4/7/22, 0:18 LSD.
test function - RDocumentation
RDocumentation
Search all packages and functions
agricolae (version 1.3-5)
LSD.test: Multiple comparisons, "Least significant
difference" and Adjust P-values
Description
Multiple comparisons of treatments by means of LSD and a grouping of treatments. The level by alpha default is 0.05.
Returns p-values adjusted using one of several methods
Usage
LSD.test(y, trt, DFerror, MSerror, alpha = 0.05, p.adj=c("none","holm","hommel",
"hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main = NULL,console=FALSE)
Arguments
y
model(aov or lm) or answer of the experimental unit
trt
Constant( only y=model) or vector treatment applied to each experimental unit
DFerror
Degrees of freedom of the experimental error
MSerror
Means square error of the experimental
alpha
Level of risk for the test
p.adj
Method for adjusting p values (see p.adjust)
group
TRUE or FALSE
main
title of the study
console
logical, print output
https://www.rdocumentation.org/packages/agricolae/versions/1.3-5/topics/LSD.test 1/3
4/7/22, 0:18 LSD.test function - RDocumentation
Value
statistics
Statistics of the model
parameters
Design parameters
means
Statistical summary of the study variable
comparison
Comparison between treatments
groups
Formation of treatment groups
Details
For equal or different repetition.
For the adjustment methods, see the function p.adjusted.
p-adj ="none" is t-student.
It is necessary first makes a analysis of variance.
if model=y, then to apply the instruction: LSD.test(model, "trt", alpha
= 0.05, p.adj=c("none","holm","hommel", "hochberg", "bonferroni", "BH", "BY", "fdr"), group=TRUE, main =
NULL,console=FALSE)
where the model class is aov or lm.
References
Steel, R.; Torri,J; Dickey, D.(1997)
Principles and Procedures of Statistics
A Biometrical Approach. pp178.
See Also
`BIB.test`, `DAU.test`, `duncan.test`,
`durbin.test`, `friedman`, `HSD.test`,
`kruskal`, `Median.test`, `PBIB.test`,
`REGW.test`, `scheffe.test`, `SNK.test`,
`waerden.test`, `waller.test`, `plot.group`
Examples Run this code
# NOT RUN {
library(agricolae)
data(sweetpotato)
model<-aov(yield~virus, data=sweetpotato)
out <- LSD.test(model,"virus", p.adj="bonferroni")
#stargraph
https://www.rdocumentation.org/packages/agricolae/versions/1.3-5/topics/LSD.test 2/3
4/7/22, 0:18 LSD.test function - RDocumentation
sta g ap
# Variation range: max and min
plot(out)
#endgraph
# Old version LSD.test()
df<-df.residual(model)
MSerror<-deviance(model)/df
out <- with(sweetpotato,LSD.test(yield,virus,df,MSerror))
#stargraph
# Variation interquartil range: Q75 and Q25
plot(out,variation="IQR")
#endgraph
out<-LSD.test(model,"virus",p.adj="hommel",console=TRUE)
plot(out,variation="SD") # variation standard deviation
# }
Run the code above in your browser using DataCamp Workspace
Powered by DataCamp
https://www.rdocumentation.org/packages/agricolae/versions/1.3-5/topics/LSD.test 3/3