algorithm

d.software
Answer.a

~end~ 

35. The compliances can be defined as allowed or


initiated movement of the peg for the purpose of 
 _______ 

a.axial alignment of hole


b.scraping painted from a glass pane
c.performing surgery
d.alignment with hole

Answer.d
 

~end~ 
36.Misalignment between the axis of peg and axis of 
hole ,it may be need to align

the hole by_________ compliance.


a.lateral compliances
b.rotational compliances
c.axial compliances
d.active compliances

Answer.a

~end~ 

37.The axis of peg and hole are not parallel ,the


assembly of the two will take place by corrected by
 __________ compliances.

a.lateral compliances
b.rotational compliances
c.axial compliances
d.active compliances

Answer.b

~end
 

38.The passive compliances to correct the


misalignment error during the assembly,is to use
passive mechanical device known as

 ___________device.
a.controller
b.sensors –force/torque
c.remote center compliances(RCC)device
d.software

Answer.c

~end

11.0 ROBOT MAINTENANCE & SAFETY

1.During spot welding,weld


periodically________ gun tips
to produce highmust be weld
strength
 

a.dreesed
b.cleaned

c.apply
d.changegrease
the weld tip

Answer.a

~end~ 

2.An
their annual maintenance
acquisition cost is about_________of 
cost for industrial robot.

a.11-12%
b.10-25%
c.10-12%
d.50%

Answer.c

~end~ 

3.The most widely used safety device in robot_______ 

a. light curtain
b.air curtain
c. fence
 

d.safety mat

Answer.c

~end~ 

4.The most widely used safety device for spot welding


station in_________ 

a.light curtain

b.air curtain
c.fence
d.safety mat

Answer.a

~end~ 

5.The risk zone could be identified in descending


order of risk________,________
risk________,________-&,_________ 
-&,_________ 

a.yellow,orange,&red
b.orange,yellow,&red
c.red,orange,&yellow
d.red,yellow,&orange
 

Answer.c

~end~ 
6.Extreme care to avoid contamination in the fluid
mecganism for________,________robot.

a.servo hydraulic robots


b.pnenumatic powered robots
c.drive controlled
d.none

Answer.a

~end~ 

7.Extreme care is avoid water seponation for ------------


robot

a.servo hydraulic robots


b.pnenumatic powered robots
c.drive controlled
d.none
 

Answer.b

~end~ 

8.OZ of the robots being the highed risk becomes


the_______zone.

a.red
b.yellow

c.blue
d.orange

Answer.a

~end~ 

9.the area converted by MRE becomes


the_______zone.

a.red
b.yellow
c.blue
d.orange

Answer.d
 

~end~ 

10.the perameter of the all other areas with in the

robot installation will than be designated_______color


a.red
b.yellow
c.blue
d.orange

Answer.b

~end~ 

11.photo electric guarduty done by________sensor.

