0% found this document useful (0 votes)
136 views21 pages

DAA-Unit 1

unit 1 2022 updated

Uploaded by

vedant bhatnagar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
0% found this document useful (0 votes)
136 views21 pages

DAA-Unit 1

unit 1 2022 updated

Uploaded by

vedant bhatnagar
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF or read online on Scribd
You are on page 1/ 21
Design and Amalyed 84 Algosithms Unit - 2 Tnveodu ctfon ~Algostthm Design ~ Fundamentals % Algorithms —Corwectness % algosithm —Time Complex? hy Analysts - Incestion Soxt — Line count, O©pexation count — Algesithm Design paradigms — Designing an Algoxith and 6 Analysd — Best, Wosst and Avesage Coase - Asymptotic notattone based on grewth fun etione- 0,0, 8,10, - Mathematical Analyed - Induetion- Recussence elatiens — Solution ey re cussence welations — Substitution method- Recussion tree — Socen rn plea Lab! 1) Simple Algozithm — Tneéstion Sost oe 2) Bubble Sost 3) Recusvence “ype ~Mexye Sort, Linea Seasich Algesither Destgn Yeradligms: — General Approach to the Construction 6b ebbeccent 2 Divide ancl Conquer - Mege Bolugons., to pevblems 2) Greedy approach Wy Dynamte Frogrammtng ~ Optimizing +e Yecussive Approach, 5) Back Teaching 6) Bramch Qnd Bound D Bate Force racligrost ® ingtonce ©6 the Ppsoblem to be Aygertthm Design Te DDivide and Conques: Given an h Bolved , aplit into Sevesal, Sruiley Bub Inz tances , Bolve eac ne the Sb the Bub tMAtances Independently And then Combi Bub inatame Solutions Bo as to yield a Bolutien fos the Ovigival ingeance eq: Binaoy Search, Mesge Soxst 2) Dynamic Prog ramen ng ! Ie & an algertthm destgn method . : yasu! Used Ushen the Aolution toa povblem tan be viewed eo & Feauence oF decisions eg. Shostest path algozithm , Traveling Salesman poblen We +ry to Sincl Optimal sequence oe decisions Can be Sound by maning the decisions One ata time and never making an exsoneous Cecision B) Greedy method: The greedy Appsrach Suggests congtructtn a elution though a Sauence &teps , Gach expanding a postfally Constsucted olution Obtained so far, until a complete Zolutfon to the problem ?g wea ched. On each &tep, tne cheice Made must be Vteastble — Hasto aatisfy the Prrblern’s Congteinte aRocally optimal — It has +0 be the best locad chefce among all feastbie chorces availasie on that Stop 3) izvevocable — Once made, ik eannot be Changed on Bubsequent Ateps 64 the algorithm = “Greedy” grab 6 the best alternative availale in the jepe that a Reguence of Locally optimal Choices will yfete a Optimar Zolutfon to the entive Porblem, eg: Priro's Algoriton for mst, Krusbat's algorithr, for mst, Dijrstra’s Shostest path algorithm h . 2 bars >Bacictyacking: The principal fea & to construct Boluwens ra a Component at a time and evaluate such pantially const™ Jutio” Canditates as Gollows? Th a Partially cone toucted $° lems can be developed further Without violating the ps? Constraints, it can be deme by taning the $frst vemainey legitimate optfon pr the next Component. Th there Z ne legitimate opifon py the next Component;no altenain Yer any vemaining Component need to be coneidexed Tn th case , the algorithm backtmacus to veplace the Rese component o% the pasifally constsucted olution with Te next optfen £g. n- Queens Problem , Subset sur povblem