FILENAME : 618977363.
xls
PAGE :1 HORIZONTAL/VERTICAL VESSEL - LIFTING LUGS DESIGN
DATE : 10/14/2022
HORIZONTAL VESSEL - TRANSLATIONAL LIFTING
- 2 NOS LUGS ON TOP OF VESSEL
- UNSYMMETRICAL LOCATION OF CENTRE OF GRAVITY
1 .0 LIFTING LUG DESIGN CALCULATION
1 .1 GEOMETRIC DATA
Wdsg
H= 2293 mm
ß°
g°
A B
Lx
L= 2648 mm
Number of lifting lug, N = 2
Lifting angle, ß° = 60.00 °
Angle of lifting lug to horizontal axis, g° ( 0° £ g° £ 90° ) = 40.00 °
Distance between lifting lug , L = 2648 mm
Distance of COG from y-axis, Lx = 1324 mm
Height of lifting, H = 2293 mm
Percentage of out of plane loading, a = 0.00 %
1 .2 DERIVATION OF COMPONENT FORCES
Empty weight of vessel, We ( @ 30,806 kg ) = 302,207 N
Impact load factor, p = 2
Design load , Wdsg ( = p.We ) = 604414 N
(a) Triangle ABC
Wdsg
C Dimension :-
L = 2648 mm
Lx = 1324 mm
R1 R2 ß2 = 60.00 °
H H = 2293 mm
R1y R1 R2 R2y ß = 60.00 °
ß° ß2°
A B
R1x R2x
Lx
L
R1y R2y
Forces :-
Design load, Wdsg = 604,414 N
Force, R1 ( = Wdsg / (cos ß°.tan ß2°+sin ß°) ) = 348,958 N
Force, R2 ( = R1 ( cos ß°/cos ß2° ) ) = 348,958 N
Force, R1y ( = R1.sin ß° ) = 302,207 N
FILENAME : 618977363.xls
PAGE :2 HORIZONTAL/VERTICAL VESSEL - LIFTING LUGS DESIGN
DATE : 10/14/2022
Force, R2y ( = R2.sin ß2° ) = 302,207 N
Force, R1x ( = R2x = R1.cos ß° = R2.cos ß2° ) = 174,479 N
1 .3 SHACKLES AND WIRE ROPE SLING SELECTION
Resultant force acting on shackles & wire rope,Fc(=max(R1,R2)) = 348,958 N
Minimum shackle rating ( S.W.L ) required = 35.57 tons
Available shackle rating ( S.W.L ) : 35.00 tons
Type of shackle : Widebody shackle G2130
Pin size, Dp = 57.2 mm
Inside length of shackle, Lshk = 197 mm
Factor of safety for shackle, sf = 6
Minimum ultimate capacity = 210 tons
Factor of safety for wire rope sling, sf = 4
Minimum breaking load ( MBL ) required, Fmin ( = sf.Fc ) = 142.29 tons
Available minimum breaking load ( MBL ) : 148.00 tons
Type of wire rope sling = Steel cored
Diameter of wire rope sling, Dwrs = 48 mm
1 .4 COMPONENT FORCES ACTING ON LIFTING LUGS AXIS
Component forces acting on lifting lugs axis are derived as follows :-
Component force, Fx ( = R1.cos( ß - g )) = 327,914 N
Component force, Fy ( = R1.sin ( ß - g )) = 119,351 N
Component force, Fz ( = @a%Fc ) = 0 N
Component moment, Mx ( = Fx.hL ) = 49187048 Nmm
Component moment, My ( = Fz.Ls.cos[ ß° - g°] ) = 0 Nmm
Component moment, Mz ( = Fz.( Ls.sin[ ß° - g°] + hL ) ) = 0 Nmm
where
hL = Distance from lug base to hole centre = 150.00 mm
Ls = Distance from wire rope centre to pin hole centre = 201.60 mm
Fy = 119351 N
My = 0 Nmm
(ß°-g°)
Fz = 0 N
Ls Fx = 327914 N
Mz 0 N
hL
Mx = 49187048 N
6 .0 LIFTING LUG DESIGN CALCULATION
(B) SCHEMATIC DIAGRAM OF 2 NOS LUGS/TRUNNIONS WITH 1 NOS TAILING LUG
C2
Cz2
Cx2
q g1
Cy2
D2 ( = Pu )
Dy2
q C.O.G
Dx2
h
Wdsg
Ra q
Hcg Hll
Ra.sin q Hcg.cos q
- h.cos q Hlp.cos q
Qu Pu ( = D2 )
Cy1 C1
Hl1
ß1 Dy2
Cx1
SI Dz2
Cx2 C2 Hl2 Dx2
Cz2 g1
Cy2
LI
Lifting Lugs Arrangement Tailing Lugs Arrangement
(C) SCHEMATIC DIAGRAM OF 2 NOS LUGS/TRUNNIONS WITH 2 NOS TAILING LUGS
C2
Cz2
Cx2
q g1
Cy2
D2
Dz2
Dy2
q g1 C.O.G
Dx2
h
Wdsg
Ra q
Hcg Hll
Ra.sin q Hcg.cos q
- h.cos q Hlp.cos q
Qu Pu
Cy1 C1 Dy1 D1 Ht1
Hl1
ß2
ß1 D2 Dx1
Cx1 Dy2 St Ht2
SI g2
Dz2
Cx2 C2 Hl2 Dx2
Lt
Cz2 g1
Cy2
LI
Lifting Lugs Arrangement Tailing Lugs Arrangement
6 .1 GEOMETRIC DATA
Number of lifting lug, Nl = 2
Distance between lifting point on spreader bar, Sl = 1761 mm
Distance between lifting lug, Ll = 1761 mm
Lifting angle of spreader, ß1 ( 0° < ß1 < 90° ) = 60 °
