0% found this document useful (0 votes)
127 views120 pages

Rinex 4.00

This document describes version 4.00 of the Receiver Independent Exchange Format (RINEX). RINEX is a data format for storing GNSS observation and navigation data. Major changes from version 3.05 include support for additional GNSS systems like Galileo and QZSS. The document outlines the philosophy and history of RINEX, provides basic definitions, and describes the features and formatting of RINEX version 4.00 files, including updates to the file header, observation and navigation data records, and clarifications to the formatting.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
127 views120 pages

Rinex 4.00

This document describes version 4.00 of the Receiver Independent Exchange Format (RINEX). RINEX is a data format for storing GNSS observation and navigation data. Major changes from version 3.05 include support for additional GNSS systems like Galileo and QZSS. The document outlines the philosophy and history of RINEX, provides basic definitions, and describes the features and formatting of RINEX version 4.00 files, including updates to the file header, observation and navigation data records, and clarifications to the formatting.
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as PDF, TXT or read online on Scribd
You are on page 1/ 120

RINEX

The Receiver Independent Exchange Format


Version 4.00

Ignacio Romero (ed.)


IGS/RTCM RINEX WG Chair
ESA/ESOC/Navigation Support Office
Darmstadt, Germany

Ignacio.Romero@esa.int

1 December 2021

Acknowledgement: This RINEX version is thanks to the IGS, the RTCM/SC104, and all previous
versions developed from 1989 by: Werner Gurtner, Astronomical Institute of the University of Bern,
Switzerland, Lou Estey, UNAVCO, Boulder, Colorado, USA, and Ken MacLeod, NRCan, Ottawa,
Canada to all of whom the entire GNSS community are grateful.
RINEX 4.00

Table of Contents
1 RINEX 3.05 to 4.00 Major Changes .................................................................................. 8
2 THE PHILOSOPHY AND HISTORY OF RINEX ........................................................... 9
3 GENERAL FORMAT DESCRIPTION ........................................................................... 12
4 BASIC DEFINITIONS..................................................................................................... 13
4.1 Time ........................................................................................................................... 13
4.1.1 GPS Time ......................................................................................................... 13
4.1.2 GLONASS Time .............................................................................................. 13
4.1.3 Galileo System Time ........................................................................................ 13
4.1.4 BeiDou Time .................................................................................................... 14
4.1.5 QZSS Time ....................................................................................................... 14
4.1.6 NavIC System Time ......................................................................................... 14
4.1.7 GNSS Time Relationships................................................................................ 14
4.1.8 GNSS Week numbers ....................................................................................... 16
4.2 Pseudorange ............................................................................................................... 16
4.3 Phase .......................................................................................................................... 17
4.4 Doppler ...................................................................................................................... 18
4.5 Satellite numbers ....................................................................................................... 18
5 RINEX VERSION 3 and 4 FEATURES .......................................................................... 20
5.1 Long Filenames ......................................................................................................... 20
5.2 Observation File Header ............................................................................................ 20
5.2.1 Order of the header records .............................................................................. 20
5.2.2 Date/Time format in the PGM / RUN BY / DATE header record ................... 21
5.2.3 Marker type ...................................................................................................... 21
5.2.4 Antenna references, phase centers.................................................................... 22
5.2.5 Antenna phase center header record ................................................................. 23
5.2.6 Antenna orientation .......................................................................................... 23
5.2.7 Information about receivers on a vehicle ......................................................... 23
5.2.8 Time of First/Last Observations ....................................................................... 23
5.2.9 Corrections of differential code biases (DCBs) ............................................... 24
5.2.10 Corrections of antenna phase center variations (PCVs) ................................... 24
5.2.11 Scale factor ....................................................................................................... 24
5.2.12 Phase Cycle Shifts ............................................................................................ 24

IGS/RTCM RINEX WG 1
1 December 2021
RINEX 4.00

5.2.13 Half-wavelength observations, half-cycle ambiguities .................................... 24


5.2.14 Receiver clock offset ........................................................................................ 25
5.2.15 Satellite system-dependent list of observables ................................................. 25
5.2.16 GLONASS Code-Phase Alignment Header Record ........................................ 25
5.2.17 Observation codes ............................................................................................ 25
5.3 Observation Data Records ......................................................................................... 32
5.3.1 Order of Data records ....................................................................................... 33
5.3.2 Event flag records ............................................................................................. 33
5.3.3 RINEX observation data records for GEO & SBAS satellites ......................... 33
5.3.4 Channel numbers as pseudo-observables ......................................................... 33
5.4 RINEX Navigation Messages .................................................................................... 34
5.4.1 Navigation Data Record Header Line .............................................................. 34
5.4.2 EPH Navigation messages for GPS (LNAV, CNAV, CNV2) ......................... 36
5.4.3 EPH Navigation messages for Galileo (INAV, FNAV)................................... 36
5.4.4 EPH Navigation message for GLONASS (FDMA) ......................................... 37
5.4.5 EPH Navigation messages for QZSS (LNAV, CNAV, CNV2)....................... 37
5.4.6 EPH Navigation messages for BDS (D1/D2, CNV1, CNV2, CNV3) ............. 37
5.4.7 EPH Navigation message for SBAS satellites (SBAS) .................................... 37
5.4.8 EPH Navigation messages for NavIC/IRNSS (LNAV) ................................... 38
5.4.9 STO Messages for System Time and UTC Offset ........................................... 38
5.4.10 EOP Messages for Earth Orientation Parameters............................................. 41
5.4.11 ION Messages for Ionosphere Model Parameters ............................................ 41
6 RINEX FORMATTING CLARIFICATIONS ................................................................. 42
6.1 Versions ..................................................................................................................... 42
6.2 Leading blanks in CHARACTER fields.................................................................... 42
6.3 Variable-length records.............................................................................................. 42
6.4 Spare Fields ............................................................................................................... 42
6.5 Missing items, duration of the validity of values ...................................................... 42
6.6 Unknown / Undefined observation types and header records ................................... 42
6.7 Floating point numbers in Observation data records ................................................. 42
6.7.1 Loss of lock indicator (LLI) ............................................................................. 43
6.7.2 Signal Strength Indicator (SSI) ........................................................................ 43
6.8 Floating point numbers in Navigation data records ................................................... 44
6.9 Units in Navigation data records ............................................................................... 44

IGS/RTCM RINEX WG 2
1 December 2021
RINEX 4.00

6.10 Navigation data stored bitwise .............................................................................. 44


6.11 Navigation message transmission time ................................................................. 45
6.12 Merged Navigation files ........................................................................................ 45
7 REFERENCES ................................................................................................................. 46
8 APPENDIX: RINEX FORMAT DEFINITIONS AND EXAMPLES ............................. 48
8.1 RINEX Long Filenames ............................................................................................ 48
8.2 GNSS Observation Data Files ................................................................................... 53
8.3 GNSS Navigation Message Files ............................................................................... 68
8.3.1 Navigation File Header .................................................................................... 68
8.3.2 GPS LNAV Navigation Message ..................................................................... 71
8.3.3 GPS CNAV Navigation Message..................................................................... 73
8.3.4 GPS CNAV-2 Navigation Message ................................................................. 75
8.3.5 GALILEO INAV/FNAV Navigation Message ................................................ 77
8.3.6 GLONASS FDMA Navigation Message ......................................................... 80
8.3.7 QZSS LNAV Navigation Message .................................................................. 82
8.3.8 QZSS CNAV Navigation Message .................................................................. 84
8.3.9 QZSS CNAV-2 Navigation Message ............................................................... 86
8.3.10 BEIDOU D1/D2 Navigation Message ............................................................. 88
8.3.11 BEIDOU CNAV-1 Navigation Message ......................................................... 90
8.3.12 BEIDOU CNAV-2 Navigation Message ......................................................... 92
8.3.13 BEIDOU CNAV-3 Navigation Message ......................................................... 94
8.3.14 SBAS Navigation Message Record .................................................................. 97
8.3.15 NavIC/IRNSS LNAV Navigation Message ..................................................... 99
8.4 STO, EOP and ION Navigation File Messages ....................................................... 101
8.4.1 System Time Offset (STO) Message.............................................................. 101
8.4.2 Earth Orientation Parameter (EOP) Message ................................................. 102
8.4.3 Ionosphere (ION) Klobuchar Model Message ............................................... 103
8.4.4 Ionosphere (ION) NEQUICK-G Model Message .......................................... 104
8.4.5 Ionosphere (ION) BDGIM Model Message ................................................... 105
8.4.6 STO, EOP, ION - Examples ........................................................................... 105
8.5 Meteorological Data File ......................................................................................... 107
8.6 Reference Phase Alignment by Constellation and Frequency Band ....................... 110
9 RINEX 3.05 to 4.00 Full Revision History .................................................................... 114

IGS/RTCM RINEX WG 3
1 December 2021
RINEX 4.00

Table of Tables
Table 1 : Constellation Time Relationships ............................................................................. 15
Table 2 : GPS and BeiDou UTC Leap Second Relationship ................................................... 15
Table 3 : Week Numbers between RINEX and GPS, QZSS, IRN, GST, GAL, BDS ............ 16
Table 4 : Constellation Pseudorange Corrections .................................................................... 17
Table 5: Observation Corrections for Receiver Clock Offset .................................................. 18
Table 6: QZSS PRN to RINEX Satellite Identifier ................................................................. 19
Table 7: Examples of long filenames for RINEX 3 data files ................................................. 20
Table 8: Predefined Marker Type Keywords........................................................................... 21
Table 9 : Observation Code Components ................................................................................ 25
Table 10 : RINEX Version 4.00 GPS Observation Codes....................................................... 26
Table 11 : RINEX Version 4.00 GLONASS Observation Codes ........................................... 27
Table 12 : RINEX Version 4.00 Galileo Observation Codes .................................................. 28
Table 13 : RINEX Version 4.00 SBAS Observation Codes .................................................... 28
Table 14 : RINEX Version 4.00 QZSS Observation Codes .................................................... 29
Table 15 : RINEX Version 4.00 BDS Observation Codes ...................................................... 30
Table 16 : RINEX Version 4.00 NavIC/IRNSS Observation Codes ....................................... 31
Table 17 : Example Observation Type Records ...................................................................... 32
Table 18 : Example RINEX Observation Epoch ..................................................................... 32
Table 19: Navigation Data Record Types ................................................................................ 34
Table 20: EPH Navigation Message Types ............................................................................. 35
Table 21: STO, EOP, ION Navigation Message Types........................................................... 35
Table 22: Navigation Message System Time Offset labels ..................................................... 38
Table 23: Navigation Message System Time UTC indicator .................................................. 39
Table 24: Time Offset Parameters per GNSS and per Navigation Message ........................... 39
Table 25 : Standardized SNR Indicators .................................................................................. 44
Table A1 : RINEX Filename Description ................................................................................ 49
Table A2 : GNSS Observation Data File – Header Section Description ................................. 53
Table A3 : GNSS Observation Data File – Data Record Description ..................................... 62
Table A4 : GNSS Observation Data File – Example #1 .......................................................... 63
Table A5 : GNSS Observation Data File – Example #2 .......................................................... 65
Table A6 : GNSS Observation Data File – Example #3 .......................................................... 67
Table A7 : GNSS Navigation Message File – Header Section Description ............................ 68

IGS/RTCM RINEX WG 4
1 December 2021
RINEX 4.00

Table A8 : GNSS Navigation Message File Header – Examples ............................................ 70


Table A9 : GPS LNAV Navigation Message Record Description .......................................... 71
Table A10 : GPS CNAV Navigation Message Record Description ........................................ 73
Table A11 : GPS CNAV-2 Navigation Message Record Description .................................... 75
Table A12 : GPS Navigation Messages - Example ................................................................. 76
Table A13 : GALILEO INAV/FNAV Navigation Message Record Description ................... 77
Table A14 : GALILEO Navigation Messages - Examples ...................................................... 79
Table A15 : GLONASS FDMA Navigation Message Record Description ............................ 80
Table A16 : GLONASS Navigation Message Files - Example ............................................... 81
Table A17 : QZSS LNAV Navigation Message Record Description...................................... 82
Table A18 : QZSS CNAV Navigation Message Record Description ..................................... 84
Table A19 : QZSS CNAV-2 Navigation Message Record Description .................................. 86
Table A20 : QZSS Navigation Message File - Examples ........................................................ 87
Table A21 : BEIDOU D1/D2 Navigation Message Record Description ................................ 88
Table A22 : BEIDOU CNAV-1 Navigation Message Record Description ............................. 90
Table A23 : BEIDOU CNAV-2 Navigation Message Record Description ............................. 92
Table A24 : BEIDOU CNAV-3 Navigation Message Record Description ............................. 94
Table A25 : BEIDOU Navigation Messages - Examples ........................................................ 96
Table A26 : SBAS Navigation Message Record Description ................................................. 97
Table A27 : SBAS Navigation Message - Example ................................................................ 98
Table A28 : NavIC/IRNSS LNAV Navigation Message Record Description ........................ 99
Table A29 : NavIC/IRNSS Navigation Message – Example ................................................ 100
Table A30 : System Time Offset (STO) Message Record Description ................................. 101
Table A31 : Earth Orientation Parameter (EOP) Message Record Description .................... 102
Table A32 : Ionosphere (ION) Klobuchar Model Message Record Description .................. 103
Table A33 : Ionosphere (ION) NEQUICK-G Model Message Record Description ............. 104
Table A34 : Ionosphere (ION) BDGIM Model Message Record Description ...................... 105
Table A35 : STO, EOP, ION Messages - Examples.............................................................. 105
Table A36 : Meteorological Data File – Header Section Description ................................... 107
Table A37 : Meteorological Data File – Data Record Description ....................................... 108
Table A38 : Meteorological Data File – Example ................................................................. 109
Table A39 : Reference Phase Alignment by Frequency Band .............................................. 110

IGS/RTCM RINEX WG 5
1 December 2021
RINEX 4.00

Acronyms
AODC Age of Data Clock
AODE Age of Data Ephemerides
APREF Asia Pacific Reference Frame
ARP Antenna Reference Point
AS Anti-Spoofing (of GPS)
BDS BeiDou System
BDT BeiDou Time
BIPM International Bureau of Weights and Measures (from French)
BNK Blank if Not Known/Not Defined
BOC Binary Offset Carrier
CNAV Civil Navigation (message)
DCB Differential Code Bias
DVS Data Validity Status
EUREF European Reference Frame
FNAV Free Navigation (message, of Galileo)
GEO Geostationary Earth Orbit
GLONASS Globalnaya Navigatsionnaya Sputnikovaya Sistema
GNSS Global Navigation Satellite System
GPS Global Positioning System
GST Galileo System Time
ICD Interface Control Document
IGSO Inclined Geo-Synchronous Orbit
INAV Integrity Navigation (message, of Galileo)
IOD Issue of Data
IODC Issue of Data, Clock
IODE Issue of Data, Ephemerides
IRNSS Indian Regional Navigation Sat. System (former name for NavIC)
ISC Inter-Signal Correction
LLI Loss-of-Lock Indicator
LNAV Legacy Navigation (message)
MBOC Multiplexed BOC
MEO Medium Earth Orbit
NavIC Navigation Indian Constellation
NICT National Institute of Information and Communications Technology (Japan)
PCV Phase Center Variation
PR Pseudorange
PRN Pseudo-Random Noise
QZSS Quasi-Zenith Satellite System
RCV Receiver
RINEX Receiver INdependent EXchange format
S/C Spacecraft
SA Selective Availability (of GPS)
SAASM Selective Availability Anti-Spoofing Module
SBAS Satellite Based Augmentation System
SIRGAS Sistema de Referencia Geocéntrico para las Américas

IGS/RTCM RINEX WG 6
1 December 2021
RINEX 4.00

SISAI Signal-in-Space Accuracy Index


SISMAI Signal-in-Space Monitoring Accuracy Index
SISRE Signal-in-Space Range Error
SNR Signal-to-Noise Ratio
SSI Signal Strength Indicator
SU Soviet Union
SV Space Vehicle
TGD Timing Group Delay
TOE Time of Ephemerides
TOW Time of Week
URA User Range Accuracy
URAI User Range Accuracy Index
USNO United States Naval Observatory
UTC Universal Time Coordinated

IGS/RTCM RINEX WG 7
1 December 2021
RINEX 4.00

1 RINEX 3.05 TO 4.00 MAJOR CHANGES


The list below contains the major changes between the current and the previous RINEX
format versions. A major version number has been assigned to all RINEX files since the
Navigation files are no longer backwards compatible. The full list of changes is in section 9.
In the Navigation files;
- In Table A7 removed the optionality of the LEAP SECONDS line in the header of the
Navigation files, the line now becomes compulsory.
- In Table A7 removed the IONOSPHERIC CORR line from the Navigation file header.
- In Table A7 removed the TIME SYSTEM CORR line from the Navigation file header
- For all navigation messages added navigation message record new first line.
- Added GPS CNAV Navigation Message Table A10 to define the GPS CNAV message.
- Added GPS CNV2 Navigation Message Table A11 to define the GPS CNAV-2 message.
- Added BDS CNV1 Navigation Message Table A22 to define the BDS-3 B1C message.
- Added BDS CNV2 Navigation Message Table A23 to define the BDS-3 B2a message.
- Added BDS CNV3 Navigation Message Table A24 to define the BDS-3 B2b message.
- Added QZSS CNAV Navigation Message Table A18 to define the QZSS CNAV message.
- Added QZSS CNV2 Navigation Message Table A19 to define the QZSS CNAV-2 mssg.
- Added Table A30, Table A31, Table A32, Table A33, and Table A34 to the Appendix to
define the new STO, EOP, and ION message record descriptions.
- Added section 5.4.9 to describe the new STO Time offset correction messages in the
navigation message file.
- Added section 5.4.10 to describe the new EOP Earth orientation parameter messages in
the navigation message file.
- Added section 5.4.11 to describe the new ION Earth orientation parameter messages in
the navigation message file.
- Added REC # / TYPE / VERS optional line to the Navigation message file header in
Table A7 (expected in station navigation files).
In the Observation files;
- In Table A2 made the header line SYS / PHASE SHIFT optional.
- Removed the mandatory condition on the GLONASS Code-Phase alignment header record
GLONASS COD/PHS/BIS in section 5.2.16 and Table A2.
- Added definition of QZSS L1 C/B new signal to Table 14 with observation codes C1E,
L1E, D1E, S1E and in Table A39 as the new reference signal when L1 C/A is not
available.
- Updated QZSS PRN code assignments to include L1 C/B PRNs in Table 6.
In all files;
- Added three free text optional header lines to Table A2, Table A7, and Table A36 to
support the FAIR data principles addressing the Finding, Accessing, Interoperability and
Reusability of public data;
- DOI – Digital Object Identifier
- LICENSE OF USE – Data license
- STATION INFORMATION – Link to station metadata

IGS/RTCM RINEX WG 8
1 December 2021
RINEX 4.00

2 THE PHILOSOPHY AND HISTORY OF RINEX


The first proposal for the Receiver Independent Exchange Format; RINEX was developed
by the Astronomical Institute of the University of Bern for the easy exchange of the Global
Positioning System (GPS) data to be collected during the first large European GPS campaign
EUREF 89, which involved more than 60 GPS receivers of 4 different manufacturers. The
governing aspect during the development was the following fact:
Most geodetic processing software for GNSS data use a well-defined set of observables:
• The carrier-phase measurement at one or both carriers, being a measurement on the
beat frequency between the received carrier of the satellite signal and a receiver-
generated reference frequency.
• The pseudorange (code) measurement, equivalent to the difference of the time of
reception (expressed in the time frame of the receiver) and the time of transmission
(expressed in the time frame of the satellite) of a distinct satellite signal.
• The doppler measurement, the difference between the observed and emitted
frequency of the carrier.
• The signal-to-noise ratio (SNR) measurement, the carrier to noise density ratio
(C/N0) or the ratio of the received signal power to the noise power.
• The observation time, the reading of the receiver clock at the instant of validity of the
measurements.
Usually, geodetic processing software assumes that the observation time in RINEX is valid for
all measurements, and for all satellites observed.
Consequently, all these programs do not need most of the information that is usually stored by
the receivers: they need as a minimum phase, code, and time in the above-mentioned
definitions, and some station-related information like station name, antenna height, antenna
model, etc.
Three major format versions of RINEX have been developed and published to date:
• The original RINEX Version 1 presented at and accepted by the 5th International
Geodetic Symposium on Satellite Positioning in Las Cruces, 1989. [Gurtner et al.,
1989], [Evans, 1989]
• RINEX Version 2 presented at and accepted by the Second International Symposium
of Precise Positioning with the Global Positioning System in Ottawa, 1990, mainly
adding the possibility to include tracking data from different satellite systems
(GLONASS, SBAS). [Gurtner and Mader, 1990a, 1990b], [Gurtner, 1994]
• RINEX Version 3 developed in the early 2000s to support multi-GNSS and to clearly
identified the tracking modes of each of the observations by introducing and defining
3-character observation codes for all GNSS constellations.
• RINEX Version 4 introduced in 2021 as a necessary step to support the modern multi-
GNSS navigation messages by introducing and defining navigation ‘data records’ to
hold both individual satellite navigation messages, constellation-wide parameters and
global parameters as transmitted by the different GNSS constellations.
Several subversions of RINEX Version 2 were defined over time:

IGS/RTCM RINEX WG 9
1 December 2021
RINEX 4.00

• Version 2.10: Among other minor changes, allowing for sampling rates other than
integer seconds and including raw signal strengths as new observables. [Gurtner, 2002]
• Version 2.11: Includes the definition of a two-character observation code for L2C
pseudoranges and some modifications in the GEO NAV MESS files. [Gurtner and
Estey, 2005] - This was the last official RINEX Version 2
• Version 2.20: Unofficial version used for the exchange of tracking data from
spaceborne receivers within the IGS LEO pilot project. [Gurtner and Estey, 2002]

In the early 2000s when new GNSS constellations were being planned, and soon thereafter
started transmitting their new navigation signals, it was clear that RINEX 2 was not capable of
fully supporting the new signals, tracking modes and satellites efficiently. The new BeiDou,
Galileo, QZSS, etc. and the modernized GPS and GLONASS with new frequencies and
observation types needed a leap in the RINEX format.
Especially the possibility to track frequencies on different channels, required a more flexible
and more detailed definition of the observation codes.
Several versions of RINEX 3 have been defined:
• RINEX 3.00 (2007) fully supports multi-GNSS observation data storage. The initial
RINEX Version 3 also incorporates the version 2.20 definitions for space-borne
receivers.
• RINEX 3.01 (2009) introduced the requirement to generate consistent phase
observations across different tracking modes or channels, i.e. to apply ¼-cycle shifts
prior to RINEX file generation, if necessary, to facilitate the processing of such data.
• RINEX 3.02 (2013) added support for the Japanese, Quasi Zenith Satellite System
(QZSS), additional information concerning BeiDou (based on the released ICD) and a
new message to enumerate GLONASS code phase biases.
• RINEX 3.03 (2015) adds support for the NavIC/IRNSS and clarifies several
implementation issues in 3.02. RINEX 3.03 also changes the BeiDou B1 signal
convention back to the 3.01 convention where all B1 signals are identified as C2x (not
C1 as in RINEX 3.02). Another issue with the implementation of 3.02 was the GPS
navigation message fit interval field. Some implementations wrote the flag and others
wrote a time interval. This release specifies that the fit interval should be a time period
for GPS and a flag for QZSS. The Galileo Navigation section was updated to clarify
the Issue of Data (IOD). RINEX 3.03 was also modified to specify that only known
observation tracking modes can be encoded in the standard.
• RINEX 3.04 (2018) adds clarifications for signal tables for GLONASS, QZSS and
BeiDou, and a small number of edits and corrections needed from the previous version
• RINEX 3.05 (2020) is a major restructure and revision of the format document to make
it clearer and easier to read, it adds BeiDou signals and tracking codes to fully support
BDS-2 and BDS-3, and it also adds missing flags and values to the GLONASS
navigation messages. This was the last of the RINEX version 3 format series.
RINEX 4.00 is launched in 2021 after a very significant effort over years from the
DLR/GSOC group led by Dr O. Montenbruck to modernize the GNSS Navigation message
format. This effort has analyzed all the existing GNSS ICDs to identify the missing
navigation message data elements from the different signals.

IGS/RTCM RINEX WG 10
1 December 2021
RINEX 4.00

Furthermore, the DLR/GSOC group decoded raw navigation data frames and the internal
receiver binary format files from several vendors and wrote the values into preliminary
formats which served as the basis for the RINEX Working Group Navigation Taskforce
discussions during the first half of 2021. These efforts form the bulk of the navigation
message improvements introduced in this RINEX version and the entire GNSS community
is grateful to them.

IGS/RTCM RINEX WG 11
1 December 2021
RINEX 4.00

3 GENERAL FORMAT DESCRIPTION


The RINEX 4 format consists of three ASCII file types:

1. Observation data file


2. Navigation message file
3. Meteorological data file
Each file type consists of a header section and a data section. The header section contains global
information for the entire file and is placed at the beginning of the file. The header section
contains header labels in columns 61-80 for each line. These labels are mandatory and must
appear exactly as given in these descriptions and examples. The header does not have a fixed
length and many of the labels are optional depending on the application. Comments can be
added freely in the header.
The format has been optimized for minimum space requirements independent from the number
of different observation types of a specific receiver or satellite system by indicating in the
header the types of observations to be stored for this observation session, and the satellite
systems having been observed. In computer systems allowing variable record lengths, the
observation records may be kept as short as possible. Trailing blanks can be removed from the
records. There is no maximum record length limitation for the observation records.
Each Observation file and each Meteorological Data file basically contain the data from one
site and one session. Although the format allows for the insertion of certain header records into
the data section, it is not recommended to concatenate data from more than one receiver (or
antenna) into the same file, even if the data do not overlap in time.
If data from more than one receiver have to be exchanged, it would not be economical to
include the identical satellite navigation messages collected by the different receivers several
times. Therefore, the navigation message file from one receiver may be exchanged or a
composite navigation message file created, containing non-redundant information from several
receivers in order to make the most complete file.
RINEX 4 mixed navigation message files are expected to contain navigation messages of all
tracked navigation satellite systems, so as to make the exchange and processing of navigation
data more efficient.
The header and data record format descriptions as well as examples for each file type are given
in the Appendix Tables of Section 8 at the end of the document.

IGS/RTCM RINEX WG 12
1 December 2021
RINEX 4.00

4 BASIC DEFINITIONS
GNSS observables include three fundamental quantities that need to be defined: Time, Phase,
and Range.

4.1 Time
The time of the measurement is the receiver time of the received signals. The time of the
measurement is considered identical for all of them (phase, pseudorange, etc) and considered
identical for all satellites observed at that epoch.
For single-system data files, the time of measurement is by default expressed in the system
time of the respective satellite system.
For mixed files, the actual system time used must be indicated in the TIME OF FIRST OBS
header record (Table A2). The details of each GNSS Time and their use in RINEX is defined
below.
Each GNSS maintains a system time that is distinct from any particular UTC reference but is
steered or linked to some such reference as designated by the respective ICDs. The details of
each GNSS system time and their use in RINEX is defined below.

4.1.1 GPS Time


GPS time is steered to UTC(USNO), i.e. the local realization of UTC maintained by the United
States Naval Observatory (USNO). But it is a continuous time scale, i.e. it does not insert any
leap seconds. GPS time is usually expressed in GPS weeks and GPS seconds past 00:00:00
(midnight) Saturday/Sunday. GPS time started with week zero at 00:00:00 UTC (midnight) on
January 6, 1980.
The GPS week is transmitted by the satellites as a 10-bit number. It has a roll-over after week
1023. The first roll-over happened on August 22, 1999, 00:00:00 GPS time.
In order to avoid ambiguities, the GPS week reported in the RINEX navigation message files
is a continuous number without roll-over, i.e. …1023, 1024, 1025, …
RINEX uses GPS as system time identifier for the reported GPS time.

4.1.2 GLONASS Time


GLONASS time is basically running on UTC(SU) (or, more precisely, GLONASS system
time linked to UTC(SU)), i.e. the time tags are given in UTC and not GPS time. It is not a
continuous time, i.e. it introduces the same leap seconds as UTC.
The reported GLONASS time has the same hours as UTC and not UTC+3 h as the original
GLONASS System Time.
RINEX uses GLO as system time identifier for the reported GLONASS time.

4.1.3 Galileo System Time


Galileo runs on Galileo System Time (GST), which is steered to a UTC realization from an
ensemble of clocks maintained at several metrological institutes in Europe by the Galileo Time
Service Provider. Apart from small differences (tens of nanoseconds), GST is nearly identical
to GPS Time in that:

IGS/RTCM RINEX WG 13
1 December 2021
RINEX 4.00

• The Galileo week starts at midnight Saturday/Sunday at the same second as the GPS
week
• The GST week as transmitted by the satellites is a 12-bit value with a roll-over after
week 4095. The GST week started at zero at the first roll-over of the broadcast GPS
week after 1023, i.e. at Sun, 22-Aug-1999 00:00:00 GPS time
In order to remove possible misunderstandings and ambiguities, the Galileo week reported in
the RINEX navigation message files is a continuous number without roll-over, i.e., …4095,
4096, 4097,… and it is aligned to the GPS week.
RINEX uses GAL as system time identifier for the reported Galileo time.

4.1.4 BeiDou Time


The BDS Time (BDT) System is a continuous timekeeping system which is steered to
UTC(NTSC). BDT zero time started at 00:00:00 UTC on January 1st, 2006 (GPS week 1356)
therefore BDT is 14 seconds behind GPS time. BDT is synchronized with UTC within 100
nanoseconds (modulo 1 second).

• The BDT week starts at midnight Saturday/Sunday


• The BDT week is transmitted by the satellites as a 13-bit number. It has a roll-over after
week 8191. In order to avoid ambiguities, the BDT week reported in the RINEX
navigation message files is a continuous number without roll-over, i.e. …8191, 8192,
8193, …

RINEX uses BDT as system time identifier for the reported BDS time.

4.1.5 QZSS Time


QZSS runs on QZSS time, which is steered to UTC(NICT), i.e. the local realization of UTC
maintained by the Japan National Institute of Information and Communications Technology
(NICT). QZSS time is aligned with GPS time (offset from TAI by integer seconds); the QZSS
week number is defined with respect to the GPS week.
RINEX uses QZS as a system time identifier for the reported QZSS time.

4.1.6 NavIC System Time


NavIC/IRNSS runs on Indian Regional Navigation Satellite System Time (IRNSST) which is
steered to UTC(NPLI). The IRNSST start epoch is 00:00:00 on Sunday August 22nd, 1999,
which corresponds to August 21st, 1999, 23:59:47 UTC (same time as the first GPS week roll
over). Seconds of week are counted from 00:00:00 IRNSST hours Saturday/Sunday midnight
which also corresponds to the start of the GPS week. Week numbers are consecutive from the
start time and will roll over after week 1023 (at the same time as GPS and QZSS roll over).
RINEX uses IRN as the system time identifier for the reported NavIC/IRNSS time.