a.fence
b.air curtain
c.light curtain
d.proximity

Answer.c

~end~ 
 

5-Vcfct ns mbrnvbm arcj Kzbkh wcrm


(E) Vefcte

(F) Vcfcte

(K) Vbfcte

(M) Vnfcte

6-E Vcfct ns e
(E) Trc`rejj
Trc`rejjefib
efib

(F) Juitn aulktnclei jelnpuietcr 


jelnpuietcr 

(K) Fcth Trc`rejjefib elm Juitn aulktnclei jelnpuietcr

(M) Lclb ca thb efcvb

;-]hb jenl cfgbktnvb(s) ca Nlmustrnei rcfct ns tc


(E) ]c jnlnjnsb thb iefcur rbqunrbjblt

(F) ]c nlkrbesb prcmuktnvnty

(K) ]c blhelkb thb inab ca prcmuktncl jekhnlbs

(M) Eii ca thb efcvb

=-]hb aciicwnl` ns trub acr e Vcfct elm LK Jekhnlb


(E) [njnier pcwbr mrnvb tbkhlcic`y ns usbm nl fcth

(F) Mnaabrblt abbmfeko systbjs erb usbm nl fcth

(K) Trc`rejjnl` ns sejb acr fcth


(M) Eii ca thb efcvb

2. Ekkcrmnl` tc Esnjcv„s thrbb iews, ulmbr whet knrkujstelkbs ns nt eii rn`ht


acr e rcfct tc nlgurb e hujel fbnl`3

E. Lbvbr.
F. Phbl thb hujel fbnl` spbknankeiiy rbqubsts nt.
K. Nl kesb ca el ekknmblt.
M. Nl kesb thb rcfct kcltrciibr ns nlabktbm wnth e kcjputbr vnrus.
 

1-Mrnvbs erb eisc olcwl es


(E) Ektuetcrs
 

(F) Kcltrciibr 

(K) [blscrs

(M) Jelnpuiet
Jelnpuietcr 
cr 

0. E jelnpuietcr ns eisc olcwl es e7

 E. ]reko mrnvb.
 F. Vcfct erj.
 K. Qnsncl systbj.
 M. Vcfct kcltrciibr.

8-Kickownsb ca Eltn kickownsb rctetncl efcut thb vbrtnkei exns tc thb pbrpblmnkuier erj ns
prcvnmbm thrcu`h
(E) [hcuimbr swnvbi

(F) Bifcw bxtblsncl

(K) Erj swbbp

(M) Prnst fblm

>. ]hb rb`ncl thrcu`hcut whnkh e rcfct erj kel ns ekkcjpinsh tesos keiibm
nts7

 E. Kccrmnletb `bcjbtry.
 F. Vbabrblkb exns.
 K. Vbabrblkb arejb.
 M. Pcro blvbicpb.

54.]hb kcjjcl rcfctnk erj hes SSSSSSSSSSS mb`rbbs ca arbbmcj.

[nx
]hrbb
]wc
Anvb

55.E rbiey ns e typb ca7

ektuetcr

  sblscr
Kcltrciibr
 

blm baabktcr

56-Vemnei jcvbjblt (nl & cut) tc thb jelnpuietcr erj ns prcvnmbm fy


(E) Bifcw bxtblsncl

(F) Prnst fblm

(K) Prnst swnvbi

(M) Prnst yew

5;. Phet ns thb lejb acr spekb nlsnmb whnkh e rcfct ulnt cpbretbs3
e) blvnrcljblt
f) spetnei fesb
k) wcro blvbicpb
m) bxkiusncl zclb

5=.Phnkh ca thb aciicwnl` tbrjs N[ LC] clb ca thb anvb fesnk perts ca e rcfct3
e) pbrnphbrei tccis
f) blm baabktcrs
k) kcltrciibr 
m) mrnvb

52. ]hb lujfbr ca jcvbefib gcnlts nl thb fesb, thb erj, elm thb blm baabktcrs ca thb rcfct
mbtbrjnlbsSSSSSSSSS 
e) mb`rbbs ca arbbmcj
f) peyicem kepeknty
k) cpbretnclei injnts
m) aibxnfninty

51.Acr e rcfct ulnt tc fb


f b kclsnmbrbm e aulktnclei nlmustrnei rcfct, typnkeiiy, hcw jely
mb`rbbs ca arbbmcj wcuim thb rcfct hevb3
e) thrbb
f) acur 
k) snx
m) bn`ht

50.Phnkh ca thb fesnk perts ca e rcfct ulnt wcuim nlkiumb thb kcjputbr knrkuntry thet kcuim fb
prc`rejjbm tc mbtbrjnlb whet thb rcfct wcuim mc3
e) sblscr 
f) kcltrciibr 
 

k) erj
m) blm baabktcr 

58. -Nlmustrnei Vcfcts erb `blbreiiy mbsn`lbm tc kerry whnkh ca thb aciicwnl` kccrmnletb
systbj(s).
(E) Kertbsnel kccrmnletb systbjs

