Calc PierHead
Calc PierHead
Figure 1
Figure 2
For practical purposes, the beam span is divided into support areas and field areas. The bearing area is defined as the
of the beam support. The field area is an area outside the support area. In the design criteria that include a combination
in the beam plan, positive or negative moments can occur in the bearing area or the field
Factored compressive axial force on the beam due to a combination of gravity and earthquake Pu
Ultimate factored shear force along the beam due to the combination of earthquake loads VE
Ultimate factored shear force along the beam due to the combination of gravity loads Vg
Ultimate factored torsional moment along the beam Tu
3. Beam width
► The width of the beam must not be less than 250 mm b
Reinforcement Dimension
As
Amount of bar Diameter Area per line
D25 (bars) (mm) (mm2) (mm2)
Line 1 30 25 14726.22
25525.440
Line 2 22 25 10799.22
Distance between the neutral axis and the compressive face c = As*fs / α1*fc'*β1*b
a = β1*c
Nominal flexural resistance (AASHTO 2017 Art.
Mn = As*fs*(ds - a/2)
5.6.3.2.2)
Check ǾMn ≥ Mu
Distance from extreme tension fiber to the centroid of tensile reinforcement d'
minimum 68.5 mm and maximum
Distance from extreme compression fiber to the centroid of tensile
ds = h - d'
reinforcement
1.33 times the factored moment (AASHTO 2017 Art. 5.6.3.3) 1.33*Mu
Cracking moment (AASHTO 2017 Art. 5.6.3.3) Mcr = γ3[(γ1*fr+γ2fcpe)Sc - Mdnc(Sc/Snc-1)]
Min (1.33Mu ; Mcr)
Area of needed reinforcement As needed = Mu / Φ* fy * jd
Reinforcement Dimension
As
Amount of bar Diameter Area per line
D25 (bars) (mm) (mm2) (mm2)
Line 1 30 25 14726.22
14726.216
Line 2 0 25 0.00
a = β1*c
Reinforcement Dimension
As
Amount of bar Diameter Area per line
D25 (bars) (mm) (mm2) (mm2)
Line 1 30 25 14726.22
25525.440
Line 2 22 25 10799.22
Distance between the neutral axis and the compressive face c = As*fs / α1*fc'*β1*b
a = β1*c
Nominal flexural resistance (AASHTO 2017 Art.
Mn = As*fs*(ds - a/2)
5.6.3.2.2)
Check ǾMn ≥ Mu
Distance from extreme tension fiber to the centroid of tensile reinforcement d'
minimum 68.5 mm and maximum
Distance from extreme compression fiber to the centroid of tensile
ds = h - d'
reinforcement
1.33 times the factored moment (AASHTO 2017 Art. 5.6.3.3) 1.33*Mu
Cracking moment (AASHTO 2017 Art. 5.6.3.3) Mcr = γ3[(γ1*fr+γ2fcpe)Sc - Mdnc(Sc/Snc-1)]
Min (1.33Mu ; Mcr)
Area of needed reinforcement As needed = Mu / Φ* fy * jd
Reinforcement Dimension
As
Amount of bar Diameter Area per line
D25 (bars) (mm) (mm2) (mm2)
Line 1 30 25 14726.22
14726.216
Line 2 0 25 0.00
Factored shear force along the beam due to earhquake load combination, V E Vu1
Factored shear force along the beam due to gravity load combination, V g Vu2
Factored torsional moment along the beam Tu
Needs for shear reinforcement based on factored shear force Vs = (Vu/Ǿv - Vc)
Shear stress on concrete, AASHTO 2017 Art. 5.7.2.8 vu = (|Vu - ØVp|)/(Øbv*dv)
smax
Maximum permitted spacing, AASHTO 2017 Art. 5.7.2.6
smax, shall be less than
Hence use spacing, s
Minimum area of shear reinforcement, AASHTO 2017 Art.