Lifting angle of lifting lug, g1 ( g1° = 90° ) = 90 °
Height of lifting, Hl1 = 1525 mm
Height of lifting, Hl2 = user length mm
Percentage of out of plane loading, al = 5.00 %
REMARK: If no spreader bar, then let (SI, ß1°= 0) or (ß1°= g1°)
Number of tailing/pivoted point , Nt = 1
Lifting angle of spreader, ß2 ( 0° < ß1 < 90° ) = 90 °
Lifting angle of tailing lug, g2 ( g1° = 90° ) = 90 °
Percentage of out of plane loading, at = 0.00 %
REMARK: If no spreader bar, then let ( St,ß2°= 0) or (ß2°= g2°)
If Nt = 1, then let ( St,Lt = 0 ) and ( ß2,g2=90° )
Height of c.o.g from bottom of base plate, Hcg = 5146 mm
Distance from lifting point to bottom of base plate, Hlp = 10790 mm
Distance from tailing/pivoted point to vessel axis, Ra = 1008 mm
Height of tailing/pivoted point from bottom of base plate, h = 300 mm
6 .2 DERIVATION OF COMPONENT FORCES
Empty weight of vessel, We ( @ 11,350 kg ) = 111,344 N
Impact load factor, p = 1.5
Design load, Wdsg ( = p.We ) = 167,015 N
Component forces for the lifting system are derived as follows :-
Ra.sin q - h.cos q + Hcg.cos q
Qu = Wdsg
Ra.sin q - h.cos q + Hlp.cos q
Qu Cx1 = C1.cos ß1
C1 =
Nl.sin ß1 Cy1 = C1.sin ß1
Cy1 Cx2 = C2.sin g1. cos q
C2 =
sin g1 Cy2 = C2.sin g1. sin q
Cz2 = C2.cos g1 + @al%C2
[ Hlp - Hcg ].cos q
Pu = Wdsg
Ra.sin q - h.cos q + Hlp.cos q
Pu Dx1 = D1.cos ß2
D1 =
Nt.sin ß2 Dy1 = D1.sin ß2
Dy1 Dx2 = D2.sin g2. sin q
D2 =
sin g2 Dy2 = D2.sin g2. cos q
Dz2 = D2.cos g2 + @at%D2
Component forces at lifting lugs during lifting from q = 0° to q = 90° are computed
as follows :-
q Qu C1 Cx1 Cy1 C2 Cx2 Cy2 Cz2
(°) (N) (N) (N) (N) (N) (N) (N) (N)
0.0 77155 44545 22273 38577 38577 38577 0 1929
5.0 77904 44978 22489 38952 38952 38804 3395 1948
10.0 78652 45410 22705 39326 39326 38729 6829 1966
15.0 79411 45848 22924 39705 39705 38352 10276 1985
20.0 80192 46299 23149 40096 40096 37678 13714 2005
25.0 81009 46770 23385 40504 40504 36709 17118 2025
30.0 81878 47272 23636 40939 40939 35454 20470 2047
35.0 82820 47816 23908 41410 41410 33921 23752 2070
40.0 83860 48417 24208 41930 41930 32120 26952 2096
45.0 85033 49094 24547 42516 42516 30064 30064 2126
50.0 86388 49876 24938 43194 43194 27765 33089 2160
55.0 87999 50806 25403 43999 43999 25237 36042 2200
60.0 89977 51948 25974 44988 44988 22494 38961 2249
65.0 92509 53410 26705 46254 46254 19548 41921 2313
70.0 95924 55382 27691 47962 47962 16404 45069 2398
75.0 100874 58240 29120 50437 50437 13054 48719 2522
80.0 108852 62846 31423 54426 54426 9451 53599 2721
85.0 124191 71701 35851 62095 62095 5412 61859 3105
90.0 167015 96426 48213 83508 83508 0 83508 4175
Component forces at tailing/pivoted point during lifting from q = 0° to q = 90° are computed
as follows :-
q Pu D1 Dx1 Dy1 D2 Dx2 Dy2 Dz2
(°) (N) (N) (N) (N) (N) (N) (N) (N)
0.0 89860 89860 0 89860 89860 0 89860 0
5.0 89111 89111 0 89111 89111 7767 88772 0
10.0 88363 88363 0 88363 88363 15344 87021 0
15.0 87605 87605 0 87605 87605 22674 84620 0
20.0 86824 86824 0 86824 86824 29695 81588 0
25.0 86006 86006 0 86006 86006 36348 77948 0
30.0 85137 85137 0 85137 85137 42568 73731 0
35.0 84195 84195 0 84195 84195 48292 68969 0
40.0 83155 83155 0 83155 83155 53451 63701 0
45.0 81982 81982 0 81982 81982 57970 57970 0
50.0 80627 80627 0 80627 80627 61764 51826 0
55.0 79017 79017 0 79017 79017 64727 45322 0
60.0 77038 77038 0 77038 77038 66717 38519 0
65.0 74507 74507 0 74507 74507 67526 31488 0
70.0 71091 71091 0 71091 71091 66804 24315 0
75.0 66141 66141 0 66141 66141 63887 17119 0
80.0 58163 58163 0 58163 58163 57280 10100 0