4.1.7 GNSS Time Relationships


Apart from the small, sub-microsecond differences, in the realizations of the different system
times, the GNSS time scales differ from UTC and each other by integer seconds. The relations
between the various systems are summarized in Table 1 and Table 2.

IGS/RTCM RINEX WG 14
1 December 2021
RINEX 4.00

In order to have the current number of leap seconds available, we recommend including ΔtLS
by adding a LEAP SECOND header line into the RINEX Observation file header (see Table
A2).
The LEAP SECOND header line is now compulsory in the RINEX Navigation file header (see
Table A7).
In a multi-GNSS RINEX file (GPS/GLONASS/Galileo/QZSS/BDS/NavIC) all pseudorange
observations must refer to one receiver clock only.

Table 1 : Constellation Time Relationships

GLO = UTC = GPS - ΔtLS


GPS = GAL = UTC + ΔtLS
GPS = QZS = UTC + ΔtLS
GPS = IRN = UTC + ΔtLS
BDT = UTC + ΔtLSBDS

Table 2 : GPS and BeiDou UTC Leap Second Relationship


Delta time between GPS and UTC due to leap seconds, as
transmitted by the GPS satellites in the almanac;
1999-01-01 - 2006-01-01: ΔtLS = 13 seconds
2006-01-01 - 2009-01-01: ΔtLS = 14 seconds
ΔtLS = 2009-01-01 - 2012-07-01: ΔtLS = 15 seconds
2012-07-01 - 2015-07-01: ΔtLS = 16 seconds
2015-07-01 - 2017-01-01: ΔtLS = 17 seconds
2017-01-01 - ????-??-??: ΔtLS = 18 seconds
Delta time between BDT and UTC due to leap seconds, as
transmitted by the BDS satellites in the almanac.
ΔtLSBDS = ΔtLS -14 seconds
2006-01-01 - 2009-01-01: ΔtLSBDS = 0 seconds
ΔtLSBDS = 2009-01-01 - 2012-07-01: ΔtLSBDS = 1 seconds
2012-07-01 - 2015-07-01: ΔtLSBDS = 2 seconds
2015-07-01 - 2017-00-01: ΔtLSBDS = 3 seconds
2017-01-01 - ????-??-??: ΔtLSBDS = 4 seconds
Unknown biases will have to be solved for during the post processing.
The small differences (modulo 1 second) between: BDS system time, Galileo system time,
GLONASS system time, UTC(SU), UTC(USNO) and GPS system time have to be dealt with
during the post-processing and not before the RINEX conversion. It may also be necessary to
solve for remaining differences during the post-processing.

IGS/RTCM RINEX WG 15
1 December 2021
RINEX 4.00

4.1.8 GNSS Week numbers


The use of the week number from the start of a GNSS service is a common time reference. The
relationships between the different GNSS week numbers are as shown in Table 3.

Table 3 : Week Numbers between RINEX and GPS, QZSS, IRN, GST, GAL, BDS
Constellation GPS GPS GPS GPS GPS GPS
/Archival Time Ephemeris Ephemeris Ephemeris Ephemeris Ephemeris Ephemeris
Representation Week Week Week Week Week Week
Period #1 Period #2 Period #3 Period #4 Period #5 Period #6
GPS Broadcast 0 – 1023 0 – 1023 0 – 1023 0 – 1023 0 – 1023 0 – 1023
QZSS Broadcast 0 – 1023 0 – 1023 0 – 1023 0 – 1023 0 – 1023
NavIC/IRNSS 0 – 1023 0 – 1023 0 – 1023 0 – 1023 0 – 1023
Broadcast
GST Broadcast 0 – 1023 1024 – 2047 2048 – 3071 3072 – 4095 0 – 1023
BDS Broadcast 0(RINEX 692 – 1715 1716 – 2739 2740 – 3763 3764 – 4787
and RINEX Week 1356)
– 691
GPS/QZS/IRN/ 0 – 1023 1024 – 2047 2048 – 3071 3072 – 4095 4096 – 5119 5120 -6143
GAL RINEX

4.2 Pseudorange
The pseudorange (PR) is the distance from the receiver antenna to the satellite antenna
including receiver and satellite clock offsets (and other biases, such as atmospheric delays):
PR = distance + c * (receiver clock offset –satellite clock offset) + other biases
so that the pseudorange reflects the actual behavior of the receiver and satellite clocks. The
pseudorange is stored in units of meters. In the above relation, c = 299 792 458 m/s denotes
the speed of light.
In a mixed-mode GPS/GLONASS/Galileo/QZSS/BDS receiver all pseudorange observations
must refer to one receiver clock only. RINEX pseudoranges must be corrected depending on
the receiver tracking time, as shown in Table 4, to remove the contributions of the leap seconds
from the pseudo-ranges.

IGS/RTCM RINEX WG 16
1 December 2021
RINEX 4.00

Table 4 : Constellation Pseudorange Corrections


PR_mod(GPS) = PR(GPS) + c* ΔtLS if generated with a receiver clock
running in the GLONASS time frame
PR_mod(GAL) = PR(GAL) + c * ΔtLS if generated with a receiver clock
running in the GLONASS time frame
PR_mod(BDT) = PR(BDT) + c * ΔtLSBDS if generated with a receiver clock
running in the GLONASS time frame
PR_mod(GLO) = PR(GLO) - c * ΔtLS if generated with a receiver clock
running in the GPS or GAL time frame
PR_mod(GLO) = PR(GLO) - c *ΔtLSBDS if generated with a receiver clock
running in the BDT time frame
PR_mod(GPS) = PR(GPS) + c*(ΔtLS- if generated with a receiver clock
ΔtLSBDS) running in the BDT time frame
ΔtLS is the actual number of leap seconds between GPS/GAL and GLO time, as broadcast in
the respective navigation messages and distributed in Circular T of BIPM.
ΔtLSBDS is the actual number of leap seconds between BDT and UTC time, as broadcast in the
BeiDou navigation message.

4.3 Phase
The phase observable provided in a RINEX file is the carrier-phase range from the antenna to
a satellite measured in whole cycles. Half-cycle phase measurements by squaring-type
receivers must be converted to whole cycles and flagged by the respective observation code
(see section 5.2.13 for further clarification).
The phase changes with the pseudorange (i.e. if the pseudorange increases with time, the phase
increases as well). The phase observations between epochs must be connected by including the
integer number of cycles.
If necessary, phase observations have to be corrected for phase shifts so as to be aligned to the
referenced signal as indicated in Table A39. This is needed to guarantee consistency between
phases of the same frequency and satellite system based on different signal channels.
If the receiver or the converter software adjusts the measurements using the real-time-derived
receiver clock offsets dT(r), the consistency of the 3 quantities phase / pseudorange / epoch
must be maintained, i.e. the receiver clock correction shall be applied to all observables as
specified in Table 5.

IGS/RTCM RINEX WG 17
1 December 2021
RINEX 4.00

Table 5: Observation Corrections for Receiver Clock Offset


Time (corr) = Time(r) - dT(r)
PR (corr) = PR (r) - dT(r)*c
phase (corr) = phase (r) - dT(r)*freq
Doppler (corr) = Doppler (r) - dṪ(r)*freq

4.4 Doppler
The sign of the Doppler shift as additional observable is defined as usual; positive for
approaching satellites.

4.5 Satellite numbers


For clear unambiguous identification, individual satellites are identified in RINEX files by a
two-digit number indicating the PRN code or the slot number. This number is preceded by a
one-character system identifier s as shown in Figure 1.

s nn

nn:
PRN (GPS, Galileo, BeiDou,
NavIC)
Slot Num. (GLONASS)
PRN-100 (SBAS)
*) (QZSS)

satellite System Identifier:


G: GPS
R: GLONASS
S: SBAS Payload
E: Galileo
C: BeiDou
J: QZSS
I: NavIC

Figure 1: Satellite numbers and Constellation Identifiers


The same satellite system identifiers are also used in all header and data records when
appropriate.
*) QZSS satellites make use of signal-specific PRN codes. In RINEX files, QZSS satellites are
therefore distinguished by the space vehicle identifier (SV ID) as used in the QZSS LNAV
almanac. The mapping of QZSS RINEX designators (J01-J10) and QZSS PRNs for
individual signals is shown in Table 6.

IGS/RTCM RINEX WG 18
1 December 2021
RINEX 4.00

Table 6: QZSS PRN to RINEX Satellite Identifier


Standard PNT Centimeter
Standard Positioning
Signals / Sub-meter Level
Technology
RINEX Centimeter PNT Level Augmentation
Verification
Satellite Level Signals Augmentation for
Service
ID Augmentation Experiments
L1-SAIF /
Nominal L1 C/B L6E L5S
L1S
J01 193 183 203
J02 194 184 204 184
J03 195 185 205 185
J04 196 203 186 206 186
J05 197 204 207
J06 198 208
J07 199 189 209 189
J08 200 205 210 205
J09 201 206 211 206
J10 202 202 212

IGS/RTCM RINEX WG 19
1 December 2021
RINEX 4.00

5 RINEX VERSION 3 AND 4 FEATURES


This chapter contains description and explanations of the RINEX 3 and 4 main features;
recommended filenames, the main header elements including the observation codes for each
GNSS Constellation, the observation data records, and the navigation files.

5.1 Long Filenames


From RINEX 3.02 onwards the data filenames are recommended to use the proposed long
filenames to be more descriptive, flexible and extensible than the previous RINEX short file
naming convention. RINEX file naming recommendations are strictly speaking not part of the
RINEX format definition. However, they significantly facilitate the exchange of RINEX data
in large user communities like IGS, EUREF, APREF, SIRGAS, etc.
The filename recommendations herein, and fully described in Table A1, are included for
convenience as they have been agreed across many institutions. Each organization can use or
adapt these names as they see fit, or use any other file naming scheme, this has no material
effect on the RINEX file format.
Table 7 lists example filenames for GNSS observation and navigation files. Please note that
the source of the data, the start time, the duration, the cadence and the data type are now easily
visible in the filename to ease in sorting, storing and identifying data files.
This proposed naming scheme allows files from the same station over the same time period,
different sources, different cadences and with different observation types to be stored together
easily. See Table A1 for the full description of the file naming convention.

Table 7: Examples of long filenames for RINEX 3 data files


File Name Comments
ALGO00CAN_R_20121601000_01H_01S_MO.rnx Mixed RINEX GNSS observation
file containing 1 hour of data, with
an observation every second
ALGO00CAN_R_20121601000_15M_01S_GO.rnx GPS RINEX observation file
containing 15 minutes of data, with
an observation every second
ALGO00CAN_R_20121601000_01D_30S_MO.rnx Mixed RINEX GNSS observation
file containing 1 day of data, with
an observation every 30 seconds
ALGO00CAN_R_20121600000_01D_MN.rnx RINEX mixed navigation file,
containing one day’s data

5.2 Observation File Header


See Table A2 for a detailed specification of the RINEX 4 observation file header. This section
provides general descriptions and clarifications for the observation file header.

5.2.1 Order of the header records


As the header record descriptors in columns 61-80 are mandatory, the software reading a
RINEX 4 header must decode the header records with formats according to the record
descriptor in Table A2.

IGS/RTCM RINEX WG 20
1 December 2021
RINEX 4.00

RINEX allows the free ordering of the header records, with the following exceptions:
• The RINEX VERSION / TYPE record must be the first record in a file.
• The PGM / RUN BY / DATE line must be the second record(line) in all RINEX
files. In RINEX Observation files additional records of this type from previous file
modifications or updates can be stored if needed as the lines immediately following
the second line.
• The SYS / # / OBS TYPES record(s) should precede any SYS / DCBS
APPLIED and SYS / SCALE FACTOR records.
• The # OF SATELLITES record (if present) should be immediately followed by the
corresponding number of PRN / # OF OBS records.
• The END OF HEADER of course is the last record in the header.

5.2.2 Date/Time format in the PGM / RUN BY / DATE header record


The format of the generation time of the RINEX files stored in the second header line PGM /
RUN BY / DATE is defined to be:

yyyymmdd hhmmss zone


zone: 3 – 4 character code for the time zone
It is recommended to use UTC as the time zone. Set zone to LCL if an unknown local time
was used.

In RINEX Observation files additional PGM / RUN BY / DATE header lines can appear
immediately after the second line if needed to preserve the history of previous actions on the
file.

5.2.3 Marker type


To indicate the nature of the marker, a MARKER TYPE header record has been defined.
Proposed keywords are given in Table 8.
The record is required except for GEODETIC and NON_GEODETIC marker types.
Attributes other than GEODETIC and NON_GEODETIC will tell the user program that the
data were collected by a moving receiver.
The inclusion of a “start moving antenna” record (event flag ‘2’) into the data body of the
RINEX file is therefore not necessary. However, event flags ‘2’ and ‘3’ (See Table A3) are
necessary to flag alternating kinematic and static phases of a receiver visiting multiple earth-
fixed monuments. Users may define other project-dependent keywords.

Table 8: Predefined Marker Type Keywords


Marker Type Description
GEODETIC Earth-fixed high-precision monument
NON_GEODETIC Earth-fixed low-precision monument
NON_PHYSICAL Generated from network processing
SPACEBORNE Orbiting space vehicle
AIRBORNE Aircraft, balloon, etc.

IGS/RTCM RINEX WG 21
1 December 2021
RINEX 4.00

Marker Type Description


WATER_CRAFT Mobile water craft
GROUND_CRAFT Mobile terrestrial vehicle
FIXED_BUOY “Fixed” on water surface
FLOATING_BUOY Floating on water surface
FLOATING_ICE Floating ice sheet, etc
GLACIER “Fixed” on a glacier
BALLISTIC Rockets, shells, etc
ANIMAL Animal carrying a receiver
HUMAN Human being

5.2.4 Antenna references, phase centers


We distinguish between;
• The Marker, i.e. the geodetic reference monument, on which an antenna is mounted
directly with forced centering or on a tripod.
• The Antenna Reference Point (ARP), i.e., a well-defined point on the antenna, e.g.,
the center of the bottom surface of the preamplifier. The antenna height is measured
from the marker to the ARP and reported in the ANTENNA: DELTA H/E/N header
record. Small horizontal eccentricities of the ARP with respect to the marker can be
reported in the same record. On vehicles, the position of the ARP is reported in the
body-fixed coordinate system in an ANTENNA: DELTA X/Y/Z header record.
• The Average Phase Center: A frequency-dependent and minimum elevation-angle-
dependent position of the average phase center above the antenna reference point. Its
position is important to know in mixed-antenna networks. It can be given in an absolute
sense or relative to a reference antenna using the optional header record: ANTENNA:
PHASECENTER. For fixed stations the components are in north/east/up direction, on
vehicles the position is reported in the body-fixed system X,Y,Z.
• The Orientation of the antenna: The “zero direction” should be oriented towards north
on fixed stations. Deviations from the north direction can be reported with the azimuth
of the zero-direction in an ANTENNA: ZERODIR AZI header record. On vehicles,
the zero-direction is reported as a unit vector in the body-fixed coordinate system in an
ANTENNA: ZERODIR XYZ header record. The zero direction of a tilted antenna on
a fixed station can be reported as unit vector in the left-handed north/east/up local
coordinate system in an ANTENNA: ZERODIR XYZ header record.
• The Boresight Direction of an antenna on a vehicle: The “vertical” symmetry axis of
the antenna pointing towards the GNSS satellites. It can be reported as unit vector in
the body-fixed coordinate system in the ANTENNA: B.SIGHT XYZ record. A tilted
antenna on a fixed station could be reported as unit vector in the left-handed
north/east/up local coordinate system in the same type of header record.

In order to interpret the various positions correctly, it is important that the MARKER TYPE
record be included in the RINEX header.

IGS/RTCM RINEX WG 22
1 December 2021
RINEX 4.00

5.2.5 Antenna phase center header record


An optional header record for antenna phase center positions ANTENNA: PHASECENTER is
defined to allow for higher precision positioning without need of additional external antenna
information. It contains the position of an average phase center relative to the antenna reference
point (ARP) for a specific frequency and satellite system.
On vehicles, the phase center position can be reported in the body-fixed coordinate system
(ANTENNA: DELTA X/Y/Z), see section 5.2.4.
See section 5.2.10 regarding the use of phase center variation corrections.

5.2.6 Antenna orientation


Dedicated header records have been defined to report the orientation of the antenna zero-
direction; ANTENNA: ZERODIR, as well as the direction of its vertical axis (bore-sight) if
mounted tilted on a fixed station; ANTENNA: B.SIGHT.

The header records can also be used for antennas on vehicles.

5.2.7 Information about receivers on a vehicle


For the processing of data collected by receivers on a vehicle, the following additional
information can be provided by special header records:
• Antenna position (position of the antenna reference point) in a body-fixed coordinate
system: ANTENNA: DELTA X/Y/Z
• Boresight of antenna: The unit vector of the direction of the antenna axis towards the
GNSS satellites. It corresponds to the vertical axis on earth-bound antenna:
ANTENNA: B.SIGHT XYZ
• Antenna orientation: Zero-direction of the antenna. Used for the application of
“azimuth”-dependent phase center variation models (see section 5.2.4):
ANTENNA: ZERODIR XYZ
• Current center of mass of the vehicle (for space borne receivers):
CENTER OF MASS: XYZ
• Average phase center position: ANTENNA: PHASECENTER (see 5.2.5)
All three quantities have to be given in the same body-fixed coordinate system. The attitude of
the vehicle has to be provided by separate attitude files in the same body-fixed coordinate
system.

5.2.8 Time of First/Last Observations


The header records TIME OF FIRST OBS and (if present) TIME OF LAST OBS in pure
GPS, GLONASS, Galileo, QZSS, BeiDou, or NavIC observation files can contain the system
time identifier defining the system that all time tags in the file are referring to:

• GPS to identify GPS time


• GLO to identify the GLONASS UTC time
• GAL to identify Galileo time
• QZS to identify QZSS time
• BDT to identify BDS time
• IRN to identify NavIC/IRNSS time

IGS/RTCM RINEX WG 23
1 December 2021
RINEX 4.00

Pure GPS observation files default to GPS, pure GLONASS files default to GLO, pure Galileo
files default to GAL, pure BDS observation files default to BDT, etc.
Multi-GNSS observation files must contain the system time identifier (one of the above) that
all time tags refer to.

5.2.9 Corrections of differential code biases (DCBs)


For special applications, it might be useful to generate RINEX files with corrections of the
satellite differential code biases (DCBs) already applied.
This can be reported by special header records SYS / DCBS APPLIED pointing to the file
containing the applied corrections (Table A2).

5.2.10 Corrections of antenna phase center variations (PCVs)


For precise applications it is recommended that elevation-dependent, or elevation and azimuth-
dependent Phase Center Variation (PCV) model for the antenna (referring to the agreed-upon
ARP) be used during the processing.
For special applications, it might be useful to generate RINEX files with these PCV corrections
already applied. This can be reported by special header records SYS / PCVS APPLIED
pointing to the file containing the PCV correction models.

5.2.11 Scale factor


The optional SYS / SCALE FACTOR header record allows the storage of phase data with
0.0001 of a cycle resolution, if the data was multiplied by a scale factor of 10 before being
stored into the RINEX file. This feature is used to increase resolution by 10, 100, etc only.

5.2.12 Phase Cycle Shifts


Carrier phases tracked on different signal channels or modulation bands of the same frequency
in a GNSS constellation may differ in phase by 1/4 (e.g., GPS: P/Y-code-derived L2 phase vs.
L2C-based phase), or by other fractional parts of a cycle. To facilitate consistent processing of
all signals across different receiver platforms and applications, such phase differences must be
compensated at or before the generation of RINEX observation files.
By convention, phase observations in RINEX files must always be aligned to a predefined
reference signal. Table A39 specifies the reference signal for each frequency and constellation,
and which signals shall align to the reference. This alignment of phases allows interoperability
between different signals in the same frequency. There is no ambition to align phases across
constellations.
The SYS / PHASE SHIFT header lines are now optional in the RINEX observation files
and strongly deprecated. They are retained in the RINEX observation file header definition
(Table A2) for compatibility with previous RINEX versions but they should be ignored by
RINEX decoders and encoders.

5.2.13 Half-wavelength observations, half-cycle ambiguities


Half-wavelength observations of encrypted GPS P(Y)-code signals collected by codeless
squaring techniques get their own observation codes, see section 5.2.17. If a receiver changed
between squaring and full cycle tracking within the time period of a RINEX file, observation

IGS/RTCM RINEX WG 24
1 December 2021
RINEX 4.00

codes for both types of observations have to be inserted into the respective SYS / # / OBS
TYPES header record.
Half-wavelength phase observations are stored in full cycles. Ambiguity resolution, however,
has to account for half wavelengths!
Full-cycle observations collected by receivers with possible half cycle ambiguity (e.g., during
acquisition or after loss of lock) are to be flagged with Loss of Lock Indicator bit 1 set (see
Table A3). Note: The loss of lock bit is the least significant bit.

5.2.14 Receiver clock offset


A receiver-derived clock offset can be optionally reported in the RINEX observation files. In
order to remove uncertainties about whether the data (epoch, pseudorange, phase) have been
corrected or not by the reported clock offset, use the header record: RCV CLOCK OFFS APPL.

5.2.15 Satellite system-dependent list of observables


The order of the observations stored per epoch and satellite in the observation records is given
by a list of observation codes in a header record.

As the types of the observations actually generated by a receiver may heavily depend on the
satellite system, RINEX 4.00 requires system-dependent observation code lists (header record
type SYS / # / OBS TYPES), see a full description of all observation types in section 5.2.17.

5.2.16 GLONASS Code-Phase Alignment Header Record


Some GNSS receivers may produce biased GLONASS observations. The bias is a result of the
code and phase observations not being taken at the same instant.
Phase data from GNSS receivers that issue biased data must be corrected to remove the bias.
The GLONASS CODE/PHASE BIAS (GLONASS COD/PHS/BIS) header record is now
optional and deprecated since RINEX data file users need the data corrected but do not
generally care what the correction applied was, and since the corrections may not be known at
the time of RINEX file writing.
This deprecated GLONASS code-phase alignment header line contains the C1C, C1P, C2C
and C2P corrections. See Table A2 for details.

5.2.17 Observation codes


Dedicated observation codes are used in RINEX to distinguish individual signals and tracking
modes. In order to keep the observation codes short, but still allow for a detailed
characterization of the actual signal generation, the observation codes are composed of three
characters/digits “tna” as detailed in Table 9.

Table 9 : Observation Code Components

t : observation type C = pseudo- L = carrier D = doppler S = signal X = channel


range phase strength number
n : band / frequency 1, 2,...,9
a : attribute tracking mode or channel, e.g., I, Q, C, P, etc.

IGS/RTCM RINEX WG 25
1 December 2021
RINEX 4.00

Examples:
• L1C: C/A code-derived L1 carrier phase (GPS, GLONASS) Carrier phase on E2-
L1-E1 derived from C channel (Galileo)
• C2L: L2C pseudorange derived from the L channel (GPS)
• C2X: L2C pseudorange derived from the mixed (M+L) codes (GPS)

Blank (unknown) observation attributes (tracking modes or channels) are not supported from
RINEX 3.02 onwards. Except for the ‘X’ pseudo-observations (see section 5.3.4) which
indicate the receiver channel number(s) tracking the specific satellite, and have blank a
‘attribute’ value.
For satellite observations only the complete specification of all signals is allowed i.e. all three
fields must be specified. RINEX observation codes for all supported frequencies, signals and
tracking modes for all GNSS constellations are detailed in Table 10 to Table 16.
Table 10 : RINEX Version 4.00 GPS Observation Codes
Observation Codes
GNSS Freq. Band
Channel or Code Pseudo Carrier Signal
System / Frequency Doppler
Range Phase Strength
GPS C/A C1C L1C D1C S1C
L1C (D) C1S L1S D1S S1S
L1C (P) C1L L1L D1L S1L
L1C (D+P) C1X L1X D1X S1X
P (AS off) C1P L1P D1P S1P
L1/1575.42
Z-tracking and similar C1W L1W D1W S1W
(AS on)
Y C1Y L1Y D1Y S1Y
M C1M L1M D1M S1M
codeless L1N D1N S1N
C/A C2C L2C D2C S2C
L1(C/A) + (P2-P1) C2D L2D D2D S2D
(semi-codeless)
L2C (M) C2S L2S D2S S2S
L2C (L) C2L L2L D2L S2L
L2C (M+L) C2X L2X D2X S2X
L2/1227.60
P (AS off) C2P L2P D2P S2P
Z-tracking and similar C2W L2W D2W S2W
(AS on)
Y C2Y L2Y D2Y S2Y
M C2M L2M D2M S2M
codeless L2N D2N S2N
I C5I L5I D5I S5I
L5/1176.45 Q C5Q L5Q D5Q S5Q
I+Q C5X L5X D5X S5X
Antispoofing (AS) of GPS: Various techniques may be used by GPS receivers to track the
encrypted GPS P(Y)-Code during Antispoofing (AS). In view of different properties of the
resulting observations, which need to be considered in the observation modelling, RINEX

IGS/RTCM RINEX WG 26
1 December 2021
RINEX 4.00

offers multiple attributes to unambiguously distinguish the respective observations. True


codeless GPS receivers (squaring-type receivers) use the attribute N. Semi-codeless receivers
tracking the first frequency using C/A code and the second frequency using some codeless
options use attribute D. Z-tracking under AS or similar techniques to recover pseudorange and
phase on the “P-code” band use attribute W. Y-code tracking receivers (e.g. units employing a
Selective Availability Anti-Spoofing Module (SAASM)) use attribute Y.

Table 11 : RINEX Version 4.00 GLONASS Observation Codes


Observation Codes
GNSS Freq. Band / Channel or
Pseudo Carrier Signal
System Frequency Code Doppler
Range Phase Strength
GLONASS G1/ C/A C1C L1C D1C S1C
1602+k*9/16
P C1P L1P D1P S1P
k= -7….+12
L1OCd C4A L4A D4A S4A
G1a/ C4B L4B D4B S4B
L1OCp
1600.995
L1OCd+ L1OCp C4X L4X D4X S4X
G2/ C/A C2C L2C D2C S2C
1246+k*7/16 P C2P L2P D2P S2P
G2a/ L2CSI C6A L6A D6A S6A
1248.06 L2OCp C6B L6B D6B S6B
L2CSI+ L2OCp C6X L6X D6X S6X
I C3I L3I D3I S3I
G3 / 1202.025 Q C3Q L3Q D3Q S3Q
I+Q C3X L3X D3X S3X

IGS/RTCM RINEX WG 27
1 December 2021
RINEX 4.00

Table 12 : RINEX Version 4.00 Galileo Observation Codes


Observation Codes
GNSS Freq. Band /
Channel or Code Pseudo Carrier Signal
System Frequency Doppler
Range Phase Strength
Galileo A PRS C1A L1A D1A S1A
B OS data C1B L1B D1B S1B
E1 / 1575.42 C OS pilot C1C L1C D1C S1C
B+C C1X L1X D1X S1X
A+B+C C1Z L1Z D1Z S1Z
I F/NAV OS C5I L5I D5I S5I
E5a / 1176.45 Q no data C5Q L5Q D5Q S5Q
I+Q C5X L5X D5X S5X
I I/NAV OS/CS/SoL C7I L7I D7I S7I
E5b / 1207.140 Q no data C7Q L7Q D7Q S7Q
I+Q C7X L7X D7X S7X
I C8I L8I D8I S8I
E5(E5a+E5b) / C8Q L8Q D8Q S8Q
Q
1191.795
I+Q C8X L8X D8X S8X
A PRS C6A L6A D6A S6A
B C/NAV CS C6B L6B D6B S6B
E6 / 1278.75 C no data C6C L6C D6C S6C
B+C C6X L6X D6X S6X
A+B+C C6Z L6Z D6Z S6Z

Table 13 : RINEX Version 4.00 SBAS Observation Codes


Observation Codes
GNSS Freq. Band/ Channel or
Pseudo Carrier Signal
System Frequency Code Doppler
Range Phase Strength
L1 / 1575.42 C/A C1C L1C D1C S1C
I C5I L5I D5I S5I
SBAS
L5 / 1176.45 Q C5Q L5Q D5Q S5Q
I+Q C5X L5X D5X S5X

IGS/RTCM RINEX WG 28
1 December 2021
RINEX 4.00

Table 14 : RINEX Version 4.00 QZSS Observation Codes


Observation Codes
GNSS Freq. Band / Channel or
Pseudo Carrier Signal
System Frequency Code Doppler
Range Phase Strength
QZSS C/A C1C L1C D1C S1C
C/B C1E L1E D1E S1E
L1C (D) C1S L1S D1S S1S
L1 / 1575.42 L1C (P) C1L L1L D1L S1L
L1C (D+P) C1X L1X D1X S1X
L1S/L1-SAIF C1Z L1Z D1Z S1Z
L1Sb C1B L1B D1B S1B
L2C (M) C2S L2S D2S S2S
L2 / 1227.60 L2C (L) C2L L2L D2L S2L
L2C (M+L) C2X L2X D2X S2X
L5 / 1176.45 I * C5I L5I D5I S5I
*) Block I+II Q * C5Q L5Q D5Q S5Q
Signals I+Q * C5X L5X D5X S5X
**) Block II L5S L5S(I) ** C5D L5D D5D S5D
Signals L5S(Q) ** C5P L5P D5P S5P
L5S(I+Q) ** C5Z L5Z D5Z S5Z
L6 / 1278.75 L6D *,** C6S L6S D6S S6S
*) Block I LEX L6P * C6L L6L D6L S6L
Signals L6(D+P) * C6X L6X D6X S6X
**) Block II L6E ** C6E L6E D6E S6E
Signals L6(D+E) ** C6Z L6Z D6Z S6Z
Note: The RINEX 1Z signal code is used for both the initial Block I L1-SAIF signal and the
updated L1S signal. L6D is the “code 1” of the L61(Block I) and L62 (Block II) signals, L6P
is the “code 2” (or pilot) signal of the L61(Block I) signal and L6E is the “code 2” of the L62
(Block II) signal as specified in IS-QZSS-L6. See section 4.5 and Table 6 for QZSS PRN to
RINEX identifier coding.

