0% found this document useful (0 votes)
144 views22 pages

Calc PierHead

The document summarizes the design of a beam pier head including: 1) Dividing the beam into support and field areas and defining key terms. 2) Presenting results of the structural analysis including forces and moments. 3) Detailing the beam section, material properties, and design factors. 4) Outlining the step-by-step design process to check forces, dimensions, reinforcement for flexure.

Uploaded by

dinal031
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
144 views22 pages

Calc PierHead

The document summarizes the design of a beam pier head including: 1) Dividing the beam into support and field areas and defining key terms. 2) Presenting results of the structural analysis including forces and moments. 3) Detailing the beam section, material properties, and design factors. 4) Outlining the step-by-step design process to check forces, dimensions, reinforcement for flexure.

Uploaded by

dinal031
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as XLSX, PDF, TXT or read online on Scribd
You are on page 1/ 22

Beam Pier Head

Figure 1

Figure 2

For practical purposes, the beam span is divided into support areas and field areas. The bearing area is defined as the
of the beam support. The field area is an area outside the support area. In the design criteria that include a combination
in the beam plan, positive or negative moments can occur in the bearing area or the field

Table 1. Ultimate Moment of Structural Analysis Result


Nu (kN) Vu (kN) Mu (kN.m) Tu (kN.m)
Nu max 356.49 962.19 -3582.63 494.64
Nu min -975.98 -7294.75 -2297.94 -1057.05
Vu max -975.98 -7294.75 -2297.94 -1057.05
Mu max 57.28 -965.71 -6767.83 -386.66
Tu max -553.66 7294.75 -1342.54 1152.53
Table 2. Ultimate Moment of Structural Analysis Result
Mu
Condition Location Moment Sign
[ kN.m ]
1 end/support - 6767.83
2 end/support + 3383.91
3 middle/field - 6767.83
4 middle/field + 3383.91

Factored compressive axial force on the beam due to a combination of gravity and earthquake Pu
Ultimate factored shear force along the beam due to the combination of earthquake loads VE
Ultimate factored shear force along the beam due to the combination of gravity loads Vg
Ultimate factored torsional moment along the beam Tu

The beam section and material properties used :


Type of element Dimension
width, b height, h length, Ln
Beam Pier Head (mm) (mm) (mm)
3500 1550 3900

Concrete compressive strength fc'


Compressive stress in concrete due to effective prestress forces only fcpe
Modulus rupture of concrete (AASHTO 2017 Art 5.4.2.6) fr = 0.63*√fc'
Flexural reinforcing steel yield strength fyl
Stirrup reinforcing steel yield strength fyv
Resistance Factors, AASHTO LRFD 2017 Art. 5.5.4.2
Flexural resistance factor Øb
Shear and torsion resistance factor Øv
Compression resistance factor Øc
Stress block factor (AASHTO 2017 Art. 5.7.2.2) β1
Stress block factor (AASHTO 2017 Art. 5.7.2.2) α1
Flexural cracking variability factor γ1
Prestress variability factor γ2
Ratio of specified minimum yield strength to ultimate tensile strength of the reinforcement γ3
Section modulus for the extreme fiber Sc
Cover tcov
Spacing between flexural reinforcement stul
Spacing boundaries between flexural reinforcement,
stul min
(AASHTO 2017 ART. 5.10.3.1.1) 1.5db; 1.5 aggregate; 1.5 in

Torsion design category compatibility

Step by step structural planning is carried out as follows:


1. Factored compressive axial force
► The factored compressive axial force should not exceed 0.1 Ag f`c
Limit of the axial force on the beam 0.1*Ag*fc'
Factored axial force Pu
elements designed are flexu

