AN3172 Application Note: 19 V - 90 W Adapter With PFC For Laptop Computers Using The L6563H and L6599A
AN3172 Application Note: 19 V - 90 W Adapter With PFC For Laptop Computers Using The L6563H and L6599A
Application note
19 V - 90 W adapter with PFC for laptop computers using the
L6563H and L6599A
Introduction
This application note describes the performance of a 90 W, wide-range mains, power-factor-
corrected, AC-DC adapter demonstration board. Its electrical specification is tailored on a
typical hi-end portable computer power adapter.
The architecture is based on a two-stage approach; a front-end PFC pre-regulator based on
the L6563H TM PFC controller and a downstream LLC resonant half-bridge converter using
the new L6599A resonant controller. Thanks to the chipset used, the main aspects of this
design are very high efficiency, compliance with ENERGY STAR® Eligibility Criteria (EPA
rev. 2.0 EPS), and very low input consumption at no-load (<0.3 W).
Contents
2 Efficiency measurement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1 Light-load operation efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4 Functional check . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.1 Standby and no-load operation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
4.2 Overcurrent and short-circuit protection . . . . . . . . . . . . . . . . . . . . . . . . . . 16
5 Thermal map . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
7 BOM list . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9 Transformer specifications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.1 Mechanical aspect and pin numbering . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
10 Revision history . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
List of figures
List of tables
10/31
)86(7$ Q) 17&56
*%8-
&
Q)
a
5
& 5 5 .
Q) . .
8 5
/+ . 4
' 5 67)101 5 5
10 10 . .
& 5 ,19 9&& & &
Q) . X) Q)
&203 *'
+6
5 +($76,1.
08/7 *1' 5
5 5
Main characteristics and circuit description
DocID17230 Rev 2
//
& &
X) Q)
4
67)101
5
0HJ 5 5 +6
5 5 . ' +($76,1.
Figure 2. Electrical diagram
. 6736+&)3
& 5
5 Q) 0HJ
10 '
8 //
/$' & '
5 ' Q) %=9&
. // 4
67)101
4 &66 9%227
10 5 5 5
5 '(/$< +9* 5 5 . .
. 5 & .
' 0 1
10 & &) 287 5
& S) . 4
& X) %&&
10 5)0,1 1& 5 4
5 10 %&&
5 5 5
10 5 5 67%< 9&& .
. . -3;
& -XPSHU -3; 8 5 4
5 Q) ,6(1 /9* ' -XPSHU 6)+$ . %&&
5 // 5
' 5
%=9%
%=9%
5 5 & & &
10 . Q) Q) 5 Q) 5
5 .
'
-3; 6736/$
-XPSHU 5(9
& 5 5
Q) . .
5
5 8
& 7/$,=
X)
$0Y
AN3172
AN3172 Efficiency measurement
2 Efficiency measurement
Vout Iout Pout Pin Eff. Vout Iout Pout Pin Eff.
[V] [A] [W] [W] [%] [V] [A] [W] [W] [%]
No load 18.98 0.00 0.00 0.246 ------ 18.97 0.00 0.00 0.235 ------
100 % load eff. 18.93 4.700 88.97 96.15 92.53 % 18.93 4.700 88.97 98.04 90.75 %
75 % load eff. 18.94 3.526 66.78 72.29 92.38 % 18.94 3.526 66.78 73.40 90.98 %
50 % load eff. 18.95 2.352 44.57 48.72 91.48 % 18.95 2.352 44.57 49.14 90.70 %
25 % load eff. 18.96 1.177 22.32 25.33 88.10 % 18.96 1.177 22.32 25.53 87.41 %
Average eff. 91.12 % 89.96 %
(IILFLHQF\
0HDV(II9
0HDVHII9
$YHIIUHTXLUHG
3RXW>:@
".W
Vout Iout Pout Pin Eff. Vout Iout Pout Pin Eff.
[V] [mA] [W] [W] [%] [V] [mA] [W] [W] [%]
0.25 W 18.89 13.06 0.247 0.643 38.37 % 18.89 13.06 0.247 0.62 39.60 %
0.5 W 18.89 26.83 0.507 0.911 55.63 % 18.89 26.83 0.507 0.869 58.32 %
1.0 W 18.89 51.92 0.981 1.415 69.31 % 18.89 51.93 0.981 1.404 69.87 %
1.5 W 18.89 78.90 1.490 2.014 74.00 % 18.89 78.90 1.490 2.010 74.15 %
2.0 W 18.89 105.9 2.000 2.608 76.67 % 18.89 105.9 2.000 2.610 76.61 %
2.5 W 18.89 130.2 2.459 3.145 78.17 % 18.89 130.2 2.459 3.152 78.01 %
3.0W 18.89 157.2 2.970 3.748 79.23 % 18.89 157.2 2.970 3.762 78.93 %
3.5 W 18.89 184.2 3.480 4.337 80.23 % 18.88 184.2 3.478 4.358 79.80 %
4.0 W 18.88 211.2 3.987 4.919 81.04 % 18.88 211.2 3.987 4.936 80.76 %
4.5 W 18.88 235.4 4.445 5.415 82.08 % 18.88 235.4 4.445 5.453 81.51 %
5.0 W 18.88 262.4 4.954 5.983 82.81 % 18.88 262.4 4.954 6.031 82.14 %
9+]
9+]
2XWSXW3RZHU>:@
$0Y
The board has been tested according to the European standard EN61000-3-2 Class-D and
Japanese standard JEITA-MITI Class-D, at both the nominal input voltage mains. As shown
in Figure 5 and 6, the circuit is able to reduce the harmonics well below the limits of both
regulations.