IGS/RTCM RINEX WG 29
1 December 2021
RINEX 4.00

Table 15 : RINEX Version 4.00 BDS Observation Codes


Observation Codes
GNSS Freq. Band / Channel or
Pseudo Carrier Signal
System Frequency Code Doppler
Range Phase Strength
BDS I (B1I signal) C2I L2I D2I S2I
B1 / 1561.098 C2Q L2Q D2Q S2Q
Q
(BDS-2/3 Signals)
I+Q C2X L2X D2X S2X
Data C1D L1D D1D S1D
B1C / 1575.42 C1P L1P D1P S1P
Pilot
(BDS-3 Signals)
Data+Pilot C1X L1X D1X S1X
Data C1S L1S D1S S1S
B1A / 1575.42 C1L L1L D1L S1L
Pilot
(BDS-3 Signals)
Data+Pilot C1Z L1Z D1Z S1Z
Data C5D L5D D5D S5D
B2a / 1176.45 C5P L5P D5P S5P
Pilot
(BDS-3 Signals)
Data+Pilot C5X L5X D5X S5X
B2 / 1207.140 I (B2I signal) C7I L7I D7I S7I
(BDS-2 Signals) Q C7Q L7Q D7Q S7Q
I+Q C7X L7X D7X S7X
Data C7D L7D D7D S7D
B2b / 1207.140 C7P L7P D7P S7P
Pilot
(BDS-3 Signals)
Data+Pilot C7Z L7Z D7Z S7Z
Data C8D L8D D8D S8D
B2(B2a+B2b)/1191.795
Pilot C8P L8P D8P S8P
(BDS-3 Signals)
Data+Pilot C8X L8X D8X S8X
I C6I L6I D6I S6I
B3/1268.52 C6Q L6Q D6Q S6Q
Q
(BDS-2/3 Signals)
I+Q C6X L6X D6X S6X
Data C6D L6D D6D S6D
B3A / 1268.52 C6P L6P D6P S6P
Pilot
(BDS-3 Signals)
Data+Pilot C6Z L6Z D6Z S6Z
Note: When reading a RINEX file, both 1I/Q/X and 2I/Q/X observation codes should be
accepted and treated the same as 2I/Q/X in the current RINEX standard.

IGS/RTCM RINEX WG 30
1 December 2021
RINEX 4.00

Table 16 : RINEX Version 4.00 NavIC/IRNSS Observation Codes


Observation Codes
GNSS Freq. Band / Channel or
Pseudo Carrier Signal
System Frequency Code Doppler
Range Phase Strength
NavIC/ A SPS C5A L5A D5A S5A
IRNSS B RS (D) C5B L5B D5B S5B
L5 / 1176.45
C RS (P) C5C L5C D5C S5C
B+C C5X L5X D5X S5X
A SPS C9A L9A D9A S9A
B RS (D) C9B L9B D9B S9B
S / 2492.028
C RS (P) C9C L9C D9C S9C
B+C C9X L9X D9X S9X

IGS/RTCM RINEX WG 31
1 December 2021
RINEX 4.00

5.3 Observation Data Records


See section 8 for a detailed specification of the RINEX data record description. Below are some
descriptions and clarifications for some of the data records elements.
Each observation record begins with the satellite identifier snn (see section 4.5), the epoch
record starts with special character >. It is now also much easier to synchronize the reading
program with the next epoch record in case of a corrupted data file or when streaming
observation data in a RINEX-like format.
There is no data record length limitation as it depends on the declared constellation observation
list and the available observables per satellite per epoch.
Table 17 shows a sample list of observation types for six satellite systems G,E,S,R,C,J .
Table 17 : Example Observation Type Records
G 22 C1C L1C D1C S1C C1W S1W C2W L2W D2W S2W C2L L2L D2L SYS / # / OBS TYPES
S2L C5Q L5Q D5Q S5Q C1L L1L D1L S1L SYS / # / OBS TYPES
E 20 C1C L1C D1C S1C C6C L6C D6C S6C C5Q L5Q D5Q S5Q C7Q SYS / # / OBS TYPES
L7Q D7Q S7Q C8Q L8Q D8Q S8Q SYS / # / OBS TYPES
S 8 C1C L1C D1C S1C C5I L5I D5I S5I SYS / # / OBS TYPES
R 20 C1C L1C D1C S1C C1P L1P D1P S1P C2P L2P D2P S2P C2C SYS / # / OBS TYPES
L2C D2C S2C C3Q L3Q D3Q S3Q SYS / # / OBS TYPES
C 20 C1P L1P D1P S1P C5P L5P D5P S5P C2I L2I D2I S2I C7I SYS / # / OBS TYPES
L7I D7I S7I C6I L6I D6I S6I SYS / # / OBS TYPES
J 20 C1C L1C D1C S1C C2L L2L D2L S2L C5Q L5Q D5Q S5Q C1L SYS / # / OBS TYPES
L1L D1L S1L C1Z L1Z D1Z S1Z SYS / # / OBS TYPES

RINEX observations are written as detailed in section 6.7. An epoch and partial observation
records example is provided in Table 18.
Table 18 : Example RINEX Observation Epoch
> 2020 01 28 00 00 0.0000000 0 48
C19 24654392.553 7 129559707.78007 -2902.686 7 44.750 24654395.451
→7 96749126.04807 -2167.576 7 44.500 24654390.675 7 128381880.85807
→-2876.245 7 46.250
→24654391.375 7 104320752.71507 -2337.249 7 45.250
E04 23840346.329 7 125281891.86507 1327.432 7 47.250 23840348.158
→8 101689874.47708 1077.475 8 50.500 23840349.531 8 93554698.18708
→991.252 8 50.500 23840347.337 8 95995235.59308 1017.092 8
→50.750 23840348.470 8 94774971.96308 1004.174 8 53.750
G02 22187868.655 7 116598092.03507 1322.609 7 46.750 22187867.444
→5 34.750 22187866.324 5 90855658.54005 1030.607 5 34.750
J02 39360055.791 6 206838418.87206 -2309.902 6 41.500 39360060.423
→6 161172711.84406 -1799.765 6 38.750 39360062.564 7 154457226.33407
→-1724.901 7 44.250 39360056.067 7 206838395.87407 -2309.921 7
→42.000 39360052.638 6 206838394.23206 -2309.937 6 41.500
R02 20785793.428 8 110917264.66308 -3161.955 8 50.000 20785793.589
→8 110917013.67108 -3161.968 8 50.500 20785800.249 7 86268837.39807
→-2459.221 7 46.250 20785800.084 7 86268905.40407 -2459.355 7
→45.750
S29 40051393.288 5 210471465.60005 2.190 5 35.750
S38 37925915.028 7 199302015.88507 -3.269 7 45.750 37925889.993
→8 148829334.35608 -2.392 8 49.250

The long observation lines per satellite are wrapped to fit the table width, each new line starts
with a PRN and is wrapped (indicated by →) until the next PRN (no width limitation to the
satellite observation lines).

IGS/RTCM RINEX WG 32
1 December 2021
RINEX 4.00

5.3.1 Order of Data records


Multiple epoch observation data records with identical time tags are not allowed (exception:
Event records).
Epochs in a RINEX file have to be listed ordered in time.

5.3.2 Event flag records


Special occurrences during the tracking can be indicated in the EPOCH event flag in a RINEX
observation file. The event flag is the integer after the number of seconds in the epoch, different
such events can be indicated using integers;
• 2 - start moving antenna
• 3 - new site occupation (end of kinematic data) (at least MARKER NAME record
follows)
• 4 - header information follows
• 5 - external event (epoch is significant, same time frame as observation time tags)
The “number of satellites” field if the event field is 2 then corresponds to the number of
records of the same epoch following the EPOCH record. Therefore, the “number of satellites”
in the EPOCH may be used to skip the appropriate number of data records if certain event flags
are not to be evaluated in detail (Table A3).

5.3.3 RINEX observation data records for GEO & SBAS satellites
Satellite-Based Augmentation System (SBAS) payloads on GEO satellites transmitting
navigation signals. The satellite identifier ‘S’ is to be used, as shown in Figure 1, in the RINEX
VERSION / TYPE header line and to identify the satellite. The PRN ‘nn’ is defined as being
the GEO PRN number minus 100;
e.g.: PRN = 120 ⇒ Snn = S20

5.3.4 Channel numbers as pseudo-observables


For special applications, it might be necessary to know the receiver channel numbers having
been assigned by the receiver to the individual satellites and band/frequency. We may include
this information as a pseudo-observable in each epoch data record line per satellite:
t : observation type: X = Receiver channel number
n : band / frequency : 1,2,…,9
a : attribute: blank
The lowest channel number allowed is 1 (re-number channels beforehand, if necessary). In the
case of a receiver using multiple channels for one satellite, the channels could be packed with
two digits each right-justified into the same data field, order corresponding to the order of the
observables concerned. Using a Fortran float number format F14.3 according to (<5-
nc>(2X),<nc>I2.2,’.000’), nc being the number of channels.
Restriction: Not more than 5 channels and channel numbers <100.
Examples:
• 0910.000 for channels 9 and 10
• 010203.000 for channels 1, 2, and 3

IGS/RTCM RINEX WG 33
1 December 2021
RINEX 4.00

5.4 RINEX Navigation Messages


RINEX 4.00 encourages the recording at each station of ‘Mixed’ navigation files containing
all the GNSS system navigation messages. Navigation files for individual constellations are
allowed but discouraged to reduce the number of files from a station.
Merged RINEX navigation files (whether from an individual station or from a station network)
are described in section 6.11 and are always expected to contain the navigation messages of all
the tracked satellites in mixed or individual constellation mode.
The data portion of the navigation message files contains the broadcast navigation data records
scaled to engineering units and with floating point numbers. The navigation message format is
similar for all satellite systems. All legacy navigation messages supported by earlier RINEX
versions remain unchanged and all new navigation messages reuse the fixed grid of four
columns with a width of 19 characters.
The number of records per message and the contents are constellation and signal dependent as
detailed in section 8.3. Using the new Data Record Header Line which contains; a navigation
record type, the satellite or constellation identifier and the navigation message type (see section
5.4.1), the reading program can determine the number of fields to be read for each data record
as defined in each of the corresponding Appendix Tables.
In RINEX 4.00 constellation and global dependent navigation file contents have been removed
from the header and included as specific system time correction, earth orientation and
ionosphere navigation messages.
The time tags of the navigation messages (e.g., time of ephemeris, time of clock) are given in
the respective satellite system time following the convention described in section 4.1.
A navigation file shall avoid storing redundant navigation messages in the RINEX file (e.g.,
the same message broadcast at different times, or containing exactly the same data). In case of
multiple navigation data sets with identical contents, priority should be given to storing the one
with the earliest transmission time.

5.4.1 Navigation Data Record Header Line


In RINEX 4.00 an initial line is included to indicate the start of a new navigation data record.
This navigation data record header line contains a starting indicator “>”, a navigation data
record type, the source of the data, and the message type indicator from which the data record
is obtained, this is the new Data Record Header Line.
The first element, the record type, is as presented in Table 19.
Table 19: Navigation Data Record Types
Nav Data Record Type Description
EPH Ephemerides data including orbit, clock, biases, accuracy and
status parameters.
STO System Time and UTC proxy offset parameters
EOP Earth Orientation Parameters
ION Global/Regional ionospheric model parameters

The second element is the source of the navigation data record. It is indicated with the
constellation letter (G,R,E,C,J,I), plus when necessary the two-digit satellite number of

IGS/RTCM RINEX WG 34
1 December 2021
RINEX 4.00

the transmitting satellite. Redundant constellation data records coming from different satellites
with the exact same values shall not be repeated.
The navigation message type indicator is the final element of the Data Record Header Line and
it depends on the data record type of Table 19.

Table 20: EPH Navigation Message Types


EPH
Description Constellation and signal
Nav Message Types
GPS L1 C/A,
LNAV GPS/QZSS/NavIC Legacy Navigation
QZSS L1 C/A or L1 C/B,
Messages
IRNSS L5/S SPS
FDMA GLONASS Legacy FDMA Message GLO L1 C/A
FNAV Galileo Free Navigation Message GAL E5a
INAV Galileo Integrity Navigation Message GAL E1, E5b
D1 BeiDou-2/3 MEO/IGSO Navigation
BDS B1I, B2I, B3I
Message
D2 BeiDou-2/3 GEO Navigation Message BDS B1I, B2I, B3I
SBAS SBAS Navigation Message SBAS L1
CNAV GPS/QZSS CNAV Navigation Message GPS/QZSS L2C, L5
CNV1 BeiDou-3 CNAV-1 Navigation Message BDS-3 B1C
CNV2 GPS/QZSS CNAV-2 Navigation Mssg GPS/QZSS L1C
BeiDou-3 CNAV-2 Navigation Message BDS-3 B2a
CNV3 BeiDou-3 CNAV-3 Navigation Message BDS-3 B2b

Constellation or System navigation data records (STO, EOP, ION from Table 19) contain data
commonly transmitted by different groups of navigation messages and thus the granularity of
the message type indicators can be reduced to prevent many copies of the same data being
repeated in a navigation file;

Table 21: STO, EOP, ION Navigation Message Types


STO,EOP,ION
Description Constellation and signal
Nav Message Types
GPS L1 C/A,
LNAV GPS/QZSS/NavIC Legacy Navigation
QZSS L1 C/A or L1 C/B,
Messages
IRNSS L5/S SPS
FDMA GLONASS Legacy FDMA Navigation
GLO L1 C/A
Message
IFNV Galileo INAV or FNAV Navigation
GAL E1, E5a, E5b
Message
D1D2 BeiDou-2/3 MEO/IGSO and GEO
BDS B1I, B2I, B3I
Navigation Message
SBAS SBAS Navigation Message SBAS L1

IGS/RTCM RINEX WG 35
1 December 2021
RINEX 4.00

STO,EOP,ION
Description Constellation and signal
Nav Message Types
GPS/QZSS CNAV Navigation Message
CNVX GPS/QZSS L2C, L5
BeiDou-3 CNAV-1, CNAV-2 or CNAV-3
BDS-3 B1C, B2I, B3I
Navigation Message
The navigation data message header lines are then, for example;
> EPH G01 LNAV
> STO R FDMA
> ION E08 IFNV
> EOP J01 CNVX

5.4.2 EPH Navigation messages for GPS (LNAV, CNAV, CNV2)


The specifications for the GPS satellite navigation messages are in Table A9, Table A10, and
Table A11. After the new Data Record Header Line the LNAV message is defined exactly as in
previous RINEX versions. The first data record always contains the epoch, and satellite clock
information. The following lines contain the orbit parameters for the satellite, the time of
applicability of the navigation message, health flag, accuracy information, group delays, etc.

5.4.3 EPH Navigation messages for Galileo (INAV, FNAV)


The specifications for the Galileo satellite navigation message are in Table A13. The Galileo
Open Service allows access to two navigation message types: FNAV (Free Navigation) and
INAV (Integrity Navigation). The content of the two messages differs in various items, how-
ever, in general it is very similar to the content of the GPS (LNAV) navigation message, e.g.
the orbit parameterization is the same.
There are items in the navigation message that depend on the origin of the message (FNAV or
INAV): The SV clock parameters actually define the satellite clock for the dual-frequency
ionosphere-free linear combination. FNAV reports the clock parameters valid for the E5a-E1
combination, the INAV reports the parameters for the E5b-E1 combination. The second
parameter in the Broadcast Orbit 5 record (bits 8 and 9) indicates the frequency pair
the stored clock corrections are valid for.
RINEX file encoders shall encode one RINEX Galileo navigation message for each FNAV and
INAV signal decoded. Therefore, if both messages are decoded, then the relevant bit fields
must be set in the RINEX message and both should be written in separate messages. The
Galileo ICD Section 5.1.9.2 indicates that some of the contents of the broadcast navigation
message may change, yet the issue of data (IOD) may not change. To ensure that all relevant
information is available message encoders should monitor the contents of the file and write
new navigation messages when the contents have changed.
RINEX file parsers should expect to encounter FNAV and INAV messages with the same IOD
in the same file. Additionally, parsers should also expect to encounter more than one FNAV or
INAV ephemeris message with the same IOD, as the navigation message Data Validity Status
(DVS) and other parameters may change independently of the IOD, yet some other data may
be the same, however, the transmission time will be updated (See Note in Galileo ICD Section
5.1.9.2 Issue of Data).
As mentioned in section 4.1.8 the GAL week in the RINEX navigation message files is a
continuous number; it has been aligned to the GPS week by the program creating the RINEX

IGS/RTCM RINEX WG 36
1 December 2021
RINEX 4.00

file.

5.4.4 EPH Navigation message for GLONASS (FDMA)


The specifications for the GLONASS satellite navigation message are in Table A15. The first
data record contains the epoch, and satellite clock information. The following three records
contain the satellite position, velocity and acceleration, the clock and frequency biases, as well
as auxiliary information such as health, satellite frequency (channel) and age of the
information.
The last record includes Status and Health flags, the signal group delay difference and the
accuracy index, but some of the values in the last record only apply to GLO-M/K satellites.
The corrections of the satellite time to the UTC proxy is as follows:
GLONASS: Tutc = Tsv + TauN –GammaN*(Tsv-Tb) + TauC
In order to use the same sign conventions, the broadcast GLONASS values are stored in the
navigation file (in GLONASS EPH and STO messages) as: -TauN, +GammaN, -TauC.
The time tags in the GLONASS navigation files are given in UTC (i.e. not Moscow time nor
GPS time).

5.4.5 EPH Navigation messages for QZSS (LNAV, CNAV, CNV2)


The QZSS navigation messages are defined in Table A17, Table A18 and Table A19. The
messages are defined in-line with the GPS equivalent messages but for completeness and in
view of some selected differences fully independent definition tables are included.

5.4.6 EPH Navigation messages for BDS (D1/D2, CNV1, CNV2, CNV3)
The BDS Open Service broadcast navigation messages are defined in Table A21, Table A22,
Table A23, and Table A24. As with all other message the first data record contains epoch and
satellite clock information, followed by the orbit parameters, several time parameters, and
health and accuracy flags.
The BDT week number is a continuous number. The broadcast 13-bit BDS System Time week
has a roll-over after 8191. It starts at zero on: 1-Jan-2006, hence;
BDT week = BDT week_BRD + (n*8192) (Where n: number of BDT roll-overs).

5.4.7 EPH Navigation message for SBAS satellites (SBAS)


The specifications for SBAS satellite navigation message are in Table A26. Navigation data
records for SBAS satellites are mainly based on the contents of the MT 9 "GEO Navigation
Message" with optional health information from the MT17 "GEO Almanacs" message.
The first data record line contains the epoch and satellite clock information; the following
records contain the satellite position, velocity and acceleration and auxiliary information
(health, URA and IODN).
The time tags in the GEO navigation data are given in the GPS time frame, i.e. not UTC.
The corrections of the satellite time to UTC is as follows:
GEO: Tutc = Tsv –aGf0 –aGf1 *(Tsv-Toe) –W0 –ΔtLS

IGS/RTCM RINEX WG 37
1 December 2021
RINEX 4.00

W0 being the correction to transform the GEO system time to the UTC proxy. See Toe, aGf0,
aGf1 in Table A26 format definition table.
The Transmission Time of Message is expressed in GPS seconds of the week. It marks the
beginning of the message transmission. It has to refer to the same GPS week as the Epoch of
Ephemerides. If necessary, the Transmission Time of Message may have to be adjusted by - or
+ 604800 seconds (which would make it lower than zero or larger than 604800, respectively
and then further corrected to correspond to the Epoch of Ephemeris) so that it is referenced to
the GPS week of the Epoch of Ephemeris.
Health is defined as follows:
• bits 0 to 3 equal to health in Message Type 17 (MT17)
• bit 4 is set to 1 if MT17 health is unavailable
• bit 5 is set to 1 if the URA index is equal to 15
In the SBAS message definitions, bit 3 of the health word is currently marked as reserved. In
case of bit 4 set to 1, it is recommended to set bits 0,1,2,3 to 1, as well.
User Range Accuracy (URA);
The same convention for converting the URA index to meters is used as with GPS. Set URA
= 32767 meters if URA index = 15.

5.4.8 EPH Navigation messages for NavIC/IRNSS (LNAV)


The NavIC/IRNSS Open Service broadcast navigation message is similar in content to the GPS
LNAV navigation message.
See Table A28 and Table A29 for a description and examples of each field.

5.4.9 STO Messages for System Time and UTC Offset


The STO messages replace the previous “SYSTEM TIME CORR” header line(s).
The STO message is defined in Table A30. GNSS satellites transmit different system time
offsets. With these offsets timing information can be converted between GNSS time scales or
from a GNSS time scale to a UTC proxy. Only the fractional-second parts of the respective
offset are provided in the STO records. Information on full leap seconds between GPS time to
UTC (since 6 Jan 1980) is contained in the “LEAP SECONDS” header line which is now
compulsory for navigation files (see Table A7).

Table 22: Navigation Message System Time Offset labels


NavIC/
UTC GPS GLO Galileo BeiDou QZSS
IRNSS
System
2 letter
UT GP GL GA BD QZ IR
codes
GPS GP GPUT
GLONASS GL GLUT GLGP
Galileo GA GAUT GAGP GAGL
BeiDou BD BDUT BDGP BDGL BDGA
QZSS QZ QZUT QZGP QZGL QZGA QZBD
NavIC/IRNSS IR IRUT IRGP IRGL IRGA IRBD IRQZ
SBAS SB SBUT SBGP SBGL SBGA SBBD SBQZ SBIR

IGS/RTCM RINEX WG 38
1 December 2021
RINEX 4.00

In case of the UTC time offsets, the specific UTC proxy referenced is specified by a dedicated
indicator; the UTC ID.
Valid UTC ID entries include: UTC(USNO), UTC(SU), UTCGAL, UTC(NTSC),
UTC(NICT), UTC(NPLI), UTCIRN, UTC(OP). A UTC ID is necessary, as detailed in
Table 23, for every “UT” time offset message.

Table 23: Navigation Message System Time UTC indicator


System UTC Offset label UTC ID
GPS GPUT UTC(USNO)
GLONASS GLUT UTC(SU)
Galileo GAUT UTCGAL
BeiDou BDUT UTC(NTSC)
QZSS QZUT UTC(NICT)
UTCIRN /
NavIC/IRNSS IRUT
UTC(NPLI)
(From the valid
UTC ID entries
SBAS SBUT list, whichever
applies for each
SBAS system)
For Galileo, the “UTC” to which the GAUT offset refers to comes from an ensemble of clocks
maintained at several metrological institutes in Europe by the Galileo Time Service Provider,
and the designation UTCGAL has been adopted as the proxy for the UTC broadcast by Galileo.
For NavIC/IRNSS, which transmits two distinct offsets of NavIC/IRNSS system time with
respect to both UTC and to UTC(NPLI), the correct UTC ID (UTCIRN or UTC(NPLI) ) shall
be used for each case.
In terms of SBAS different SBUT values will require different UTC IDs for each system. Thus,
additionally an SBAS ID indicator must also be specified for every SBUT value. Current SBAS
ID values are: WAAS, EGNOS, MSAS, GAGAN, SDCM, BDSBAS, KASS, A-SBAS,
SPAN. See Table A30 for the structure of the STO message and the use of these indicators.
The time offset parameters for different constellations and navigation messages and how the
parameters are to be used are indicated in Table 24.

Table 24: Time Offset Parameters per GNSS and per Navigation Message
STO Time sys offset labels
System Definition
Nav Mssg Type (Message parameters)
GPS LNAV 𝑡GPS − 𝑡UTC(USNO) = ∆𝑡ls1980 + 𝐴0 + 𝐴1 (𝑡 − 𝑡ot )GPS GPUT
(+𝐴0 , +𝐴1 ; 𝑡ot )
CNVX 𝑡GPS − 𝑡UTC(USNO) = ∆𝑡ls1980 + 𝐴0 + 𝐴1 (𝑡 − 𝑡ot )GPS + 𝐴2 (𝑡 − 𝑡ot )2GPS GPUT
(+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡ot )
2
𝑡GAL − 𝑡GPS = −𝐴0 − 𝐴1 (𝑡 − 𝑡ggto )GPS − 𝐴2 (𝑡 − 𝑡ggto )GPS GAGP
(−𝐴0 , −𝐴1 ; 𝑡ggto )
GLO LNAV 𝑡UTC(SU) + 3h − 𝑡GLO = 𝜏𝑐 GLUT
(−𝜏𝑐 ; 𝑡0d )

IGS/RTCM RINEX WG 39
1 December 2021
RINEX 4.00

STO Time sys offset labels


System Definition
Nav Mssg Type (Message parameters)
𝑡GPS − 𝑡GLO = −3h + ∆𝑡ls1980 + 𝜏GPS GLGP
(−𝜏GPS ; 𝑡0d )
GAL IFNV 𝑡GAL − 𝑡UTC = ∆𝑡ls1980 + 𝐴0 + 𝐴1 ∙ (𝑡 − 𝑡ot )GAL GAUT
(+𝐴0 , +𝐴1 ; 𝑡ot )
𝑡GAL − 𝑡GPS = 𝐴0 + 𝐴1 ∙ (𝑡 − 𝑡og )GAL GAGP
(+𝐴0 , +𝐴1 ; 𝑡og )
BDS D1D2 𝑡BDS − 𝑡UTC(NTSC) = ∆𝑡ls2006 + 𝐴0 + 𝐴1 ∙ (𝑡 − 𝑡0w )BDS BDUT
(+𝐴0 , +𝐴1 ; 𝑡0w )
𝑡BDS − 𝑡GPS = 𝐴0 + 𝐴1 (𝑡 − 𝑡0w )BDS BDGP
(+𝐴0 , +𝐴1 ; 𝑡0w )
𝑡BDS − 𝑡GAL = 𝐴0 + 𝐴1 (𝑡 − 𝑡0w )BDS BDGA
(+𝐴0 , +𝐴1 ; 𝑡0w )
𝑡BDS − 𝑡GLO = 𝐴0 + 𝐴1 (𝑡 − 𝑡0w )BDS BDGL
(+𝐴0 , +𝐴1 ; 𝑡0w )
CNVX 𝑡BDS − 𝑡UTC(NTSC) = ∆𝑡ls2006 + 𝐴0 + 𝐴1 (𝑡 − 𝑡ot )BDS + 𝐴2 (𝑡 − 𝑡ot )2BDS BDUT
(+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡ot )
𝑡BDS − 𝑡GPS = 𝐴0 + 𝐴1 (𝑡 − 𝑡bgto )BDS + 𝐴2 (𝑡 − 𝑡bgto )BDS
2 BDGP
(+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡bgto )
𝑡BDS − 𝑡GAL = 𝐴0 + 𝐴1 (𝑡 − 𝑡bgto )BDS + 𝐴2 (𝑡 − 𝑡bgto )BDS
2 BDGA
(+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡bgto )
𝑡BDS − 𝑡GLO = 𝐴0 + 𝐴1 (𝑡 − 𝑡bgto )BDS + 𝐴2 (𝑡 − 𝑡bgto )BDS
2 BDGL
(+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡bgto )
QZSS LNAV 𝑡QZS − 𝑡UTC(NICT) = ∆𝑡ls1980 + 𝐴0 + 𝐴1 (𝑡 − 𝑡ot )QZS QZUT
(+𝐴0 , +𝐴1 ; 𝑡ot )
CNVX 𝑡QZS − 𝑡UTC(NICT) = ∆𝑡ls1980 + 𝐴0 + 𝐴1 (𝑡 − 𝑡ot )QZS + 𝐴2 (𝑡 − 𝑡ot )2QZS QZUT
(+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡ot )
NavIC/ LNAV 𝑡IRS − 𝑡UTC = ∆𝑡ls1980 + 𝐴0 + 𝐴1 (𝑡 − 𝑡ot )IRS + 𝐴2 (𝑡 − 𝑡ot )2IRS IRUT
IRNSS (+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡ot )
𝑡IRS − 𝑡UTC(NPLI) = ∆𝑡ls1980 + 𝐴0 + 𝐴1 (𝑡 − 𝑡ot )IRS + 𝐴2 (𝑡 − 𝑡ot )2IRS IRUT
(+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡ot )
𝑡IRS − 𝑡GPS = 𝐴0 + 𝐴1 (𝑡 − 𝑡ot )IRS + 𝐴2 (𝑡 − 𝑡ot )2IRS IRGP
(+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡ot )
𝑡IRS − 𝑡GLO = 𝐴0 + 𝐴1 (𝑡 − 𝑡ot )IRS + 𝐴2 (𝑡 − 𝑡ot )2IRS IRGL
(+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡ot )
𝑡IRS − 𝑡GAL = 𝐴0 + 𝐴1 (𝑡 − 𝑡ot )IRS + 𝐴2 (𝑡 − 𝑡ot )2IRS IRGA
(+𝐴0 , +𝐴1 , +𝐴2 ; 𝑡ot )
SBAS SBAS 𝑡SBAS(𝑖) − 𝑡UTC(𝑗) = ∆𝑡ls1980 + 𝐴0 + 𝐴1 ∙ (𝑡 − 𝑡ot )SBAS(𝑖) SBUT
(+𝐴0 , +𝐴1 ; 𝑡ot ; 𝑖; 𝑗 )
i ; SBAS ID
j ; UTC ID

Where ∆𝑡ls1980 / ∆𝑡ls2006 : leap seconds since Jan.1980 / 2006; 𝑡ot : reference epoch; 𝑡0w : start-
of-week epoch; 𝑡0d : start-of-day epoch.
The reference epoch of the time offset polynomial is given in the form of a calendar date in
analogy with the clock epoch of the EPH ephemeris records. In addition, the transmission time

IGS/RTCM RINEX WG 40
1 December 2021
RINEX 4.00

is provided in field 4 of line 1 to identify, at which instant the time offset information has
become available in the receiver.
The reference epoch and the transmit time refer to the system time of the originating
constellation, which is identified in the STO record header. In accord with the conventions for
ephemeris data, the epoch and transmit time of STO information transmitted by GLONASS
satellites should be aligned to UTC by subtracting 3 h from the respective values in Moscow
Time.

5.4.10 EOP Messages for Earth Orientation Parameters


The EOP messages are new in the RINEX 4.00 navigation files. The messages are defined in
Table A31.
Earth orientation parameters (EOPs) are presently supported by four constellations: GPS,
QZSS, NavIC/IRNSS, and BeiDou-3. In all cases pole coordinates (x, y) and ΔUT1 and the
respective rates are provided for a specified reference epoch. For the GLONASS CDMA
navigation messages, second-order derivatives will be provided for all three parameters.
The reference epoch of the EOP data is given in the form of a calendar date as with the clock
epoch of the EPH ephemeris records. In addition, the transmission time of the EOP data is
provided, at which instant the EOP information has become available in the receiver.

5.4.11 ION Messages for Ionosphere Model Parameters


The ION messages replace the previous “IONOSPHERE CORR” navigation message file
header line(s). The ionospheric messages for the different models are defined in Table A32,
Table A33, and Table A34.
To support navigation with single-frequency observations, most GNSSs transmit a system-
specific set of parameters based on which navigation users can model the ionospheric slant
electron content and thus correct the ionospheric path delays. The choice of model varies with
constellation and navigation message type, and includes:
• The Klobuchar model used in GPS, BeiDou-2/3, QZSS, and NavIC/IRNSS
• The NeQuick-G model of Galileo
• The BDGIM model used in BeiDou-3
The Klobuchar model is jointly used by four constellations, but the model coefficients are
independently determined for each of these systems. In case of regional systems such as
BeiDou-2, QZSS, and NavIC/IRNSS, the model parameters are typically optimized for use in
the respective service area. As a unique feature of QZSS, two independent sets of Klobuchar
model coefficients for “wide area” and “Japan area” users are jointly transmitted in each of the
LNAV, CNAV, and CNAV-2 messages. For other constellations, only a single parameter set
is provided.
The ionosphere model parameters provided by the various GNSSs are not associated with a
reference epoch or validity period.