S)Branch and Bound: Tt & om algostthen design paradigm ushich & generally uced tor solving combinatorial Optimization problems Ti & basecl on the princéple thet the total 2er e@ teos?ble Bolutions Can be pastftiened into Smaller Zubset ef Zolutfons. These grvaller subset, Can then be evaluated Bystematically unt?l the lest Selution & Pound Branch and beund ab a Stepwise Enumeration ob possible candidate Soluttons by exploring the entre Bearch &pace tree. Before Constructing the #pace © an upper and lower bound for a given dvee, we 4€ c tne optimal Solution. At each level, mm besead on pale : ee nees | enna ae decision bout cohich node to include in the Solution sett Choose a node with best bourd) eg: Assignment Provlem, knapsack Porblen, ana Traveling Saleeman preble» BD) ®o @:; Time Compleatty Analyste: D) fextten, iro;t--9 a> fostizoy fens t4+4) % seat; —n A atat; h ’ On) ot BS} goocisir ten, f42) i 3tat } = Jo Same for inexement % % 5,10 or 20 Even though at's nla Beny= 2B = On) yy fovcéeo, Cen tat) = (n+ 4 ter CJeos janjtp oh a i start ~ nen en 3 B (ty Cntid= an? 4onFI = O¢n?) forcizor, fens tae) he o 2 br c§zoy Retai+y a Bkrt! g 14043 tye + nz nent) OCr?) Finding Time Complessty 06 an Algovithm: 1) Thatwetfon Count 2> Operation Count C Basie Operations) — Bopmas 2) (Tavle method) Step count — A program Atep & dejo an a syntatically / semantically meaningsal Segment © a program that has an Execution time Independent o% the instance Chasactesistics Steps assigned 40 any pmogram Begment clepencls on the Kind @& Statement \) Comment — Zezo » Assignment - One D for-while ,yepeat —uvtil — Consider Step counts only tps the Contool Post ©, the Statement The tavie contaivs Sle and frequency Sle - arneunt by which the count Changes as a result S execution % that Statement frea,- total no. && time each Statement & executed eq Algpsitnm Sum Can) Ye drequency total stepe UL gso0, a rf : for wet ton do 1 ny ny Ses4ang; 1 ” n telum 6 1 1 I % © 2 ua ORE & $s0q, Lotal Steps Sle n=O noo n=0 nro Algor?then Rsum (a) ec 2 ° ° % isa “w saa! tug on % Cn £0) then ' 1 ' i t Yelusn 0.0 ' 1 o ' c else vetusn Reum(am-Dtati +2 0 ' ° lax oi ° es _ ° ° 2 24x Corsectnecs o an eulgostttonn s_ Proos) D Proog by Paduction CDFrect % Proog by Contradiction 3) Proo, by Looptnvaxient 4) Poot by Counter example CIndtvect Proof) 5) Pro, by eases &) Proeg by Chain ©, ibe D Frees by contraposttive Proos by induction? ) Prove base case & TRoE 2) Assume that pey'n’, tt & TRvE 2) Ty +o prove for case ‘nt!’ 4 242 Prove ire acon ail Case nals aye Assume Tay to prove gor case ott! ba de (ne) CntttD ia 2 2 te DEM 2 i4atat + On-bn fet 2. (ary) Cntin) 2 adae 4 Crt) #Cnd1) 2 (+0 Co) sitotae t+ ne(ne 2 nA Ont \ fon tra) nt ae nad = 2 Cnty Cnta) = NCnti+ 2¢nH) 2 (Nh) Cnt) 2 Ls = RWS Hence proved Neely esc aa Iavastent + Something thar & always TRE Atter $rndtog loop tnvaxtent, we have to pave 1 Tntfalizattes —How dees the Pnavient get Pnittalized ? 