Av min = 0.0316*λ*√fc'*bv*s/fy
5.7.2.5
Av min
Av min/s
By using smax, then Av = Vs/[fy*dv*(cot θ + cot α) sin α]
Area of shear reinforcement Av/s
Shear resistance provided by transverse reinforcement,
Vs = [Av min*fy*dv (cot θ + cot α) sin α] /s
AASHTO 2017 5.7.3.3
Hence use As, As/s
Torsional Section
Area of outside perimeter of the concrete Acp = b*h
Length of outside perimeter of the concrete Pcp = 2*(b+h)
Area of the centerline of closed transverse reinforcement Aoh = (b-2*tcov-dv)*(h-2*tcov-dv)
Perimeter of the centerline of closed transverse reinforce Ph = 2*[(b-2*tcov-dv)+(h-2*tcov-dv)]
Torsional moment limit is negligible 1/4 Ǿv Tcr = Ǿv [1/12* √fc'* ( Acp2 /Pcp)]
Need torsion rein
The cross-section does not need to be enlarge if it meets the following equation:
√[(Vu/(b x d)2 + (Tu x ph/(1.7 x Aoh2))2] < Ǿv(Vc/(b x d) + 2/3* √fc`)
√[(Vu/(b x dv)2 + (Tu x ph/(1.7 x Aoh2))2]
Ǿv(Vc/(b x dv) + 2/3* √fc`)
Cross-section does not need to
If the torsion is compability (the torsion can be reduced by redistributing the torsion to another structure, usually in
indeterminate static structure) the the torsional moment can be reduced and the value need not be grather than:
Tcr = Ǿv[1/3 x √fc' x ( Acp2 /Pcp)]
Torsional design category
Applied factored torsional moment Tu
Nominal torsional resistance Tn = Tu/Ǿv
Ao = 0.85*Aoh
At/s = Tn/(2 *A0* fyv*cot θ)
Where θ is taken as 45o for non-prestressed structures and Ao
Requirenment of shear and torsional reinforcement Av+2Ats
shall not less than b/(3*fyv) or
Stirrups are required over twice length of the beam height from the column face
Twice the column height 2*h
Length of the support area Ltump = Ln/4
Stirrups are required alon
Type Dimension
Av+t/s
number of Diameter Area
D 16 leg (mm) (mm2) (mm2/mm)
Stirrups 11 16 201.06 14.74
OK! Amount of stirrup fulfills the re
OK! Spacing fulfills the re
Check longitudinal reinforcement requirenments (AASHTO 2017 Art. 5.7.3.5)
Apsfps + Asfy ≥ |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| -
Apsfps + Asfy
Nu max |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ
Nu min |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ
Vu max |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ
Mu max |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ
Tu max |Mu|/dvØf + 0.5*Nu/Øc + [|Vu/Øv - Vp| - 0.5*Vs]*cotθ
OK! No need to add longitudinal re
Check longitudinal reinforcement requirenments (AASHTO 2017 Art. 5.7.3.6.3)
Apsfps + Asfy ≥ |Mu|/dvØf + 0.5*Nu/Øc + cotθ*√[(|Vu/Øv - Vp| - 0.5*Vs)2+(0.4*ph*T
Apsfps + Asfy
Nu max |Mu|/dvØf + 0.5*Nu/Øc + cotθ*√[(|Vu/Øv - Vp| - 0.5*Vs) +(0.45*ph*Tu/2*Ao*Øv)]2
2
Type Dimension
Diameter Area As (mm2)
number of leg
D25 (mm) (mm2)
0 25 490.87 0.0
Type Dimension
Diameter Area As (mm2)
number of leg
D25 (mm) (mm2)
0 25 490.87 0.0
As ≥ 1.3*b*h / 2 (b+h) fy
0.11 ≤ As ≤ 0.6
► Area of reinforcement in each face (AASHTO 2017 Art 5.10.6)
As
8. Conclusion
Type Dimension
width, b height, h length, Ln