(F) Tcier kccrmnletb systbjs

(K) Kyinlmrnkei kccrmnletb systbj

Ei i ca thb
(M) Eii t hb efcvb
ef cvb

5>-]hb Vcfct mbsn`lbm wnth Kertbsnel kccrmnletb systbjs hes


]hrb b inlber jcvbjblt
(E) ]hrbb jcvb jbltss

(F) ]hrbb rctetnclei jcvbjblts


jcvbjblts

(K) ]wc inlber elm clb rctetnclei jcvbjblt

(M) ]wc rctetnclei elm clb inlber jcvbjblt

64-]hb Vcfct mbsn`lbm wnth Tcier kccrmnletb systbjs hes


64-]hb
(E) ]hrbb inlber jcvbjblts

(F) ]hrbb rctetnclei jcvbjblts


jcvbjblts

(K) ]wc inlber elm clb rctetnclei jcvbjblt

(M) ]wc rctetncle


rcte tncleii elm clb inlber jcvbjblt
jcvb jblt

65. ]hb Vcfct mbsn`lbm wnth kyinlmrnkei kccrmnletb systbjs hes


(E) ]hrbb inlber jcvbjblts

(F) ]hrbb rctetnclei jcvbjblts


jcvbjblts

(K) ]wc inlber elm clb rcte


rctetncle
tncleii jcvbjblt
jcvbjbl t

(M) ]wc rctetnclei elm clb inlber jcvbjblt

66. Phnkh ca thb aciicwnl` wcro ns mclb fy @blbrei purpcsb rcfct3


(E) Tert pnkonl`

(F) Pbimnl`
 

(K) [prey penltnl`

c a thb
(M) Eii ca th b efcvb
efc vb

6; .thb aciicwnl` mrnvb


6;. m rnvb ns usbm acr in`htbr kiess ca Vcfct.
(E) Tlbujetnk
Tlbuj etnk mrnv
mrnvbb

(F) Hymreuink mrnvb

(K) Bibktrnk mrnvb

(M) Eii ca thb efcvb

62-Nltbrlei stetb sblscrs erb usbm acr jbesurnl` SSSSSSSSSS


SSSS SSSSSS ca thb blm baabktcr.
(E) Tcsntncl

(F) Tcsntncl & Qbicknty

(K) Qbicknty & Ekkbibretncl


(M) Tcsnt
Tcsntncl
ncl , Qbicknty
Qb icknty & Ekkbibretncl
Ekk bibretncl

61-Phnkh ca thb aciicwnl` sblscrs mbtbrjnlbs thb rbietnclshnp ca thb rcfct


rcfc t elm nts blvnrcljblt
elm thb cfgbkts helmibm fy nt
(E) Nltbrlei [tetb sblscrs

(F) Bxtbrlei [tetb sblscrs

(K) Fcth (E
(E)) elm
el m (F
( F)

(M) Lclb ca thb efcvb


 

60-Phnkh ca thb aciicwnl` ns lct e prc`rejjnl` iel`ue`b acr kcjputbr kcltrciibm rcfct3
(E) EJ
EJRR

(F) QEI

(K) VENI

(M) HBIT

68-Nl whnkh ca thb aciicwnl` cpbretncls Kcltnlucus Teth [ystbj ns usbm


 

(E) Tnko elm Tiekb

(F) Icemnl` elm Rlicemnl`

(K) Kclt
Kcltnlucu
nlucuss wbimnl`
wbimnl `

(M) Eii ca thb efcvb

6>. Nl SSSSSSSSSS mrnvb bekh jekhnlb ns mrnvbl fy nts cwl sbperetb jctcr wnth thb
hbip ca `bers elm puiiby
5. Nlmnvnmuei mrnvb
6. Juitnjctcr mrnvb
;. @rcup Mrnvb
=. Lclb ca thb efcvb
;4. ]hb iews ca Vcfctnks erb7
e) E rcfct jey lct nlgurb e hujel fbnl`
f) E rcfct just effby thb crmbr `nvbl fy hujel bxkbpt whbl kclainkt wnth thb anrst iew
k) E rcfct just prctbkt nts cwl bxnstblkb bxkbpt whbl nt ns vncietnl` anrst elm sbkclm iew
m) Fcth f elm k

