4MA1 1H Que 20220111
4MA1 1H Que 20220111
PAPER 1H
Higher Tier
You must have: Ruler graduated in centimetres and millimetres, Total Marks
protractor, pair of compasses, pen, HB pencil, eraser, calculator.
Tracing paper may be used.
Instructions
• Use black ink or ball-point pen.
• centrethe
Fill in boxes at the top of this page with your name,
number and candidate number.
• Answer all questions.
• Answer the questions in the spaces provided
– there may be more space than you need.
• Calculators may be used.
• You must NOT write anything on the formulae page.
Anything you write on the formulae page will gain NO credit.
Information
• The total mark for this paper is 100.
• The marks for each question are shown in brackets
– use this as a guide as to how much time to spend on each question.
Advice
• Read each question carefully before you start to answer it.
• Checkanswer
Try to every question.
• your answers if you have time at the end.
Turn over
*P69196A0128*
P69196A
©2022 Pearson Education Ltd.
L:1/1/1/1/
International GCSE Mathematics
Formulae sheet – Higher Tier
Arithmetic series 1
n Area of trapezium = (a + b)h
Sum to n terms, Sn = [2a + (n – 1)d] 2
2
The quadratic equation a
−b ± b2 − 4ac
x=
2a b
1 2 Volume of prism
Volume of cone = πr h = area of cross section × length
3
Curved surface area of cone = πrl
l cross
h section
length
r
r
h
2
*P69196A0228*
1 (a) Simplify a7 × a 4
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(1)
(b) Simplify w 15 ÷ w 3
......................................................
(1)
(c) Simplify (8x 5y 3)2
......................................................
(2)
(d) Make t the subject of c = t 3 – 8v
......................................................
(2)
3
*P69196A0328* Turn over
2 Danil, Gabriel and Hadley share some money in the ratios 3 : 5 : 9
The difference between the amount of money that Gabriel receives and the amount of
money that Hadley receives is 196 euros.
Work out the amount of money that Danil receives.
...................................................... euros
A B
Diagram NOT
accurately drawn
8.4 cm 65°
...................................................... cm
4
*P69196A0428*
MUGS
Small £8.50
Medium £11.20
Large £14.20
...................................................... %
5
*P69196A0528* Turn over
5 Jenny has six cards.
Each card has a whole number written on it so that
5 24
.............. .............. .............. ..............
(a) For the remaining four cards, write on each dotted line a number that could be on
the card.
(3)
A basketball team plays 6 games.
After playing 5 games, the team has a mean score of 21 points per game.
After playing 6 games, the team has a mean score of 23 points per game.
(b) Work out the number of points the team scored in its 6th game.
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(3)
(Total for Question 5 is 6 marks)
6
*P69196A0628*
......................................................
(2)
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(2)
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(1)
7
*P69196A0728* Turn over
7 E = {4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15}
A ∩ B = {5, 10, 15}
B¢ = {7, 8, 9, 11, 12, 13, 14}
A¢ = {4, 6, 7, 8, 14}
Complete the Venn diagram for this information.
A B
8 a = 4.2 × 10–24 b = 3 × 10145
Work out the value of a × b
Give your answer in standard form.
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
8
*P69196A0828*
A
Diagram NOT
17.5 cm 17.5 cm accurately drawn
B C
28 cm
AB = AC = 17.5 cm BC = 28 cm
Calculate the area of triangle ABC
...................................................... cm2
9
*P69196A0928* Turn over
10 The straight line L has equation 2y + 7x = 10
(a) Find the gradient of L
......................................................
(2)
(b) Find the coordinates of the point where L crosses the y‑axis.
(. . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . )
(1)
10
*P69196A01028*
11 Himari invests 200 000 yen for 3 years in a savings account paying compound interest.
The rate of interest is 1.8% for the first year and x% for each of the second year and the
third year.
The value of the investment at the end of the third year is 209 754 yen.
Work out the value of x
Give your answer correct to one decimal place.
x = ......................................................
11
*P69196A01128* Turn over
12 The table gives information about the times, in minutes, taken by 80 customers to do
their shopping in a supermarket.
0 < t 10 7
10 < t 20 26
20 < t 30 24
30 < t 40 14
40 < t 50 7
50 < t 60 2
Cumulative
Time taken (t minutes)
frequency
0 < t 10
0 < t 20
0 < t 30
0 < t 40
0 < t 50
0 < t 60
(1)
(b) On the grid opposite, draw a cumulative frequency graph for your table.
12
*P69196A01228*
80
70
60
50
Cumulative
frequency
40
30
20
10
0
0 10 20 30 40 50 60
Time taken (minutes)
(2)
(c) Use your graph to find an estimate for the median time taken.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . minutes
(1)
One of the 80 customers is chosen at random.
(d) Use your graph to find an estimate for the probability that the time taken by this
customer was more than 42 minutes.
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(2)
(Total for Question 12 is 6 marks)
13
*P69196A01328* Turn over
13 (a) Expand and simplify 5x(x + 2)(3x – 4)
.................................................................................
(3)
3
−
(b) Simplify completely 16 w8 4
y 20
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(3)
14
*P69196A01428*
packet A packet B
sunflower
....................
sunflower
7
12
....................
not sunflower
sunflower
....................
....................
not sunflower
....................
not sunflower
(2)
(b) Calculate the probability that Aika will take two sunflower seeds.
. . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(2)
15
*P69196A01528* Turn over
15 A is inversely proportional to C 2
A = 40 when C = 1.5
Calculate the value of C when A = 1000
C = . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
16
*P69196A01628*
A B
C Diagram NOT
55° accurately drawn
A, B and C are points on the circle so that the length of the arc ABC is 5 cm.
Given that angle AOC = 55°
work out the area of the circle.
Give your answer correct to one decimal place.
...................................................... cm2
17
*P69196A01728* Turn over
17 A and B are two similar vases.
Diagram NOT
accurately drawn
10 cm 15 cm
A B
...................................................... cm3
18
*P69196A01828*
x2
18 A = w –
y
......................................................
19
*P69196A01928* Turn over
19 Solve the simultaneous equations
3x 2 + y 2 – xy = 5
y = 2x – 3
Show clear algebraic working.
............................................................................................................
20
*P69196A02028*
20 (a) Express 7 + 12x – 3x 2 in the form a + b(x + c)2 where a, b and c are integers.
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
(3)
C is the curve with equation y = 7 + 12x – 3x 2
The point A is the maximum point on C
(b) Use your answer to part (a) to write down the coordinates of A
(. . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . )
(1)
21
*P69196A02128* Turn over
21 The diagram shows the prism ABCDEFGHJK with horizontal base AEFG
Diagram NOT
C accurately drawn
H
K
B
D
G M
F
A E
22
*P69196A02228*
T = ......................................................
23
*P69196A02328* Turn over
22 The diagram shows triangle OAB
Diagram NOT
accurately drawn
M
N
P
A
→ →
OA = 8a OB = 6b
24
*P69196A02428*
→
OP = . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
25
*P69196A02528* Turn over
23 The diagram shows a sketch of the curve with equation y = f(x)
y (5, 7)
y = f(x)
O x
(i) y = f(x + 9)
(. . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . )
(ii)
y = f(x) + 3
(. . . . . . . . . . . . . . . . . . . . . , . . . . . . . . . . . . . . . . . . . . . )
26
*P69196A02628*
y = ......................................................
27
*P69196A02728*
BLANK PAGE
28
*P69196A02828*