2) Loop Matntenance — How dees the Tnvarient Changer ak each parc of the loop? 2) Texmtnatton - Doee the loop stop? when? Vroo, by Contrapostttver, Form the Contraposttive Atalement , Prve Fk And theseby prove exigtwal as TRIE eg. ag A then B ADB Then tL vB=> -va 7, 2-ba+5 & even, then x & odd Contrapositve: I, wc & even. then w*-6xts db odd Let xz2a then (200 6C2a045 = 4ar-1245 = 2 Coar Za +ad4I thes 2% -bx +5 B odd Roos by counter exampet Tdentify a case case Br fch Our aasumptten & Mot TRvE £9. Prove or dis pave Faay] = Tal ttyl , Vx ¥y Cay znd ig meh ant yok Sot Lets assume th %=-1, 953, %Y> -33- Hen proved Froog by cower t Spitting the problem Pnto Subposits and tsy to prove them one by one Prom, by chain ob fbyes Using mere than one conditions to psve Prog Vroog by contradiction’ Try to pee that the given Statement & FALSE and ay the Yesulk % not FALSE 7 then Bay that the Btatemenk & TRUE Recurrence velationss An equation or inequality that desewber 26 dancifon ta terms 06 th value on Smatles “in puts. ¢ Basie HP Hew te ussite vecursence velations tor a given code Recursive at Y void Vest Cint nd — Th) 4 $ 1 n=0 A Cnr) — Tone peveg Or rdary — 4 Ten-p+a , 17° Test tn -19; —Ten-y f [Rove Teno 2 te Vota Test Cint vn) » Ten) § A Uno) a. Fe dpvefco beng bee n+l a : wag” prirenc pa", ny n oi Test tn -05 — Thm -1D y th Tonys Ten-10 + 2042 dl can be appreciated to Tune ae Tln-en , 070 ) Wid Test Cint n> — Tw mal Tonjy= : Leena ay enre ! ne 270 XL dectsoptens te B22 — lon a partgeryd”, 2; — login Test cn-i05, — Ten-1> 3 % Tone Ten -1) 4+ 2legnt2 y canbe Approdmated-o Tons top-rdlegn 4) void Test Cint n) =— Ten) 4 a cnn — | by Chsos tans tat — n4] x Bimt } — a» 4 Test Cnj2)," =Ten/a) a Test cn]a)} —TCn}y y Tend= 2ttoI2) +n 42) AL appsvrtimated to Tend: 27 Cnjaytn met Tome attnja)tn » 27! Salva g¢ Yetussence velations: D Trevatfon method 2) Substitution method 3) Recusefon tree method wy Master's thaewews: Cuvseftutfon method: Procoduse’ \. Guess the olution 2. Use the mathematical induction to find the boundary Cond?tten and Bhow that the guess & Coyseck: D Tend= Ten-p+ To ques the olution, We Can ike forward Aubetitutton me thee Toss tTtn-t — @ Ten-p = tTen-2) +1 -@D Supstt tuting Oin®O we get Ten) = TCn-a9 +141 Given Tem: Ten-242 — © Substi turing Din © we get Tims Tin-s)+s — © Loowing at ©,®D and ©, it & understood that, -© Gbtey K times Ton)= Tln-W +k wk. E TCO =I 112 n-keo , nek oF 2. © becomes Tone TCn-n+n TONM= TCODdtn= N+ K=n 2. Teny= OCH) Step 4% Guess the Solutton, Tin)= OCn) Step 23 We have to Show that for constant, © Timee.n Traduction Base: Tte)=1 Anduciion Hy polhes& + TCn-D £ ecn-1) To powe: T(n) 2 en Ton = Ten-) 4 S cl(n-D+I = en-c+ £En Hence prved 2 Ten)= et(nfa)tn To quese the olution, Tin)= 2T(2)tr -O TCR) er B)+(8) -@ Subs trating © irO Tin) = 2for( 2)+C2) | a Tis ut (2)+an —@© C#)= 2r( 3) +C§) -© Substituting Ore vem] 2103) (2) | +3 Tops er (B)+arn - © Compartag ©, © and © - K n Menerat Sqpasten ST ins & (2 weet Tops! ee eae k= log . log n I Tend= 2 T[ Tegn | +nlog n CS ) iz To pee that Ttn> 4 e-nlogn Induction Base ¢ 7 cw=1 Induction +Hypotnesu . (5) 4 C3) 'eg( 3) WK. Thnd= at C Btn we(S ) log (2)+n enlog (2) +n In Ol = enlogn- enlog stn = enlogn-entn & cnlogn Hence prvecl 5) Tine 3 ' cD n=l (t(g)t . n> Stepli Gece the solution’, Tem= Oly) Stepa: Pave that the guess 2 Corsect using tnduction. Tnduction Bases T Ci) =! Tnductton Hypotrest TAD) 4c CAIs) To prove © Tek) £c.k & tue | VK en Tonys oT (3) +I e2e(2 ) +1 = enti Zen Hence proved. Recasston Tree Method! — Maxtng a good guess & Zometimes di gtteuit with the substitution methed ~ Recussfon Tree method can be usea to deve a goo quess - Recursion trees how Rucceactve erpamsions Ot vecusrentes ustng trees - Recussfen Trees model the cost & arecussive algosithm that & Composed g two poste 1. Cost a non Post Yecussive 2. Cost eG wecurSive call on Smalles Input ize - A Tee node Vepresents the ~ To determine the total cost % the cost ef a Bub-pro blem Re cussion Teo, evaluate 2) Cost o& Individual node at depin "i" >) Sum up the cost op all nodes at clepth "t” © Sum up all per level costs &% the Recursion Tree Excampie at 1 nz) Teny= ” 2r( 3) 4 n>) post Root = Cost @ nom vecursive TUn= ar (2) +n TCR) CB )tF UE) Es) a af) 270) n nas 73) C3) ® - a 2) —2?vn : ® ~ Jn Q®& GC =o +O) Let TCI) occurs at depth’ k’. ce. Povblem 2728 reduces to 4 at &* leven Total cost= Cost © Leah nodes + Cost eg Internat nodes Total cost: (cost of a leas vede x Totad vo. & Leay nodes) + Sum e, costs at @ach level & Intesnal nodes = Le+I, Fer this , we need to find the value 6 K in terms of > Let eh The cost % a leat node = Toe No leay neces at ‘kt’ level = aX nodes leg rosy? *. Cost o leag vredtes (LF 2 =n Le§ Lesan: — Bese og Internat node =n at each level No. % levels of internal nodes (ote k= K levels Ige ken Total Costs Le+Te Tin) = nlogn tn Ten) = OCnlegn) \ : eee a (3) E02 vy TUn)= ot (2 jan 3) 1) *(3)= or(%)* ¥ Us)ea(S) n oo ~ Ler ug assume ab Kk lever , i Gy the porblern reduces t0T C1) OOO w Geo J > * sl pine a” => n& - Se 0 2 oe 2 (§ ( 4 2 2 aT ethel es Teta no. &% lea nodes at K' level =2 \ : login = i oe oye (4) (4) (a) Simce et cit & deeper Lee Ki Roveh & the Rast Levet whexe TCID=! on — leche 2 @ 2% 3 c Bs level + > ¢.a'n su 3B o c29 > lwa2 iy eon 3 Bz k 2. Ae kt levet an\=} oe 2Xn ct > 2k K n= 2 vy 2 E k K logn = leg (25) = log 3 aleg 2 =) Klega - Klos 2 togn = K Ie5(2,) Ke Neg. veal) k = log nh a Totar vo. 0% nodes ak last bok = a” ig TTorad Cost of dast leveb= 9°) - | 1 2 =n (2 ee *@) Yotak .- © Intesnad nelos = n- K 2 nto 1. Totad cost opthe trees n 8) yy log ‘3 Z [sted bere: ® —Applicatie Yor vewussence velations oF, the form Tlnde at(B)tstn) , azi bel There axe 3 Cases Case dt Ip fen) = O(n 4°" ©) , €>0, then Ten = © (ns) > “ominate the werk Case a’ Tp fen) = OCn 8) then log & Both no-e4 necies and Ton) = O(n d log wm) a> Fem oe coos at any level oe Cue 38 Th feny= 2 Cn) 22 aF("/e) 2c ftn), @ 70 .cK Wosk on a level Tiny = ©( fem) dominates Eo cB aeny= et ( 3) +1000n? Comparing with TUnj= ar( 2) +Fen ,AZ1 b>I Q=@,b=2 , ftny= 1000n? Substituting the abeve in case 4 fen= O(n ‘aya-*:) =p log, % = log = 2 = O:tn i) Th el, then PCny= © (m7) = 1000 n® So, Case 4 holds te Tends O(n %*)= ©Cn?) Tin)= ©(n3) | Egt2! Tne ar (2) ston When Compaseal with Thn)= AT (3) +n), axl, b>: heve a=2 ,b=2, ftnd=1on log a = log m= 1 Subattiuting the abo values fn cose 2 FOnd= Gln ?%*) $en= OC n')= &Cn) lon = @Cn) Tha coze holds e+ TlM= &Cnlogn ) Fgi8) Tome an (5 +n? Wher Compared with Tn) = at (B)rFem, Atl, bl heve @=2, b=0 y gCnzen® log as log 2 = 1 Supetttuting the above Valuct tn Case a +€ ene 2% Cn Po” > rte) = Gn ip €s! then }$tnjy= 2 Cn?) Hence Coase 3 holds Cheching Second condition 2$(M/o) Se. 0? e (ay 4 e.n® ee Bhi Th we choose ‘clas 1 , then a n 4 ne zt Tt 2 True Tem: OC Hen) ah. ends OCn7) Othey eramples* Cases Tn)= AT(Z)4n ce f Ten) = oe 2 yal ase 2 n) C 2 J Case 3% Tlnd= BT C2) +nlogn

You might also like