IGS/RTCM RINEX WG 41
1 December 2021
RINEX 4.00

6 RINEX FORMATTING CLARIFICATIONS


6.1 Versions
Programs developed to read RINEX files have to verify the version number and take proper
action if they cannot deal with it.
Files of newer versions may look different even if they do not use any of the newer features.

6.2 Leading blanks in CHARACTER fields


When writing CHARACTER fields content should be left-justified. When reading
CHARACTER fields leading and trailing white space should be discarded.

6.3 Variable-length records


In variable length records, empty data fields at the end of a record may be missing, especially
in the case of the optional receiver clock offset.

6.4 Spare Fields


In view of future format evolutions, we recommend to carefully skip any fields currently
defined to be Spare or left blank in the navigation message definition tables (section 8.3),
because they may be assigned to new contents in future versions.
Spare fields are to be left blank so as to avoid confusion.

6.5 Missing items, duration of the validity of values


Header items that are not known at the file creation time can be set to zero or blank (Blank if
Not Known/Not Defined - BNK) or the respective record may be completely omitted.
Consequently, items of missing header records will be set to zero or blank by the program
reading RINEX files. Trailing blanks may be truncated from the record.
Each value remains valid until changed by an additional header record.

6.6 Unknown / Undefined observation types and header records


It is a good practice for a program reading RINEX files to make sure that it properly deals with
unknown observation types, header records or event flags by skipping them and/or reporting
them to the user.

6.7 Floating point numbers in Observation data records


RINEX observation measures are written as floating point values with three decimals and a
total field width of 14 characters (e.g. Fortran F14.3 format). Following each observation, a
two-digit field for optional loss-of-lock indicator (LLI) (only for phase observation) and signal
strength indicators (SSI) is provided.

IGS/RTCM RINEX WG 42
1 December 2021
RINEX 4.00

Example:
PRN code(m) phase(cycles)
--- ------------ -------------
G02 22187868.655 7 116598092.03507
R09 22677458.268 6 121096420.07006

SSI LLI SSI

Missing observations are written as 0.0 or blanks. Phase values overflowing the fixed format
F14.3 have to be clipped into the valid interval (e.g add or subtract 10**9), set bit 0 of LLI
indicator.

6.7.1 Loss of lock indicator (LLI)


For phase observations only. The LLI values are three-bit codes (binary 000-111) stored as
decimals 0-7. Each bit has a special meaning;
0 or blank: OK or not known.
Bit 0 set: Lost lock between previous and current observation: Cycle slip possible. For
phase observations only. Note: Bit 0 is the least significant bit.
Bit 1 set: Half-cycle ambiguity/slip possible. Software not capable of handling half
cycles should skip this observation. Valid for the current epoch only.
Bit 2 set: BOC-tracking of an MBOC-modulated signal (may suffer from increased
noise).

6.7.2 Signal Strength Indicator (SSI)


Signal strength indicators are part of the code and phase observations to offer a compact quality
indicator. The generation of the RINEX signal strength indicators sn_rnx in the data records
(1 = very weak,…,9 = very strong) are standardized in case the raw signal strength sn_raw is
given in dbHz:

sn_rnx = MIN(MAX(INT(sn_raw/6),1),9)

IGS/RTCM RINEX WG 43
1 December 2021
RINEX 4.00

Table 25 : Standardized SNR Indicators


Carrier to Noise ratio (dbHz) Carrier to Noise ratio (Observations)
N/A 0 or blank (not known, don’t care)
< 12 1 (minimum signal strength)
12-17 2
18-23 3
24-29 4
30-35 5
36-41 6
42-47 7
48-53 8
≥ 54 9 (maximum signal strength)
Additionally, observation codes per signal are specified to store detailed signal strength
observations ‘Sna’ (see Table 10 - Table 16). The SIGNAL STRENGTH UNIT header
record can be used to indicate the units of these observations.

6.8 Floating point numbers in Navigation data records


The exponent indicator; E, e, are recommended between the fraction and exponent of all
floating-point numbers for the navigation messages. The indicators; D, and d are allowed but
strongly deprecated. Zero-padded two-digit exponents are required.
Examples, from different station navigation files:
1.266124167725E-09 2.000000000000E+00 2.069000000000E+03 1.000000000000E+00
7.304595403547E-01-1.565625000000E+01-1.559470529133E+00-9.082521180606E-10

-4.411928222656e+03-3.539047241211e+00 9.313225746155e-10 0.000000000000e+00


2.101021875000e+04 1.440399169922e+00-1.862645149231e-09 0.000000000000e+00

The same exponent indicator will be used throughout a navigation file (station or merged).

6.9 Units in Navigation data records


In the EPH Navigation Data Records angles and their derivatives transmitted in units of semi-
circles and semi-circles/sec have to be converted to radians and radians/sec by the RINEX
generator.
In the ION navigation Data Records semi-circles are not converted. ICD specific units are
retained, no conversion takes place as indicated in Table A32, Table A33, and Table A34.

6.10 Navigation data stored bitwise


Some navigation parameters contain the data stored bitwise. The interpretation is as follows:
• Convert the floating-point number read from the RINEX file into the nearest integer.
• Extract the values of the requested bits from the integer.
Examples:
1.790000000000E+02 → 179 →10110011 ; Bits 7,5,4,1,0 are set, all others are zero
6.300000000000e+02 → 63 →111111 ; all six bits are set
5.130000000000E+02 → 513 →1000000001 ; Bits 9,0 are set , all others are zero
4.800000000000e+01 → 48 →110000 ; Bits 5,4 are set , all others are zero

IGS/RTCM RINEX WG 44
1 December 2021
RINEX 4.00

6.11 Navigation message transmission time


The transmission time (t_tm) in the navigation message definition tables in Section 8.3 denotes
the approximate time at which the navigation data were received. It shall allow to discriminate
between repetitive transmissions of the same information and is expected to refer to an instant
between the beginning of the first navigation frame or message and the end of the last
navigation frame or message contributing data to a given RINEX ephemeris record.
The t_tm is referred to the constellation specific system time (i.e. GPS time for GPS, BDS time
for BDS, etc.) and given in seconds of week. Adjust by +/-604800s to align t_tm to the same
week as of the epoch in the SV / EPOCH / SV CLK line.
Legacy navigation records without transmit time are permitted for compatibility with past
RINEX standards, but strongly deprecated.
Provision of the transmit time is mandatory for all new navigation records introduced in
RINEX 4.0.

6.12 Merged Navigation files


A merged navigation file is created by a provider that consolidates the navigation message data
from several individual stations over a time period specified in the filename, or from the same
individual station to create a station file covering a longer time period.
The aim of the merged navigation file is to contain a complete set of non-redundant navigation
records over a specified time frame. This simplifies for the user the task of finding all the
original messages over many individual files, plus some quality control can be applied to the
messages and the records sorted.
Merged navigation files sorting should aim to include global messages (STO, ION, EOP)
at the start of the file and then the EPH messages either sorted by constellation prn or by the
EPOCH record dates.
Merged navigation files should indicate it in their header via the MERGED FILE header line,
and if known include the number of files merged and the number of stations that participated
in the merge. See Table A7 for exact details and an example in Table A8.

IGS/RTCM RINEX WG 45
1 December 2021
RINEX 4.00

7 REFERENCES
BeiDou Navigation Satellite, System, Signal In Space, Interface Control Document, Open
Service Signal B1C, (Version 1.0), China Satellite Navigation Office, December 2017.
BeiDou Navigation Satellite, System, Signal in Space, Interface Control Document, Open
Service Signal B1I, (Version 3.0), China Satellite Navigation Office. February 2019.
BeiDou Navigation Satellite, System, Signal in Space, Interface Control Document, Open
Service Signal B2a, (Version 1.0), China Satellite Navigation Office, December 2017.
BeiDou Navigation Satellite, System, Signal in Space, Interface Control Document, Open
Service Signal B2b, (Version 1.0), China Satellite Navigation Office, July 2020.
BeiDou Navigation Satellite, System, Signal in Space, Interface Control Document, Open
Service Signal B3I, (Version 1.0), China Satellite Navigation Office. February 2018.
European GNSS (Galileo) Open Service, Signal-in-Space, Interface Control Document, Issue
2.0, January 2021.
GLObal NAvigation Satellite System (GLONASS), Interface Control Document, (Edition 5.1),
2008.
Global Navigation Satellite System GLONASS, Interface Control Document, General
Description of Code Division Multiple Access Signal System, Edition 1.0, 2016.
Global Navigation Satellite System GLONASS, Interface Control Document, Code Division
Multiple Access, Open Service Navigation Signal in L1 frequency band, Edition 1.0, 2016.
Global Navigation Satellite System GLONASS, Interface Control Document, Code Division
Multiple Access, Open Service Navigation Signal in L2 frequency band, Edition 1.0, 2016.
Global Navigation Satellite System GLONASS, Interface Control Document, Code Division
Multiple Access, Open Service Navigation Signal in L3 frequency band, Edition 1.0, 2016.
Global Positioning Systems Directorate, Systems Engineering and Integration Interface
Specification IS-GPS-200M, NAVSTAR GPS Space Segment/Navigation User Interfaces, 21
May 2021. (https://www.gps.gov/technical/icwg/)
Global Positioning Systems Directorate, Systems Engineering and Integration Interface
Specification IS-GPS-705H, NAVSTAR GPS Space Segment/User Segment L5 Interfaces, 21
May 2021. (https://www.gps.gov/technical/icwg/)
Global Positioning Systems Directorate, Systems Engineering and Integration Interface
Specification IS-GPS-800H, NAVSTAR GPS Space Segment/User Segment L1C Interfaces,
21 May 2021. (https://www.gps.gov/technical/icwg/)
Gurtner, W. (1994): “RINEX: The Receiver-Independent Exchange Format.” GPS World,
Volume 5, Number 7, July 1994.
Gurtner, W. (2002): “RINEX: The Receiver Independent Exchange Format Version 2.10”.
https://files.igscb.org/pub/data/format/rinex210.txt
Gurtner, W., G. Mader (1990a): “The RINEX Format: Current Status, Future Developments.”
Proceedings of the Second International Symposium of Precise Positioning with the Global
Positioning system, pp. 977ff, Ottawa.
Gurtner, W., G. Mader (1990b): “Receiver Independent Exchange Format Version 2.” CSTG
GPS Bulletin Vol.3 No.3, Sept/Oct 1990, National Geodetic Survey, Rockville.

IGS/RTCM RINEX WG 46
1 December 2021
RINEX 4.00

Gurtner, W., G. Mader, D. Arthur (1989): “A Common Exchange Format for GPS Data.”
CSTG GPS Bulletin Vol.2 No.3, May/June 1989, National Geodetic Survey, Rockville.
Gurtner, W., L. Estey (2002),: “RINEX Version 2.20 Modifications to Accommodate Low
Earth Orbiter Data”.
Gurtner, W., L. Estey (2005): “RINEX: The Receiver Independent Exchange Format Version
2.11”. https://files.igscb.org/pub/data/format/rinex211.txt
Gurtner, W., L. Estey (2007): “RINEX: The Receiver Independent Exchange Format Version
3.00”.
Hatanaka, Y. (2008): “A Compression Format and Tools for GNSS Observation Data”.
Bulletin of the Geographical Survey Institute, Vol. 55, pp 21-30, Tsukuba, March 2008.
https://www.gsi.go.jp/ENGLISH/Bulletin55.html
IERS DOMES number request service (https://itrf.ign.fr/domes_request.php)
Indian Regional Navigation Satellite System Signal in Space ICD for Standard Positioning
Service, Version 1.1, August 2017 (Indian Space Research Organization, Bangalore)
Quasi-Zenith Satellite System, Interface Specification, Centimeter Level Augmentation
Service (IS-QZSS-L6-004), Cabinet Office, July 14, 2021.
Quasi-Zenith Satellite System, Interface Specification, Positioning Technology Verification
Service (IS-QZSS-TV-003), Cabinet Office, December 27, 2019.
Quasi-Zenith Satellite System, Interface Specification, Satellite Positioning, Navigation and
Timing Service (IS-QZSS-PNT-004), Cabinet Office, January 25, 2021.
Quasi-Zenith Satellite System, Interface Specification, Sub-meter Level Augmentation Service
(IS-QZSS-L1S-004), Cabinet Office, December 27, 2019.
Ray, J., W. Gurtner. M. Coleman (2017): “RINEX Extensions to Handle Clock Information”.
https://www.igscb.org/wp-content/uploads/2020/10/rinex_clock304.txt
Romero, I., Ruddick, R., (2020): “RINEX 2.11 Compression Method Clarification Addendum”
https://kb.igs.org/hc/article_attachments/360063352932/Addendum_rinex211.pdf
Rothacher, M., R. Schmid (2010): “ANTEX: The Antenna Exchange Format Version 1.4”.
https://www.igscb.org/wp-content/uploads/2020/10/antex14.txt
RTCA DO-229F, June 2020, Appendix A. Minimum Operational Performance Standards
(MOPS) for Global Positioning System/Satellite-Based Augmentation System Airborne
Equipment.
RTCM Standard 10403.3 with amendment 1, Differential GNSS (Global Navigation Satellite
Systems) Services – Version 3 with amendment 1, April 28, 2020.
Schaer, S., W. Gurtner, J. Feltens (1998): “IONEX: The Ionosphere Map Exchange
Format Version 1“. https://www.igscb.org/wp-content/uploads/2020/10/ionex1.pdf
Suard, N., W. Gurtner, L. Estey (2004): “Proposal for a new RINEX-type Exchange File for
GEO SBAS Broadcast Data”. https://files.igscb.org/pub/data/format/geo_sbas.txt

IGS/RTCM RINEX WG 47
1 December 2021
RINEX 4.00

8 APPENDIX: RINEX FORMAT DEFINITIONS AND


EXAMPLES
8.1 RINEX Long Filenames
The file naming and compression recommendations are strictly speaking not part of the RINEX
format definition as described in section 5.1.
Modern operating systems support 255-character file names and thus RINEX has evolved to a
file naming convention that is more descriptive, flexible and extensible.
Figure 2 lists the filename elements from the RINEX 3.02 onwards;

Figure 2: RINEX Long filename parameters.

All elements of the main body of the file name must contain capital ASCII letters or numbers
and all elements are fixed length and are separated by an underscore “_”. The file type and
compression fields (extension) use a period “.” as a separator and must be ASCII characters
and lower case. Fields must be padded with zeros to fill the field width. The file compression
field is optional.

IGS/RTCM RINEX WG 48
1 December 2021
RINEX 4.00

In order to further reduce the size of observation files, Dr. Yuki Hatanaka developed a
compression scheme that takes advantage of the structure of the RINEX observation data by
forming higher-order differences in time between observations of the same type and satellite.
This compressed file is also an ASCII file that is subsequently compressed again using standard
compression programs.
More information on the Hatanaka compression scheme can be found in:
https://terras.gsi.go.jp/ja/crx2rnx.html
• IGSMails 1525,1686,1726,1763,1785,4967,4969,4975

The file naming and compression recommendations are strictly speaking not part of the RINEX
format definition. However, they significantly facilitate the exchange of RINEX data in large
user communities like IGS, EUREF, APREF, SIRGAS, etc.

Table A1 : RINEX Filename Description


TABLE A1
RINEX FILENAME DESCRIPTION
Field Field Description Example Required Comment/Example
<SITE/ XXXXMRCCC ALGO00CAN Yes File name supports a maximum
STATION- Where: of 10 monuments at the same
MONUMENT/ XXXX - 4 character station and a maximum of 10
RECEIVER/ site designation receivers per monument.
COUNTRY or M – monument or
REGION> marker number (0-9) Country or Region code to
R – receiver number follow: ISO 3166-1 alpha-3
(0-9)
CCC – ISO Country
or Region code
(Total 9 characters)
<DATA SOURCE> Data Source R Yes This field is used to indicate how
R – From Receiver the data was collected either from
data using vendor or the receiver at the station or from
other software a data stream
S – From data
Stream (RTCM or
other)
U – Unknown
(1 character)
<START TIME> YYYYDDDHHMM 2012150 Yes For GPS files use: GPS Year, day
YYYY – Gregorian 1200 of year, hour of day, minute of
year 4 digits, day (see text below for details)
DDD – day of Year, Start time should be the nominal
HHMM – hours and start time of the first observation.
minutes of day GLONASS, Galileo, BeiDou, etc
use respective system time.
(11 characters)
<FILE PERIOD> DDU 15M Yes File Period
DD – file period 15M–15 Minutes
U – units of file 01H–1 Hour
period. 01D–1 Day
File period is used to 01Y–1 Year
specify intended 00U-Unspecified
collection period of
the file.

IGS/RTCM RINEX WG 49
1 December 2021
RINEX 4.00

TABLE A1
RINEX FILENAME DESCRIPTION
Field Field Description Example Required Comment/Example
(3 characters)
<DATA FREQ> DDU 05Z Mandatory XXC – 100 Hertz
for RINEX XXZ – Hertz,
DD – data frequency Obs. Data. XXS – Seconds,
U – units of data rate NOT XXM – Minutes,
(3 characters) required XXH – Hours,
for XXD – Days
Navigation XXU – Unspecified
Files.
<DATA TYPE > DD MO Yes Two characters represent the data
DD – Data type type:

(2 characters) MN - Mixed Obs. (All GNSS


Constellations tracked)
GO - GPS Obs.
RO - GLONASS Obs.
EO - Galileo Obs.
JO - QZSS Obs.
CO - BDS Obs.
IO - NavIC/IRNSS Obs.
SO - SBAS Obs.

MN - Mixed Nav. (All GNSS


Constellations tracked)
GN - GPS Nav.
RN - GLONASS Nav.
EN - Galileo Nav.
JN - QZSS Nav.
CN - Beidou Nav.
IN - NavIC/IRNSS Nav.
SN - SBAS Nav.

MM-Meteorological Observation

<FORMAT> FFF rnx Yes Three characters indicating the


FFF – File format data format:
rnx – RINEX file
(3 characters) crx - crx - Hatanaka Compressed
RINEX file

<COMPRESSION> (2-3 Characters) gz, bz2, zip No Suggested to use gzip, but other
options are of course bzip2 and
zip , for example.
Sub Total 34 or 35 Fields
Separators (7 characters –Obs. _ underscore between all fields
File) and “.” Between data type and
(6 characters –Nav. file format and the compression
File) method

Total 41-42(Obs. File) Mandatory IGS RINEX obs.


37-38 (Nav. File) Characters

IGS/RTCM RINEX WG 50
1 December 2021
RINEX 4.00

Filename Details and Examples:


<STATION/PROJECT NAME>: IGS users should follow XXXXMRCCC (9 char) site and
station naming convention described above.
GNSS industry users could use the 9 characters to indicate the project name and/or number.

<DATA SOURCE>: With real-time data streaming RINEX files for the same station can be
created at many locations. If the RINEX file is derived from data collected at the receiver
(official file) then the source is specified as R. On the other hand if the RINEX file is derived
from a real-time data stream then the data source is marked as S to indicate Streamed data
source. If the data source is unknown the source is marked as U.

<START TIME>: The start time is the file start time which should coincide with the first
observation in the file. GPS file start time is specified in GPS Time. Mixed observation file
start times are defined in the same system time as the file observation system time specified in
the header. Files containing only: GLONASS, Galileo, QZSS, BDS or SBAS observations are
all based on their respective system time.

<FILE PERIOD>: Is used to specify the data collection period of the file.
GNSS observation file name - file period examples:
ALGO00CAN_R_20121601000_15M_01S_GO.rnx.gz //15 min, GPS Obs. 1 sec.
ALGO00CAN_R_20121601000_01H_05Z_MO.rnx.gz //1 hour, Obs Mixed and 5Hz
ALGO00CAN_R_20121600000_01D_30S_GO.rnx.gz //1 day, Obs GPS and 30 sec
ALGO00CAN_R_20121600000_01D_30S_MO.rnx.gz //1 day, Obs. Mixed, 30 sec

GNSS mixed navigation file name - file period examples:


ALGO00CAN_R_20121600000_15M_MN.rnx.gz // 15-minute mixed nav file
ALGO00CAN_R_20121600000_01H_MN.rnx.gz // 1 hour mixed nav file
ALGO00CAN_R_20121600000_01D_MN.rnx.gz // 1 day mixed nav file

<DATA FREQ>: Used to distinguish between observation files that cover the same period but
contain data at a different sampling rate. GNSS data file - observation frequency examples:
ALGO00CAN_R_20121601000_01D_01C_GO.rnx.gz //100 Hz data rate
ALGO00CAN_R_20121601000_01D_05Z_RO.rnx.gz //5 Hz data rate
ALGO00CAN_R_20121601000_01D_01S_EO.rnx.gz //1 second data rate
ALGO00CAN_R_20121601000_01D_05M_JO.rnx.gz //5 minute data rate
ALGO00CAN_R_20121601000_01D_01H_CO.rnx.gz //1 hour data rate
ALGO00CAN_R_20121601000_01D_01D_SO.rnx.gz //1 day data rate
ALGO00CAN_R_20121601000_01D_00U_MO.rnx.gz //Unspecified

Note: Data frequency field not required for RINEX Navigation files.

IGS/RTCM RINEX WG 51
1 December 2021
RINEX 4.00

<DATA TYPE/ FORMAT>: The data type describes the content of the file. The first character
indicates constellation and the second indicates whether the files contain observations or
navigation data. The next three-character extension indicates the data file format. GNSS
observation filename - format/data type examples:
ALGO00CAN_R_20121601000_15M_01S_GO.rnx.gz //RINEX obs. GPS
ALGO00CAN_R_20121601000_15M_01S_RO.rnx.gz //RINEX obs. GLONASS
ALGO00CAN_R_20121601000_15M_01S_EO.rnx.gz //RINEX obs. Galileo
ALGO00CAN_R_20121601000_15M_01S_JO.rnx.gz //RINEX obs. QZSS
ALGO00CAN_R_20121601000_15M_01S_CO.rnx.gz //RINEX obs. BDS
ALGO00CAN_R_20121601000_15M_01S_SO.rnx.gz //RINEX obs. SBAS
ALGO00CAN_R_20121601000_15M_01S_MO.rnx.gz //RINEX obs. mixed

GNSS navigation filename examples:


ALGO00CAN_R_20121600000_01H_MN.rnx.gz //RINEX nav. Mixed
ALGO00CAN_R_20121600000_01H_GN.rnx.gz //RINEX nav. GPS
ALGO00CAN_R_20121600000_01H_RN.rnx.gz //RINEX nav. GLONASS
ALGO00CAN_R_20121600000_01H_EN.rnx.gz //RINEX nav. Galileo
ALGO00CAN_R_20121600000_01H_JN.rnx.gz //RINEX nav. QZSS
ALGO00CAN_R_20121600000_01H_CN.rnx.gz //RINEX nav. BDS
ALGO00CAN_R_20121600000_01H_SN.rnx.gz //RINEX nav. SBAS

Meteorological filename example:


ALGO00CAN_R_20121600000_01D_30M_MM.rnx.gz //RINEX Met.

<COMPRESSION>:
Suggested RINEX file compression methods include: gzip - “.gz”, bzip2 - “.bz2” and “.zip”.

Note: The main body of the file name should contain only ASCII capital letters and numbers.
The file extension and compression i.e.; “.rnx.gz” should be lowercase.

IGS/RTCM RINEX WG 52
1 December 2021
RINEX 4.00

8.2 GNSS Observation Data Files


Table A2 : GNSS Observation Data File – Header Section Description
TABLE A2
GNSS OBSERVATION DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL
DESCRIPTION FORMAT
(Columns 61-80)
RINEX VERSION / TYPE − Format version: 4.00 F9.2, 11X
− File type: O for Observation Data A1,19X
− Satellite System: A1,19X
G: GPS
R: GLONASS
E: Galileo
J: QZSS
C: BDS
I: NavIC/IRNSS
S: SBAS payload
M: Mixed
PGM / RUN BY / DATE − Name of program creating current file A20
− Name of agency creating current file A20
− Date and time of file creation (section 5.2.2) A20
Format: yyyymmdd hhmmss zone
zone: 3-4 char. code for time zone.
'UTC ' recommended!
'LCL ' if local time with unknown time code

Note; This header line must be the second line in


the header. Additional lines of this type can appear
together after the second line, if needed to preserve
the history of previous actions on the file.
*COMMENT − Comment header line(s) A60
MARKER NAME − Name of antenna marker A60

Note; This is a free text field to identify the station


with a name as decided by the station operator.
To facilitate the identification of RINEX data in
large user communities like IGS, EUREF, APREF,
SIRGAS, etc the 9-character station ID is expected;
XXXXMRCCC (see Table A1)

IGS/RTCM RINEX WG 53
1 December 2021
RINEX 4.00

TABLE A2
GNSS OBSERVATION DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL
DESCRIPTION FORMAT
(Columns 61-80)
*MARKER NUMBER − Number of antenna marker A20

Note; This is an optional free text field to identify


the station with some numbering system as decided
by the station operator.
To facilitate the identification of RINEX data in
large user communities like IGS, EUREF, APREF,
SIRGAS, etc the IERS DOMES number assigned to
the station marker is expected;
https://itrf.ign.fr/domes_request.php
MARKER TYPE - Type of the marker (also see 5.2.3): A20,40X
GEODETIC : Earth-fixed, high- precision
monument
NON_GEODETIC : Earth-fixed, low- precision
monument
NON_PHYSICAL : Generated from network
processing
SPACEBORNE : Orbiting space vehicle
GROUND_CRAFT : Mobile terrestrial vehicle
WATER_CRAFT : Mobile water craft
AIRBORNE: Aircraft, balloon, etc.
FIXED_BUOY : "Fixed" on water surface
FLOATING_BUOY: Floating on water surface
FLOATING_ICE : Floating ice sheet, etc.
GLACIER : "Fixed" on a glacier
BALLISTIC : Rockets, shells, etc.
ANIMAL : Animal carrying a receiver
HUMAN : Human being

Record required except for GEODETIC and


NON_GEODETIC marker types. Users may define
other project-dependent keywords.
OBSERVER / AGENCY − Name of Observer / Agency A20,A40
REC # / TYPE / VERS − Receiver number, type, and version (Version: 3A20
e.g. Internal Software Version)
ANT # / TYPE − Antenna number and type 2A20
APPROX POSITION XYZ − Geocentric approximate marker position 3F14.4
(Units: Meters, Frame: ITRF recommended)
Optional for moving platforms

IGS/RTCM RINEX WG 54
1 December 2021
RINEX 4.00

TABLE A2
GNSS OBSERVATION DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL
DESCRIPTION FORMAT
(Columns 61-80)
ANTENNA: DELTA H/E/N − Antenna height: Height of the antenna F14.4
reference point (ARP) above the marker
− Horizontal eccentricity of ARP relative to the 2F14.4
marker (east/north)

All units in meters (see section 5.2.4)


*ANTENNA: DELTA X/Y/Z - Position of antenna reference point for antenna 3F14.4
on vehicle (m): XYZ vector in body-fixed
coordinate system (see section 5.2.7)
*ANTENNA: PHASECENTER Average phase center position with respect to
antenna reference point (m) (see section 5.2.5)
− Satellite system (G/R/E/J/C/I/S) A1
− Observation code 1X,A3
− North/East/Up (fixed station) or F9.4
− X/Y/Z in body-fixed system (vehicle) 2F14.4
*ANTENNA: B.SIGHT XYZ − Direction of the “vertical” antenna axis towards 3F14.4
the GNSS satellites.

Antenna on vehicle: Unit vector in body-fixed


coordinate system.
Tilted antenna on fixed station: Unit vector in
N/E/Up left-handed system.
*ANTENNA: ZERODIR AZI − Azimuth of the zero-direction of a fixed F14.4
antenna (degrees, from north)
*ANTENNA: ZERODIR XYZ − Zero-direction of antenna 3F14.4

Antenna on vehicle: Unit vector in body-fixed


coordinate system
Tilted antenna on fixed station: Unit vector in
N/E/Up left-handed system
*CENTER OF MASS: XYZ − Current center of mass (X,Y,Z, meters) of 3F14.4
vehicle in body-fixed coordinate system. Same
system as used for attitude.
(see section 5.2.7)
*DOI − Digital Object Identifier (DOI) for data citation A60
i.e. https://doi.org/<DOI-number>
*LICENSE OF USE − Line(s) with the data license of use. Name of A60
the license plus link to the specific version of
the license. Using standard data license as from
https://creativecommons.org/licenses/
− i.e. :
CC BY 04 ;
https://creativecommons.org/licenses/by/4.0/

IGS/RTCM RINEX WG 55
1 December 2021
RINEX 4.00

TABLE A2
GNSS OBSERVATION DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL
DESCRIPTION FORMAT
(Columns 61-80)
*STATION INFORMATION − Line(s) with the link(s) to persistent URL with A60
the station metadata (site log, GeodesyML, etc)
SYS / # / OBS TYPES − Satellite system code (G/R/E/J/C/I/S) A1
− Number of different observation types for the 2X,I3
specified satellite system
Observation descriptors: Type, Band, Attribute 13(1X,A3)
− Use continuation line(s) for more than 13
observation descriptors.
In mixed files: Repeat for each satellite system.
These records should precede any SYS / SCALE 6X,
FACTOR records (see below). 13(1X,A3)
The following observation descriptors are defined in
RINEX 4:

Type:
C = Code / Pseudorange
L = Phase
D = Doppler
S = Raw signal strength (carrier to noise ratio)
X = Receiver channel numbers

Band:
1= L1 (GPS, QZSS, SBAS, BDS)
G1 (GLO)
E1 (GAL)
B1C/B1A (BDS)
2= L2 (GPS, QZSS)
G2 (GLO)
B1 (BDS)
3= G3 (GLO)
4= G1a (GLO)
5= L5 (GPS, QZSS, SBAS,
NavIC/IRNSS)
E5a (GAL)
B2a (BDS)
6= E6 (GAL)
L6 (QZSS)
B3/B3A (BDS)
G2a (GLO)
7= E5b (GAL)
B2/B2b (BDS)
8= E5a+b (GAL)
B2a+b (BDS)
9= S (NavIC/IRNSS)

IGS/RTCM RINEX WG 56
1 December 2021
RINEX 4.00

TABLE A2
GNSS OBSERVATION DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL
DESCRIPTION FORMAT
(Columns 61-80)

Attribute:
A = A channel (GAL, NavIC/IRNSS,
GLO)
B= B channel (GAL, NavIC/IRNSS,
GLO)
C= C channel (GAL, NavIC/IRNSS)
C/A code-based (GPS,GLO,QZSS,
SBAS)
D= Semi-codeless (GPS)
Data Channel (BDS, QZSS)
E= C/B (QZSS)
E channel (QZSS)
I= I channel (GPS,GAL, QZSS, BDS)
L= L channel (L2C GPS, QZSS)
P channel (GPS, QZSS)
M= M code-based (GPS)
N= Codeless (GPS)
P= P code-based (GPS,GLO)
Pilot Channel (BDS)
Q= Q channel (GPS,GAL,QZSS,BDS)
S= D channel (GPS, QZSS)
M channel (L2C GPS, QZSS)
W= Based on Z-tracking (GPS)(see text)
X= B+C channels (GAL, NavIC/IRNSS)
I+Q channels (GPS,GAL, QZSS,BDS)
M+L channels (GPS, QZSS)
D+P channels (GPS, QZSS, BDS)
Y= Y code-based (GPS)
Z= A+B+C channels (GAL)
D+P channels (BDS)
I+Q channels. (QZSS)
D+E channels. (QZSS)

All characters in uppercase only!