85.0 42825 42825 0 42825 42825 42662 3732 0
90.0 0 0 0 0 0 0 0 0
REMARK: When Nt=1, tailing point case, column D1, Dx1, Dy1 shall be omitted
, pivoted point case, column D1, Dx1, Dy1, Dz2 shall be omitted
LIFTING LUG DESIGN CALCULATION FOR VERTICAL VESSEL
7 .0 LIFTING LUG DESIGN CALCULATION
7 .1 GEOMETRIC DATA
Cy2
Ls
Cz2 x
d
q rL
Cx2
hL
P R
Lr tr htl
T.L. wL
hp
K r
hc Lw
Wp
x
tp tL Lp
LIFTING LUG FOR VERTICAL VESSEL
GEOMETRIC DATA FOR VERTICAL VESSEL
Lug radius, rL = 105 mm
Lug thickness, tL = 15 mm
Lug base width, wL = 210 mm
Diameter of hole, d = 50 mm
Diameter of cheek ring, dc = 80 mm
Cheek ring thickness, tc ( < 0.75 tL ) = 10 mm
Height from hole centre to base, Hl = 95 mm
Pad length, Lp = 265 mm
Pad width, Wp = 180 mm
Pad thickness, tp = 15 mm
GEOMETRIC DATA FOR VERTICAL VESSEL ONLY
Distance from lug hole to base, hL = 95 mm
Distance from base to T.L., htl = 145 mm
Distance from pad to T.L. hp = 100 mm
Distance, hc = 150 mm
Length of lug weld base, Lw = 150 mm
Length of shackle acting point from lug hole, Ls = 103.00 mm
Corner radius, r = 35.00 mm
Rib plate thickness, trp = 15 mm
Unbraced length of rib, Lrp = 90 mm
Cross sectional area of rib, Ar ( = wL.trp ) = 3150 mm²
Radius of gyration, Rx-x = 4.33 mm
7 .2 LIFTING LUG BASE PROPERTIES
Cross sectional area of lug, At ( = wL.tL ) = 3150 mm²
Section modulus, Zz-z ( = tL.wL²/6) = 110250 mm³
Section modulus, Zx-x ( = ( wL.tL² )/6 ) = 7875 mm³
7 .3 MATERIAL & MECHANICAL PROPERTIES
Material used = A 285 GR. C or EQ.
Specified yield stress, Sy = 206.84 N/mm²
Specified tensile stress, St = 379.21 N/mm²
Modulus of elasticity, E = 200000 N/mm²
7 .4 ALLOWABLE STRESSES
Allowable tensile stress, St.all ( = 0.45Sy ) = 93.08 N/mm²
Allowable bearing stress, Sbr.all ( = 0.9Sy ) = 186.16 N/mm²
Allowable shear stress, Ss.all ( = 0.4Sy ) = 82.74 N/mm²
Allowable compressive stress, Sc.all ( for vertical vessel rib only ) = 117.37 N/mm²
As per AISC code,
Slenderness ratio,
l = K.Lrp / Rx-x = 25
where
K = 1.2
Column slenderness ratio dividing elastic and inelastic buckling,
2p²E
Cc = = 138.15
Sy
When l £ Cc,
[ 1 - l² / 2Cc² ].Sy
Sc.all = (i) = 117.37 N/mm²
5/3 + 3l /8Cc - l³/8Cc³
When Cc £ l £ 120,
12p²E
Sc.all = (ii) = 1655.53 N/mm²
23 l²
When 120 £ l £ 200,
Smaller of (i) or (ii)
Sc.all = = 79.56 N/mm²
1.6 - l/200
In this case, the allowable stress Sc.all is = 117.37 N/mm²
7 .5 SHACKLES AND WIRE ROPE SLING SELECTION (BY OTHERS)
Shackle rating ( S.W.L ) : 8.50 tons
Type of shackle : Anchor type shackles
Pin size, Dp = 28.00 mm
Inside length of shackle, Lshk = 95.00 mm
Minimum breaking load ( MBL ) : 9.20 tons
Type of wire rope sling = Steel cored
Diameter of wire rope sling, Dwrs = 12 mm
VERTICAL VESSEL
LUGS EYE THICKNESS AND SIZING CALCS.
2 .1 STRESS CHECK AT LUG EYE
(a) Maximum combined force
Maximum combined force acting on lug eye, Fc = 83508 N
(b) Tensile Stress
Combined force, Fc = 83508 N
Cross sectional area of lug eye, Ae ( = [2rL -d].tL + 2[dc-d].tc ) = 3000 mm²
Tensile stress, St = 28 N/mm²
Since St < St.all, therefore the lug size is satisfactory.
(c) Bearing Stress
Combined force, Fc = 83508 N
Cross sectional area of lug eye, Ae ( = Dp.[ tL+2.( min(tL/2 , tc) )] ) = 840 mm²
Bearing stress, Sbr = 99 N/mm²
Since Sbr < Sbr.all,therefore the lug size is satisfactory.
(d) Shear Stress
Combined force, Fc = 83508 N
Cross sectional area of lug eye, Ae ( = (2rL-d).tL ) = 2400 mm²
Shear stress, Sbr = 35 N/mm²
Since Sbr < Sbr.all,therefore the lug size is satisfactory.