Figure 5. Compliance to EN61000-3-2 at 230 Vac Figure 6. Compliance to JEITA-MITI at 100 Vac -
- 50 Hz, full load 50 Hz, full load
0HDVXUHGYDOXH (1&ODVV'OLPLWV
0HDVXUHGYDOXH -(,7$0,7,&ODVV'OLPLWV
+DUPRQLF&XUUHQW>$@
+DUPRQLF&XUUHQW>$@
+DUPRQLF2UGHU>Q@
+DUPRQLF2UGHU>Q@
$0Y $0Y
On the bottom side of the diagrams the total harmonic distortion and power factor have also
been measured. The values in all conditions give a clear idea about the correct functioning
of the PFC.
4 Functional check
The following are some waveforms relevant to the resonant stage during steady-state
operation. The selected switching frequency is about 100 kHz, in order to have a good trade
off between transformer losses and dimensions. The converter operates above the
resonance frequency. Figure 8 shows the resonant ZVS operation. It is worth noting that
both MOSFETs are turned on when resonant current is flowing through their body diodes
and drain-source voltage is zero.
Figure 7. Resonant stage waveforms at 115 V - Figure 8. Resonant stage waveforms at 230 V -
60 Hz - full load 50 Hz - full load
CH1: HB voltage CH2: CF pin voltage CH1: HB voltage CH2: HV FET gate
CH3: Vcc CH4: Res. tank current CH3: LV FET gate CH4: Res. tank current
In Figure 9 typical waveforms relevant to the secondary side are represented; it is worth
noting that the rectifiers reverse the working voltage and the current flowing through them.
The waveforms during the start at 90 Vac and full load are shown in Figure 10. It is possible
to note the sequence of the two stages; at power-on the L6563H and L6599A Vcc voltages
increase up to the turn-on thresholds of the two ICs. The PFC starts and its output voltage
increases from the mains rectified voltage to its nominal value. In the meantime the L6599A
is kept inactive by the LINE pin (#7) until the PFC voltage reaches the set threshold. Then
the resonant starts operating and the output voltage reaches the nominal level.
CH1: D23 anode voltage CH2: D24 anode voltage CH1: HB voltage CH2: Vout PFC
CH3: D23 current CH4: D24 current CH3: Vcc CH4: Output voltage
CH1: Q4 gate CH2: PFC gate voltage CH1: Q4 gate CH2: PFC gate voltage
CH3: STBY pin CH4: Output voltage CH3: STBY pin CH4: Output voltage
In Figure 13 and 14 the transitions from full load to no-load and vice versa, at maximum
input voltage, have been checked. The maximum input voltage has been chosen because it
is the most critical input voltage for transition; in fact at no-load the burst pulses have the
lower repetition frequency and the Vcc may drop, causing restart cycles of the controller. As
seen in Figure 13 and 14, both transitions are clean and there isn't any output voltage or
Vcc dip.
Figure 13. Transition full load to no-load at 265 Figure 14. Transition no-load to full load at 265
Vac - 50 Hz Vac - 50 Hz
In Figure the narrow operating time with respect to the off time of the converter may be
seen; consequently, the average output current, as well as the average primary current, are
very low, avoiding over-heating of components and consequent failure.
5 Thermal map
In order to check the design reliability, a thermal mapping by means of an IR Camera was
done. In Figure 16 and 17 the thermal measurements of the board, component side, at
nominal input voltage, are shown. Some pointers, visible in the images, have been placed
across key components or showing high temperature. The ambient temperature during both
measurements was 27 °C.
The following figures are the average measurement of the conducted noise at full load and
nominal mains voltages. The limits shown in the images are EN55022 Class-B, which is the
most popular standard for domestic equipment and has more severe limits compared to
Class-A, dedicated to IT technology equipment. As seen in Figure 18 and 19, in all test
conditions the measurements are far below the limits.