2. Check beam width to height ratio


► The ratio of the width to height of beam shall not be less than 0.3 b/h

3. Beam width
► The width of the beam must not be less than 250 mm b

4. Reinforcing steel for flexure


► Condition 1, Negative Factored Moment on the Support
Beam factored moment Mu
Beam nominal flexural resistance Mn = Mu/Ǿb
Distance between the neutral axis and the compressive face c = As*fs / α1*fc'*β1*b
a = β1*c
Nominal flexural resistance (AASHTO 2017 Art.
Mn = As*fs*(ds - a/2)
5.6.3.2.2)
Check ǾMn ≥ Mu
Distance from extreme tension fiber to the centroid of tensile reinforcement d'
minimum 68.5 mm and maximum
Distance from extreme compression fiber to the centroid of tensile
ds = h - d'
reinforcement
1.33 times the factored moment (AASHTO 2017 Art. 5.6.3.3) 1.33*Mu
Cracking moment (AASHTO 2017 Art. 5.6.3.3) Mcr = γ3[(γ1*fr+γ2fcpe)Sc - Mdnc(Sc/Snc-1)]
Min (1.33Mu ; Mcr)
Area of needed reinforcement As needed = Mu / Φ* fy * jd

Reinforcement Dimension
As
Amount of bar Diameter Area per line
D25 (bars) (mm) (mm2) (mm2)
Line 1 30 25 14726.22
25525.440
Line 2 22 25 10799.22

Check long reinforcement needed to long reinforcement provided As > As needed

► Condition 2, Positive Factored Moment on the Support


Beam factored moment Mu

Beam nominal flexural resistance Mn = Mu/Ǿb

Distance between the neutral axis and the compressive face c = As*fs / α1*fc'*β1*b
a = β1*c
Nominal flexural resistance (AASHTO 2017 Art.
Mn = As*fs*(ds - a/2)
5.6.3.2.2)
Check ǾMn ≥ Mu
Distance from extreme tension fiber to the centroid of tensile reinforcement d'
minimum 68.5 mm and maximum
Distance from extreme compression fiber to the centroid of tensile
ds = h - d'
reinforcement
1.33 times the factored moment (AASHTO 2017 Art. 5.6.3.3) 1.33*Mu
Cracking moment (AASHTO 2017 Art. 5.6.3.3) Mcr = γ3[(γ1*fr+γ2fcpe)Sc - Mdnc(Sc/Snc-1)]
Min (1.33Mu ; Mcr)
Area of needed reinforcement As needed = Mu / Φ* fy * jd

Reinforcement Dimension
As
Amount of bar Diameter Area per line
D25 (bars) (mm) (mm2) (mm2)
Line 1 30 25 14726.22
14726.216
Line 2 0 25 0.00

Check long reinforcement needed to long reinforcement provided As > As needed

► Condition 3, Negative Factored Moment on the Field

Beam factored moment Mu

Beam nominal flexural resistance Mn = Mu/Ǿb


Distance between the neutral axis and the compressive face c = As*fs / α1*fc'*β1*b

a = β1*c

Nominal flexural resistance (AASHTO 2017 Art.


Mn = As*fs*(ds - a/2)
5.6.3.2.2)
Check ǾMn ≥ Mu
Distance from extreme tension fiber to the centroid of tensile reinforcement d'
minimum 68.5 mm and maximum
Distance from extreme compression fiber to the centroid of tensile
ds = h - d'
reinforcement
1.33 times the factored moment (AASHTO 2017 Art. 5.6.3.3) 1.33*Mu
Cracking moment (AASHTO 2017 Art. 5.6.3.3) Mcr = γ3[(γ1*fr+γ2fcpe)Sc - Mdnc(Sc/Snc-1)]
Min (1.33Mu ; Mcr)
Area of needed reinforcement As needed = Mu / Φ* fy * jd

Reinforcement Dimension
As
Amount of bar Diameter Area per line
D25 (bars) (mm) (mm2) (mm2)
Line 1 30 25 14726.22
25525.440
Line 2 22 25 10799.22