;5.]hb fesnk kcjpclblts ca rcfct erb7


e) ]hb jbkhelnkei inloe`b
f) [blscrs elm kcltrciibrs
k) Rsbr nltbraekb elm pcwbr kclvbrsncl ulnt
m) Eii ca thb jbltnclbm

;6. E SSSSSSSSS ns kcllbktncl fbtwbbl perts cr inlos nl e rcfct thet eiicw jctncl.
e) Hnl`b
f) Gcnlt
k) Mns gcnlt
m) Lclb ca thb jbltnclbm

;;. Kiessnanketncl ca Vcfct ns fesbm cl7


e) @bcjbtry elm `bcjbtrnk kiessnanketncl
f) Ibat rn`ht kiessnanketncl
k) Fesbm cl kcltrci systbj

m) Eii ca thb jbltnclbm


 

;=. Nl whnkh ca thb aciicwnl` mrnvbs, thbrb ns lc sinp

e. Cpbl fbit mrnvb f. Krcssbm fbit mrnvb k. Vcpb mrnvb m. Khenl mrnvb

;2. ]hb vbicknty retnc ca twc puiibys kcllbktbm fy el cpbl fbit cr krcssbm fbit ns
e) mnrbktiy prcpcrtnclei tc thbnr mnejbtbrs
f) nlvbrsbiy prcpcrtnclei tc thbnr mnejbtbrs
k) mnrbktiy prcpcrtnclei tc thb squerb ca thbnr mnejbtbrs
m) nlvbrsbiy prcpcrtnclei tc thb squerb ca thbnr mnejbtbrs

;1. Mub tc sinp ca thb fbit, thb vbicknty retnc ca thb fbit mrnvb
e) mbkrbesbs
f) nlkrbesbs
k) mcbs lct khel`b
m) lclb ca thb jbltnclbm

;0. Phbl thb fbit ns stetnclery, nt ns sufgbktbm tc scjb tblsncl, olcwl es nlntnei tblsncl. ]hb
veiub ca thns tblsncl ns bquei tc thb
e) tblsncl nl thb tn`ht snmb ca thb fbit

f) tblsncl nl thb sieko snmb ca thb fbit


k) suj ca thb tblsncls nl thb tn`ht snmb elm sieko snmb ca thb fbit
m) evbre`b tblsncl ca thb tn`ht snmb elm sieko snmb ca thb fbit

;8. Phy ns el nmibr `ber usbm nl `ber trenls3

e. ]c cftenl jnlnjuj kbltrb mnstelkb fbtwbbl mrnvnl` elm mrnvbl sheat
f. ]c hevb rbqunrbm mnrbktncl ca rctetncl
k. Fcth e. elm f.
m. Lclb ca thb efcvb

;>.  Phnkh ca thb aciicwnl` stetbjblts erb aeisb acr fbit mrnvbs3

5. Fbit mrnvb ns usbm nl eppinketncls hevnl` kclstelt spbbm mrnvb


6. Fbit mrnvbs kel fb usbm et bxtrbjbiy hn`h spbbms
;. Fbit mrnvbs hevb icw pcwbr trelsjnttnl` kepeknty
=. Fbit mrnvbs lbbm kcltnlucus iufrnketncl

e. 5 elm 6
f. 5, 6 elm ;
k. 6, ; elm =
m. 5, 6 elm =
 

=4. Phnkh `bers erb usbm tc kcllbkt twc nltbrsbktnl` sheat exbs3

e. Krcssbm hbinkei `ber 


f. Pcrj elm wcrj whbbi
k. Fbvbi `bers

m. Eii ca thb efcvb


=5. Phet ns thb purpcsb ca usnl` stbbi khenls3
e) ]c evcnm sinppnl`
f) ]c evcnm arnktncl
k) ]c evcnm ekkbibretbm jctncl
m) ]c evcnm gbros