Units;
Phase; cycles
Pseudorange; meters
Doppler; Hz
SNR etc.; receiver-dependent
Channel #; See 5.3.4
Sign definition: See text.

IGS/RTCM RINEX WG 57
1 December 2021
RINEX 4.00

TABLE A2
GNSS OBSERVATION DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL
DESCRIPTION FORMAT
(Columns 61-80)
The sequence of the observations in the observation
records has to correspond to the sequence of the types
in this record of the respective satellite system. (see
section 5.3)

Note: In RINEX 4, all fields (Type, Band and


Attribute) must be defined, only known tracking
mode attributes are allowed (except for observation
Type ‘X’ which has attribute of blank, see section
5.3.4).
*SIGNAL STRENGTH UNIT − Unit of the carrier to noise ratio observables A20,40X
Snn (if present) DBHZ : S/N given in dbHz
*INTERVAL − Observation interval in seconds F10.3
TIME OF FIRST OBS − Time of first observation record (4-digit-year, 5I6,F13.7
month, day, hour, min, sec)
− System time (see section 5.2.8): 5X,A3
GPS (=GPS system time)
GLO (=UTC system time)
GAL (=Galileo system time)
QZS (= QZSS system time)
BDT (= BDS system time)
IRN (=NavIC/IRNSS system time)
Compulsory in Mixed GNSS files.

Default values for single system GNSS files (not


compulsory):
GPS for pure GPS files
GLO for pure GLONASS files
GAL for pure Galileo files
QZS for pure QZSS files
BDT for pure BDS files
IRN for pure NavIC/IRNSS files
*TIME OF LAST OBS − Time of last observation record (4-digit-year, 5I6,F13.7
month, day, hour, min, sec)
− System time: Same value as in TIME OF 5X,A3
FIRST OBS record (see section 5.2.8).
*RCV CLOCK OFFS APPL − Epoch, code, and phase are corrected by I6
applying the real-time-derived receiver clock
offset: 1=yes, 0=no; default: 0=no (see section
5.2.14)

IGS/RTCM RINEX WG 58
1 December 2021
RINEX 4.00

TABLE A2
GNSS OBSERVATION DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL
DESCRIPTION FORMAT
(Columns 61-80)
Note: Record required if clock offsets are reported
in the EPOCH observation data file record (see
Table A3).
*SYS / DCBS APPLIED − Satellite system (G/R/E/J/C/I/S) A1
− Program name used to apply differential code 1X,A17
bias corrections
− Source of corrections (URL) 1X,A40

Repeat for each satellite system.


No corrections applied: Blank fields or record not
present.
*SYS / PCVS APPLIED − Satellite system (G/R/E/J/C/I/S) A1
− Program name used to apply phase center 1X,A17
variation corrections
− Source of corrections (URL) 1X,A40

Repeat for each satellite system.


No corrections applied: Blank fields or record not
present.
*SYS / SCALE FACTOR − Satellite system (G/R/E/J/C/I/S) A1
− Factor to divide stored observations with 1X,I4
before use (1,10,100,1000)
− Number of observation types involved. 0 or 2X,I2
blank: All observation types
− List of observation types 12(1X,A3)
10X
− Use continuation line(s) for more than 12 12(1X,A3)
observation types.

Repeat record if different factors are applied to


different observation types.
A value of 1 is assumed if record is missing. (see
section 5.2.11)
*SYS / PHASE SHIFT Note: This header line is strongly deprecated. It is
allowed in this version for compatibility with
previous RINEX versions but the lines should be
ignored by RINEX decoders and encoders. (see
section 5.2.12)

Phase shift correction used to generate phases


consistent with respect to cycle shifts
− Satellite system (G/R/E/J/C/I/S) A1,1X
− Carrier phase observation code: A3,1X
Type

IGS/RTCM RINEX WG 59
1 December 2021
RINEX 4.00

TABLE A2
GNSS OBSERVATION DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL
DESCRIPTION FORMAT
(Columns 61-80)
Band
Attribute
− Correction applied (cycles) or blank if none F8.5
− Number of satellites involved 0 or blank: All 2X,I2.2
satellites of system
− List of satellites 10(1X,A3)
− Use continuation line(s) for more than 10 18X
satellites. 10(1X,A3)
GLONASS SLOT / FRQ # GLONASS slot and frequency numbers
− Number of satellites in list I3,1X
List of:
− Satellite numbers (system code, slot) 8(A1,I2.2,
− Frequency numbers (-7...+6) 1X,I2,1X)
− Use continuation lines for more than 8 4X,8(A1,
Satellites I2.2,1X,I2,
1X)
*GLONASS COD/PHS/BIS Note: This header line is strongly deprecated. It is
allowed in this version for compatibility with
previous RINEX versions but the lines should be
ignored by RINEX decoders and encoders. (see
section 5.2.16)

− GLONASS Phase bias correction used to align 4(X1,A3,X


code and phase observations. 1,F8.3)
• GLONASS signal identifier: C1C and Code
Phase bias correction (meters)
• GLONASS signal identifier: C1P and Code
Phase bias correction (meters)
• GLONASS signal identifier: C2C and Code
Phase bias correction (meters)
• GLONASS signal identifier: C2P and Code
Phase bias correction (meters)

Note: See section 5.2.16 for further details. If the


GLONASS code phase bias correction values are
unknown or 0.00 then this optional header line
should be omitted.

IGS/RTCM RINEX WG 60
1 December 2021
RINEX 4.00

TABLE A2
GNSS OBSERVATION DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL
DESCRIPTION FORMAT
(Columns 61-80)
*LEAP SECONDS − Current Number of leap seconds since 6 Jan I6
1980. I6
− Future or past leap seconds ΔtLSF, i.e. future
leap second if the week and day number are in
the future. (BNK) I6
− Respective week number WN_LSF
(continuous number) (BNK), weeks since 6-
Jan-1980. I6
− Respective day number (1-7) (BNK).
− System time identifier: only GPS is valid A3
identifier. Blank defaults to GPS, see Notes
section below.
Notes:
1. GPS, GAL, QZS and IRN system times are
aligned and equivalent with respect to leap
seconds (Leap seconds since 6-Jan-1980). See
the ICD reference; IS-GPS-200M, section
20.3.3.5.2.4
2. When generating the leap second record from
BDS navigation data the week count and day
number must be adapted to GPS/GAL/QZS/IRN
leap second conventions.
*# OF SATELLITES − Number of satellites, for which observations I6
are stored in the file
*PRN / # OF OBS − Satellite IDs, number of observations for each 3X
observation type indicated in the SYS / # / A1,I2.2
OBS TYPES record. 9I6
− If more than 9 observation types: 6X,9I6
Use continuation line(s)
In order to avoid format overflows, 99999 indicates
>= 99999 observations in the RINEX file.

These records are repeated for each satellite in the


data file.
END OF HEADER Last record in the header section. 60X
Records marked with * are optional
BNK- Blank if Not Known/Not Defined

IGS/RTCM RINEX WG 61
1 December 2021
RINEX 4.00

Table A3 : GNSS Observation Data File – Data Record Description


TABLE A3
GNSS OBSERVATION DATA FILE – DATA RECORD DESCRIPTION
DESCRIPTION FORMAT
EPOCH record
− Record start identifier : > A1
Epoch ;
− year (4 digits) 1X,I4
− month, day, hour, min (two digits) 4(1X,I2.2)
− sec F11.7
− Epoch flag; 2X,I1
0 : OK
1 : power failure between previous and current epoch
>1 : Special event (see below)
− Number of satellites observed in current epoch I3
− (reserved) 6X
− Receiver clock offset correction (seconds, optional) F15.12
Epoch flag = 0 or 1: OBSERVATION records follow
− Satellite number (see section 4.5) A1,I2.2
− m fields of observation data (in the same sequence as given in the m(F14.3,
respective SYS / # / OBS TYPES header record), each containing the
specified observations for example: pseudorange, phase, Doppler and SNR.
− Loss of Lock Indicator - LLI (see Note 1) I1,
− Signal Strength Indicator - SSI (see Note 2) I1)

This record is repeated for each satellite having been observed in the current
epoch. The record length is given by the number of observation types for this
satellite. For observations formatting see section 6.7.

Notes (see also section 6.7):


1. Loss of Lock Indicator (LLI) should only be associated with the phase
observation.
2. Signal Strength Indicator (SSI) is deprecated and should be replaced by a
defined SNR field for each signal. However, if this is not possible/practical
then SSI should be specified for each phase signal type for example. GPS:
L1C, L1W, L2W, L2X and L5X.
3. If only the pseudorange measurements are observed then the SSI should be
associated with the code measurements.
Epoch flag 2-5: EVENT: Special records may follow
− Epoch flag; (additionally see section 5.3.2) 2X,I1
• 2: start moving antenna
• 3: new site occupation (end of kinematic data) (at least MARKER
NAME record follows)
• 4: header information follows
• 5: external event (epoch is significant, same time frame as
observation time tags)
− "Number of satellites" contains number of special records to follow. 0 if no I3
special records follow.

IGS/RTCM RINEX WG 62
1 December 2021
RINEX 4.00

TABLE A3
GNSS OBSERVATION DATA FILE – DATA RECORD DESCRIPTION
Maximum number of records: 999

For events without significant epoch the epoch fields in the EPOCH
RECORD can be left blank
Epoch flag = 6: EVENT: Cycle slip records follow
− Epoch flag 2X,I1
• 6: cycle slip records follow to optionally report detected and repaired
cycle slips (same format as OBSERVATIONS records;
• slip instead of observation;
• LLI and signal strength blank or zero)

Table A4 : GNSS Observation Data File – Example #1


+------------------------------------------------------------------------------+
| TABLE A4 |
| GNSS OBSERVATION DATA FILE - EXAMPLE #1 |
+------------------------------------------------------------------------------+

----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
4.00 OBSERVATION DATA M RINEX VERSION / TYPE
XXRINEXO V9.9 AIUB 20060324 144333 UTC PGM / RUN BY / DATE
The file contains L1 pseudorange and phase data of the COMMENT
geostationary AOR-E satellite (PRN 120 = S20) COMMENT
A 9080 MARKER NAME
9080.1.34 MARKER NUMBER
BILL SMITH ABC INSTITUTE OBSERVER / AGENCY
X1234A123 GEODETIC 1.3.1 REC # / TYPE / VERS
G1234 ROVER ANT # / TYPE
4375274. 587466. 4589095. APPROX POSITION XYZ
.9030 .0000 .0000 ANTENNA: DELTA H/E/N
0 RCV CLOCK OFFS APPL
G 5 C1C L1W L2W C1W S2W SYS / # / OBS TYPES
R 2 C1C L1C SYS / # / OBS TYPES
E 2 L1B L5I SYS / # / OBS TYPES
S 2 C1C L1C SYS / # / OBS TYPES
18.000 INTERVAL
G APPL_DCB xyz.uvw.abc//pub/dcb_gps.dat SYS / DCBS APPLIED
DBHZ SIGNAL STRENGTH UNIT
2006 03 24 13 10 36.0000000 GPS TIME OF FIRST OBS
18 R01 1 R02 2 R03 3 R04 4 R05 5 R06 -6 R07 -5 R08 -4 GLONASS SLOT / FRQ #
R09 -3 R10 -2 R11 -1 R12 0 R13 1 R14 2 R15 3 R16 4 GLONASS SLOT / FRQ #
R17 5 R18 -5 GLONASS SLOT / FRQ #
C1C -10.000 C1P -10.123 C2C -10.432 C2P -10.634 GLONASS COD/PHS/BIS
END OF HEADER
> 2006 03 24 13 10 36.0000000 0 5 -0.123456789012
G06 23629347.915 .300 8 -.353 4 23629347.158 24.158
G09 20891534.648 -.120 9 -.358 6 20891545.292 38.123
G12 20607600.189 -.430 9 .394 5 20607600.848 35.234
E11 .324 8 .178 7
S20 38137559.506 335849.135 9
> 2006 03 24 13 10 54.0000000 0 7 -0.123456789210
G06 23619095.450 -53875.632 8 -41981.375 4 23619095.008 25.234
G09 20886075.667 -28688.027 9 -22354.535 7 20886076.101 42.231
G12 20611072.689 18247.789 9 14219.770 6 20611072.410 36.765
R21 21345678.576 12345.567 5
R22 22123456.789 23456.789 5

IGS/RTCM RINEX WG 63
1 December 2021
RINEX 4.00

E11 65432.123 5 48861.586 7


S20 38137559.506 335849.135 9
> 2006 03 24 13 11 12.0000000 2 2
*** FROM NOW ON KINEMATIC DATA! *** COMMENT
TWO COMMENT LINES FOLLOW DIRECTLY THE EVENT RECORD COMMENT
> 2006 3 24 13 11 12.0000000 0 4 -0.123456789876
G06 21110991.756 16119.980 7 12560.510 4 21110991.441 25.543
G09 23588424.398 -215050.557 6 -167571.734 6 23588424.570 41.824
G12 20869878.790 -113803.187 8 -88677.926 6 20869878.938 36.961
G16 20621643.727 73797.462 7 57505.177 2 20621644.276 15.368
> 3 4
A 9081 MARKER NAME
9081.1.34 MARKER NUMBER
.9050 .0000 .0000 ANTENNA: DELTA H/E/N
--> THIS IS THE START OF A NEW SITE <-- COMMENT
> 2006 03 24 13 12 6.0000000 0 4 -0.123456987654
G06 21112589.384 24515.877 6 19102.763 4 21112589.187 25.478
G09 23578228.338 -268624.234 7 -209317.284 6 23578228.398 41.725
G12 20625218.088 92581.207 7 72141.846 5 20625218.795 35.143
G16 20864539.693 -141858.836 8 -110539.435 2 20864539.943 16.345
> 2006 03 24 13 13 1.2345678 5 0
> 4 2
AN EVENT FLAG 5 WITH A SIGNIFICANT EPOCH COMMENT
AND AN EVENT FLAG 4 TO ESCAPE FOR THE TWO COMMENT LINES COMMENT
> 2006 03 24 13 14 12.0000000 0 4 -0.123456012345
G06 21124965.133 0.30213 -0.62614 21124965.275 27.528
G09 23507272.372 -212616.150 7 -165674.789 7 23507272.421 42.124
G12 20828010.354 -333820.093 6 -260119.395 6 20828010.129 37.002
G16 20650944.902 227775.130 7 177487.651 3 20650944.363 18.040
> 4 1
*** LOST LOCK ON G 06 COMMENT
.
.
.
> 4 1
END OF FILE COMMENT
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

The receiver clock offset correction in the epoch record has been placed such that it could be
preceded by an identifier to make it system-dependent in a later format revision, if necessary.
The clock correction is optional and is given in units of seconds.

IGS/RTCM RINEX WG 64
1 December 2021
RINEX 4.00

Table A5 : GNSS Observation Data File – Example #2


+------------------------------------------------------------------------------+
| TABLE A5 |
| GNSS OBSERVATION DATA FILE - EXAMPLE #2 |
+------------------------------------------------------------------------------+
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
4.00 OBSERVATION DATA M RINEX VERSION / TYPE
RINEXSOFTWARE V1 User 20210702 000126 UTC PGM / RUN BY / DATE
REDU00BEL MARKER NAME
13102M001 MARKER NUMBER
AUTOMATIC ESA/ESOC OBSERVER / AGENCY
4503038 GNSS_RECEIVER 5.4.0 REC # / TYPE / VERS
5644 GEOANTENNA NONE ANT # / TYPE
4091423.7190 368380.6530 4863179.9940 APPROX POSITION XYZ
0.1150 0.0000 0.0000 ANTENNA: DELTA H/E/N
G 22 C1C L1C D1C S1C C1W S1W C2W L2W D2W S2W C2L L2L D2L SYS / # / OBS TYPES
S2L C5Q L5Q D5Q S5Q C1L L1L D1L S1L SYS / # / OBS TYPES
E 20 C1C L1C D1C S1C C6C L6C D6C S6C C5Q L5Q D5Q S5Q C7Q SYS / # / OBS TYPES
L7Q D7Q S7Q C8Q L8Q D8Q S8Q SYS / # / OBS TYPES
S 8 C1C L1C D1C S1C C5I L5I D5I S5I SYS / # / OBS TYPES
R 20 C1C L1C D1C S1C C1P L1P D1P S1P C2P L2P D2P S2P C2C SYS / # / OBS TYPES
L2C D2C S2C C3Q L3Q D3Q S3Q SYS / # / OBS TYPES
C 24 C1P L1P D1P S1P C5P L5P D5P S5P C2I L2I D2I S2I C7I SYS / # / OBS TYPES
L7I D7I S7I C6I L6I D6I S6I C7D L7D D7D S7D SYS / # / OBS TYPES
I 4 C5A L5A D5A S5A SYS / # / OBS TYPES
30.000 INTERVAL
2021 7 1 0 0 0.0000000 GPS TIME OF FIRST OBS
2021 7 1 23 59 30.0000000 GPS TIME OF LAST OBS
133 # OF SATELLITES
DBHZ SIGNAL STRENGTH UNIT
24 R01 1 R02 -4 R03 5 R04 6 R05 1 R06 -4 R07 5 R08 6 GLONASS SLOT / FRQ #
R09 -2 R10 -7 R11 0 R12 -1 R13 -2 R14 -7 R15 0 R16 -1 GLONASS SLOT / FRQ #
R17 4 R18 -3 R19 3 R20 2 R21 4 R22 -3 R23 3 R24 2 GLONASS SLOT / FRQ #
END OF HEADER
> 2021 07 01 00 00 0.0000000 0 42
C05
→40308490.226 5 209896917.35805 10.104 5 34.250 40308489.226 6
→162305626.46606 7.618 6 40.500 40308491.534 6 170558460.27806
→8.101 6 38.000
C07
→40159332.888 5 209120231.34705 -749.184 5 31.000 40159329.424 7
→161705024.13707 -578.916 7 42.000 40159329.948 6 169927318.33206
→-608.432 6 41.250
C10
→38657500.889 6 201299802.28006 -213.194 6 40.500 38657500.797 7
→155657788.03207 -164.830 7 45.500 38657500.159 7 163572598.58707
→-173.232 7 43.000
[…]
E02 26254562.136 6 137968706.53306 -2449.736 6 40.500 26254562.526 7
→111987610.52607 -1988.494 7 44.500 26254562.708 7 103028609.46407
→-1829.371 7 46.250 26254560.506 7 105716299.84207 -1877.171 7
→46.000 26254561.518 8 104372462.72608 -1853.269 8 49.000
E07 23635638.708 8 124206162.80708 -871.617 8 48.750 23635637.971 8
→100816721.15408 -707.498 8 52.500 23635640.586 8 92751411.05508
→-650.899 8 53.000 23635639.032 8 95171010.23608 -667.883 8
→53.750 23635639.494 9 93961204.71809 -659.388 9 56.500
E08 24972516.642 6 131231506.27606 -2679.842 6 40.000 24972519.075 7
→106519133.68107 -2175.224 7 43.250 24972516.933 7 97997606.95207
→-2001.200 7 43.500 24972515.374 7 100554056.30907 -2053.459 7
→44.250 24972516.248 7 99275831.20407 -2027.334 7 46.750
[…]

IGS/RTCM RINEX WG 65
1 December 2021
RINEX 4.00

G14 21030170.112 8 110514320.19008 642.342 8 48.250 21030169.835 6


→41.250 21030168.238 6 86115066.21306 500.526 6 41.250
→21030168.748 8 86115068.21708 500.505 8 49.000 21030171.716 9
→82526956.44709 479.678 9 54.000 21030170.080 8 110514301.19908
→642.295 8 48.250
G15 21142785.686 8 111106130.51808 2210.595 8 49.250 21142785.360 7
→42.250 21142783.280 7 86576198.32207 1722.539 7 42.250
→21142783.830 7 86576199.32607 1722.505 7 45.500
G18 24315176.881 4 -1296.168 4 26.750
→24315171.412 3 -1007.045 3 21.000 24315179.308 5
→95417985.50605 -967.978 5 33.250 24315177.474 4 -
→1296.538 4 26.500
[…]
I02 37579958.788 6 147471902.39806 207.789 6 41.250
I06 38895003.676 6 152632382.60606 -8.242 6 39.000
R04 24104058.479 5 129076151.77705 -4263.115 5 32.500 24104057.540 5
→129076153.74305 -4262.717 5 32.000 24104064.842 5 100392603.45705
→-3315.798 5 31.750 24104063.510 5 100392591.36005 -3315.375 5
→32.000
R05 20012862.544 8 106980270.92208 -2486.308 8 52.500 20012862.822 8
→106980260.92808 -2486.286 8 53.000 20012866.969 8 83206909.39508
→-1933.770 8 49.750 20012866.589 8 83206896.39008 -1933.786 8
49.250
R06 19816526.726 7 105744797.08507 2182.678 7 44.250 19816526.502 7
→105744790.10007 2182.521 7 43.500
R09 24411449.113 6 130355805.45406 4217.981 6 36.000 24411450.687 6
→130355790.41406 4218.252 6 36.500 24411457.447 5 101387862.28405
→3280.773 5 35.750 24411458.534 6 101387898.24806 3280.926 6
→37.250 24411444.199 5 97878261.11305 3167.148 5 34.500
[…]
S23 38851570.438 7 204166366.73207 4.096 7 42.250 38851545.524 6
→152461811.71106 3.160 6 37.500
S25 38896540.414 5 204402846.86405 -273.406 5 35.250
S26 40715470.533 5 213961234.62705 74.939 5 30.750
S27 39936243.694 5 209866371.26905 -1.504 5 31.250 39936216.245 5
→156718290.21505 -1.331 5 33.000
S36 38379035.028 7 201683190.91007 1.906 7 43.250 38379007.297 6
→150607468.03806 1.723 6 39.000
S48 8153661.082 6 42847492.65406 66.518 6 37.750
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

Long observation lines per satellite are wrapped to fit the table width, each new line starts with
a PRN and continues (indicated by →).

IGS/RTCM RINEX WG 66
1 December 2021
RINEX 4.00

Table A6 : GNSS Observation Data File – Example #3


+------------------------------------------------------------------------------+
| TABLE A6 |
| GNSS OBSERVATION DATA FILE - EXAMPLE #3 |
+------------------------------------------------------------------------------+
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
4.00 OBSERVATION DATA M: MIXED RINEX VERSION / TYPE
SW V3.08 20140513 072944 UTC PGM / RUN BY / DATE
SNR is mapped to RINEX snr flag value [1-9] COMMENT
LX: < 12dBHz -> 1; 12-17dBHz -> 2; 18-23dBHz -> 3 COMMENT
24-29dBHz -> 4; 30-35dBHz -> 5; 36-41dBHz -> 6 COMMENT
42-47dBHz -> 7; 48-53dBHz -> 8; >= 54dBHz -> 9 COMMENT
Tokyo MARKER NAME
TOKI MARKER NUMBER
USER Organization OBSERVER / AGENCY
1870023 RECEIVER NAME 3.08/6.401 REC # / TYPE / VERS
ANTENNA NONE ANT # / TYPE
-3956196.8609 3349495.1794 3703988.8347 APPROX POSITION XYZ
0.0000 0.0000 0.0000 ANTENNA: DELTA H/E/N
G 16 C1C L1C D1C S1C C2S L2S D2S S2S C2W L2W D2W S2W C5Q SYS / # / OBS TYPES
L5Q D5Q S5Q SYS / # / OBS TYPES
R 12 C1C L1C D1C S1C C2P L2P D2P S2P C2C L2C D2C S2C SYS / # / OBS TYPES
E 16 C1C L1C D1C S1C C5Q L5Q D5Q S5Q C7Q L7Q D7Q S7Q C8Q SYS / # / OBS TYPES
L8Q D8Q S8Q SYS / # / OBS TYPES
C 8 C2I L2I D2I S2I C7I L7I D7I S7I SYS / # / OBS TYPES
J 12 C1C L1C D1C S1C C2S L2S D2S S2S C5Q L5Q D5Q S5Q SYS / # / OBS TYPES
S 4 C1C L1C D1C S1C SYS / # / OBS TYPES
DBHZ SIGNAL STRENGTH UNIT
1.000 INTERVAL
2014 05 13 07 30 0.0000000 GPS TIME OF FIRST OBS
2014 05 13 07 34 59.0000000 GPS TIME OF LAST OBS
0 RCV CLOCK OFFS APPL
24 R01 1 R02 -4 R03 5 R04 6 R05 1 R06 -4 R07 5 R08 6 GLONASS SLOT / FRQ #
R09 -2 R10 -7 R11 0 R12 -1 R13 -2 R14 -7 R15 0 R16 -1 GLONASS SLOT / FRQ #
R17 4 R18 -3 R19 3 R20 2 R21 4 R22 -3 R23 3 R24 2 GLONASS SLOT / FRQ #
C1C 0.000 C1P 0.000 C2C 0.000 C2P 0.000 GLONASS COD/PHS/BIS
16 1694 7 LEAP SECONDS
END OF HEADER
> 2014 05 13 07 30 0.0000000 0 25
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 67
1 December 2021
RINEX 4.00

8.3 GNSS Navigation Message Files


8.3.1 Navigation File Header
Table A7 : GNSS Navigation Message File – Header Section Description
TABLE A7
GNSS NAVIGATION MESSAGE FILE - HEADER SECTION DESCRIPTION
HEADER LABEL DESCRIPTION FORMAT
(Columns 61-80)
RINEX VERSION / TYPE − Format version: 4.00 F9.2,11X
− File type ('N' for Navigation Data) A1,19X
− Satellite System: A1,19X
G:GPS
R:GLONASS
E:Galileo
J:QZSS
C:Beidou
I:NavIC/IRNSS
S:SBAS
M:Mixed
PGM / RUN BY / DATE − Name of program creating current file A20
− Name of agency creating current file A20
− Date and time of file creation (section 5.2.2) A20
Format: yyyymmdd hhmmss zone
zone: 3-4 char. code for time zone.
'UTC ' recommended!
'LCL ' if local time with unknown time code
*REC # / TYPE / VERS − Receiver number, type, and version (Version: 3A20
e.g. Internal Software Version)
Notes:
1. Station navigation files are to include this
receiver line, as in the RINEX Observation
files.
2. Merged navigation files from multiple
stations are not to include this header line.
*COMMENT Free text comment line(s) A60
*MERGED FILE − Number of files merged (BNK) I9
Note: This merged file comment line should be 51X
included in merged navigation files. (see section
6.11)
*DOI − Digital Object Identifier (DOI) for data citation A60
i.e. https://doi.org/<DOI-number>

IGS/RTCM RINEX WG 68
1 December 2021
RINEX 4.00

TABLE A7
GNSS NAVIGATION MESSAGE FILE - HEADER SECTION DESCRIPTION
HEADER LABEL DESCRIPTION FORMAT
(Columns 61-80)
*LICENSE OF USE − Line(s) with the data license of use. Name of A60
the license plus link to the specific version of
the license. Using standard data license as from
https://creativecommons.org/licenses/
− i.e. :
CC BY 04 ,
https://creativecommons.org/licenses/by/4.0/
*STATION INFORMATION − Line(s) with the link(s) to persistent URL with A60
the station metadata (site log, GeodesyML, etc)
LEAP SECONDS − Current Number of leap seconds since 6 Jan I6
1980.
− Future or past leap seconds ΔtLSF, i.e. future I6
leap second if the week and day number are in
the future. (BNK)
− Respective week number WN_LSF I6
(continuous number) (BNK), weeks since 6-
Jan-1980.
− Respective day number (1-7) (BNK). I6
− System time identifier: only GPS is valid A3
identifier. Blank defaults to GPS, see Notes
section below.
Notes:
1. GPS, GAL, QZS and IRN system times are
aligned and equivalent with respect to leap
seconds (Leap seconds since 6-Jan-1980). See
the ICD reference; IS-GPS-200M, section
20.3.3.5.2.4.
2. When generating the leap second record from
BDS navigation data the week count and day
number must be adapted to
GPS/GAL/QZS/IRN leap second conventions.
END OF HEADER
Records marked with * are optional
BNK- Blank if Not Known/Not Defined

IGS/RTCM RINEX WG 69
1 December 2021
RINEX 4.00

Table A8 : GNSS Navigation Message File Header – Examples


+------------------------------------------------------------------------------+
| TABLE A8 |
| GNSS NAVIGATION MESSAGE FILE HEADER - EXAMPLES |
+------------------------------------------------------------------------------+
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
4.00 NAVIGATION DATA M RINEX VERSION / TYPE
BCEmerge congo 20210706 004604 UTC PGM / RUN BY / DATE
78 MERGED FILE
Merged GPS/GLO/GAL/BDS/QZS/SBAS/IRNSS navigation file COMMENT
based on CONGO and IGS tracking data COMMENT
18 18 1929 7 LEAP SECONDS
END OF HEADER
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
4.00 N: GNSS NAV DATA M: MIXED RINEX VERSION / TYPE
genericSW User 20210205 000517 UTC PGM / RUN BY / DATE
4503037 GNSS REC. 5.4.0 REC # / TYPE / VERS
18 LEAP SECONDS
END OF HEADER
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 70
1 December 2021
RINEX 4.00

8.3.2 GPS LNAV Navigation Message


Table A9 : GPS LNAV Navigation Message Record Description
TABLE A9
GPS LNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (G), sat number (PRN) 1X,A3
- Navigation Message Type - LNAV A4
SV / EPOCH / SV CLK - Satellite system (G), sat number (PRN) A1,I2.2,
Toc - Time of Clock (GPS):
- year (4 digits) 1X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- SV clock bias (seconds) 3D19.12


- SV clock drift (sec/sec)
- SV clock drift rate (sec/sec2) *)
BROADCAST ORBIT - 1 - IODE Issue of Data, Ephemeris 4X,4D19.12
- C_rs (meters)
- Delta n (radians/sec)
- M0 (radians)
BROADCAST ORBIT - 2 - C_uc (radians) 4X,4D19.12
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
BROADCAST ORBIT - 3 - T_oe Time of Ephemeris (sec of GPS wk) 4X,4D19.12
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
BROADCAST ORBIT - 4 - i0 (radians) 4X,4D19.12
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
BROADCAST ORBIT - 5 - IDOT (radians/sec) 4X,4D19.12
- Codes on L2 channel (bits 1-2 w3 sf 1)
- GPS Week # (to go with T_oe)
Continuous number, not mod(1024)!
- L2 P data flag (bit 1 w 4 sf 1)
BROADCAST ORBIT - 6 - SV accuracy (meters) See GPS ICD 4X,4D19.12
Section 20.3.3.3.1.3 use specified
equations to define nominal values, N = 0-
6: use 2(1+N/2) (round to one decimal place
i.e. 2.8, 5.7 and 11.3) , N= 7-15:use 2 (N-2),
8192 specifies use at own risk
- SV health (bits 17-22 w 3 sf 1)
- TGD (seconds)
- IODC Issue of Data, Clock

IGS/RTCM RINEX WG 71
1 December 2021
RINEX 4.00

TABLE A9
GPS LNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
BROADCAST ORBIT - 7 - t_tm : Transmission time of message 4X,2D19.12
(sec of GPS week, see section 6.11) 2*)
- Fit Interval in hours; bit 17 w 10 sf 2 +
IODC & Table 20-XII of GPS ICD.
(BNK)
BNK- Blank if Not Known/Not Defined
*) see section 6.8.
2*) Adjust the Transmission time of message by 604800 to refer to the reported week in
BROADCAST ORBIT 5, if necessary. Set value to .9999E+09 if not known. Legacy
navigation records without transmit time are permitted for compatibility, but strongly
deprecated.