Check long reinforcement needed to long reinforcement provided As > As needed

► Condition 4, Positive factored Moment on the Field


Beam factored moment Mu
Beam nominal flexural resistance Mn = Mu/Ǿb

Distance between the neutral axis and the compressive face c = As*fs / α1*fc'*β1*b

a = β1*c
Nominal flexural resistance (AASHTO 2017 Art.
Mn = As*fs*(ds - a/2)
5.6.3.2.2)
Check ǾMn ≥ Mu
Distance from extreme tension fiber to the centroid of tensile reinforcement d'
minimum 68.5 mm and maximum
Distance from extreme compression fiber to the centroid of tensile
ds = h - d'
reinforcement
1.33 times the factored moment (AASHTO 2017 Art. 5.6.3.3) 1.33*Mu
Cracking moment (AASHTO 2017 Art. 5.6.3.3) Mcr = γ3[(γ1*fr+γ2fcpe)Sc - Mdnc(Sc/Snc-1)]
Min (1.33Mu ; Mcr)
Area of needed reinforcement As needed = Mu / Φ* fy * jd

Reinforcement Dimension
As
Amount of bar Diameter Area per line
D25 (bars) (mm) (mm2) (mm2)
Line 1 30 25 14726.22
14726.216
Line 2 0 25 0.00

Check long reinforcement needed to long reinforcement provided As > As needed

5. Factored Shear Force and Torsional Moment

Factored shear force along the beam due to earhquake load combination, V E Vu1
Factored shear force along the beam due to gravity load combination, V g Vu2
Factored torsional moment along the beam Tu

6. Reinforcement for Shear and Torsion


1 in
1 ksi
1 kip
Factor indicating the ability of diagonally cracked concrete to transmit tension and
β
shear, (AASHTO 2017 Art. 5.7.3.4)
Angle of inclination of diagonal compressive stresses, AASHTO 2017 5.7.3.4 θ
Angle of inclination of transverse reinforcement to longitudinal axis α
Concrete density modification factor, AASHTO 2017 5.4.2.8, normal weight concrete λ
Component of prestressing force in the direction of the shear force Vp
0.72 h
Effective shear depth taken as the distance, measured perpendicular to
the neutral axis, between the resultans of the tensile and compressive de = As*fy*ds/As*fy
forves due to flexure; not be taken to be less than the greater of 0.9de or 0.9 de
0.72h (AASHTO 2017 Art. 5.7.2.8)
dv
Nominal shear resistance, shall be determined as the lesser of: Vn = 0.25*fc'*bv*dv + Vp
(AASHTO 2017 Art. 5.7.3.3) Vn = V c + V s + V p
Nominal shear resistance of the concrete Vc = 0.0316*β*λ*√fc' *bv*dv
(AASHTO 2017 Art. 5.7.3.3)
Check of the need for shear reinforcement 0.5*Øv*(Vc+Vp)
Vu > 0.5*
Need shear rei

Needs for shear reinforcement based on factored shear force Vs = (Vu/Ǿv - Vc)
Shear stress on concrete, AASHTO 2017 Art. 5.7.2.8 vu = (|Vu - ØVp|)/(Øbv*dv)
smax
Maximum permitted spacing, AASHTO 2017 Art. 5.7.2.6
smax, shall be less than
Hence use spacing, s
Minimum area of shear reinforcement, AASHTO 2017 Art.
Av min = 0.0316*λ*√fc'*bv*s/fy
5.7.2.5
Av min
Av min/s
By using smax, then Av = Vs/[fy*dv*(cot θ + cot α) sin α]
Area of shear reinforcement Av/s
Shear resistance provided by transverse reinforcement,
Vs = [Av min*fy*dv (cot θ + cot α) sin α] /s
AASHTO 2017 5.7.3.3
Hence use As, As/s

Torsional Section
Area of outside perimeter of the concrete Acp = b*h
Length of outside perimeter of the concrete Pcp = 2*(b+h)
Area of the centerline of closed transverse reinforcement Aoh = (b-2*tcov-dv)*(h-2*tcov-dv)
Perimeter of the centerline of closed transverse reinforce Ph = 2*[(b-2*tcov-dv)+(h-2*tcov-dv)]
Torsional moment limit is negligible 1/4 Ǿv Tcr = Ǿv [1/12* √fc'* ( Acp2 /Pcp)]
Need torsion rein
The cross-section does not need to be enlarge if it meets the following equation:
√[(Vu/(b x d)2 + (Tu x ph/(1.7 x Aoh2))2] < Ǿv(Vc/(b x d) + 2/3* √fc`)
√[(Vu/(b x dv)2 + (Tu x ph/(1.7 x Aoh2))2]
Ǿv(Vc/(b x dv) + 2/3* √fc`)
Cross-section does not need to