=6. ]hb tccthbm whbbis nl khenl mrnvbs erb olcwl es SSSSSS 


e) [prckobts
f) [prckobrs
k) Q-fbit
m) Q- khenl

=;. ]hb mnstelkb fbtwbbl hnl`b kbltrbs ca twc kcrrbspclmnl` inlos ns olcwl es SSSSSSS 
e) Tntkh
f) Tntkh knrkib mnejbtbr 
k) [prckobt ibl`th
m) [prckobr mnejbtbr 

==.thb arnkcl ca thb herjclnk mrnvbs mbpblm upcl

]crqub
Jcjbltuj
Icem
Nlnei tblsncl

=2. SSSSSSSSSSSSSS
SSSSSSSSSSSSSS ns thb jenl kcjpclblt ca e herjclnk mrnvb, whnkh kel `blbretb e rbpbetbm
vnfrecl

]hb bxspinlb
knrkuier spinlb,
wevb `blbretcr
spinlb
 

=1. Phnkh ca thb aciicwnl` ns lct trub efcut `bers3


e) Tcsntnvb mrnvb
f) Kclstelt vbicknty retnc
k) ]relsjnt ier`b pcwbr 
m) Fuioy kclstruktncl

=0. hn`h rbpbetefninty eppinketncls ca Kertbsnel kclan`uretncls ns mub tc.............


e), inlber
inlber gcnlts
gcnlts f). hn`h stnaalbss ca inlos
inlos k). nts rn`nm strukturb m). eii thb efcvb.
efcvb.

=8. "pnstcl jcvbjblt nlsnmb thb bl`nlb kyinlmbr" ns ......... typb ca gcnlt.

(e) prnsjek (f) rcteclei ( k) twnsl` (m) rbvcivnl`

=>. ]hb rcfct kcl`urecl, whnkh ns usbm nl hn`h rbekh eppinkecls

(e) Tcier (f) gcnltbm erj (k)[phbrnkei (m) (e) & (f).

24. Fesbm cl l`br jcvbjblt, Jbkhelnkei `rnppbr kel fb kiess


kiessnbm
nbm es SSSSSSS
SSSSSSSSSS
SSS

(e) pnvcl` jcvbjblt (f) inlber cr trelsieclei jcvbjblt (k) e & f (m) lclb

 6. E [phbrnkei kccrmnletb rcfct shcuim hevb SSSSSSSS gcnlts

 (e) clb rbvciutb elm twc prnsjek (f) thrbb prnsjek (k) twc rbvciutb elm clb prnsjek (m) e,f& k

;. Fesbm cl thb kccrmnletb systbj rcfcts kel fb kiessnbm esSSSSSSSSS


esSSSSSSSSS rcfcts.

(e) Kertbsnel (f) [phbrnkei (k) Kyinlmrnkei (m) e,f& k

 =).E jelnpuietcr wnth 1 MCA ns SSSSSSSSSSSSSS


SSSSSSSSSSSSSS

(e) 5-M Jelnpuietcr (f)6-M Jelnpuietcr (k) ;-M Jelnpuietcr (m) [peei Jelnpuietcr
 2. ]bkhlcic`y thet ns kclkbrlbm wnth thb usb ca jbkhelnkei, bibktrclnk elm kcjputbr fesbm systbjs nl
thb cpbrecl elm kcltrci ca prcmukcl

(e) Jbkhelnzecl (f)Eutcjecl (k) Nlmustrneinzecl. (m)eii thb efcvb.