IGS/RTCM RINEX WG 72
1 December 2021
RINEX 4.00

8.3.3 GPS CNAV Navigation Message


Table A10 : GPS CNAV Navigation Message Record Description
TABLE A10
GPS CNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (G), sat number (PRN) 1X,A3
- Navigation Message Type - CNAV A4
SV / EPOCH / SV CLK - Satellite system (G), sat number (PRN) A1,I2.2,
Toc - Time of Clock (GPS) :
- year (4 digits) 1X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- SV clock bias; a_f0 (seconds) 3D19.12


- SV clock drift; a_f1 (sec/sec)
- SV clock drift rate; a_f2 (sec/sec2) *), 2*)
BROADCAST ORBIT - 1 - A DOT (meters/sec) 4X,4D19.12
- C_rs (meters)
- Delta n0 (radians/sec)
- M0 (radians)
BROADCAST ORBIT - 2 - C_uc (radians) 4X,4D19.12
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
BROADCAST ORBIT - 3 - t_op (seconds) 4X,4D19.12
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
BROADCAST ORBIT - 4 - i0 (radians) 4X,4D19.12
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
BROADCAST ORBIT - 5 - IDOT (radians/sec) 4X,4D19.12
- Delta n0 dot (radians/sec^2)
- URAI_NED0
- URAI_NED1
BROADCAST ORBIT - 6 - URAI_ED 4X,4D19.12
- SV health (bits 52(MSB)-54(LSB) of msg
10, providing L1,L2,L5 Health )
- TGD (seconds)
- URAI_NED2
BROADCAST ORBIT - 7 - ISC_L1CA (seconds) 4X,4D19.12
- ISC_L2C (seconds)
- ISC_L5I5 (seconds)
- ISC_L5Q5 (seconds)

IGS/RTCM RINEX WG 73
1 December 2021
RINEX 4.00

TABLE A10
GPS CNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
BROADCAST ORBIT - 8 - t_tm : Transmission time of message 4X,2D19.12
(sec of GPS week, see section 6.11) 3*)
- wn_op : GPS continuous week number
with the ambiguity resolved
*) see section 6.8.
2*) As per IS-GPS-705 20.3.4.4 first sentence, Toe must be equal to Toc. Therefore, only Toc
is provided.
3*) Adjust the Transmission time of message by 604800 to refer to the week in the “SV /
EPOCH / SV CLK” line, if necessary.

IGS/RTCM RINEX WG 74
1 December 2021
RINEX 4.00

8.3.4 GPS CNAV-2 Navigation Message


Table A11 : GPS CNAV-2 Navigation Message Record Description
TABLE A11
GPS CNAV-2 NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (G), sat number (PRN) 1X,A3
- Navigation Message Type – CNV2 A4
SV / EPOCH / SV CLK - Satellite system (G), sat number (PRN) A1,I2.2,
Toc - Time of Clock (GPS):
- year (4 digits) 1X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- SV clock bias; a_f0 (seconds) 3D19.12


- SV clock drift; a_f1 (sec/sec)
- SV clock drift rate; a_f2 (sec/sec2) *), 2*)
BROADCAST ORBIT - 1 - A DOT (meters/sec) 4X,4D19.12
- C_rs (meters)
- Delta n0 (radians/sec)
- M0 (radians)
BROADCAST ORBIT - 2 - C_uc (radians) 4X,4D19.12
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
BROADCAST ORBIT - 3 - t_op (seconds) 4X,4D19.12
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
BROADCAST ORBIT - 4 - i0 (radians) 4X,4D19.12
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
BROADCAST ORBIT - 5 - IDOT (radians/sec) 4X,4D19.12
- Delta n0 dot (radians/sec^2)
- URAI_NED0
- URAI_NED1
BROADCAST ORBIT - 6 - URAI_ED 4X,4D19.12
- SV health (L1C health, bit 33 of sf 2)
- TGD (seconds)
- URAI_NED2
BROADCAST ORBIT - 7 - ISC_L1CA (seconds) 4X,4D19.12
- ISC_L2C (seconds)
- ISC_L5I5 (seconds)
- ISC_L5Q5 (seconds)

IGS/RTCM RINEX WG 75
1 December 2021
RINEX 4.00

TABLE A11
GPS CNAV-2 NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
BROADCAST ORBIT - 8 - ISC_L1Cd (seconds) 4X,2D19.12
- ISC_L1Cp (seconds)
BROADCAST ORBIT - 9 - t_tm : Transmission time of message 4X,2D19.12
(sec of GPS week, see section 6.11) 3*)
- wn_op : GPS continuous week number
with the ambiguity resolved
*) see section 6.8.
2*) As per IS-GPS-800, paragraph 3.5.3.7.1, users shall use t_oe, to replace t_oc in the user
algorithms for SV clock correction data. Therefore, only a single reference epoch t_oe = t_oc
is provided.
3*) Adjust the Transmission time of message by 604800 to refer to the week in the “SV /
EPOCH / SV CLK” line, if necessary.

Table A12 : GPS Navigation Messages - Example


+------------------------------------------------------------------------------+
| TABLE A12 |
| GPS NAVIGATION MESSAGES - EXAMPLE |
+------------------------------------------------------------------------------+
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
> EPH G04 LNAV
G04 2019 03 14 04 00 00 1.330170780420e-04 7.275957614183e-12 0.000000000000e+00
9.800000000000e+01-1.718750000000e+00 4.639836124941e-09 2.148941747752e+00
-1.881271600723e-07 3.355251392350e-04 8.245930075645e-06 5.153800453186e+03
3.600000000000e+05-1.676380634308e-08 5.171400020311e-01 1.490116119385e-08
9.601921900531e-01 2.187187500000e+02-1.736906885738e+00-8.044977962767e-09
-2.932264997750e-10 1.000000000000e+00 2.044000000000e+03 0.000000000000e+00
4.000000000000e+00 6.300000000000e+01-8.847564458847e-09 8.660000000000e+02
3.553500000000e+05 4.000000000000e+00
> EPH G04 CNAV
G04 2019 03 14 03 30 00 1.330042141490e-04 7.226219622680e-12 0.000000000000e+00
2.001762390137e-03 6.914062500000e-01 4.625906973308e-09 1.887277537485e+00
1.024454832077e-08 3.348654136062e-04 8.376315236092e-06 5.153800325291e+03
2.412000000000e+05-4.656612873077e-09 5.171544951605e-01 2.328306436539e-08
9.601927657114e-01 2.174140625000e+02-1.737767543851e+00-8.034028170143e-09
-2.950122884460e-10-1.312310522376e-14-2.000000000000e+00 2.000000000000e+00
0.000000000000e+00 7.000000000000e+00-8.789356797934e-09 5.000000000000e+00
-5.820766091347e-10-6.606569513679e-09-1.178705133498e-08-1.178705133498e-08
3.558540000000e+05 2.044000000000e+03
> EPH G04 CNV2
G04 2019 03 14 03 30 00 1.330042141490e-04 7.226219622680e-12 0.000000000000e+00
2.001762390137e-03 6.914062500000e-01 4.625906973308e-09 1.887277537485e+00
1.024454832077e-08 3.348654136062e-04 8.376315236092e-06 5.153800325291e+03
2.412000000000e+05-4.656612873077e-09 5.171544951605e-01 2.328306436539e-08
9.601927657114e-01 2.174140625000e+02-1.737767543851e+00-8.034028170143e-09
-2.950122884460e-10-1.312310522376e-14-2.000000000000e+00 2.000000000000e+00
0.000000000000e+00 1.000000000000e+00-8.789356797934e-09 5.000000000000e+00
9.999000000000e+09 9.999000000000e+09 9.999000000000e+09 9.999000000000e+09
-3.492459654808e-10-7.858034223318e-10
3.550860000000e+05 2.044000000000e+03

----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 76
1 December 2021
RINEX 4.00

8.3.5 GALILEO INAV/FNAV Navigation Message


Table A13 : GALILEO INAV/FNAV Navigation Message Record Description
TABLE A13
GALILEO INAV/FNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (E), sat number (PRN) 1X,A3
- Navigation Message Type – INAV or FNAV A4
SV / EPOCH / SV CLK - Satellite system (E), satellite number A1,I2.2,
Toc - Time of Clock GAL:
- year (4 digits) 1X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- SV clock bias; af0 (seconds) 3D19.12


- SV clock drift; af1 (sec/sec)
- SV clock drift rate; af2 (sec/sec2)
(see Br.Orbit-5, data source, bits 8+9) *)
BROADCAST ORBIT - 1 - IODnav Issue of Data of the nav batch 4X,4D19.12
- C_rs (meters)
- Delta n (radians/sec)
- M0 (radians)
BROADCAST ORBIT - 2 - C_uc (radians) 4X,4D19.12
- e Eccentricity
- C_us (radians)
- sqrt(a) (sqrt(m))
BROADCAST ORBIT - 3 - Toe Time of Ephemeris (sec of GAL week) 4X,4D19.12
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
BROADCAST ORBIT - 4 - i0 (radians) 4X,4D19.12
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)

IGS/RTCM RINEX WG 77
1 December 2021
RINEX 4.00

TABLE A13
GALILEO INAV/FNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
BROADCAST ORBIT - 5 - IDOT (radians/sec) 4X,3D19.12
- Data sources (binary number)
Bit 0 set: I/NAV E1-B 4*)
Bit 1 set: F/NAV E5a-I
Bit 2 set: I/NAV E5b-I
Bits 0 and 2: Both can be set if the INAV
navigation messages were merged, however,
bits cannot all be set, as the INAV and FNAV
messages contain different information.
Bit 3 reserved for Galileo internal use
Bit 4 reserved for Galileo internal use
Bit 8 set: af0-af2, Toc, SISA are for E5a,E1
Bit 9 set: af0-af2, Toc, SISA are for E5b,E1
Bits 8-9 : exclusive (only one bit can be set)
- GAL Week # (to go with TOE) 5*)

BROADCAST ORBIT - 6 - SISA Signal in space accuracy (meters) No 4X,4D19.12


Accuracy Prediction Available (NAPA) /
unknown: -1.0
- SV health (See Galileo ICD Section 5.1.9.3) 4*)
Bit 0: E1B DVS
Bits 1-2: E1B HS
Bit 3: E5a DVS
Bits 4-5: E5a HS
Bit 6: E5b DVS
Bits 7-8: E5b HS
- BGD E5a/E1 (seconds)
- BGD E5b/E1 (seconds)
BROADCAST ORBIT - 7 - t_tm : Transmission time of message 4X,1D19.12
(sec of GAL week, see section 6.11) 2*)
*) see section 6.8.
2*) Adjust the Transmission time of message by + or -604800 to refer to the reported week in
BROADCAST ORBIT 5, if necessary. Set value to .9999E+09 if not known. Legacy
navigation records without transmit time are permitted for compatibility, but strongly
deprecated.
4*) For Navigation data fields stored bitwise see section 6.10.
5*) The GAL week number is a continuous number, aligned to (and hence identical to) the
continuous GPS week number used in the RINEX navigation message files. The broadcast 12-
bit Galileo System Time (GST) week has a roll-over after 4095. It started at zero at the first
GPS roll-over (continuous GPS week 1024). Hence GAL week = GST week + 1024 + n*4096
(n: number of GST roll-overs).
6*) For Navigation data fields stored bitwise see section 6.10. If bit 0 or bit 2 of Data sources
(BROADCAST ORBIT – 5) is set then the SV health parameter; ’E1B DVS’ & ’E1B
HS’, ’E5b DVS’ & ’E5b HS’ and both ‘BGDs’ are valid. If bit 1 of Data sources is set
then ’E5a DVS’ & ‘E5a HS’ and BGD E5a/E1 are valid. Non-valid parameters are
set to 0 and to be ignored.

IGS/RTCM RINEX WG 78
1 December 2021
RINEX 4.00

Table A14 : GALILEO Navigation Messages - Examples


+------------------------------------------------------------------------------+
| TABLE A14 |
| GALILEO NAVIGATION MESSAGES - EXAMPLES |
+------------------------------------------------------------------------------+

----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
> EPH E12 INAV
E12 2020 09 15 00 40 00 5.605182959698e-03-1.881517164293e-11 0.000000000000e+00
3.600000000000e+01 1.090625000000e+02 2.811188525857e-09-2.481435854929e+00
5.209818482399e-06 1.468013506383e-04 1.532956957817e-06 5.440609727859e+03
1.752000000000e+05-1.676380634308e-08 8.103706855689e-01 7.450580596924e-09
9.891660140720e-01 3.219375000000e+02 5.171049929386e-01-5.815956543649e-09
2.982267080537e-10 5.170000000000e+02 2.123000000000e+03
3.120000000000e+00 0.000000000000e+00-1.303851604462e-08-1.280568540096e-08
1.764340000000e+05
> EPH E11 FNAV
E11 2020 09 15 23 30 00 5.537368822843e-03 2.744400262600e-10 0.000000000000e+00
4.500000000000e+01 1.730312500000e+02 2.871548182937e-09-1.103934352668e-01
8.083879947662e-06 2.968260087073e-04 3.607943654060e-06 5.440606000900e+03
2.574000000000e+05-5.774199962616e-08 8.098963343817e-01-1.005828380585e-07
9.891873024559e-01 2.774062500000e+02 1.248848716430e+00-5.818456647788e-09
5.564517498775e-10 2.580000000000e+02 2.123000000000e+03
3.120000000000e+00 0.000000000000e+00-1.583248376846e-08 0.000000000000e+00
2.581000000000e+05
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 79
1 December 2021
RINEX 4.00

8.3.6 GLONASS FDMA Navigation Message


Table A15 : GLONASS FDMA Navigation Message Record Description
TABLE A15
GLONASS FDMA NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (R), sat number (slot 1X,A3
number) A4
- Navigation Message Type – FDMA
SV / EPOCH / SV CLK - Satellite system (R), satellite number A1,I2.2,
(slot number in sat. constellation)
Toc - Time of Clock (UTC):
- year (4 digits) 1X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- SV clock bias (sec) (-TauN) 3D19.12


- SV relative frequency bias
(+GammaN)
- Message frame time (tk+(nd*86400))
in seconds of the UTC week *)
BROADCAST ORBIT - 1 - Satellite position X (km) 4X,4D19.12
- velocity X dot (km/sec)
- X acceleration (km/sec2)
- health (0=healthy, 1=unhealthy) (MSB
of 3-bit Bn)
BROADCAST ORBIT - 2 - Satellite position Y (km) 4X,4D19.12
- velocity Y dot (km/sec)
- Y acceleration (km/sec2)
- frequency number (-7...+13) (-7...+6
ICD 5.1)
BROADCAST ORBIT - 3 - Satellite position Z (km) 4X,4D19.12
- velocity Z dot (km/sec)
- Z acceleration (km/sec2)
- Age of oper. information (days) (E)
BROADCAST ORBIT - 4 - Status Flags 9-bit binary number (BNK 4X,4D19.12
if Unknown);
M ; bit 7-8, GLO type indicator 2*)
(00=GLO, 01=GLO-M/K)
P4 ; bit 6, GLO-M/K only, 1=data
updated, 0=data not updated
P3 ; bit 5, num of satellites in current
frame almanac (0 = 4 sats, 1 = 5 sats)
P2 ; bit 4, indicate even (0) or odd (1)
of time interval
P1 ; bit 2-3, update and validity
interval (00 = 0 min, 01 = 30 min,
10=45 min, 11=60 min)

IGS/RTCM RINEX WG 80
1 December 2021
RINEX 4.00

TABLE A15
GLONASS FDMA NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
P ; bit 0-1, GLO-M/K only, time offset
parameters c, GPS source (00
=ground, 01 = c ground, GPS on-
board, 10 = c on-board, GPS ground,
11 = on-board)
- L1/L2 group delay difference .(in
seconds) 3*)
- URAI ; GLO-M/K only – raw accuracy
index FT. 4*)
- Health Flags 3-bit binary number
(BNK if Unknown): 5*)
l(3) ; bit 2, GLO-M/K only, health bit of
string 3
AC ; bit 1, 1 = almanac health reported
in ephemerides record, 0 = not reported
C ; bit 0, almanac health bit ( 1 =
healthy, 0 = not healthy)

GLO-M/K exclusive flags and values only


to be valid when flag M set to “01”
BNK- Blank if Not Known/Not Defined
*) see section 6.8.
2*) For Navigation data fields stored bitwise see section 6.10.
3*) .999999999999E+09 if Unknown
4*) 1.500000000000E+01 if Unknown
5*) bit 0 (C) is to be ignored if bit 1 (AC) is zero

Table A16 : GLONASS Navigation Message Files - Example


+------------------------------------------------------------------------------+
| TABLE A16 |
| GLONASS NAVIGATION MESSAGE FILE – EXAMPLE |
+------------------------------------------------------------------------------+

----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
> EPH R01 FDMA
R01 2020 09 15 23 45 00 6.761029362679e-05 0.000000000000e+00 2.587200000000e+05
-1.390448925781e+04 2.552483558655e+00-4.656612873077e-09 0.000000000000e+00
-3.950272460938e+03-1.328901290894e+00 1.862645149231e-09 1.000000000000e+00
2.101021875000e+04 1.440399169922e+00-1.862645149231e-09 0.000000000000e+00
1.470000000000e+02 8.381903171539e-09 2.000000000000e+00 0.000000000000e+00
> EPH R04 FDMA
R04 2020 09 15 22 45 00 5.470402538776e-05 9.094947017729e-13 2.541000000000e+05
1.043976806641e+04-2.930776596069e+00 3.725290298462e-09 0.000000000000e+00
8.152179687500e+03 5.874986648560e-01 0.000000000000e+00 6.000000000000e+00
-2.177643408203e+04-1.184345245361e+00 9.313225746155e-10 0.000000000000e+00
2.430000000000e+02-2.793967723846e-09 4.000000000000e+00 3.000000000000e+00
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 81
1 December 2021
RINEX 4.00

8.3.7 QZSS LNAV Navigation Message


Table A17 : QZSS LNAV Navigation Message Record Description
TABLE A17
QZSS LNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (J), sat number (see Table 1X,A3
6) A4
- Navigation Message Type – LNAV
SV / EPOCH / SV CLK - Satellite system (J), sat number (see Table A1,I2,
6)
Toc - Time of Clock:
- year (4 digits) 1X,I4,
- month, day, hour, minutes, seconds 5(1X,I2),

- SV clock bias (seconds) 3D19.12


- SV clock drift (sec/sec)
- SV clock drift rate (sec/sec2) *)
BROADCAST ORBIT - 1 - IODE Issue of Data, Ephemeris 4X,4D19.12
- C_rs (meters)
- Delta n (radians/sec)
- M0 (radians)
BROADCAST ORBIT - 2 - C_uc (radians) 4X,4D19.12
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
BROADCAST ORBIT - 3 - Toe Time of Ephemeris (sec of GPS 4X,4D19.12
week)
- C_ic (radians)
- OMEGA (radians)
- CIS (radians)
BROADCAST ORBIT - 4 - i0 (radians) 4X,4D19.12
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
BROADCAST ORBIT – 5 - IDOT (radians/sec) 4X,4D19.12
- Codes on L2 channel (fixed to 2, see IS-
QZSS-PNT 4.1.2.7)
- GPS Week # (to go with TOE)
Continuous number, not mod(1024)!
- L2P data flag set to 1 since QZSS does
not track L2P

IGS/RTCM RINEX WG 82
1 December 2021
RINEX 4.00

TABLE A17
QZSS LNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
BROADCAST ORBIT – 6 - SV accuracy (meters) (IS -QZSS-PNT, 4X,4D19.12
Section 5.4.3.1) use specified equations
to define nominal values, N = 0-6: use
2(1+N/2) (round to one decimal place i.e.
2.8, 5.7 and 11.3) , N= 7-15:use 2 (N-2),
8192 specifies use at own risk
- SV health (bits 17-22 w 3 sf 1) (see IS-
QZSS-PNT 5.4.1)
- TGD (seconds) The QZSS ICD specifies
a do not use bit pattern "10000000" this
condition is represented by a blank field.
- IODC Issue of Data, Clock
BROADCAST ORBIT – 7 - t_tm : Transmission time of message 4X,2D19.12
(sec of GPS week, see section 6.11) 2*)
- Fit interval flag (0 / 1) (see IS-QZSS-
PNT, 4.1.2.4(3) 0 – two hours), 1 – more
than 2 hours (BNK).
BNK- Blank if Not Known/Not Defined
*) see section 6.8.
2*) Adjust the Transmission time of message by 604800 to refer to the reported week in
BROADCAST ORBIT 5, if necessary. Set value to .9999E+09 if not known. Legacy
navigation records without transmit time are permitted for compatibility, but strongly
deprecated.

IGS/RTCM RINEX WG 83
1 December 2021
RINEX 4.00

8.3.8 QZSS CNAV Navigation Message


Table A18 : QZSS CNAV Navigation Message Record Description
TABLE A18
QZSS CNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (J), sat number (see 1X,A3
Table 6) A4
- Navigation Message Type - CNAV
SV / EPOCH / SV CLK - Satellite system (J), sat number (see A1,I2.2,
Table 6)
Toc - Time of Clock (QZSS):
- year (4 digits) 1X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- SV clock bias; a_f0 (seconds) 3D19.12


- SV clock drift; a_f1 (sec/sec)
- SV clock drift rate; a_f2 (sec/sec2) *)
BROADCAST ORBIT - 1 - A DOT (meters/sec) 4X,4D19.12
- C_rs (meters)
- Delta n0 (radians/sec)
- M0 (radians)
BROADCAST ORBIT - 2 - C_uc (radians) 4X,4D19.12
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
BROADCAST ORBIT - 3 - t_op (seconds) 4X,4D19.12
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
BROADCAST ORBIT - 4 - i0 (radians) 4X,4D19.12
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
BROADCAST ORBIT - 5 - IDOT (radians/sec) 4X,4D19.12
- Delta n0 dot (radians/sec^2)
- URAI_NED0
- URAI_NED1
BROADCAST ORBIT - 6 - URAI_ED 4X,4D19.12
- SV health (bits 52(MSB)-54(LSB) of msg
10, providing L1,L2,L5 Health)
- TGD (seconds) 3*)
- URAI_NED2

IGS/RTCM RINEX WG 84
1 December 2021
RINEX 4.00

TABLE A18
QZSS CNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
BROADCAST ORBIT - 7 - ISC_L1CA (seconds) 4X,4D19.12
- ISC_L2C (seconds)
- ISC_L5I5 (seconds)
- ISC_L5Q5 (seconds) 3*)
BROADCAST ORBIT - 8 - t_tm : Transmission time of message 4X,2D19.12
(sec of GPS week, see section 6.11) 2*)
- wn_op : GPS continuous week number
with the ambiguity resolved
*) see section 6.8.
2*) Adjust the Transmission time of message by 604800 to refer to the week in the “SV /
EPOCH / SV CLK” line, if necessary.
3*) The QZSS ICD specifies a do not use bit pattern "1000000000000" for CNAV TGD and
ISC values. This condition is represented by a blank field in the RINEX record.

IGS/RTCM RINEX WG 85
1 December 2021
RINEX 4.00

8.3.9 QZSS CNAV-2 Navigation Message


Table A19 : QZSS CNAV-2 Navigation Message Record Description
TABLE A19
QZSS CNAV-2 NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (J), sat number (see 1X,A3
Table 6) A4
- Navigation Message Type – CNV2
SV / EPOCH / SV CLK - Satellite system (J), sat number (PRN, see A1,I2.2,
Table 6)
Toc - Time of Clock (GPS): 1X,I4,
- year (4 digits) 5(1X,I2.2),
- month, day, hour, minute, second
3D19.12
- SV clock bias; a_f0 (seconds)
- SV clock drift; a_f1 (sec/sec) *)
- SV clock drift rate; a_f2 (sec/sec2)
BROADCAST ORBIT - 1 - A DOT (meters/sec) 4X,4D19.12
- C_rs (meters)
- Delta n0 (radians/sec)
- M0 (radians)
BROADCAST ORBIT - 2 - C_uc (radians) 4X,4D19.12
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
BROADCAST ORBIT - 3 - t_op (seconds) 4X,4D19.12
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
BROADCAST ORBIT - 4 - i0 (radians) 4X,4D19.12
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
BROADCAST ORBIT - 5 - IDOT (radians/sec) 4X,4D19.12
- Delta n0 dot (radians/sec^2)
- URAI_NED0
- URAI_NED1
BROADCAST ORBIT - 6 - URAI_ED 4X,4D19.12
- SV health (L1C health)
- TGD (seconds) 3*)
- URAI_NED2
BROADCAST ORBIT - 7 - ISC_L1CA (seconds) 4X,4D19.12
- ISC_L2C (seconds)
- ISC_L5I5 (seconds)
- ISC_L5Q5 (seconds) 3*)

IGS/RTCM RINEX WG 86
1 December 2021
RINEX 4.00

TABLE A19
QZSS CNAV-2 NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
BROADCAST ORBIT - 8 - ISC_L1Cd (seconds) 4X,2D19.12
- ISC_L1Cp (seconds) 3*)
BROADCAST ORBIT - 9 - t_tm : Transmission time of message 4X,2D19.12
(sec of GPS week, see section 6.11) 2*)
- wn_op : GPS continuous week number
with the ambiguity resolved
*) see section 6.8.
2*) Adjust the Transmission time of message by 604800 to refer to the week in the “SV /
EPOCH / SV CLK” line, if necessary.
3*) The QZSS ICD specifies a do not use bit pattern "1000000000000" for CNAV TGD and
ISC values. This condition is represented by a blank field in the RINEX record.

Table A20 : QZSS Navigation Message File - Examples


+------------------------------------------------------------------------------+
| TABLE A20 |
| QZSS NAVIGATION MESSAGE FILE - EXAMPLE |
+------------------------------------------------------------------------------+
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
> EPH J01 LNAV
J01 2021 01 23 02 00 00-3.374307416379e-04-1.364242052659e-12 0.000000000000e+00
1.330000000000e+02 9.578125000000e+01 1.388272112820e-09-2.070362217868e+00
2.535060048103e-06 7.562357175630e-02 5.446374416351e-06 6.493648595810e+03
5.256000000000e+05-1.164153218269e-06 4.173927833877e-01-3.390014171600e-06
7.304595403547e-01-1.565625000000e+01-1.559470529133e+00-9.082521180606e-10
1.361128125021e-09 2.000000000000e+00 2.141000000000e+03 1.000000000000e+00
2.800000000000e+00 0.000000000000e+00-5.587935447693e-09 9.010000000000e+02
5.220060000000e+05 0.000000000000e+00
> EPH J01 CNAV
J01 2021 01 23 02 00 00-3.374309453648e-04-1.364242052659e-12 0.000000000000e+00
-2.224636077881e-02 9.925390625000e+01 2.809759894921e-09-2.070460582285e+00
2.630054950714e-06 7.561515661655e-02 6.853602826595e-06 6.493646338351e+03
5.256000000000e+05 2.942979335785e-07 4.174090012975e-01 2.151355147362e-07
7.304471282263e-01-5.480078125000e+01-1.559404111189e+00-2.726307082255e-09
5.480585431239e-10 5.534811322777e-14-3.000000000000e+00 0.000000000000e+00
-8.000000000000e+00 0.000000000000e+00-5.675246939063e-09 0.000000000000e+00
0.000000000000e+00 3.667082637548e-09 2.561137080193e-09 1.949956640601e-09
5.220060000000e+05 2.141000000000e+03
> EPH J01 CNV2
J01 2021 01 23 02 00 00-3.374309453648e-04-1.364242052659e-12 0.000000000000e+00
-2.224636077881e-02 9.925390625000e+01 2.809759894921e-09-2.070460582285e+00
2.630054950714e-06 7.561515661655e-02 6.853602826595e-06 6.493646338351e+03
5.256000000000e+05 2.942979335785e-07 4.174090012975e-01 2.151355147362e-07
7.304471282263e-01-5.480078125000e+01-1.559404111189e+00-2.726307082255e-09
5.480585431239e-10 5.534811322777e-14-3.000000000000e+00 0.000000000000e+00
-8.000000000000e+00 0.000000000000e+00-5.675246939063e-09 0.000000000000e+00
0.000000000000e+00 3.667082637548e-09 2.561137080193e-09 1.949956640601e-09
4.365574568510e-10 2.910383045673e-10
5.220180000000e+05 2.141000000000e+03

----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 87
1 December 2021
RINEX 4.00

8.3.10 BEIDOU D1/D2 Navigation Message


Table A21 : BEIDOU D1/D2 Navigation Message Record Description
Table A21
BEIDOU D1/D2 NAVIGATION MESSAGES RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (C), sat number (PRN) 1X,A3
- Navigation Message Type – D1 or D2 A2

Note: D1 is the BDS-2/3 MEO/IGSO legacy


navigation message, D2 is the BDS-2/3 GEO
legacy navigation message.
- Satellite system (C), sat number (PRN) A1,I2.2,
SV / EPOCH / SV CLK
Toc - Time of Clock (BDT):
- year (4 digits) 1X,I4
- month, day, hour, minute, second 5,1X,I2.2,

- SV clock bias (seconds) 3D19.12


- SV clock drift (sec/sec) *)
- SV clock drift rate (sec/sec2)
- AODE Age of Data, Ephemeris (as 4X,4D19.12
BROADCAST ORBIT – 1
specified in BeiDou B1I and B3I ICDs
Table Section 5.2.4.11 Table 5-8) and
field range is: 0-31.
- C_rs (meters)
- Delta n (radians/sec)
- M0 (radians)
- C_uc (radians) 4X,4D19.12
BROADCAST ORBIT – 2
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
- ToE Time of Ephemeris (sec of BDT 4X,4D19.12
BROADCAST ORBIT – 3
week)
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
- i0 (radians) 4X,4D19.12
BROADCAST ORBIT – 4
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
- IDOT (radians/sec) 4X,D19.12,
BROADCAST ORBIT – 5
- Spare (see Section 6.4) A19,
- BDT Week # D19.12,
- Spare (see Section 6.4) A19

IGS/RTCM RINEX WG 88
1 December 2021
RINEX 4.00

Table A21
BEIDOU D1/D2 NAVIGATION MESSAGES RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
- SV accuracy (meters See: BDS 4X,4D19.12
BROADCAST ORBIT – 6
ICD Section 5.2.4.: to define nominal
values, N = 0-6: use 2(1+N/2) (round to one
decimal place i.e. 2.8, 5.7 and 11.3) , N=
7-15:use 2 (N-2), 8192 specifies use at own
risk)
- SatH1
- TGD1 B1/B3 (seconds)
- TGD2 B2/B3 (seconds)
BROADCAST ORBIT – 7 - t_tm: Transmission time of message 4X,2D19.12
(sec of BDT week, see section 6.11) 2*)
- AODC Age of Data Clock (as specified
in BeiDou B1I and B3I ICDs Table
Section 5.2.4.8, Table 5-6) and field
range is: 0-31.
*) see section 6.8.
2*) Adjust the Transmission time of message by + or -604800 to refer to the reported week in
BROADCAST ORBIT -5, if necessary. Set value to .9999E+09 if not known. Legacy
navigation records without transmit time are permitted for compatibility, but strongly
deprecated.