If the torsion is compability (the torsion can be reduced by redistributing the torsion to another structure, usually in
indeterminate static structure) the the torsional moment can be reduced and the value need not be grather than:
Tcr = Ǿv[1/3 x √fc' x ( Acp2 /Pcp)]
Torsional design category
Applied factored torsional moment Tu
Nominal torsional resistance Tn = Tu/Ǿv
Ao = 0.85*Aoh
At/s = Tn/(2 *A0* fyv*cot θ)
Where θ is taken as 45o for non-prestressed structures and Ao
Requirenment of shear and torsional reinforcement Av+2Ats
shall not less than b/(3*fyv) or

Maximum permitted spacing of transverse torsional reinforcement (SNI


ph/8 atau 300mm
2847 2019 Pasal 9.7.6.3.3)

Stirrups are required over twice length of the beam height from the column face
Twice the column height 2*h
Length of the support area Ltump = Ln/4
Stirrups are required alon

Type Dimension
Av+t/s
number of Diameter Area
D 16 leg (mm) (mm2) (mm2/mm)
Stirrups 11 16 201.06 14.74
OK! Amount of stirrup fulfills the re
OK! Spacing fulfills the re
Check longitudinal reinforcement requirenments (AASHTO 2017 Art. 5.7.3.5)
Apsfps + Asfy ≥ |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| -
Apsfps + Asfy
Nu max |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ
Nu min |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ
Vu max |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ
Mu max |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ
Tu max |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ
OK! No need to add longitudinal re
Check longitudinal reinforcement requirenments (AASHTO 2017 Art. 5.7.3.6.3)
Apsfps + Asfy ≥ |Mu|/dvØf + 0.5*Nu/Øc + cotθ*√[(|Vu/Øv - Vp| - 0.5*Vs)2+(0.4*ph*T
Apsfps + Asfy
Nu max |Mu|/dvØf + 0.5*Nu/Øc + cotθ*√[(|Vu/Øv - Vp| - 0.5*Vs) +(0.45*ph*Tu/2*Ao*Øv)]2
2

Nu min |Mu|/dvØf + 0.5*Nu/Øc + cotθ*√[(|Vu/Øv - Vp| - 0.5*Vs)2+(0.45*ph*Tu/2*Ao*Øv)]2


Vu max |Mu|/dvØf + 0.5*Nu/Øc + cotθ*√[(|Vu/Øv - Vp| - 0.5*Vs)2+(0.45*ph*Tu/2*Ao*Øv)]2
Mu max |Mu|/dvØf + 0.5*Nu/Øc + cotθ*√[(|Vu/Øv - Vp| - 0.5*Vs)2+(0.45*ph*Tu/2*Ao*Øv)]2
Tu max |Mu|/dvØf + 0.5*Nu/Øc + cotθ*√[(|Vu/Øv - Vp| - 0.5*Vs)2+(0.45*ph*Tu/2*Ao*Øv)]2
OK! No need to add longitudinal re

7. Additional Longitudinal Reinforcement


► Condition 1, Support Area
Longitudinal reinforcement requirement for bending
Longitudinal reinforcement requirement for torsional moment
Longitudinal reinforcement requirement for bending and torsional moment
Attached longitudinal reinforcement
Additional longitudinal reinforcement

Type Dimension
Diameter Area As (mm2)
number of leg
D25 (mm) (mm2)
0 25 490.87 0.0

► Condition 2, Field Area


Longitudinal reinforcement requirement for bending
Longitudinal reinforcement requirement for torsional moment
Longitudinal reinforcement requirement for bending and torsional moment
Attached longitudinal reinforcement
Additional longitudinal reinforcement