1. Rsb ca jekhnlbs tc mc thb wcro ca elnjeis/pbcpib

(e) Jbkhelnzecl (f)Eutcjecl (k) Nlmustrneinzecl. (m) eii thb efcvb

 55. ]hb aciicwnl` ns thb pbracrjelkb jbesurb ca inlb bknblky

(e)kcst pbr ntbj (f)Evbre`b prcmukcl retb (k) prcpcrcl ca mcwl jb (m) Eii thb efcvb
 

56. Aciicwnl` ns thb jbkhelnkei aestblbr

( e)thrbembm aestblbr (f)Vnvbt (k) prbss t (m) Eii thb


t hb efcvb

5;. Aciicwnl` erb thb kclstrenlts nl thb inlb feielknl` prcfibj

(e) Trbkbmblkb kclstrenlts (f) zclnl` kclstrenlts (k) pcsncl kclstrenlts (m) Eii thb efcvb

51. ]hb erekvb abeturb ca [KEVE rcfct

(e) jcrb tcibrelkb (f) [bibkvb kcjpinelkb (k) Ekkureky


Ek kureky (m) Vbpbetefninty

 50. thb rcfct kcl`urecl, whnkh ns usbm nl hn`h rbekh eppinkecls

(e) pcier (f) gcnltbm erj (k) [phbrnkei (m) (e) & (f).

58. Nltbraekb fbtwbbl thb iest inlo ca thb jelnpuietcr elm thb blm bbktcrs ns keiibm

(e) krnkei gcnlt (f) @rnppbr (k) Prnst (m) ]cci el`b / tcc jcull` pietb.

5>. ]hb mbvnkb whnkh ns usbm tc nltbrprbt thb mete stcrbm nl e jbjcry ca e rcfct.

(e)sblscr (f) kcltrciibr (k) [bqublkbr (m) [ylkhrclnzbr.

64. Lujfbr mb`rbbs ca arbbmcj bxhnfntbm fy rcfct wrnst

(e) 5 (f) 6 (k); (m) =


 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

ONLINETESTROBOTICSANDMACHINEVISION
SYSTEM

Nameofthestudent**
Nameofthestudent

Unknown

RegisterNumberoftheStudent**
RegisterNumberoftheStudent

class&Semester**
class&Semester

4/7

SubjectCode&Name**
SubjectCode&Name

ROBOTICS AND MACHINE VISION

Date&TimeofExam**
Date&TimeofExam

78

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwqg…   1/18
fL_3rwqg…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

1.RobotisderivedfromCzechword

Rabota

Robota

Rebota

Ribota

2.ARobotisa

Programmable

Multi functional manipulator

Both Programmable and Multi functional manipulator

None of the above

3.Themainobjective(s)ofIndustrialrobotisto

To minimize the labour requirement

To increase productivity

To enhance the life of production machines

All of the above

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwqg…   2/18
fL_3rwqg…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

4.ThefollowingistrueforaRobotandNCMachine

Similar power drive technology is used in both

Different feedback systems are used in both

Programming is same for both

All of the above

5.AccordingtoAsimov’sthreelaws,underwhatcircumstancesisitallrightforarobotto
5.AccordingtoAsimov’sthreelaws,underwhatcircumstancesisitallrightforarobotto
injureahumanbeing?

Never.

When the human being specifically requests it.

In case of an accident.

In case the robot controller is infected with a computer virus.

6.Drivesarealsoknownas

Actuators

Controller

Sensors

Manipulator

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwqg…   3/18
fL_3rwqg…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

7.Amanipulatorisalsoknownasa:

Track drive.

Robot arm.

Vision system.

Robot controller.

8.ClockwiseofAnticlockwiserotationabouttheverticalaxistotheperpendiculararmis
providedthrough

Shoulder swivel

Elbow extension

Arm sweep

Wrist bend

9.Theregionthroughoutwhicharobotarmcanisaccomplishtaskscalledits:

Coordinate geometry.

Reference axis.

Reference frame.

Work envelope.

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwqg…   4/18
fL_3rwqg…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

10.Thecommonroboticarmhas___________degreesoffreedom.