Beam Pier Head
(mm) (mm) (mm)
3500 1550 3900
End 16 0 16
Mid2 30 30 30
Mid2 22 0 22
Result SUPPORT
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 713.343 3164.69 -178.2825 742.1642
Nu min 138.753 196.992 1184.834 541.8326
Vu max 78.578 580.493 1436.286 137.8127
Mu max 0.136 213.815 1569.759 531.6639
Tu max 63.893 51.858 1343.238 856.6885
Result CANTILEVER (1
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 151.985 -1889.565 -241.6548 -1228.716
Nu min -152.359 -2105.476 -1909.217 -1290.911
Vu max -0.231 -2909.744 -2603.517 -1874.033
Mu max -0.231 -2909.744 -2603.517 -1874.033
Tu max -0.231 -2909.744 -2603.517 -1874.033
PORTAL (15
= 976.0 kN Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
= 7294.8 kN Nu max 713.343 3164.69 -178.2825 742.1642
= 7294.8 kN Nu min 284.09 -213.584 -733.4512 74.0556
= 1152.5 kN.m Vu max 485.181 -3685.596 447.2943 579.5994
Mu max 311.647 -1578.98 -1362.702 -372.2073
Tu max 550.933 1182.176 405.3101 1001.868
PORTAL (
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 713.343 3164.69 -178.2825 742.1642
Nu min 138.753 196.992 1184.8338 541.8326
Vu max 78.578 580.493 1436.2855 137.8127
Mu max 0.136 213.815 1569.759 531.6639
= 30 MPa Tu max 63.893 51.858 1343.2379 856.6885
= 0 MPa
= 3.5 MPa
= 390 MPa
= 390 MPa
= 0.90
= 0.75
= 0.75
= 0.84
= 0.85
= 1.60
= 1.00
= 0.75
= 1401458333 mm3
= 40 mm
= 91 mm
= 38 mm
compatibility
= 16275 kN
= 976 kN
ements designed are flexural elements
= 2.26
fulfilled
= 3500 mm
fulfilled
= 6767.8 kN.m
= 7519.8 kN.m
= 133.5 mm
= 111.5 mm
= 13564.88 kN.m
= OK
= 131.6 mm
um 68.5 mm and maximum 131.6 mm
= 1418.4 mm
= 9001.2 kN.m
= 5803.1 kN.m *note kalo penampang komposit misal PCI atau PCU dengan pelat diatasnya, mak
= 5803.1 kN.m
= 15993 mm2
As
(mm2)
b 3500 83.517241
25525.440
= OK
= 3383.9 kN.m
= 3759.9 kN.m
= 77.0 mm
= 64.3 mm
= 8323.80 kN.m
= OK
= 68.5 mm
um 68.5 mm and maximum 131.6 mm
= 1481.5 mm
= 4500.6 kN.m
= 5803.1 kN.m
= 4500.6 kN.m
= 10182 mm2
As
(mm2)
b 3500 115.51724
14726.216
= OK
= 7294.8 kN.m
= 8105.3 kN.m
= 133.5 mm
= 111.5 mm
= 13564.88 kN.m
= OK
= 131.6 mm
um 68.5 mm and maximum 131.6 mm
= 1418.4 mm
0.179%
= 9702.0 kN.m
= 5803.1 kN.m
= 5803.1 kN.m
= 17238 mm2
As
(mm2)
b 3500 115.51724
25525.440
= OK
= 3383.9 kN.m
= 3759.9 kN.m
= 77.0 mm
= 64.3 mm
= 8323.80 kN.m
= OK
= 68.5 mm
um 68.5 mm and maximum 131.6 mm
= 1481.5 mm
= 4500.6 kN.m
= 5803.1 kN.m
= 4500.6 kN.m
= 10182 mm2
As
(mm2)
b 3500 115.51724
14726.216
= OK
= 7294.8 kN
= 7294.8 kN
= 1152.5 kN.m
= 25.4 mm
= 6.8948 MPa
= 4.4482 kN
= 2
= 45 o
406.4
= 90 o
= 1
= 0 kN
= 1116 mm
= 1418.4 mm
= 1276.56 mm
= 1418.4 mm
= 37233 kN
= 9726.3 kN
= 1014.4 kip
= 4512.3 kN
= 1692.1 kN
Vu > 0.5*Øv*(Vc+Vp)
Need shear reinforcement!
= 5214.0 kN
= 1.959 MPa
= 1134.7 mm
= 600.0 mm
= 600.0 mm
= 0.9 in2
= 611.8 mm2
= 4.1 mm2/mm
= 1413.8 mm2
= 9.426 mm2/mm
= 2256.2 kN
= 9.4 mm2/mm
= 5425000 mm2
= 10100 mm
= 4949416 mm2
= 9716 mm
= 997.51 kN.m
Need torsion reinforcement!!