7 BOM list
R21 39 R 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
SFR25 axial stand. film res, 0.4 W, 5 %, 250
R22 0R47 PTH VISHAY
ppm/°C
SFR25 axial stand. film res, 0.4 W, 5 %, 250
R23 0R68 PTH VISHAY
ppm/°C
R24 1 Meg 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R25 56 R 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R26 1 Meg 0805 SMD STD film res, 1/8 W, 1 %, 100 ppm/°C VISHAY
R27 470 R 1206 SMD STD film res, 1/4 W, 5 %, 250 ppm/°C VISHAY
R28 33 K 0805 SMD STD film res, 1/8 W, 1%, 100 ppm/°C VISHAY
R29 1K0 1206 SMD STD film res, 1/4 W, 5 %, 250 ppm/°C VISHAY
R3 1 Meg 1206 SMD STD film res, 1/4 W, 1 %, 100 ppm/°C VISHAY
R30 10 R 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R31 33 K 0805 SMD STD film res, 1/8 W, 1 %, 100 ppm/°C VISHAY
R32 47 R 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R33 N.M. 0805 Not mounted
R34 5K1 1206 SMD STD film res, 1/4 W, 1 %, 100 ppm/°C VISHAY
R35 180 K 0805 SMD STD film res, 1/8 W, 1 %, 100 ppm/°C VISHAY
R36 N.M. 0805 Not mounted
R37 220 K 1206 SMD STD film res, 1/4 W, 5 %, 250 ppm/°C VISHAY
R38 56 R 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R39 180 R 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R4 4M7 0805 SMD STD film res, 1/8W, 5 %, 250 ppm/°C VISHAY
R40 0R0 1206 SMD STD film res, 1/4 W, 5 %, 250 ppm/°C VISHAY
SFR25 axial stand. film res, 0.4 W, 5 %, 250
R41 100 R PTH VISHAY
ppm/°C
R42 10 K 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R43 N.M. 0805 Not mounted
R44 12 K 1206 SMD STD film res, 1/4 W, 5 %, 250 ppm/°C VISHAY
R45 N.M. 0805 Not mounted
R46 100 K 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R47 1K5 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R48 120 K 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R49 39 K 0805 SMD STD film res, 1/8 W, 1 %, 100 ppm/°C VISHAY
R5 10 R 1206 SMD STD film res, 1/4 W, 5 %, 250 ppm/°C VISHAY
R50 6K2 0805 SMD STD film res, 1/8 W, 1 %, 100 ppm/°C VISHAY
R51 120 K 0805 SMD STD film res, 1/8 W, 1 %, 100 ppm/°C VISHAY
R52 12 K 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R53 2K2 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R54 0R0 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R55 2K7 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R56 18 K 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R57 47R 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R58 100 K 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R59 100 K 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R6 NTC 2R5-S237 DWG NTC resistor P/N B57237S0259M000 EPCOS
R60 10 K 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R61 2K7 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R62 4K7 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R65 47K 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R66 2K2 1206 SMD STD film res, 1/4 W, 5 %, 250 ppm/°C VISHAY
R67 N.M. 0805 Not mounted
R68 N.M. 1206 Not mounted
R69 4K7 0805 SMD STD film res, 1/8 W, 5 %, 250 ppm/°C VISHAY
R7 1Meg 1206 SMD STD film res, 1/4 W, 1 %, 100 ppm/°C VISHAY
R8 1Meg 1206 SMD STD film res, 1/4 W, 1 %, 100 ppm/°C VISHAY
R9 62 K 0805 SMD STD film res, 1/8 W, 1 %, 100 ppm/°C VISHAY
T1 1860.0032 DWG, ETD34 Resonant power transformer MAGNETICA
U1 L6563H SO-16 High voltage startup TM PFC controller STMicroelectronics
U2 L6599AD SO-16 Improved HV resonant controller STMicroelectronics
U3 SFH617A-4 DIP-4, 10.16 mm Optocoupler Infineon
U4 TL431AIZ TO-92 Programmable shunt voltage reference STMicroelectronics
Z1 PCB REV. 1.0
$0Y
Manufacturer:
• MAGNETICA, R. Volpini - Italy
• Inductor P/N: 1974.0002
9 Transformer specifications
$0Y
Manufacturer:
• MAGNETICA, R. Volpini - Italy
• Transformer P/N: 1860.0032
10 Revision history
STMicroelectronics NV and its subsidiaries (“ST”) reserve the right to make changes, corrections, enhancements, modifications, and
improvements to ST products and/or to this document at any time without notice. Purchasers should obtain the latest relevant information on
ST products before placing orders. ST products are sold pursuant to ST’s terms and conditions of sale in place at the time of order
acknowledgement.
Purchasers are solely responsible for the choice, selection, and use of ST products and ST assumes no liability for application assistance or
the design of Purchasers’ products.
Resale of ST products with provisions different from the information set forth herein shall void any warranty granted by ST for such product.
ST and the ST logo are trademarks of ST. All other product or service names are the property of their respective owners.
Information in this document supersedes and replaces information previously supplied in any prior versions of this document.