VERTICAL VESSEL - ROTATIONAL LIFTING
LUGS BASE THICKNESS AND SIZING CALCS.
5 .1 COMPONENT FORCES & MOMENTS
q Cx2 Cy2 Cz2 Mx2 My2 Mz2 P R
(°) (N) (N) (N) (N) (N) (N) (N) (N)
0 38577 0 1929 3664862 198674 183243 2542 50845
5 38804 3395 1948 3686366 199840 202506 2621 51143
10 38729 6829 1966 3679221 199452 221968 2701 51044
15 38352 10276 1985 3643476 197515 241524 2781 50548
20 37678 13714 2005 3579384 194040 261080 2861 49659
25 36709 17118 2025 3487398 189054 280553 2943 48382
30 35454 20470 2047 3368161 182590 299879 3025 46728
35 33921 23752 2070 3222503 174694 319019 3108 44707
40 32120 26952 2096 3051418 165419 337970 3194 42334
45 30064 30064 2126 2856046 154828 356781 3282 39623
50 27765 33089 2160 2637640 142988 375578 3375 36593
55 25237 36042 2200 2397513 129970 394614 3475 33262
60 22494 38961 2249 2136951 115845 414345 3587 29647
65 19548 41921 2313 1857050 100672 435599 3718 25764
70 16404 45069 2398 1558374 84480 459927 3881 21620
75 13054 48719 2522 1240140 67229 490477 4102 17205
80 9451 53599 2721 897841 48672 534558 4443 12456
85 5412 61859 3105 514136 27872 613527 5080 7133
90 0 83508 4175 0 0 826725 6837 0
5 .2 STRESS CHECK AT LUG BASE
q sx sy sz sbx sty sly sbz sc
( ° ) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²)
0 12.25 0.00 0.61 33.24 13.15 13.15 23.27 75.78
5 12.32 1.08 0.62 33.44 13.23 13.23 25.72 78.79
10 12.29 2.17 0.62 33.37 13.21 13.21 28.19 81.44
15 12.18 3.26 0.63 33.05 13.08 13.08 30.67 83.72
20 11.96 4.35 0.64 32.47 12.85 12.85 33.15 85.64
25 11.65 5.43 0.64 31.63 12.52 12.52 35.63 87.19
30 11.26 6.50 0.65 30.55 12.09 12.09 38.08 88.37
35 10.77 7.54 0.66 29.23 11.57 11.57 40.51 89.22
40 10.20 8.56 0.67 27.68 10.95 10.95 42.92 89.74
45 9.54 9.54 0.67 25.91 10.25 10.25 45.31 89.97
50 8.81 10.50 0.69 23.92 9.47 9.47 47.69 89.96
55 8.01 11.44 0.70 21.75 8.61 8.61 50.11 89.78
60 7.14 12.37 0.71 19.38 7.67 7.67 52.62 89.54
65 6.21 13.31 0.73 16.84 6.67 6.67 55.31 89.40
70 5.21 14.31 0.76 14.13 5.59 5.59 58.40 89.65
75 4.14 15.47 0.80 11.25 4.45 4.45 62.28 90.80
80 3.00 17.02 0.86 8.14 3.22 3.22 67.88 94.01
85 1.72 19.64 0.99 4.66 1.85 1.85 77.91 102.56
90 0.00 26.51 1.33 0.00 0.00 0.00 104.98 131.51
where
sx = Shearing stress ( = Cx2 / At )
sy = Tensile stress ( = Cy2 / At )
sz = Shearing stress ( = Cz2 / At )
sbx = Bending stress ( = Mx2 / Zz-z )
sty = Transverse shearing stress ( = ( My/(2.rL.tL²))[ 3+1.8( tL/(2.rL))] )
sly = Longitudinal shearing stress ( = ( My/(2.rL.tL²))[ 3+1.8( tL/(2.rL))] )
sbz = Bending stress, ( = Mz2 / Zx-x )
sc = Combined stress ( = ((sy+sbx+sbz)² + 3([sx + sz + sty]² + sly² ))½ )
Allowable combined stress, Sc ( = 0.75Sy ) = 155.13 N/mm²
Since sc < Sc, therefore the lug size is satisfactory.
5 .3 STRESS CHECK AT RIB
Maximum compressive force, Pmax = 6,837 N
Compressive stress,
Pmax
sc = = 2.17 N/mm²
Ar
Since sc < Sc.all, therefore the rib size is satisfactory.
VERTICAL VESSEL - ROTATIONAL LIFTING
WELD LEG AT LUG-TO-PAD CALCS.