= 0.27
= 2.74
ss-section does not need to be enlarge
OK!
= 300 mm
= 3100 mm
= 975 mm
Stirrups are required along the beam
spacing
(mm) Vs
150.0 8156.32650034
mount of stirrup fulfills the requirements
OK! Spacing fulfills the requirements
Øv - Vp| - 0.5*Vs)2+(0.4*ph*Tu/2*Ao*Øv)]2
Apsfps + Asfy = 15698 kN
*ph*Tu/2*Ao*Øv)] =2
3387 kN OK!
*ph*Tu/2*Ao*Øv)] =2
7496 kN OK!
*ph*Tu/2*Ao*Øv)]2 = 7496 kN OK!
*ph*Tu/2*Ao*Øv)]2 = 5608 kN OK!
*ph*Tu/2*Ao*Øv)] =2
6756 kN OK!
need to add longitudinal reinforcement
= 26175 mm2
= 0 mm2 --> Cek lagi jika butuh tulangan tambahan longitudinal berdasarkan AASHTO
= 26175 mm2
= 40252 mm2
= 0 mm2
= 27420 mm2
= 0 mm2
= 27420 mm2
= 40252 mm2
= 0 mm2
= 0.486007029443102 in2/ft
= 0.486007029443102 in2/ft
= 1028.7148789879 mm2/m
= 1594.50806243124 mm2
= 4 bar
SUPPORT
Top Reinforcement
30 D 25 + 22 D 25
Body Reinforcement
4 D 25
Bottom Reinforcement
30 D 25 + 0 D 25
Stirups
11 D 16 - 150
Field + Stirrup
n n D s D long 25
16 11 16 150 D body 25
0 n body 4
he requirements 1.446266
SF =
ongitudinal reinforcement 1.480769
END
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 2.639 1.51 1.6384 1.4793
Nu min -975.98 -7294.754 -2297.937 -1057.049
Vu max -975.98 -7294.754 -2297.937 -1057.049
Mu max -975.98 -7294.754 -2297.937 -1057.049
Tu max -553.66 7294.754 -1342.537 1152.531
CANTILEVER (1559-1560)
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 2.639 1.51 1.6384 1.4793
Nu min -975.98 -7294.754 -2297.937 -1057.049 -2297.937
Vu max -975.98 -7294.754 -2297.937 -1057.049 275.892
Mu max -975.98 -7294.754 -2297.937 -1057.049 -2297.937
Tu max -553.66 7294.754 -1342.537 1152.531 275.892
PORTAL (1563-1569)
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 356.493 962.19 -3582.635 494.6403
Nu min -975.98 -7294.754 -2297.937 -1057.049 -6767.825
Vu max -975.98 -7294.754 -2297.937 -1057.049 275.892
Mu max 57.284 -965.709 -6767.825 -386.6579 -6767.825
Tu max -553.66 7294.754 -1342.537 1152.531 275.892
PORTAL (1566)
Nu (kN) Vu (kN) Mu (kN.m)Tu (kN.m)
Nu max 713.343 3164.69 -178.2825 742.1642
Nu min -267.449 -4239.538 -3265.661 -340.7009
Vu max -12.129 -5620.789 -3231.18 459.6864
Mu max -258.602 3332.149 -3297.197 -51.7094
Tu max 139.329 4604.399 988.0576 1208.9614
U dengan pelat diatasnya, maka diperhitungkan Sc dan Snc nya. Kalo tidak, Sc = Snc
nal berdasarkan AASHTO
5425000 45160.3943954
1963.49540849
0.0086864313
Bentang (m)
Tipe Tulangan
50-50 50-60 60-60
D (mm) 32 32 32
Tulangan
n atas 26 30 33
Longitudinal
n bawah 12 12 12
n 8 8 9
Tulangan D (mm)
Sengkang 16 16 16
s (mm) 100 100 100
Tulangan D (mm) 19 19 19
Badan n 6 6 6