Six

Three

Two

Five

11.Arelayisatypeof:

Actuator

sensor

Controller

end effector

12.Radialmovement(in&out)tothemanipulatorarmisprovidedby

Elbow extension

Wrist bend

Wrist swivel

Wrist yaw

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwqg…   5/18
fL_3rwqg…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

13.Whatisthenameforspaceinsidewhicharobotunitoperates?

Environment

spatial base

work envelope

exclusion zone

14.WhichofthefollowingtermsISNOToneofthefivebasicpartsofarobot?

Peripheral tools

end effectors

controller

drive

15.Thenumberofmoveablejointsinthebase,thearm,andtheendeffectorsofthe
robotdetermines_________

Degrees of freedom

payload capacity

operational limits

flexibility

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwqg…   6/18
fL_3rwqg…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

16.Whichofthebasicpartsofarobotunitwouldincludethecomputercircuitrythat
couldbeprogrammedtodeterminewhattherobotwoulddo?

Sensor

controller

arm

end effector

17.IndustrialRobotsaregenerallydesignedtocarrywhichofthefollowingcoordinate
system(s).

Cartesian coordinate systems

Polar coordinate systems

Cylindrical coordinate system

All of the above

18.TheRobotdesignedwithCartesiancoordinatesystemshas

Three linear movements

Three rotational movements

Two linear and one rotational movement

Two rotational and one linear movement

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwqg…   7/18
fL_3rwqg…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

19.TheRobotdesignedwithPolarcoordinatesystemshas

Three linear movements

Three rotational movements

Two linear and one rotational movement

Two rotational and one linear movement

20.TheRobotdesignedwithcylindricalcoordinatesystemshas

Three linear movements

Three rotational movements

Two linear and one rotational movement

Two rotational and one linear movement

21.WhichofthefollowingworkisdonebyGeneralpurposerobot?

Part picking

Welding

Spray painting

All of the above

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwqg…   8/18
fL_3rwqg…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

22.ThefollowingdriveisusedforlighterclassofRobot.

Pneumatic drive

Hydraulic drive

Electric drive

All of the above

23.Internalstatesensorsareusedformeasuring__________oftheendeffector.

Position

Position & Velocity

Velocity & Acceleration

Position, Velocity & Acceleration

24.Whichofthefollowingsensorsdeterminestherelationshipoftherobotandits
environmentandtheobjectshandledbyit

A.Internal State sensors

B.External State sensors

C.Both (A) and (B)

D.None of the above

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwqg…   9/18
fL_3rwqg…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

25.Whichofthefollowingisnotaprogramminglanguageforcomputercontrolled
robot?

AMU

VAL

RAIL

HELP

26.InwhichofthefollowingoperationsContinuousPathSystemisused

Pick and Place

Loading and Unloading

Continuous welding

All of the above

27.In__________driveeachmachineisdrivenbyitsownseparatemotorwiththehelpof

gearsandpulley

Individual drive

Multimotor drive

Group Drive

None of the above

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwq…   10/18
fL_3rwq…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

28.ThelawsofRoboticsare:

a) A robot may not injure a human being

b) A robot must abbey the order given by human except when conflict with the first law

c) A robot must protect its own existence except when it is violating first and second law

d) Both b and c

29.Thebasiccomponentsofrobotare

The mechanical linkage

Sensors and controllers

User interface and power conversion unit

All of the above

30.A_________isconnectionbetweenpartsorlinksinarobotthatallowmotion.