6 .1 GEOMETRIC DATA
Weld leg , w = 10 mm
Weld throat thickness, tr = 7.07 mm
6 .2 MATERIAL & MECHANICAL PROPERTIES
Material : A 285 GR C
Specified yield stress, Sy = 206.84 N/mm²
Allowable stress, Sall ( = 0.6 S ) = 124.10 N/mm²
6 .3 WELD CROSS-SECTIONAL PROPERTIES
Area of weld, Aw ( = 2.tr. (2Lw + rL - 2r + 0.5pr) ) = 5514 mm²
Centre of gravity of weld, CG ( = tr. ( 2Lw² + rLw(p-2) + (3-p)r² )/ Aw
= ) 65.16 mm
Section Modulus at X axis, Zx-x = 296251 mm³
Polar moment of inertia of weld at centroid, Ji-i = 45512412 mm4
Radius, Ri-i ( = [ rL² + ( max (CG,(Lw-CG)))² ]½ ) = 134.99 mm
6 .4 WELD LEG DESIGN
q Cx2 Cy2 Cz2 sx stx sy sz stz
(°) (N) (N) (N) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²)
0 38577 0 1929 7.00 48.61 0.00 0.10 0.67
5 38804 3395 1948 7.04 48.90 0.62 0.11 0.67
10 38729 6829 1966 7.02 48.80 1.24 0.12 0.67
15 38352 10276 1985 6.96 48.33 1.86 0.13 0.67
20 37678 13714 2005 6.83 47.48 2.49 0.14 0.65
25 36709 17118 2025 6.66 46.26 3.10 0.15 0.64
30 35454 20470 2047 6.43 44.68 3.71 0.16 0.62
35 33921 23752 2070 6.15 42.74 4.31 0.18 0.59
40 32120 26952 2096 5.82 40.48 4.89 0.19 0.56
45 30064 30064 2126 5.45 37.88 5.45 0.20 0.52
50 27765 33089 2160 5.04 34.99 6.00 0.21 0.48
55 25237 36042 2200 4.58 31.80 6.54 0.22 0.44
60 22494 38961 2249 4.08 28.35 7.07 0.23 0.39
65 19548 41921 2313 3.54 24.63 7.60 0.24 0.34
70 16404 45069 2398 2.97 20.67 8.17 0.25 0.29
75 13054 48719 2522 2.37 16.45 8.83 0.27 0.23
80 9451 53599 2721 1.71 11.91 9.72 0.29 0.16
85 5412 61859 3105 0.98 6.82 11.22 0.34 0.09
90 0 83508 4175 0.00 0.00 15.14 0.45 0.00
where
sx = Shearing stress ( = Cx2 / Aw )
stx = Torsional stress ( = Cx2.(hL+htl+hp+hc-CG).Ri-i / J )
sy = Shearing stress ( = Cy2 / Aw )
sz = Shearing stress ( = Cz2.(Ls.sin q +hL)/((htl+hp+hc-CG).Aw) )
stz = Torsional stress ( = Cz2.Ls.cos q.rL / Ix-x ) = ( Cz2.ls.cos q / Zxx )
Since s.max < Sall, therefore the weld size is satisfactory.
VERTICAL VESSEL - ROTATIONAL LIFTING
WELD LEG AT PAD-TO-SHELL CALCS.
4 .1 GEOMETRIC DATA
Weld leg , w = 10 mm
Weld throat thickness, tr = 7.07 mm
Pad length, Lp = 265 mm
Pad width, Wp = 180 mm
4 .2 MATERIAL & MECHANICAL PROPERTIES
Material : A 240 TP 304L
Specified yield stress, Sy = 172.368 N/mm²
Allowable stress, Sall ( = 0.6 S ) = 103.42 N/mm²
4 .3 WELD CROSS-SECTIONAL PROPERTIES
Area of weld, Awp ( = 2.tr.( Lp+ Wp )) = 6292 mm²
Centre of gravity of weld, CGp ( = Wp/2 ) = 90.00 mm
Polar moment of inertia, Ji-ip ( = tr/6 (Lp³ + 3Wp.Lp² + Wp³ + 3Wp = 103836059 mm4
Radius, ri-ip ( = 0.5 (Wp² + Lp² )½ ) = 160 mm
Section modulus at X axis, Zx-xp (= (tr/(3Lp)).(Lp³+Wp.tr² +3WpLp= 502816 mm³
4 .4 WELD LEG DESIGN
q Cx2 Cy2 Cz2 sxp stxp syp szp stzp
(°) (N) (N) (N) (N/mm²) (N/mm²) (N/mm²) (N/mm²) (N/mm²)
0 38577 0 1929 6.13 25.59 0.00 0.09 0.40
5 38804 3395 1948 6.17 25.74 0.54 0.10 0.40
10 38729 6829 1966 6.15 25.69 1.09 0.11 0.40
15 38352 10276 1985 6.10 25.44 1.63 0.11 0.39
20 37678 13714 2005 5.99 24.99 2.18 0.12 0.39
25 36709 17118 2025 5.83 24.35 2.72 0.13 0.38
30 35454 20470 2047 5.63 23.52 3.25 0.14 0.36
35 33921 23752 2070 5.39 22.50 3.77 0.15 0.35
40 32120 26952 2096 5.10 21.31 4.28 0.16 0.33
45 30064 30064 2126 4.78 19.94 4.78 0.17 0.31
50 27765 33089 2160 4.41 18.42 5.26 0.18 0.28
55 25237 36042 2200 4.01 16.74 5.73 0.19 0.26
60 22494 38961 2249 3.57 14.92 6.19 0.20 0.23
65 19548 41921 2313 3.11 12.97 6.66 0.21 0.20
70 16404 45069 2398 2.61 10.88 7.16 0.22 0.17
75 13054 48719 2522 2.07 8.66 7.74 0.23 0.13
80 9451 53599 2721 1.50 6.27 8.52 0.25 0.10
85 5412 61859 3105 0.86 3.59 9.83 0.29 0.06
90 0 83508 4175 0.00 0.00 13.27 0.39 0.00
where
sxp = Shearing stress ( = Cx2 / Aw )
stxp = Torsional stress ( = Cx2.(hL+htl+hp+hc-CG).Ri-i / J )
syp = Shearing stress ( = Cy2 / Aw )
szp = Shearing stress ( = Cz2.(Ls.sin q +hL)/((htl+hp+hc-CG).Aw) )
stzp = Torsional stress ( = Cz2.Ls.cos q.rL / Ix-x )
Since s.max < Sall, therefore the weld size is satisfactory.