IGS/RTCM RINEX WG 89
1 December 2021
RINEX 4.00

8.3.11 BEIDOU CNAV-1 Navigation Message


Table A22 : BEIDOU CNAV-1 Navigation Message Record Description
TABLE A22
BEIDOU CNAV-1 NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (C), sat number (PRN) 1X,A3
- Navigation Message Type – CNV1 A2

Note: CNV1 is the navigation message on


the Beidou-3 B1C signal.
- Satellite system (C), sat number (PRN) A1,I2.2,
SV / EPOCH / SV CLK
Toc - Time of Clock (BDT):
- year (4 digits) 1X,I4
- month, day, hour, minute, second 5(1X,I2.2),

- SV clock bias; a_f0 (sec) 3D19.12


- SV clock drift; a_f1 (sec/sec)
- SV clock drift rate; a_f2 (sec/sec2) *)
- A DOT (meters/sec) 4X,4D19.12
BROADCAST ORBIT - 1
- C_rs (meters)
- Delta n0 (radians/sec)
- M0 (radians)
- C_uc (radians) 4X,4D19.12
BROADCAST ORBIT – 2
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
- ToE Time of Ephemeris (sec of BDT 4X,4D19.12
BROADCAST ORBIT – 3
week)
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
- i0 (radians) 4X,4D19.12
BROADCAST ORBIT – 4
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
- IDOT (radians/sec) 4X,4D19.12
BROADCAST ORBIT - 5
- Delta n0 dot (radians/sec^2)
- SatType: 0=reserved, 1=GEO,
2=IGSO, 3=MEO
- t_op (seconds)
- SISAI_oe 4X,4D19.12
BROADCAST ORBIT – 6
- SISAI_ocb
- SISAI_oc1
- SISAI_oc2

IGS/RTCM RINEX WG 90
1 December 2021
RINEX 4.00

TABLE A22
BEIDOU CNAV-1 NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
- ISC_B1Cd (seconds) 4X,D19.12,
BROADCAST ORBIT – 7
- Spare(x1) (see Section 6.4) A19,
- TGD_B1Cp (seconds) 2D19.12
- TGD_B2ap (seconds)
BROADCAST ORBIT – 8 - SISMAI 4X,4D19.12
- Health: 2-bits health word from sf 3
(0=healthy, 1=unhealthy or in test,
others reserved)
- B1C Integrity flags: 3-bits word from sf
3 ( bit 2(MSB)=DIF,
bit 1 = SIF,
bit 0(LSB) = AIF )
- IODC
BROADCAST ORBIT – 9 - t_tm: Transmission time of message 4X,D19.12,
(sec of BDT week, see section 6.11)
2*)
- Spare(x2) (see Section 6.4) 2A19,
- IODE D19.12

- Note: for a matched pair of orbit and


clock data, the IODE are the same as
the 8 LSBs of IODC
*) see section 6.8.
2*) Adjust the Transmission time of message by 604800 to refer to the week in the “SV /
EPOCH / SV CLK” line, if necessary.

IGS/RTCM RINEX WG 91
1 December 2021
RINEX 4.00

8.3.12 BEIDOU CNAV-2 Navigation Message


Table A23 : BEIDOU CNAV-2 Navigation Message Record Description
TABLE A23
BEIDOU CNAV-2 NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (C), sat number (PRN) 1X,A3
- Navigation Message Type – CNV2 A2

Note: CNV2 is the navigation message on


the Beidou-3 B2a signal.
- Satellite system (C), sat number (PRN) A1,I2.2,
SV / EPOCH / SV CLK
Toc - Time of Clock (BDT):
- year (4 digits) 1X,I4
- month, day, hour, minute, second 5,1X,I2.2,

- SV clock bias; a_f0 (sec) 3D19.12


- SV clock drift; a_f1 (sec/sec)
- SV clock drift rate; a_f2 (sec/sec2) *)
- A DOT (meters/sec) 4X,4D19.12
BROADCAST ORBIT - 1
- C_rs (meters)
- Delta n0 (radians/sec)
- M0 (radians)
- C_uc (radians)
BROADCAST ORBIT – 2 4X,4D19.12
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
- ToE Time of Ephemeris (sec of BDT
BROADCAST ORBIT – 3 4X,4D19.12
week)
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
- i0 (radians)
BROADCAST ORBIT – 4 4X,4D19.12
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
- IDOT (radians/sec)
BROADCAST ORBIT - 5 4X,4D19.12
- Delta n0 dot (radians/sec^2)
- SatType: 0=reserved, 1=GEO,
2=IGSO, 3=MEO
- t_op (seconds)
- SISAI_oe
BROADCAST ORBIT – 6 4X,4D19.12
- SISAI_ocb
- SISAI_oc1
- SISAI_oc2

IGS/RTCM RINEX WG 92
1 December 2021
RINEX 4.00

TABLE A23
BEIDOU CNAV-2 NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
- Spare(x1) (see Section 6.4) 4X,A19,
BROADCAST ORBIT – 7
- ISC_B2ad (seconds) 3D19.12
- TGD_B1Cp (seconds)
- TGD_B2ap (seconds)
BROADCAST ORBIT – 8 - SISMAI 4X,4D19.12
- Health: 2-bits health word from msg 11,
30-34, 40 (0=healthy, 1=unhealthy or
in test, others reserved)
- B2a+B1C Integrity flags: 6-bits word
with integrity bits in msg 10-11, 30-34
or 40 ( bit 5(MSB) = DIF(B2a),
bit 4 = SIF(B2a),
bit 3 = AIF(B2a),
bit 2 = DIF(B1C),
bit1 = SIF (B1C),
bit 0(LSB)=AIF(B1C) )
- IODC
BROADCAST ORBIT – 9 - t_tm: Transmission time of message 4X,D19.12,
(sec of BDT week, see section 6.11)
2*)
- Spare(x2) (see Section 6.4) 2A19,
- IODE D19.12

Note: for a matched pair of orbit and clock


data, the IODE are the same as the 8 LSBs
of IODC
*) see section 6.8.
2*) Adjust the Transmission time of message by 604800 to refer to the week in the “SV /
EPOCH / SV CLK” line, if necessary.

IGS/RTCM RINEX WG 93
1 December 2021
RINEX 4.00

8.3.13 BEIDOU CNAV-3 Navigation Message


Table A24 : BEIDOU CNAV-3 Navigation Message Record Description
TABLE A24
BEIDOU CNAV-3 NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (C), sat number (PRN) 1X,A3
- Navigation Message Type – CNV3 A2

Note: CNV3 is the navigation message of


the Beidou-3 MEO and IGSO satellites on
B2b signal.
- Satellite system (C), sat number (PRN) A1,I2.2,
SV / EPOCH / SV CLK
Toc - Time of Clock (BDT):
- year (4 digits) 1X,I4
- month, day, hour, minute, second 5,1X,I2.2,

- SV clock bias; a_f0 (seconds) 3D19.12


- SV clock drift; a_f1 (sec/sec)
- SV clock drift rate; a_f2 (sec/sec2) *)
- A DOT (meters/sec) 4X,4D19.12
BROADCAST ORBIT - 1
- C_rs (meters)
- Delta n0 (radians/sec)
- M0 (radians)
- C_uc (radians)
BROADCAST ORBIT – 2 4X,4D19.12
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
- ToE Time of Ephemeris (sec of BDT
BROADCAST ORBIT – 3 4X,4D19.12
week)
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
- i0 (radians)
BROADCAST ORBIT – 4 4X,4D19.12
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
BROADCAST ORBIT - 5 - IDOT (radians/sec) 4X,4D19.12
- Delta n0 dot (radians/sec^2)
- SatType: 0=reserved, 1=GEO,
2=IGSO, 3=MEO
- t_op (seconds)
- SISAI_oe
BROADCAST ORBIT – 6 4X,4D19.12
- SISAI_ocb
- SISAI_oc1
- SISAI_oc2

IGS/RTCM RINEX WG 94
1 December 2021
RINEX 4.00

TABLE A24
BEIDOU CNAV-3 NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
- SISMAI 4X,4D19.12
BROADCAST ORBIT – 7
- Health: 2-bits health word from msg 30
(0=healthy, 1=unhealthy or in test,
others reserved)
- B2b Integrity flags: 3-bits word from
msg 10 ( bit 2(MSB)=DIF,
bit 1 = SIF,
bit 0(LSB) = AIF )
- TGD_B2bI (seconds)
BROADCAST ORBIT – 8 - t_tm : Transmission time of message 4X,D19.12
(sec of BDT week, see section 6.11)
2*)
*) see section 6.8.
2*) Adjust the Transmission time of message by 604800 to refer to the week in the “SV /
EPOCH / SV CLK” line, if necessary.

IGS/RTCM RINEX WG 95
1 December 2021
RINEX 4.00

Table A25 : BEIDOU Navigation Messages - Examples


+------------------------------------------------------------------------------+
| TABLE A25 |
| BeiDou NAVIGATION MESSAGES - EXAMPLE |
+------------------------------------------------------------------------------+
> EPH C05 D2
C05 2021 07 05 22 00 00-5.836377386004e-05 1.694644424788e-11 0.000000000000e+00
0.000000000000e+00-5.881250000000e+01 1.949724070976e-09-1.593114605012e+00
-1.817941665649e-06 7.691901409999e-04 1.800991594791e-05 6.493525815964e+03
1.656000000000e+05 2.072192728519e-07 2.624951167227e+00-1.122243702412e-07
1.151558582809e-01-5.497031250000e+02-4.954214719500e-01-8.100337411567e-10
6.564559154524e-10 8.090000000000e+02
2.000000000000e+00 0.000000000000e+00 0.000000000000e+00-9.500000000000e-09
1.656000000000e+05 0.000000000000e+00
> EPH C20 D1
C20 2021 07 05 02 00 00-8.545715827495e-04 1.170086250113e-11 0.000000000000e+00
1.000000000000e+00-2.265625000000e+00 4.092313318419e-09-1.556359938124e-01
-6.286427378654e-08 8.448450826108e-04 6.472226232290e-06 5.282618293762e+03
9.360000000000e+04 2.328306436539e-09-2.772255179876e+00-1.164153218269e-08
9.665781566257e-01 2.337656250000e+02-6.218441883865e-01-6.809926517917e-09
4.171602335410e-10 8.090000000000e+02
2.000000000000e+00 0.000000000000e+00 2.300000000000e-08 2.300000000000e-08
9.360000000000e+04 1.000000000000e+00
> EPH C20 CNV1
C20 2021 07 05 22 00 00-8.537324611098e-04 1.167599350538e-11 0.000000000000e+00
-3.525733947754e-03 1.960937500000e+00 3.931056601429e-09-2.980266083268e+00
7.729977369308e-08 8.434175979346e-04 7.596798241138e-06 5.282624978926e+03
1.656000000000e+05-4.190951585770e-08-2.772741033988e+00-2.514570951462e-08
9.666057809078e-01 2.101328125000e+02-6.122205141961e-01-6.644205329250e-09
4.784127849557e-10 2.655139894109e-14 3.000000000000e+00 1.656000000000e+05
0.000000000000e+00-4.000000000000e+00-1.000000000000e+00-1.000000000000e+00
-3.492459654808e-10 2.328306436539e-08-2.968590706587e-09
-1.000000000000e+00 0.000000000000e+00 0.000000000000e+00 1.800000000000e+01
1.656000000000e+05 1.800000000000e+01
> EPH C20 CNV2
C20 2021 07 05 23 00 00-8.536910172552e-04 1.159872198286e-11 0.000000000000e+00
-4.044532775879e-03 1.300781250000e+00 3.943199964392e-09-2.492861436039e+00
0.000000000000e+00 8.432919275947e-04 7.565133273602e-06 5.282623812254e+03
1.692000000000e+05-4.656612873077e-08-2.772764954893e+00-3.632158041000e-08
9.666074588748e-01 2.102968750000e+02-6.120578881764e-01-6.652598536003e-09
4.810914679621e-10 2.790294798407e-14 3.000000000000e+00 1.692000000000e+05
0.000000000000e+00-5.000000000000e+00-1.000000000000e+00-1.000000000000e+00
-2.502929419279e-09 2.328306436539e-08-2.968590706587e-09
1.500000000000e+01 0.000000000000e+00 0.000000000000e+00 1.900000000000e+01
1.692000000000e+05 1.900000000000e+01
> EPH C20 CNV3
C20 2021 07 05 00 00 00-8.546562166885e-04 1.154543127768e-11 0.000000000000e+00
-2.965450286865e-03-6.914062500000e-01 4.088206004475e-09-1.129589146916e+00
-6.891787052155e-08 8.444703416899e-04 6.626360118389e-06 5.282619899994e+03
8.640000000000e+04 3.725290298462e-08-2.772205880999e+00 0.000000000000e+00
9.665752168918e-01 2.300390625000e+02-6.230324874839e-01-6.829570193298e-09
3.953736117551e-10 2.727077181880e-14 3.000000000000e+00 8.640000000000e+04
0.000000000000e+00-5.000000000000e+00 0.000000000000e+00-1.000000000000e+00
1.500000000000e+01 0.000000000000e+00 0.000000000000e+00-1.746229827404e-09
8.640000000000e+04
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 96
1 December 2021
RINEX 4.00

8.3.14 SBAS Navigation Message Record


Table A26 : SBAS Navigation Message Record Description
TABLE A26
SBAS NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (S), sat number (PRN-100) 1X,A3
- Navigation Message Type - SBAS A4
- Satellite system (S), sat number (PRN-100) A1,I2.2,
SV / EPOCH / SV CLK
Toc - Time of Clock (GPS):
- year (4 digits) 1X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- SV clock bias; aGf0 (seconds) 3D19.12,


- SV relative frequency bias; aGf1 (sec/sec) *)
- Transmission time of message in GPS
seconds of the week, see section 6.11
- Satellite position X (km)
BROADCAST ORBIT - 1 4X,4D19.12
- velocity X dot (km/sec)
- X acceleration (km/sec2)
- Health: SBAS: See section 5.4.7 for: health,
health availability and User Range Accuracy.
- Satellite position Y (km)
BROADCAST ORBIT - 2 4X,4D19.12
- velocity Y dot (km/sec)
- Y acceleration (km/sec2)
- Accuracy code (URA, meters)
- Satellite position Z (km)
BROADCAST ORBIT - 3 4X,4D19.12
- velocity Z dot (km/sec)
- Z acceleration (km/sec2)
- IODN (Issue of Data Navigation, see
reference RTCA DO-229, 8 first bits after
Message Type of MT9)
*) see section 6.8.

IGS/RTCM RINEX WG 97
1 December 2021
RINEX 4.00

Table A27 : SBAS Navigation Message - Example


+------------------------------------------------------------------------------+
| TABLE A27 |
| SBAS NAVIGATION MESSAGE - EXAMPLE |
+------------------------------------------------------------------------------+
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
> EPH S28 SBAS
S28 2020 09 15 23 56 48 5.075708031654e-08-2.091837814078e-11 2.589840000000e+05
5.159782400000e+03 7.125000000000e-04-2.500000000000e-08 0.000000000000e+00
4.185231736000e+04-2.462500000000e-04-3.750000000000e-08 4.096000000000e+03
-8.261200000000e+00-1.328000000000e-03 6.250000000000e-08 1.200000000000e+01
> EPH S30 SBAS
S30 2020 09 15 00 00 00 1.937150955200e-07 0.000000000000e+00 1.728330000000e+05
-3.228075088000e+04 1.990000000000e-03-1.375000000000e-07 1.000000000000e+00
2.711642576000e+04-1.374375000000e-03-1.000000000000e-07 3.276700000000e+04
-1.045603600000e+03-3.671600000000e-02 2.750000000000e-06 5.900000000000e+01
> EPH S23 SBAS
S23 2020 09 15 00 01 52 0.000000000000e+00 0.000000000000e+00 1.729280000000e+05
3.594460000000e+04 0.000000000000e+00 0.000000000000e+00 1.000000000000e+00
2.204414000000e+04 0.000000000000e+00 0.000000000000e+00 3.276700000000e+04
0.000000000000e+00 0.000000000000e+00 0.000000000000e+00 5.800000000000e+01
> EPH S23 SBAS
S23 2020 09 15 00 04 16 0.000000000000e+00 0.000000000000e+00 1.730570000000e+05
3.594460000000e+04 0.000000000000e+00 0.000000000000e+00 1.000000000000e+00
2.204414000000e+04 0.000000000000e+00 0.000000000000e+00 3.276700000000e+04
0.000000000000e+00 0.000000000000e+00 0.000000000000e+00 5.900000000000e+01
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 98
1 December 2021
RINEX 4.00

8.3.15 NavIC/IRNSS LNAV Navigation Message


Table A28 : NavIC/IRNSS LNAV Navigation Message Record Description
TABLE A28
NavIC/IRNSS LNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EPH 1X,A3
- Satellite system (I), sat number (PRN) 1X,A3
- Navigation Message Type - LNAV A4
SV / EPOCH / SV CLK - Satellite system (I), sat number (PRN) A1,I2.2,
Toc - Time of Clock (NavIC/IRNSS):
- year (4 digits) 1X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- SV clock bias (seconds) 3D19.12


- SV clock drift (sec/sec)
- SV clock drift rate (sec/sec2) *)
BROADCAST ORBIT - 1 - IODEC Issue of Data, Ephemeris and 4X,4D19.12
Clock
- C_rs (meters)
- Delta n (radians/sec)
- M0 (radians)
BROADCAST ORBIT - 2 - C_uc (radians) 4X,4D19.12
- e Eccentricity
- C_us (radians)
- sqrt(A) (sqrt(m))
BROADCAST ORBIT - 3 - Toe Time of Ephemeris (sec of NavIC 4X,4D19.12
week)
- C_ic (radians)
- OMEGA0 (radians)
- C_is (radians)
BROADCAST ORBIT - 4 - i0 (radians) 4X,4D19.12
- C_rc (meters)
- omega (radians)
- OMEGA DOT (radians/sec)
BROADCAST ORBIT - 5 - IDOT (radians/sec) 4X,D19.12,
- Spare (see Section 6.4) A19,
- IRN Week # (to go with TOE) Continuous D19.12,
number, not mod (1024), counted from
1980 (same as GPS).
- Spare (see Section 6.4) A19

IGS/RTCM RINEX WG 99
1 December 2021
RINEX 4.00

TABLE A28
NavIC/IRNSS LNAV NAVIGATION MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
BROADCAST ORBIT - 6 - User Range Accuracy(m), See 4X,D19.12,
NavIC/IRNSS ICD Section 6.2.1.4 , use
specified equations to define nominal
values, N = 0-6: use 2(1+N/2) (round to one
decimal place i.e. 2.8, 5.7 and 11.3) , N=
7-15:use 2 (N-2), 8192 specifies use at own
risk
- Health (Sub frame 1, bits 155(most D19.12,
significant) and 156(least significant)),
where 0 = L5 and S healthy, 1 = L5
healthy and S unhealthy, 2= L5 unhealthy
and S healthy, 3= both L5 and S unhealthy
- TGD (seconds) D19.12,
- Spare (see Section 6.4) A19
BROADCAST ORBIT - 7 - Transmission time of message 2*) 4X,D19.12
(sec of NavIC/IRNSS week, see section
6.11)

*) see section 6.8.


2*) Adjust the Transmission time of message by + or -604800 to refer to the reported week in
BROADCAST ORBIT 5, if necessary. Set value to .9999E+09 if not known. Legacy
navigation records without transmit time are permitted for compatibility, but strongly
deprecated.

Table A29 : NavIC/IRNSS Navigation Message – Example


+------------------------------------------------------------------------------+
| TABLE A29 |
| NavIC/IRNSS NAVIGATION MESSAGE - EXAMPLE |
+------------------------------------------------------------------------------+

----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
> EPH I02 LNAV
I02 2020 09 15 02 05 36 6.225099787116e-04 1.773514668457e-11 0.000000000000e+00
1.690000000000e+02-5.793750000000e+02 4.834487090078e-09-4.281979621524e-01
-1.904368400574e-05 2.015684265643e-03-3.430992364883e-06 6.493289550781e+03
1.803360000000e+05 2.495944499969e-07-1.337499015334e+00 7.450580596924e-08
5.022043764738e-01 1.946250000000e+02-2.970970345572e+00-4.461614415577e-09
-9.578970431139e-10 2.123000000000e+03
2.000000000000e+00 0.000000000000e+00-1.862645149231e-09
1.804920000000e+05
> EPH I02 LNAV
I02 2020 09 15 02 20 48 6.225225515664e-04 1.500666257925e-11 0.000000000000e+00
1.700000000000e+02-5.798125000000e+02 4.847344768509e-09-3.616804200470e-01
-1.905485987663e-05 2.015971462242e-03-3.460794687271e-06 6.493290285110e+03
1.812480000000e+05 2.346932888031e-07-1.337503058840e+00 8.568167686462e-08
5.022034285029e-01 1.955625000000e+02-2.970975986584e+00-4.478757986819e-09
-9.593256740507e-10 2.123000000000e+03
2.000000000000e+00 0.000000000000e+00-1.862645149231e-09
1.814040000000e+05
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 100


1 December 2021
RINEX 4.00

8.4 STO, EOP and ION Navigation File Messages


8.4.1 System Time Offset (STO) Message
Table A30 : System Time Offset (STO) Message Record Description
TABLE A30
SYSTEM TIME OFFSET MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – STO 1X,A3
- Satellite system (G,R,E,C,J,I) 1X,A1
- Sat number (PRN) (or BNK) *) A2
- Navigation Message Type – LNAV, A4
FDMA,IFNV,D1D2,SBAS,CNVX 2*)
EPOCH / SYSTEM t_ot – Reference epoch for time offset
CORR TYPE / SBAS ID / information:
UTC ID - year (4 digits) 4X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- Time offset “2-char + 2-char” of system 1X,A18 (left


time codes; GP, GL, GA, BD, QZ, justified)
IR, SB, UT 3*)
- SBAS ID for SBUT system time offset 1X,A18 (left
indicator; WAAS, EGNOS, MSAS, justified)
GAGAN, SDCM, BDSBAS, KASS,
A-SBAS, SPAN (BNK if not SBUT)
(see section 5.4.9) 1X,A18 (left
- UTC ID for UT times offsets – justified)
UTC(USNO), UTC(SU), UTCGAL,
UTC(NTSC), UTC(NICT),
UTC(NPLI), UTCIRN, UTC(OP),
UTC(NIST). (see section 5.4.9, Table
23)
STO MESSAGE LINE - 1 - t_tm - Transmission time of message 4*) 4X,4D19.12
(sec of GNSS system week, see sect. 6.11)
- A0 (sec)
- A1 (sec/sec)
- A2 (sec/sec2) (zero if not available)
BNK- Blank if Not Known/Not Defined
*) To indicate the constellation providing the data (and optionally the specific satellite).
2*) Indicate the STO navigation message type in which the data was received (see section 5.4.1)
3*) Indicate the 4-character Time offset correction type by relating two 2-letter system time
codes such as GPUT ; GPS-UTC, GLGP ; GLO-GPS, etc (see section 5.4.9, see relevant system
ICD for details)
4*) The transmission time of message is defined to hold the number of seconds since start of
the reference epoch week, it may attain both positive and negative values and its magnitude
may exceed the number of seconds per week (604800).

IGS/RTCM RINEX WG 101


1 December 2021
RINEX 4.00

8.4.2 Earth Orientation Parameter (EOP) Message


Table A31 : Earth Orientation Parameter (EOP) Message Record Description
TABLE A31
EOP MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – EOP 1X,A3
- Satellite system (G,C,J,I) 1X,A1
- Sat number (PRN) (or BNK) *) A2
- Navigation Message Type – LNAV,CNVX A4
2*)
EPOCH / SYSTEM t_EOP – Reference epoch of EOP data:
CORR TYPE / SBAS ID / - year (4 digits) 4X,I4,
UTC ID - month, day, hour, minute, second 5(1X,I2.2),
- Xp (arc-sec) 3D19.12
- dXp/dt (arc-sec/day)
- dXp/dt2 (arc-sec/day2)
3*)
EOP MESSAGE LINE - 1 - Spare (see Section 6.4) 4X,A19,
- Yp (arc-sec) 3D19.12
- dYp/dt (arc-sec/day)
2
- dYp/dt (arc-sec/day2)
3*)
EOP MESSAGE LINE - 2 - t_tm : Transmission time of message 4*) 4X,4D19.12
(sec of GNSS system week, see section
6.11)
- ΔUT1 (sec)
Note: depending on the constellation and
the applicable ICD version, Delta UT1
may provide the UT1-UTC difference
(always smaller than 1s by magnitude) or
the UT1-GPST difference (always
negative and larger than 1s by magnitude).
- dΔUT1/dt (sec/day)
- dΔUT1/dt 2 (sec/day2)
3*)
*) To indicate the constellation providing the data (and optionally the specific satellite)
2*) Indicate the EOP navigation message type in which the data was received (see section 5.4.1)
3*) Unavailable EOP parameters should be set to zero
4*) The transmission time of message is defined to hold the number of seconds since start of
the reference epoch week, it may attain both positive and negative values and its magnitude
may exceed the number of seconds per week (604800).