Type Dimension
Diameter Area As (mm2)
number of leg
D25 (mm) (mm2)
0 25 490.87 0.0

As ≥ 1.3*b*h / 2 (b+h) fy
0.11 ≤ As ≤ 0.6
► Area of reinforcement in each face (AASHTO 2017 Art 5.10.6)
As

► Number of body reinforcement for each face Used D 25, n

8. Conclusion

Type Dimension
width, b height, h length, Ln
Beam Pier Head
(mm) (mm) (mm)
3500 1550 3900

SUPPORT FIELD SUPPOR

Top Reinforcement Top Reinforcement Top Reinforce


30 D 25 + 22 D 25 30 D 25 + 22 D 25 30 D 25 + 22
Body Reinforcement Body Reinforcement Body Reinforc
4 D 25 4 D 25 4 D 25
Bottom Reinforcement Bottom Reinforcement Bottom Reinfor
30 D 25 + 0 D 25 30 D 25 + 0 D 25 30 D 25 + 0

Stirrups Stirrups Stirups


11 D 16 - 150 11 D 16 - 150 11 D 16 - 1
Sup - Sup + Field -
Mid2 n n n
End 30 16 30

End 16 0 16

Mid2 30 30 30

Mid2 22 0 22

OK OK! Amount of stirrup fulfills the requirements

OK OK! Spacing fulfills the requirements

OK OK! No need to add longitudinal reinforcement

OK OK! No need to add longitudinal reinforcement

713.343 3164.69 -91.281 742.1642

138.753 196.992 162.176 541.8326


78.578 580.493 24.005 137.8127
ring area is defined as the area drawn along L / 4 0.136 213.815 162.94 531.6639
that include a combination of earthquake loading 63.893 51.858 180.542 856.6885

Result SUPPORT
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 713.343 3164.69 -178.2825 742.1642
Nu min 138.753 196.992 1184.834 541.8326
Vu max 78.578 580.493 1436.286 137.8127
Mu max 0.136 213.815 1569.759 531.6639
Tu max 63.893 51.858 1343.238 856.6885
Result CANTILEVER (1
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 151.985 -1889.565 -241.6548 -1228.716
Nu min -152.359 -2105.476 -1909.217 -1290.911
Vu max -0.231 -2909.744 -2603.517 -1874.033
Mu max -0.231 -2909.744 -2603.517 -1874.033
Tu max -0.231 -2909.744 -2603.517 -1874.033
PORTAL (15
= 976.0 kN Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
= 7294.8 kN Nu max 713.343 3164.69 -178.2825 742.1642
= 7294.8 kN Nu min 284.09 -213.584 -733.4512 74.0556
= 1152.5 kN.m Vu max 485.181 -3685.596 447.2943 579.5994
Mu max 311.647 -1578.98 -1362.702 -372.2073
Tu max 550.933 1182.176 405.3101 1001.868
PORTAL (
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 713.343 3164.69 -178.2825 742.1642
Nu min 138.753 196.992 1184.8338 541.8326
Vu max 78.578 580.493 1436.2855 137.8127
Mu max 0.136 213.815 1569.759 531.6639
= 30 MPa Tu max 63.893 51.858 1343.2379 856.6885
= 0 MPa
= 3.5 MPa
= 390 MPa
= 390 MPa

= 0.90
= 0.75
= 0.75
= 0.84
= 0.85
= 1.60
= 1.00
= 0.75
= 1401458333 mm3
= 40 mm
= 91 mm

= 38 mm

Rebar spacing OK!

compatibility

= 16275 kN
= 976 kN
ements designed are flexural elements

= 2.26
fulfilled

= 3500 mm
fulfilled

-6738716.242 --> Cek Tekan - Tarik = 0

= 6767.8 kN.m
= 7519.8 kN.m
= 133.5 mm
= 111.5 mm

= 13564.88 kN.m

= OK
= 131.6 mm
um 68.5 mm and maximum 131.6 mm

= 1418.4 mm

= 9001.2 kN.m
= 5803.1 kN.m *note kalo penampang komposit misal PCI atau PCU dengan pelat diatasnya, mak
= 5803.1 kN.m
= 15993 mm2