LIFTING TRUNNION CALCULATION FOR VERTICAL VESSEL
1 .0 LIFTING TRUNNION CALCULATION
1 .1 GEOMETRIC DATA
Trunnion size : 20"
Outside diameter, Do = 508 mm
Neck thickness, t = 25 mm
Manufacturing tolerance for pipe = 100 %
Nominal thickness, tn ( 100 % of t ) = 25.00 mm
Inside diameter, Di = 458 mm
Mean diameter of trunnion, Dm = 483 mm
Length of trunnion, L = 200 mm
Outer diameter of pad, Dpo = 900 mm
1 .2 LIFTING TRUNNION PROPERTIES
Cross sectional area of trunnion, At ( = 0.25.p.[ Do²-Di² ] ) = 37935 mm²
Section modulus, Z ( = p.[ Do4 - Di4 ] / ( 32.Do ) = 4366863 mm³
1 .3 MATERIAL & MECHANICAL PROPERTIES
Material used = A 516 GR 70
Specified yield stress, Sy = 261.82 N/mm²
Specified tensile stress, St = 482.30 N/mm²
Allowable combined stress, Sall ( = 0.75 Sy ) = 196.365 N/mm²
1 .5 LIFTING TRUNNION SIZING
(a) Maximum combined force
Maximum combined force acting on trunnion, Fc = 647460 N
(b) Bending Stress
Bending moment, M ( = Fc.L ) = 129492000 N
Bending stress, Sb ( = M / Z ) = 29.65 N/mm²
< 0.67 Sy OK.
(c) Shear Stress
Combined force, Fc = 647460 N
Shear stress, Ss ( = Fc / At ) = 17.07 N/mm²
< 0.4 Sy OK.
(d) Combined stress
Combined stress,
Ss = [ Sb² + 3.Ss² ]½ = 41.87 N/mm²
Since Ss < Sall , therefore the trunnion size i satisfactory.
2 .1 STRENGTH OF WELD AT TRUNNION
2 .2 GEOMETRIC DATA
Outer diameter of weld, Do = 508 mm
Outer weld leg , wlo = 25 mm
Outer weld throat thickness, tro = 17.68 mm
Inner diameter of weld, Di = 458 mm
Inner weld leg , wli = 25 mm
Inner weld throat thickness, tri = 17.68 mm
2 .2 MATERIAL & MECHANICAL PROPERTIES
Material : A 516 GR 70
Specified yield stress, Sy = 261.82 N/mm²
Allowable combined stress, Sall ( = 0.75Sy ) = 196.365 N/mm²
Allowable shear stress, Ss ( = 0.6 Sy ) = 157.09 N/mm²
Allowable tensile stress, St ( = 0.9 Sy ) = 235.64 N/mm²
2 .3 WELD CROSS-SECTIONAL PROPERTIES
Area of weld, Aw ( = p.[ Do.tro + Di.tri ] ) = 53640 mm²
Section modulus, Z ( = 0.25.p. [ Do².tro + Di².tri ] ) = 6494347 mm³
2 .4 WELD LEG DESIGN
(a) Stress due to component force
Component force, Fc = 647460 N
Shear stress, Ss = 12.07 N/mm²
(b) Stress due to moment M
Maximum moment, M ( = Fc.L ) = 129492000 Nmm
Bending stress, Sb = 19.94 N/mm²
(c) Combined stress
Combined stress,
Sc = [ Sb² + 3Ss² ]½ = 28.89 N/mm²
Since Sc < Sall, therefore the weld size is satisfactory.
Combined maximum shear,
Ss = [ ( Sb/2 )² + Ss² ]½ = 15.66 N/mm²
Since Ss < Ss.all, therefore the weld size is satisfactory.
Combined maximum tension,
St = ( Sb/2 ) + [ ( Sb/2 )² + Ss² ]½ = 25.62 N/mm²
Since St < St.all, therefore the weld size is satisfactory.
2 .1 STRENGTH OF WELD AT OUTER PAD
2 .2 GEOMETRIC DATA
Diameter of outer pad, Dpo = 900 mm
Weld leg , wl_p = 25 mm
Weld throat thickness, tr = 17.68 mm
2 .2 MATERIAL & MECHANICAL PROPERTIES
Material : A 516 GR 70
Specified yield stress, Sy = 261.82 N/mm²
Allowable combined stress, Sall ( = 0.75Sy ) = 196.365 N/mm²
Allowable shear stress, Ss ( = 0.6 Sy ) = 157.09 N/mm²
Allowable tensile stress, St ( = 0.9 Sy ) = 235.64 N/mm²
2 .3 WELD CROSS-SECTIONAL PROPERTIES
Area of weld, Aw ( = p.Dpo.tr ) = 49975 mm²
Section modulus, Z ( = 0.25.p.Dpo².tr ) = 11244349 mm³
2 .4 WELD LEG DESIGN
(a) Stress due to component force
Component force, Fc = 647460 N
Shear stress, Ss = 12.96 N/mm²
(b) Stress due to moment M
Maximum moment, M ( = Fc.L ) = 129492000 Nmm
Bending stress, Sb = 11.52 N/mm²
(c) Combined stress
Combined stress,
Sc = [ Sb² + 3Ss² ]½ = 25.22 N/mm²
Since Sc < Sall, therefore the weld size is satisfactory.