IGS/RTCM RINEX WG 102


1 December 2021
RINEX 4.00

8.4.3 Ionosphere (ION) Klobuchar Model Message


Table A32 : Ionosphere (ION) Klobuchar Model Message Record Description
TABLE A32
ION KLOBUCHAR MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – ION 1X,A3
- Satellite system (G,C,J,I) 1X,A1
- Sat number (PRN) (or BNK) *) A2
- Navigation Message Type – LNAV, A4
D1D2, CNVX 2*)
ION MESSAGE LINE - 0 t_tm – Transmit time of ionosphere data:
- year (4 digits) 4X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- Alpha0 (sec) 3D19.12


- Alpha1 (sec/semi-circle)
- Alpha2 (sec/semi-circle2)
ION MESSAGE LINE - 1 - Alpha3 (sec/semi-circle3) 4X,4D19.12
- Beta0 (sec)
- Beta1 (sec/semi-circle)
- Beta2 (sec/semi-circle2)
ION MESSAGE LINE - 2 - Beta3 (sec/semi-circle3) 4X,2D19.12
- Region code: 0 or blank (wide area
parameters), 1 (QZSS only - Japan area
coefficients)
BNK- Blank if Not Known/Not Defined
*) To indicate the constellation providing the data (and optionally the specific satellite)
2*) Indicate the ION navigation message type in which the data was received (see section 5.4.1)

IGS/RTCM RINEX WG 103


1 December 2021
RINEX 4.00

8.4.4 Ionosphere (ION) NEQUICK-G Model Message


Table A33 : Ionosphere (ION) NEQUICK-G Model Message Record Description
TABLE A33
ION NEQUICK-G MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – ION 1X,A3
- Satellite system (E) 1X,A1
- Sat number (PRN) (or BNK) *) A2
- Navigation Message Type – IFNV 2*) A4
ION MESSAGE LINE - 0 t_tm – Transmit time of ionosphere data:
- year (4 digits) 4X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- ai0 (sfu) 3D19.12


- ai1 (sfu/deg)
- ai2 (sfu/deg2)
3*)
ION MESSAGE LINE - 1 - Disturbance flags: 5-bit field from FNAV 4X,D19.12
page 1 or INAV word 5 (
bit 4 (MSB) = flag for region 1,
bit 3 = flag for region 2,
bit 2 = flag for region 3,
bit 1 = flag for region 4,
bit 0 (LSB) = flag for region 5 )
BNK- Blank if Not Known/Not Defined
*) To indicate the constellation providing the data (and optionally the specific satellite)
2*) Indicate the ION navigation message type in which the data was received (see section 5.4.1)
3*) The ‘sfu’ (solar flux unit) is not an SI unit but can be converted as 1 sfu = 10-22W/(m2*Hz)
(Section 5.1.6, Galileo SiS ICD)

IGS/RTCM RINEX WG 104


1 December 2021
RINEX 4.00

8.4.5 Ionosphere (ION) BDGIM Model Message


Table A34 : Ionosphere (ION) BDGIM Model Message Record Description
TABLE A34
ION BDGIM MODEL MESSAGE RECORD DESCRIPTION
NAV. RECORD DESCRIPTION FORMAT
TYPE / SV / MSSG - New Record identifier: > A1
- Navigation Data Record Type – ION 1X,A3
- Satellite system (C) 1X,A1
- Sat number (PRN) (or BNK) *) A2
- Navigation Message Type – CNVX A4
ION MESSAGE LINE - 0 t_tm – Transmit time of ionosphere data:
- year (4 digits) 4X,I4,
- month, day, hour, minute, second 5(1X,I2.2),

- Alpha1 (TECu) 3D19.12


- Alpha2 (TECu)
- Alpha3 (TECu)
ION MESSAGE LINE - 1 - Alpha4 (TECu) 4X,4D19.12
- Alpha5 (TECu)
- Alpha6 (TECu)
- Alpha7 (TECu)
ION MESSAGE LINE - 2 - Alpha8 (TECu) 4X,2D19.12
- Alpha9 (TECu)
BNK- Blank if Not Known/Not Defined
*) To indicate the constellation providing the data (and optionally the specific satellite)

8.4.6 STO, EOP, ION - Examples


Table A35 : STO, EOP, ION Messages - Examples
+------------------------------------------------------------------------------+
| TABLE35 |
| STO, EOP, ION MESSAGES - EXAMPLES |
+------------------------------------------------------------------------------+
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
> STO E IFNV
2020 09 15 00 00 00 GAUT UTCGAL
1.735000000000e+05-1.862645149231e-09 0.000000000000e+00 0.000000000000e+00
> STO G24 CNVX
2020 09 18 19 56 48 GPUT UTC(USNO)
2.532240000000e+05 9.895302355289e-10-1.154631945610e-14 0.000000000000e+00
> STO E LEG
2020 09 16 00 00 00 GAGP
2.173000000000e+05 2.299202606082e-09 0.000000000000e+00 0.000000000000e+00
> STO I02 LNAV
2020 09 15 00 04 48 IRUT UTCIRN
1.731720000000e+05-8.614733815193e-09-1.776356839400e-15 0.000000000000e+00
> STO I02 LNAV
2020 09 15 00 04 48 IRUT UTC(NPLI)
1.732200000000e+05 2.619344741106e-10 3.996802888651e-15 0.000000000000e+00
> STO J02 LNAV
2020 09 18 02 52 48 QZUT UTC(NICT)
1.837140000000e+05-9.313225746155e-10 0.000000000000e+00 0.000000000000e+00
> STO C46 CNVX
2021 07 05 23 20 00 BDGL
1.714860000000e+05-3.768946044147e-08-3.730349362741e-13-2.168404344971e-19

IGS/RTCM RINEX WG 105


1 December 2021
RINEX 4.00

> STO C46 CNVX


2021 07 05 00 20 00 BDGP
8.865000000000e+04-3.181048668921e-08 2.176037128265e-14 2.134523027081e-19
> STO C46 CNVX
2021 07 05 04 11 28 BDUT UTC(NTSC)
1.030500000000e+05-3.696186468005e-09 0.000000000000e+00 0.000000000000e+00

----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
> EOP G24 CNVX
2020 09 18 19 56 48 2.070846557617e-01-2.679824829102e-04 0.000000000000e+00
3.392457962036e-01-1.400947570801e-03 0.000000000000e+00
2.532480000000e+05-1.759799122810e-01-7.975101470947e-05 0.000000000000e+00
> EOP C20 CNVX
2020 09 15 00 00 00 2.084112167358e-01-3.948211669922e-04 0.000000000000e+00
3.408145904541e-01-1.317977905273e-03 0.000000000000e+00
1.749900000000e+05-1.752023100853e-01 2.140104770660e-04 0.000000000000e+00
> EOP J01 CNVX
2020 09 15 01 00 00 2.082471847534e-01-6.551742553711e-04 0.000000000000e+00
3.444433212280e-01-9.121894836426e-04 0.000000000000e+00
1.729860000000e+05-1.754972934723e-01 5.635917186737e-04 0.000000000000e+00
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
> ION G14 CNVX
2021 07 05 23 30 42 7.450580596924e-09 2.235174179077e-08-5.960464477539e-08
-1.192092895508e-07 9.216000000000e+04 1.310720000000e+05-6.553600000000e+04
-5.242880000000e+05
> ION E13 IFNV
2021 07 05 00 11 04 5.450000000000e+01 3.593750000000e-01 1.358032226562e-02
0.000000000000e+00
> ION E12 IFNV
2021 07 05 23 41 40 5.450000000000e+01 3.593750000000e-01 1.358032226562e-02
0.000000000000e+00
> ION C03 D1D2
2021 07 05 00 09 00 7.450580596924e-09 4.470348358154e-08-4.172325134277e-07
5.960464477539e-07 1.187840000000e+05 1.802240000000e+05-6.553600000000e+05
5.242880000000e+05
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 106


1 December 2021
RINEX 4.00

8.5 Meteorological Data File


Table A36 : Meteorological Data File – Header Section Description
TABLE A36
METEOROLOGICAL DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL DESCRIPTION FORMAT
(Columns 61-80)
RINEX VERSION / TYPE - Format version: 4.00 F9.2,11X,
- File type: M for Meteorological Data A1,39X
PGM / RUN BY / DATE − Name of program creating current file A20,
− Name of agency creating current file A20,
− Date and time of file creation (section 5.2.2) A20
Format: yyyymmdd hhmmss zone
zone: 3-4 char. code for time zone.
'UTC ' recommended
'LCL ' if local time with unknown time code
*COMMENT - Comment line(s) A60
MARKER NAME - Station Name (preferably identical to MARKER A60
NAME in the associated Observation File)
*MARKER NUMBER - Station Number (preferably identical to A20
MARKER NUMBER in the associated
Observation File)
*DOI - Digital Object Identifier (DOI) for data A60
citation i.e. https://doi.org/<DOI-number>
*LICENSE OF USE − Line(s) with the data license of use. Name of A60
the license plus link to the specific version of
the license. Using standard data license as
from https://creativecommons.org/licenses/
− i.e. :
CC BY 04 ;
https://creativecommons.org/licenses/by/4.0/
*STATION INFORMATION - Line(s) with the link(s) to persistent URL with A60
the station metadata (site log, GeodesyML,
etc)
# / TYPES OF OBSERV - Number of different observation types stored I6,
in the file
- Observation types; 9(4X,A2)
The following meteorological observation
types are defined in RINEX:
PR : Pressure (mbar)
TD : Dry temperature (deg Celsius)
HR : Relative humidity (percent)
ZW : Wet zenith path delay (mm)
(for WVR data)
ZD : Dry component of zen.path delay (mm)
ZT : Total zenith path delay (mm)
WD : Wind azimuth (deg)

IGS/RTCM RINEX WG 107


1 December 2021
RINEX 4.00

TABLE A36
METEOROLOGICAL DATA FILE - HEADER SECTION DESCRIPTION
HEADER LABEL DESCRIPTION FORMAT
(Columns 61-80)
(from where the wind blows)
WS : Wind speed (m/s)
RI : "Rain increment" (1/10 mm)
(Rain accumulation since last measure)
HI : Hail indicator non-zero
(Hail detected since last measurement)
The sequence of the types in this record must
correspond to the sequence of the
measurements in the data records.
- If more than 9 observation types are being (6X,9(4X,A
used, use continuation lines with format 2))
SENSOR MOD/TYPE/ACC Description of the met sensor
- Model (manufacturer) A20,
- Type A20,6X,
- Accuracy (same units as obs values) F7.1,4X,
- Observation type A2,1X
Record is repeated for each observation type
found in # / TYPES OF OBSERV record
SENSOR POS XYZ/H - Approximate position of the met sensor - 3F14.4,
Geocentric coordinates X, Y, Z (ITRF or
WGS84)
- Ellipsoidal height H 1F14.4,
- Observation type 1X,A2,1X
Set X, Y, Z to zero or blank if unknown.
Make sure H refers to ITRF or WGS-84.
Record required for barometer, recommended for
other sensors.
END OF HEADER Last record in the header section. 60X
Records marked with * are optional

Table A37 : Meteorological Data File – Data Record Description


TABLE A37
METEOROLOGICAL DATA FILE - DATA RECORD DESCRIPTION
OBS. RECORD DESCRIPTION FORMAT
EPOCH / MET Epoch in GPS time:
- year (4 digits, padded with 0 if necessary) 1X,I4.4,
- month, day, hour, min, sec 5(1X,I2),

- Met data in the same sequence as given in the mF7.1


header
- More than 8 met data types: Use continuation 4X,10F7.1
lines

IGS/RTCM RINEX WG 108


1 December 2021
RINEX 4.00

Table A38 : Meteorological Data File – Example


+------------------------------------------------------------------------------+
| TABLE A38 |
| METEOROLOGICAL DATA FILE - EXAMPLE |
+------------------------------------------------------------------------------+
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|
4.00 METEOROLOGICAL DATA RINEX VERSION / TYPE
GR50 V4.11 BADAN INFORMASI GEOS20210106 235942 UTC PGM / RUN BY / DATE
bako MARKER NAME
23101M002 MARKER NUMBER
3 PR TD HR # / TYPES OF OBSERV
Press. PTU300 M2710010 PR SENSOR MOD/TYPE/ACC
Temp. PTU300 M2710010 TD SENSOR MOD/TYPE/ACC
Rel.Hum PTU300 M2710010 HR SENSOR MOD/TYPE/ACC
-1836969.2810 6065617.0086 -716257.8580 158.1170 PR SENSOR POS XYZ/H
-1836969.2810 6065617.0086 -716257.8580 158.1170 TD SENSOR POS XYZ/H
-1836969.2810 6065617.0086 -716257.8580 158.1170 HR SENSOR POS XYZ/H
END OF HEADER
2021 1 7 0 0 0 993.3 23.0 90.0
2021 1 7 0 0 30 993.3 23.0 90.0
2021 1 7 0 1 0 993.3 23.1 90.0
2021 1 7 0 1 30 993.3 23.1 90.0
2021 1 7 0 2 0 993.3 23.1 90.0
----|---1|0---|---2|0---|---3|0---|---4|0---|---5|0---|---6|0---|---7|0---|---8|

IGS/RTCM RINEX WG 109


1 December 2021
RINEX 4.00

8.6 Reference Phase Alignment by Constellation and Frequency


Band
Phase alignment in RINEX was introduced from RINEX 3.01 as a way to align phases within
a signal in a specific constellation with no ambition to align across constellations.
This alignment of phases allows interoperability between different signals in the same
frequency while signals are being deployed over a constellation, and when receivers do not
track the same set of signals for all satellites of a constellation.

Table A39 : Reference Phase Alignment by Frequency Band


TABLE A39
Reference Phase Alignment by Frequency Band
System Frequency Frequency Signal RINEX Phase Alignment
Band [MHz] Observation
Code
GPS L1 1575.42 C/A L1C None (Reference Signal)
L1C-D L1S Must be aligned to L1C
L1C-P L1L Must be aligned to L1C
L1C-(D+P) L1X Must be aligned to L1C
P L1P Must be aligned to L1C
Z-tracking L1W Must be aligned to L1C
Codeless L1N Must be aligned to L1C
L2 1227.60 For Block II/IIA/IIR; None,
(See Note 1) For Block IIR-M/IIF/III;
C/A L2C
Must be aligned to L2P
(See Note 2)
Semi-
L2D None
codeless
L2C(M) L2S Must be aligned to L2P
L2C(L) L2L Must be aligned to L2P
L2C(M+L) L2X Must be aligned to L2P
P L2P None (Reference Signal)
Z-tracking L2W None
Codeless L2N None
L5 1176.45 I L5I None (Reference Signal)
Q L5Q Must be aligned to L5I
I+Q L5X Must be aligned to L5I
GLONASS G1 1602 + C/A L1C None (Reference Signal)
k*9/16 P L1P Must be aligned to L1C
G1a 1600.995 L1OCd L4A None (Reference Signal)
L1OCp L4B None
L1OCd+
L4X None
L1OCd
G2 1246 + C/A L2C None (Reference Signal)
k*7/16 P L2P Must be aligned to L2C
G2a 1248.06 L2CSI L6A None (Reference Signal)
L2OCp L6B None

IGS/RTCM RINEX WG 110


1 December 2021
RINEX 4.00

TABLE A39
Reference Phase Alignment by Frequency Band
System Frequency Frequency Signal RINEX Phase Alignment
Band [MHz] Observation
Code
L2CSI+ None
L6X
L2OCp
GLONASS
G3 1202.025 I L3I None (Reference Signal)
Q L3Q Must be aligned to L3I
I+Q L3X Must be aligned to L3I
Galileo E1 1575.42 B I/NAV
L1B None (Reference Signal)
OS/CS/SoL
C no data L1C Must be aligned to L1B
B+C L1X Must be aligned to L1B
E5A 1176.45 I L5I None (Reference Signal)
Q L5Q Must be aligned to L5I
I+Q L5X Must be aligned to L5I
E5B 1207.140 I L7I None (Reference Signal)
Q L7Q Must be aligned to L7I
I+Q L7X Must be aligned to L7I
E5(A+B) 1191.795 I L8I None (Reference Signal)
Q L8Q Must be aligned to L8I
I+Q L8X Must be aligned to L8I
E6 1278.75 B L6B None (Reference Signal)
C L6C Must be aligned to L6B
B+C L6X Must be aligned to L6B
QZSS L1 1575.42 C/A L1C None (Reference Signal)
(See Note 6) C/B L1E None (Reference Signal)
Must be aligned to
L1C (D) L1S L1C/L1E

Must be aligned to
L1C (P) L1L
L1C/L1E
Must be aligned to
L1C-(D+P) L1X
L1C/L1E
L1S L1Z N/A
L1Sb L1B N/A
L2 1227.60 L2C (M) L2S None (Reference Signal)
L2C (L) L2L None
L2C (M+L) L2X None
L5 1176.45 I L5I None (Reference Signal)
Q L5Q Must be aligned to L5I
I+Q L5X Must be aligned to L5I
L5S 1176.45 I L5D None (Reference Signal)
Q L5P Must be aligned to L5D
I+Q L5Z Must be aligned to L5D
L6 1278.75 L6D L6S None (Reference Signal)

IGS/RTCM RINEX WG 111


1 December 2021
RINEX 4.00

TABLE A39
Reference Phase Alignment by Frequency Band
System Frequency Frequency Signal RINEX Phase Alignment
Band [MHz] Observation
Code
(See Note 5) L6P L6L None
L6(D+P) L6X None
L6E L6E None
L6(D+E) L6Z None
BDS I L2I None (Reference Signal)
(See Note 4)
B1 1561.098
Q L2Q Must be aligned to L2I
I+Q L2X Must be aligned to L2I
Data (D) L1D None (Reference Signal)
B1C 1575.42 Pilot(P) L1P Must be aligned to L1D
D+P L1X Must be aligned to L1D
Data (D) L1S None (Reference Signal)
B1A 1575.42 Pilot(P) L1L Must be aligned to L1S
D+P L1Z Must be aligned to L1S
Data (D) L5D None (Reference Signal)
B2a 1176.45 Pilot(P) L5P Must be aligned to L5D
D+P L5X Must be aligned to L5D
I L7I None (Reference Signal)
B2
1207.140 Q L7Q Must be aligned to L7I
(BDS-2)
I+Q L7X Must be aligned to L7I
Data (D) L7D None (Reference Signal)
B2b
1207.140 Pilot(P) L7P Must be aligned to L7D
(BDS-3)
D+P L7Z Must be aligned to L7D
Data (D) L8D None (Reference Signal)
B2a+B2b
1191.795 Pilot(P) L8P Must be aligned to L8D
(BDS-3)
D+P L8X Must be aligned to L8D
I L6I None (Reference Signal)
B3 1268.52 Q L6Q Must be aligned to L6I
I+Q L6X Must be aligned to L6I
Data (D) L6D None (Reference Signal)
B3A
1268.52 Pilot (P) L6P Must be aligned to L6D
(BDS-3)
D+P L6Z Must be aligned to L6D

IGS/RTCM RINEX WG 112


1 December 2021
RINEX 4.00

TABLE A39
Reference Phase Alignment by Frequency Band
System Frequency Frequency Signal RINEX Phase Alignment
Band [MHz] Observation
Code
NavIC/ A SPS L5A None (Reference Signal)
IRNSS B RS(D) Restricted
L5B
L5 1176.45 (See Note 3)
C RS(P) L5C None
B+C L5X Must be aligned to L5A
A SPS L9A None (Reference Signal)
B RS(D) Restricted
L9B
S 2492.028 (See Note 3)
C RS(P) L9C None
B+C L9X Must be aligned to L9A

Notes:
1. The GPS L2 phase shift values ignore FlexPower when the phases of the L2W and L2C
can be changed on the satellite. The phases L2C shall be aligned to L2P when
FlexPower is off, the phase shift shall remain applied even if FlexPower is enabled.
2. The phase of the L2 C/A signal is dependent on the GPS satellite generation.
3. There is no public information available concerning the restricted service signals.
4. Note: Both C1x and C2x (RINEX 3.01 definition) have been used to identify the B1
frequency signals in RINEX 3.02 files. If C2x coding is read in a RINEX 3.02 file treat
it as equivalent to C1x.
5. L6D, L6P, L6E are identical to L61/L62(code1), L61(code2), L62(code2) in IS-QZSS-
L6 respectively
6. Either L1C or L1E is broadcast from each QZSS Block IIA or later.

IGS/RTCM RINEX WG 113


1 December 2021
RINEX 4.00

9 RINEX 3.05 TO 4.00 FULL REVISION HISTORY

01 Dec 2020 RINEX 3.05 Released


5 Mar 2021 - Expanded Section 2 to include the version 4 introduction
- Section 5.2.16 corrected ‘Lamba’ typo in bullet point list to ‘Lambda’
- Table A13 corrected ‘GALyear’ and moved ‘year’ to the next line
- Section 6.8 added the recommendation to use E, e as the exponent
indicators in the navigation messages, D and d are still allowed but
deprecated.
- In Table A1 changed the station name definition ‘XXXX’ to the more
generic; ‘4-character site designation’
- In Table A2 added language to specify that MARKER NAME is proposed to
be the station ID; XXXXMRCCC for permanent stations.
- In Table A2 added language to specify that MARKER NUMBER is proposed
to be the DOMES number for permanent stations, if available.
- Updated the version number to 4.00 throughout the document
- Table A7 removed the optionality of the LEAP SECONDS line in the
header of the Navigation files, the line now becomes compulsory.

10 Mar 2021 - Table A7 changes;


- Restricted Navigation files to ‘M: Mixed’ mode only, no more
individual GNSS constellation navigation files, all navigation files shall
aim to provide all navigation messages for the satellites in view and
tracked.(reversed)
- Removed the IONOSPHERIC CORR line from the Navigation file
header as they are replaced by a dedicated navigation file data record.
- Removed the TIME SYSTEM CORR line from the Navigation file
header as they are replaced by a dedicated navigation file data record.
12 Mar 2021 - GPS LNAV Navigation Message Table A6 renamed Table A9 and added
navigation message record new first line.
- Added GPS CNAV Navigation Message Table A10 to define the extended
GPS CNAV navigation record.
- Added GPS CNV2 Navigation Message Table A11 to define the extended
GPS CNAV-2 navigation record.
- Added relevant examples to Table A12 for the GPS Navigation messages

15 Mar 2021 - Renamed and added navigation message record new first line.
- Added new GAL navigation message examples to Table A14.
- Renamed GLONASS FDMA Navigation Message Table A10 to Table A15
and added navigation message record new first line.
- Added new GLO navigation message examples to Table A16.
18 Mar 2021 - Renamed Beidou D1/D2 Navigation Message Table A14 to (Table A21)
and added navigation message record new first line.
- Added Beidou CNV1 Navigation Message (Table A22) to define the BDS-
3 B1C signal navigation message.

IGS/RTCM RINEX WG 114


1 December 2021
RINEX 4.00

- Added Beidou CNV2 Navigation Message (Table A23) to define the BDS-
3 B2a signal navigation message.
- Added Beidou CNV3 Navigation Message (Table A24) to define the BDS-
3 B2b signal navigation message.
- to define the BDS-3 B2b signal navigation message.
- Renamed QZSS LNAV Navigation Message from the previous Table A12
to Table A17 and added navigation message record new first line.
- Added QZSS CNAV Navigation Message Table A18 to define the QZSS
CNAV signal navigation message.
- Added QZSS CNV2 Navigation Message Table A19 to define the QZSS
CNAV-2 signal navigation message.
- Added new QZSS navigation message examples to Table A20.

19 Mar 2021 - Added navigation message record new first line to SBAS Navigation
Message Table A26.
- Added new SBAS navigation message examples for Table A27.
- Added navigation message record new first line to NavIC/IRNSS LNAV
Navigation Message (Table A28).
- Added new NavIC/IRNSS navigation message examples for Table A29.
- Added new Table A30 for the navigation message System Time Offset
records.
22 Mar 2021 - Added section 5.4.1 to describe the new Navigation Data Record Header
Line.
- Updated the descriptions of the navigation messages for each of the
constellations in sections; 5.4.2, 5.4.4, 5.4.3, 5.4.7, 5.4.6, 5.4.5, 5.4.8
- Added section 5.4.9 to describe the new STO Time offset correction
messages in the navigation message file.
- Added section 5.4.10 to describe the new EOP Earth orientation
parameter messages in the navigation message file.
- Added section 5.4.11 to describe the new ION Earth orientation
parameter messages in the navigation message file.
23 Mar 2021 - Added Table A30, Table A31, Table A32, Table A33, and Table A34 to
the Appendix to define the new STO, EOP, and ION message record
descriptions.
- Added Table A35 with STO, EOP, and ION message examples.
- Added Table A12 as an example of the new Navigation message file
header.
15 Apr 2021 - Moved Table titles to above each Table throughout the entire document
- Changed the Appendices in Section 8 to regular subsections and
consolidated the subsections
- Changed the Appendix tables to regular Table numbering and referencing
in the Table of Tables.
27 Apr 2021 - Added REC # / TYPE / VERS line to the Navigation message file
header in Table A7. The receiver information is an optional line in the
format definition, it is expected to be included in station navigation files

IGS/RTCM RINEX WG 115


1 December 2021
RINEX 4.00

and excluded in merged navigation files.

30 Apr 2021 - Added new section 6.11 on merged navigation files. Such files are very
popular and some comments are included so that generators of these files
and users know what to expect
- In section 8.1 removed the examples of filenames for individual GNSS
constellations, all navigation files henceforth will be Mixed navigation
files as indicated in Table A7.(reversed)
- Revised Table A2 and Table A7 field definitions of the LEAP SECOND
line header line to only align to leap seconds since start of GPS time (6
Jan 1980).
21 May 2021 - Revised and clarified language throughout the document
- Added Doppler and SNR measurements as relevant RINEX observables
in section 2.
- Updated Table 2 for clarity.
- Updated Galileo Open Service signal-in-space reference in section 7.
24 May 2021 - Updated section 6.11 and Table A7 to clarify Navigation Merged file
- Removed incorrect “END OF FILE” COMMENT line from Observation
file Examples (Table A5, Table A6).
- Adjusted Navigation Message transmission time clarification in the
section 8 navigation message definition tables to allow default value for
‘not known’ only for legacy navigation messages as a strongly deprecated
compatibility option. All newly defined navigation data records need to
report the transmission time and DO NOT have the option of using the
‘not known’ default value.
- Clarified the SatType, Health bits and Integrity flags for the BDS CNAV
messages (Table A22, Table A23, Table A24).
- Moved clarification notes about the angles and semicircles being
converted to radians from each navigation message definition table into
section 6.9.
- Clarified in Table A31 that the EOP message value ΔUT1 can be different
depending on the constellation that reports it.
- Clarified the ION message Region code for the Klobuchar message (Table
A32).
- Clarified the ION message Disturbance flags for the NEQUICK-G
message (Table A33).
26 May 2021 - Added units to the Alpha and Beta ION message parameters for the
Klobuchar message in Table A32.
- Added units to the ‘a’ parameters for the NEQUICK-G ION messages in
Table A33.
- Added units to the Alpha parameters for the BDGIM ION messages in
Table A34.
- Removed the text in section 2 about all spin-off formats (IONEX,
ANTEX, etc) which are not related to the RINEX data format.
- Removed text in section 4.2 about how raw pseudoranges should be
handled since in RINEX it is enough to state that all pseudoranges must
refer to one receiver clock, how this is accomplished is up to the receiver
or the conversion software.

IGS/RTCM RINEX WG 116


1 December 2021
RINEX 4.00

- Added Doppler correction to Table 5: Observation Corrections for


Receiver Clock Offset.
- Updated Figure 1 with the official NavIC name.
- Updated NavIC ICD reference in section 7.
- Standardized the use throughout the document of BNK to indicate “Blank
if Not Known/Not Defined”.
8 Jun 2021 - Corrected unknown Navigation message transmission time of message to
use value 0.9999E+09 if not known (below Table A9, Table A13, Table
A17, Table A21, and Table A28). Legacy navigation records without
transmit time are permitted for compatibility, but strongly deprecated.
10 Jun 2021 - Added a clarification paragraph to the start of section 8.6 to better explain
that phase alignments are limited to the signals per frequency per
constellation and that there is no ambition to try to align across
constellations.
- Updated Table A39 to remove specific correction values and instead
indicate the reference signal to be aligned to per frequency band. For
RINEX creators how they align depends on the internal tracking
characteristics of each receiver design.
- In Table A2 made the header line “SYS / PHASE SHIFT” optional
since the details of what was done to align the signals, as required in
Table A39 , are not really necessary to a RINEX file user. These header
lines are now strongly deprecated.
15 Jun 2021 - Simplified the text in section 5.2.12 since it is sufficient to indicate in the
format document that all phases for a given frequency band in a
constellation be aligned to the designated reference signal as specified in
Table A39.
2 Jul 2021 - Updated RINEX Data File Examples throughout the document.
- Updated out of date ICD references.

9 Jul 2021 - Changed Navigation Message Format definitions for ‘Spare’ fields to
‘A19’ Format. Spare fields in the middle of navigation message lines
should be set to blanks and skipped over when reading, as stated in
section 6.4.
- Added definition of QZSS L1 C/B new signal to Table 14 with
observation codes C1E, L1E, D1E, S1E and in Table A39 as the new
reference signal when L1 C/A is not available.
- Added QZSS PRN code assignments to include L1 C/B PRNs in Table 6.
14 Jul 2021 - Update of the GPS ICD references (Section 7) to the new issues of the
documents; 200M, 705H and 800H of May 2021, plus the internal
references throughout the document.
- Update of the QZSS ICD references for QZSS-L6-003 and QZSS-PNT-
004 to the latest versions.
21 Jul 2021 - Added units to the STO polynomial parameters in Table A30.
25 Jul 2021 - Added clarification in section 4.1 to indicate consistently for each GNSS
System Time to what UTC(k) each GNSS is steered.
- Removed the mandatory condition to the GLONASS Code-Phase
alignment header record GLONASS COD/PHS/BIS in section 5.2.16
and Table A2. It is essential that all code and phase measures be aligned

IGS/RTCM RINEX WG 117


1 December 2021
RINEX 4.00

as always in RINEX, but having to indicate the GLONASS alignment


values in the file header is no longer required, it is optional, and only if
known and non-zero
- Removed the old Table 9 and Table 10 from section 5.2.16 as examples
of the optional GLONASS code-phase alignment header line already
exist in Table A4, Table A5, and Table A6.
27 Jul 2021 - Renamed section 8.6 and Table A39 to “Reference Phase Alignment”
6 Sept 2021 - Clarified in Table A2 that the MARKER NAME and MARKER NUMBER are
free fields and that the official station name and DOMES number are
expected in geodetic network stations part of large user communities like
IGS, EUREF, APREF, SIRGAS, etc.
- Removed specific vendor information from the RINEX Example snippets
in Section 8 so as to stay neutral.
- Added subsection headings in Section 8.3 and 8.4 for easier navigation to
the new navigation file messages.
- Removed reference to the length of the SI second from section 4.1, this is
not relevant for RINEX and can lead to confusion.
- For consistency changed “time system” mentions for “system time”.
15 Sep 2021 - Added three free text optional header lines to Table A2, Table A7, and
Table A36 to support the FAIR data principles addressing the Finding,
Accessing, Interoperability and Reusability of public data;
- DOI – Digital Object Identifier
- LICENSE OF USE – Data license
- STATION INFORMATION – Link to station metadata
- Added the explicit instruction that more than one PGM / RUN BY /
DATE line can appear in the Observation file header definition from the
second header line onwards (Table A2) , if needed, to be able to better
save the history of the actions on the file.
- Added clarifications to section 5.1 to clearly indicate that the proposed
filenames are a recommendation, and not part of the RINEX format.
27 Sep 2021 - Corrected BDS CNAV-3 message in Table A24
- Clarified QZSS constellation and signal to include mention of L1 C/B in
Table 20, and Table 21
- Updated the examples for GPS and QZSS navigation messages in Table
A12, and Table A20.
8 Oct 2021 - Corrected the document to allow back constellation specific navigation
files.
11 Oct 2021 - Corrected broken internal references and several typos.
- Copied leap second header line definition from the Navigation Header
Table (Table A7) to the Observation File Header Table (Table A2) for
consistency.
- Added QZSS “do not use bit pattern” clarification for TGD and ISC
values to the CNAV/CNAV-2 navigation messages (Table A18, Table
A19).
18 Oct 2021 - Clarified language for character fields, variable-length records, GNSS
system time alignments to UTC, etc.
22 Oct 2021 - Clarified and added examples to DOI and LICENSE header lines,
- Added newest version of QZSS L6 ICD to section 7

IGS/RTCM RINEX WG 118


1 December 2021
RINEX 4.00

25 Oct 2021 - Added units to A DOT (m/s), t_op (seconds), ISC_ (seconds), TGD_
(seconds) navigation parameters in all relevant tables.
- For consistency with the other navigation message parameter names
added the middle underscore to the parameter names Crs, Crc, Cuc, Cus,
Cic, Cis in the legacy navigation messages in Table A13, Table A17,
Table A21, and Table A28.
- Corrected the QZS L1Sb alignment in Table A39 to “N/A” as this signal
is transmitted from an independent payload on the QZSS satellite
(different antenna), and hence cannot be aligned.
- Deleted ‘Note 5’ of Table A39 as it is no longer an applicable comment
since the simplification of the table.
28 Oct 2021 - Added further clarification to the MARKER NAME and MARKER NUMBER
header lines in Table A2 to insist on the best practice expected for large
user communities like IGS, EUREF, APREF, SIRGAS, but to clearly
indicate these are free text fields for the station operators to identify their
RINEX data as they wish.
- Added new section 6.11 to explain the expectations of the navigation
messages transmission time.
- Clarified the navigation message transmission time (t_tm) to make it
uniform across all the different constellation message tables in section
8.3, added link from the navigation message definition tables to section
6.11.
01 Nov 2021 - Corrected the gsi.go.jp links to “https”
- Clarified the QZSS navigation message header satellite identification
“Sat system (J), sat number (see Table 6)” in Table A17, Table A18,
Table A19.
- Clarified in Table A26 in the two header lines that the SBAS satellite
number is “PRN-100”.
04 Nov 2021 - Corrected the Transmission time to the ION messages (in section 8.4) to
make them all consistent since the ionosphere data has no proper “clock
time” and thus the time stamp for the ION messages is the transmit time.
- Added clarification text that in the GPS/QZS new CNAV/CNAV2
messages the wn_op parameter is the GPS continuous week number with
the ambiguity resolved (Table A10, Table A11, Table A18, Table A19).
01 Dec 2021 RINEX 4.00 Released

IGS/RTCM RINEX WG 119


1 December 2021

You might also like