As

(mm2)
b 3500 83.517241
25525.440

= OK

= 3383.9 kN.m

= 3759.9 kN.m

= 77.0 mm
= 64.3 mm

= 8323.80 kN.m

= OK
= 68.5 mm
um 68.5 mm and maximum 131.6 mm

= 1481.5 mm

= 4500.6 kN.m
= 5803.1 kN.m
= 4500.6 kN.m
= 10182 mm2

As

(mm2)
b 3500 115.51724
14726.216

= OK

= 7294.8 kN.m

= 8105.3 kN.m
= 133.5 mm

= 111.5 mm

= 13564.88 kN.m

= OK
= 131.6 mm
um 68.5 mm and maximum 131.6 mm

= 1418.4 mm
0.179%
= 9702.0 kN.m
= 5803.1 kN.m
= 5803.1 kN.m
= 17238 mm2

As

(mm2)
b 3500 115.51724
25525.440

= OK

= 3383.9 kN.m
= 3759.9 kN.m

= 77.0 mm

= 64.3 mm

= 8323.80 kN.m

= OK
= 68.5 mm
um 68.5 mm and maximum 131.6 mm
= 1481.5 mm

= 4500.6 kN.m
= 5803.1 kN.m
= 4500.6 kN.m
= 10182 mm2

As

(mm2)
b 3500 115.51724
14726.216

= OK

= 7294.8 kN
= 7294.8 kN
= 1152.5 kN.m

= 25.4 mm
= 6.8948 MPa
= 4.4482 kN

= 2

= 45 o
406.4
= 90 o

= 1
= 0 kN
= 1116 mm
= 1418.4 mm
= 1276.56 mm
= 1418.4 mm
= 37233 kN
= 9726.3 kN
= 1014.4 kip
= 4512.3 kN
= 1692.1 kN
Vu > 0.5*Øv*(Vc+Vp)
Need shear reinforcement!

= 5214.0 kN
= 1.959 MPa
= 1134.7 mm
= 600.0 mm
= 600.0 mm

= 0.9 in2

= 611.8 mm2
= 4.1 mm2/mm
= 1413.8 mm2
= 9.426 mm2/mm

= 2256.2 kN

= 9.4 mm2/mm

= 5425000 mm2
= 10100 mm
= 4949416 mm2
= 9716 mm
= 997.51 kN.m
Need torsion reinforcement!!

= 0.27
= 2.74
ss-section does not need to be enlarge

another structure, usually in an


need not be grather than:
= 3990.05 kN.m
compatibility
= 1152.53 kN.m
= 1536.71 kN.m
= 4207004 mm2
= 0.47 mm2/mm
stressed structures and Ao = 0.85 x Aoh
= 10.36 mm2/mm
s than b/(3*fyv) or 3.0 mm /mm
2

OK!

= 300 mm
= 3100 mm
= 975 mm
Stirrups are required along the beam

spacing

(mm) Vs
150.0 8156.32650034
mount of stirrup fulfills the requirements
OK! Spacing fulfills the requirements

+ 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ


Apsfps + Asfy = 9954.92 kN --> tul long yg menahan di serat atas saja
Vp| - 0.5*Vs]*cotθ = 3044.14 kN OK!
Vp| - 0.5*Vs]*cotθ = 7448.28 kN OK!
Vp| - 0.5*Vs]*cotθ = 7448.28 kN OK!
Vp| - 0.5*Vs]*cotθ = 5339.80 kN OK!
Vp| - 0.5*Vs]*cotθ = 6699.86 kN OK!
need to add longitudinal reinforcement