Combined maximum shear,
Ss = [ ( Sb/2 )² + Ss² ]½ = 14.18 N/mm²
Since Ss < Ss.all, therefore the trunnion size satisfactory.
Combined maximum tension,
St = ( Sb/2 ) + [ ( Sb/2 )² + Ss² ]½ = 19.94 N/mm²
Since St < St.all, therefore the trunnion size isatisfactory.
TAILING LUG DESIGN CALCULATION
1. 1 TAILING LUG DESIGN CALCULATION
1. 1.1 GEOMETRIC DATA
rL tc
d
dc
tL
wL
TAILING LUG FOR VERTICAL VESSEL
GEOMETRIC DATA FOR VERTICAL VESSEL
Lug radius, rL = 120 mm
Lug thickness, tL = 25 mm
Lug base width, wL = 300 mm
Diameter of hole, d = 68 mm
Height from hole centre to base, Hl = 150 mm
1. 1.2 TAILING LUG BASE PROPERTIES
Cross sectional area of lug, At ( = wL.tL ) = 7500 mm²
Section modulus, Zz-z ( = tL.wL²/6) = 375000 mm³
Section modulus, Zx-x ( = ( wL.tL² )/6 ) = 31250 mm³
1. 1.3 MATERIAL & MECHANICAL PROPERTIES
Material used = SS316L
Specified yield stress, Sy = 172.37 N/mm²
Specified tensile stress, St = 482.63 N/mm²
Modulus of elasticity, E = 200000 N/mm²
1. 1.4 ALLOWABLE STRESSES
Allowable tensile stress, St.all ( = 0.45Sy ) = 77.57 N/mm²
Allowable bearing stress, Sbr.all ( = 0.9Sy ) = 155.13 N/mm²
Allowable shear stress, Ss.all ( = 0.4Sy ) = 68.95 N/mm²
Allowable compressive stress, Sc.all ( for vertical vessel rib only ) = 98.85 N/mm²
1. 1.5 SHACKLES AND WIRE ROPE SLING SELECTION
Shackle rating ( S.W.L ) : 8.50 tons
Type of shackle : Anchor type shackles
Pin size, Dp = 28.00 mm
Inside length of shackle, Lshk = 95.00 mm
Minimum breaking load ( MBL ) : 9.20 tons
Type of wire rope sling = Steel cored
Diameter of wire rope sling, Dwrs = 12 mm
TAILING LUG DESIGN CALCULATION
VERTICAL VESSEL
LUGS EYE THICKNESS AND SIZING CALCS.
1. 2.1 STRESS CHECK AT LUG EYE
(a) Maximum combined force
Maximum combined force acting on lug eye, Fc = 89860 N
(b) Tensile Stress
Combined force, Fc = 89860 N
Cross sectional area of lug eye, Ae ( = [2rL -d].tL + 2[dc-d].tc ) = 4300 mm²
Tensile stress, St = 21 N/mm²
Since St < St.all, therefore the lug size is satisfactory.
(c) Bearing Stress
Combined force, Fc = 89860 N
Cross sectional area of lug eye, Ae ( = Dp.[ tL+2.( min(tL/2 , tc) )] ) = 700 mm²
Bearing stress, Sbr = 128 N/mm²
Since Sbr < Sbr.all,therefore the lug size is satisfactory.
(d) Shear Stress
Combined force, Fc = 89860 N
Cross sectional area of lug eye, Ae ( = (2rL-d).tL ) = 4300 mm²
Shear stress, Sbr = 21 N/mm²
Since Sbr < Sbr.all,therefore the lug size is satisfactory.
HORIZONTAL VESSEL - TRANSLATIONAL LIFTING
LUGS BASE THICKNESS AND SIZING CALCS.
1. 2.2 STRESS CHECK AT LUG BASE
(a) Component forces and moments
Fy = 89860 N
My = 0 Nmm
Fz = 4493 N
Ls
Fx = 67526 N
Mz = 1136732 Nmm
Mx = 10128905 Nmm
Component force, Fx = 67526 N
Component force, Fy = 89860 N
Component force, Fz = 4493 N
Component moment, Mx = 10128905 Nmm
Component moment, My = 0 Nmm
Component moment, Mz = 1136732 Nmm
TAILING LUG DESIGN CALCULATION
(b) Stress due to force Fx
Shearing stress, sx = 9.00 N/mm²
(c) Stress due to force Fy
Tensile stress, sy = 11.98 N/mm²
(d) Stress due to force Fz
Shearing stress, sz = 0.60 N/mm²
(e) Stress due to moment Mx
Bending stress, sbx = 27.01 N/mm²
(f) Stress due to moment My
Transverse shearing stress, sty ( = (My/(2.rL.tL²))[ 3+1.8( tL/(2.rL))] = 0.00 N/mm²
Longitudinal shearing stress, sly ( = (My/(2.rL.tL²))[ 3+1.8( tL/(2.rL))]
= 0.00 N/mm²
(g) Stress due to moment Mz
Bending stress, sbz = 36.38 N/mm²
(h) Combined Stresses
Combined stresses,
Sc = [ (sy+sbx+sbz )² + 3.(sx + sz + sty+ sly )² ]½ = 77.18 N/mm²
Allowable combined stress, Sc.all ( = 0.75Sy ) = 129.28 N/mm²
Since Sc < Sc.all, therefore the lug size is satisfactory.
