0% found this document useful (0 votes)
84 views1 page

Trombones Boney M

The document discusses a mix of songs by the group Boney M including Rios de Babilonia, It's a Holiday, Ma baker, and Rasputin. It also includes musical notation.

Uploaded by

Manu Duarte
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
84 views1 page

Trombones Boney M

The document discusses a mix of songs by the group Boney M including Rios de Babilonia, It's a Holiday, Ma baker, and Rasputin. It also includes musical notation.

Uploaded by

Manu Duarte
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 1

MIX BONEY M

Rios de Babilonia-It´s a Holiday-Ma baker-Dady Cool-Rasputin

130 neg./min 24/10/2005

2                                              
2                                                    
Trombones
4
                
 
1.          2.     


 


 


 2 




  
           
   



                    
 
  
    

                             

                                     
1

   
    
              
 
 
 

    
          
   

          
    
        2
                       
           
 
 
           
 
  
       
       
       
     
     
                 
                                                                   
             

             
                                  
                                                                  

                 

 
 
                   3                                   
                                                            

               
                                  4
       
         

                          
     

  
                    
       
 

 


 

 


 


 


  
 
 
 
 
 
 
 
 
   

 


  

 


  

 


   
 
 
 
 
 
 

          
                           
     
                                                                          

 
  
 

 
 
 

                                    
5

 


  


 


  


   


  


                    
  
          
 
 
 
 
 
 
       
 
 
 
 
 
  

 

 

 

 
 
 
 
 
               

You might also like