1.
Given ∫ 2x dx = f(x) + C, then f(x) is
2.
(a) sin² x – cos² x + C
(b) -1
(c) tan x + cot x + C
(d) tan x – cot x + C
3.
(a) 2(sin x + x cos θ) + C
(b) 2(sin x – x cos θ) + C
(c) 2(sin x + 2x cos θ) + C
(d) 2(sin x – 2x cos θ) + C
4. ∫cot²x dx equals to
(a) cot x – x + C
(b) cot x + x + C
(c) -cot x + x + C
(d) -cot x – x + C
5.
(a) log |sin x + cos x|
(b) x
(c) log |x|
(d) -x
6. If ∫ sec²(7 – 4x)dx = a tan (7 – 4x) + C, then value of a is
(a) 7
(b) -4
(c) 3
(d) −14
7. The value of for which
(a) 1
(b) loge4
(c) loe4 e
(d) 4
8.
9.
then value of a is equal to
(a) 3
(b) 6
(c) 9
(d) 1
10.
11.
12.
(a) I1 > I2
(b) I2 > I1
(c) I1 = I2
(d) I1 > 2I2
a
13. If a is such that ∫ xdx ≤ a + 4, then
0
(a) 0 ≤ a ≤ 4
(b) -2 ≤ a ≤ 0
(c) a ≤ -2 or a ≤ 4
(d) -2 ≤ a ≤ 4
d
14. If dx (f(x) )= g(x), then antiderivative of g(x) is ________ .
15. Derivative of a function is unique but a function can have infinite
antiderivatives. State true or false.
16.
17. Find ∫(ax + b)3dx
18. If ∫(ax + b)² dx = f(x) + C, find f(x)
d
19. We have dx (3x² + sin x – ex) = 6x + cos x -ex. Represent the expression in
the form of anti derivative.
20.
21.
22. Evaluate ∫ (sin x + cos x)² dx
23.
24.
25. Find ∫(ex log a + ea log x + ea log a)dx
1
26. Evaluate ∫e 2 logxdx.
27.
(a) 3x + x3 + C
(b) log |3x + x3| + C
(c) 3x²+ 3x loge 3 +C
(d) log |3x² + 3x loge 3| + C
28.
e√x
29.∫ dx=?
√x
30.
31. Find ∫ sec² (7 – x)dx
sin √ x
32. Find ∫ dx
√x
33. Find ∫2x sin(x² + 1) dx
34.
35.
36.
37.
38.
39.
40.
41.
42.
43.
44. Evaluate ∫ sec4 x tan x dx
45.
46.
47. Find ∫ cot x . log(sin x) dx
48.
49. Find ∫(ex + 3x)² (ex + 3)dx
50.
51.
52. Find ∫ (cosx – sinx)² dx
53. Evaluate ∫1+sinx4−−−−−−−√dx
54.
55.
56.
57.
58.
59.
60. ∫ ex sec x(1 + tan x)dx = ________ + C.
4 4 2
61. If ∫ f ( x) dx =4 and ∫ { 3−f ( x ) } dx = 7, then the value of ∫ f (x)is
−1 2 −1
62.
63.
64.
65.
a 3
66. If ∫ 3 x dx = 8 write the value of a. 67. Evaluate. ∫ 3 dx
2 x
0 2
68.
2a a
69.∫ f (x )dx = 2 ∫ f ( x ) dx if f(2a -x)= f(x). State true or false.
0 0
70.
then value of a is ________ .
71.
72. ∫ |1−x|dx is equal to ________ .
−1
73.
is equal to 0.State true or false.
74. The value of ∫|cos x−1|dx | is 2. State true or false.
0
75. The value of ∫ sin x cos xdx dx is ________ .
3 2
−π
76.
77.
78.
79.
80. Evaluate ∫ x| x| ⅆx
−1
2π
81. Evaluate ∫ cos x dx
5
82.
83. Evaluate ∫ [2 x ]dx
0
4
84. Evaluate ∫ f ( x ) x dx , where
1
85.
86. Evaluate ∫ ( sin
−93 295
+ x )dx
−π
87.
88.
89.
90. Find the value of ∫ logx . dx
1
91. Evaluate ∫ x (1− x).dx
0
92.
93. Evaluate ∫ x (1−x ) dx
2 n
94.
95. Evaluate ∫|cos x| ⅆx
0