Hinge

Joint

Dis joint

None of the above

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwq…   11/18
fL_3rwq…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

31.ClassificationofRobotisbasedon:

Geometry and geometric classification

Left right classification

Based on control system

All of the above

32.Inwhichofthefollowingdrives,thereisnoslip

Open belt drive

Crossed belt drive

Rope drive

Chain drive

33.Thevelocityratiooftwopulleysconnectedbyanopenbeltorcrossedbeltis

Directly proportional to their diameters

inversely proportional to their diameters

directly proportional to the square of their diameters

inversely proportional to the square of their diameters

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwq…   12/18
fL_3rwq…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

34.Duetoslipofthebelt,thevelocityratioofthebeltdrive

Decreases

increases

does not change

none of the mentioned

35.Whenthebeltisstationary,itissubjectedtosometension,knownasinitialtension.
Thevalueofthistensionisequaltothe

tension in the tight side of the belt

tension in the slack side of the belt

sum of the tensions in the tight side and slack side of the belt

average tension of the tight side and slack side of the belt

36.Whyisanidlergearusedingeartrains?

a.To obtain minimum centre distance between driving and driven shaft

b.To have required direction of rotation

c.Both a. and b

d.None of the above

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwq…   13/18
fL_3rwq…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

37.Whichofthefollowingstatementsarefalseforbeltdrives?1.Beltdriveisusedin
applicationshavingconstantspeeddrive2.Beltdrivescanbeusedatextremelyhigh
speeds3.Beltdriveshavelowpowertransmittingcapacity4.Beltdrivesneedcontinuous
lubrication

1 and 2

1, 2 and 3

2, 3 and 4

1, 2 and 4

38.Whichgearsareusedtoconnecttwointersectingshaftaxes?

Crossed helical gear

Worm and worm wheel

Bevel gears

All of the above

39.Whatisthepurposeofusingsteelchains?

To avoid slipping

To avoid friction

To avoid accelerated motion

To avoid jerks

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwq…   14/18
fL_3rwq…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

40.Thetoothedwheelsinchaindrivesareknownas______

Sprockers

V-belt

V- chain

sprocket wheels

41.Thedistancebetweenhingecentresoftwocorrespondinglinksisknownas_______

Pitch

Pitch circle diameter

Sprocket length

Sprocker diameter

42.Thefrictionoftheharmonicdrivesdependupon

Torque

Momentum

Load

Initial tension

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwq…   15/18
fL_3rwq…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

43.______________isthemaincomponentofaharmonicdrive,whichcangeneratea
repeatedvibration

The flexspline

circular spline

wave generator

spline

44.Whichofthefollowingisnottrueaboutgears?

Positive drive

Constant velocity ratio

Transmit large power

Bulky construction

45.highrepeatabilityapplicationsofCartesianconfigurationsisdueto

Linear joints

High stiffness of links

Its rigid structure

All the above.

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwq…   16/18
fL_3rwq…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

46."pistonmovementinsidetheenginecylinder"is.........typeofjoint.

prismatic

rotational

twisting

revolving

47.Therobotconfiguration,whichisusedinhighreachapplications

a.Polar

b.jointed arm

c.Spherical

d.(a) & (b).

48.Basedonfingermovement,Mechanicalgrippercanbeclassifiedas__________

a.pivoting movement

b.linear or translational movement

c.a & b

d.none of the above

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwq…   17/18
fL_3rwq…
 

7/10/2020 ONLINE TEST ROBOTICS AND MACHINE VISION SYSTEM

49.ASphericalcoordinaterobotshouldhave________joints

a.one revolute and two prismatic

b.three prismatic

c.two revolute and one prismatic

d. a,b& c

50.Basedonthecoordinatesystemrobotscanbeclassifiedas_________robots.

a) Cartesian

b) Spherical

c) Cylindrical

d) a,b& c

https://docs.google.com/form
https://docs.google.com/forms/d/1p9yFH-8FOgYWH
s/d/1p9yFH-8FOgYWHlTHKZ8KhyAKvXBV
lTHKZ8KhyAKvXBVEDkmQ2MmPs
EDkmQ2MmPsnIVws/edit#respo
nIVws/edit#response=ACYDBNjHW
nse=ACYDBNjHWAvLOdk4-1A7B
AvLOdk4-1A7BfL_3rwq…   18/18
fL_3rwq…

You might also like