Øv - Vp| - 0.5*Vs)2+(0.4*ph*Tu/2*Ao*Øv)]2
Apsfps + Asfy = 15698 kN
*ph*Tu/2*Ao*Øv)] =2
3387 kN OK!
*ph*Tu/2*Ao*Øv)] =2
7496 kN OK!
*ph*Tu/2*Ao*Øv)]2 = 7496 kN OK!
*ph*Tu/2*Ao*Øv)]2 = 5608 kN OK!
*ph*Tu/2*Ao*Øv)] =2
6756 kN OK!
need to add longitudinal reinforcement

= 26175 mm2
= 0 mm2 --> Cek lagi jika butuh tulangan tambahan longitudinal berdasarkan AASHTO
= 26175 mm2
= 40252 mm2
= 0 mm2

= 27420 mm2
= 0 mm2
= 27420 mm2
= 40252 mm2
= 0 mm2

= 0.486007029443102 in2/ft
= 0.486007029443102 in2/ft
= 1028.7148789879 mm2/m
= 1594.50806243124 mm2
= 4 bar

SUPPORT

Top Reinforcement
30 D 25 + 22 D 25
Body Reinforcement
4 D 25
Bottom Reinforcement
30 D 25 + 0 D 25

Stirups
11 D 16 - 150
Field + Stirrup
n n D s D long 25
16 11 16 150 D body 25

0 n body 4

30 11 16 150 s long 113.7931

p fulfills the requirements 1.596059 1.42292

he requirements 1.446266
SF =
ongitudinal reinforcement 1.480769

ongitudinal reinforcement 1.446266

-299.5753 -178.2825 2.639 1.51 2.488 1.4793 0.1979 1.6384

-373.8365 1184.8338 -975.98 -7294.754 2.29E-10 -1057.049 -169.525 -2297.937


-79.188 1436.286 -975.98 -7294.754 -1.08E-10 -1057.049 -126.0991 -2297.937
-67.0742 1569.759 -975.98 -7294.754 2.289E-10 -1057.049 -169.525 -2297.937
-75.9811 1343.238 -553.66 7294.754 1.01E+02 1152.531 169.525 -1342.537

END
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 2.639 1.51 1.6384 1.4793
Nu min -975.98 -7294.754 -2297.937 -1057.049
Vu max -975.98 -7294.754 -2297.937 -1057.049
Mu max -975.98 -7294.754 -2297.937 -1057.049
Tu max -553.66 7294.754 -1342.537 1152.531
CANTILEVER (1559-1560)
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 2.639 1.51 1.6384 1.4793
Nu min -975.98 -7294.754 -2297.937 -1057.049 -2297.937
Vu max -975.98 -7294.754 -2297.937 -1057.049 275.892
Mu max -975.98 -7294.754 -2297.937 -1057.049 -2297.937
Tu max -553.66 7294.754 -1342.537 1152.531 275.892
PORTAL (1563-1569)
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 356.493 962.19 -3582.635 494.6403
Nu min -975.98 -7294.754 -2297.937 -1057.049 -6767.825
Vu max -975.98 -7294.754 -2297.937 -1057.049 275.892
Mu max 57.284 -965.709 -6767.825 -386.6579 -6767.825
Tu max -553.66 7294.754 -1342.537 1152.531 275.892
PORTAL (1566)
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 713.343 3164.69 -178.2825 742.1642
Nu min -267.449 -4239.538 -3265.661 -340.7009
Vu max -12.129 -5620.789 -3231.18 459.6864
Mu max -258.602 3332.149 -3297.197 -51.7094
Tu max 139.329 4604.399 988.0576 1208.9614
U dengan pelat diatasnya, maka diperhitungkan Sc dan Snc nya. Kalo tidak, Sc = Snc
nal berdasarkan AASHTO
5425000 45160.3943954

1963.49540849

0.0086864313

Bentang (m)
Tipe Tulangan
50-50 50-60 60-60
D (mm) 32 32 32
Tulangan
n atas 26 30 33
Longitudinal
n bawah 12 12 12
n 8 8 9
Tulangan D (mm)
Sengkang 16 16 16
s (mm) 100 100 100
Tulangan D (mm) 19 19 19
Badan n 6 6 6

You might also like