WELD LEG AT LUG-TO-SKIRT SIZING CALCS.
1. 3.1 GEOMETRIC DATA
Weld leg , wl_p = 7 mm
Weld throat thickness, tr = 4.95 mm
Lug base width, wL = 300 mm
Lug thickness, tL = 25 mm
1. 3.2 MATERIAL & MECHANICAL PROPERTIES
Material : A 285 Gr C
Specified yield stress, Sy = 206.84 N/mm²
Allowable stress, Sall ( = 0.6 Sy ) = 124.11 N/mm²
1. 3.3 WELD CROSS-SECTIONAL PROPERTIES
Area of weld, Aw ( = 2.tr.( wL+tL )) = 3217 mm²
Section modulus at Z axis, Zz-z ( = tr.wL² /3 + tL.tr.wL ) = 185588 mm³
Section modulus at X axis, Zx-x ( = tr.tL² /3 + tL.tr.wL ) = 38149 mm³
Polar moment of inertia, Ji-i ( = tr/6 ( wL³ + 3tL.wL² + tL³ + 3tL².wL=) ) 28314982 mm4
Radius, ri-i ( = 0.5 [ tL² + wL² ]½ ) = 151 mm
TAILING LUG DESIGN CALCULATION
1. 3.4 WELD LEG DESIGN
Fy
My
Mz
Fx
Mx
Fz
1. 3.5 STRESS CHECK AT WELD LEG
(a) Stress due to force Fx
Component force, Fx = 67526 N
Shear stress, Ssx = 20.99 N/mm²
(b) Stress due to force Fy
Component force, Fy = 89860 N
Tensile stress, Sty = 27.93 N/mm²
(c) Stress due to force Fz
Component force, Fz = 4493 N
Shear stress, Ssz = 1.40 N/mm²
(d) Stress due to moment Mx
Component moment, Mx = 10128905 Nmm
Bending stress, Sbx = 54.58 N/mm²
(e) Stress due to moment My
Component moment, My = 0 Nmm
Torsional stress, Ssy = 0.00 N/mm²
(f) Stress due to moment Mz
Component moment, Mz = 1.1367E+06 Nmm
Bending stress, Sbz = 29.80 N/mm²
(g) Combined Stresses
Combined stresses,
Sc = ((Sty + Sbx + Sbz )² + 3.(Ssx + Ssy + Ssz)² )½ = 118.82 N/mm²
Since Sc < Sall, therefore the weld size is satisfactory.
STRENGTH OF BASE BLOCK CALCULATION
2 .0 STRENGTH OF BASE BLOCK CALCULATION
2 .1 COMPONENT FORCE ACTING ON BASE BLOCK
Rf
C.O.G
Wdsg
Hcg
Hlp
Empty weight of vessel, We ( 11,350 kg ) = 111,344 N
Impact load factor, p = 1.5
Design load, Wdsg ( = p.We ) = 167,015 N
Height of c.o.g from bottom of base plate, Hcg = 5146 mm
Distance from lifting point to bottom of base plate, Hlp = 10790 mm
Height of tailing/pivoted point from bottom of base plat= 300 mm
Reaction load acting on base block of skirt,
Hlp-Hcg
Rf = Wdsg = 89,860 N
Hlp - h
2 .2 GEOMETRIC DATA
Do_sk Le Dm_na
tsk Datum
1
neutral axis
w1
2
tr h
Outside diameter of skirt, Do_sk = 2942 mm
Skirt thickness, tsk = 25 mm
Top stiffener ring width, w1 = 125 mm
Top stiffener ring thickness, tr = 25 mm
Height of base block, h = 200 mm
Effective length of skirt as stiffener, Le ( = 0.55 {Do_sk.tsk}
= ½+ tr374
+ h mm
)
2 .3 MATERIAL AND MECHANICAL PROPERTIES
Material : SA516 GR 70
Specified minimum yield stress, Sy = 262.07 N/mm²
Specified minimum tensile stress, St = 482.76 N/mm²
2 .4 DETERMINE LOCATION OF CENTRE OF GRAVITY ( COG )
A Y AY (e1 - Y )A.(e1-Y)² Io
(mm²) (mm) (mm³) (mm) (mm4) (mm4)
1 9354 13 ### 19 ### 487188
2 3125 88 ### 56 ### 4069010
TOTAL 12479 ### ### 4556199
Distance from centre of section to datum, e1 = 31 mm
Dimension, e2 = 119 mm
Total moment of inertia, Ix-x = 17732402 mm4
Diameter of neutral axis, Dm_na = 2955 mm
Lease section modulus of section, Zxx = 149365 mm³
2 .5 BENDING STRESS OF BASE BLOCK
Number of tailing lug, N : 1
BASED ON 1 TAILING LUG WITH CROSS BRACING
Number of tailing lug, N = 1
Reaction load acting on one tailing lug, W = 89860.255 N
Mean radius of combined skirt & base block section = 1477.2815 mm
Cross sectional area of combined skirt & base block = 12479.014 mm²
Section modulus of combined skirt & base block sect= 149365.15 mm³
Ang BendingTangentialBendingTangential
Bending Axial Summation Allowable
Judgement
le Moment Force Moment Force Stress Stress of Stress
Coefficient
Coefficient stresses
q° Cm Cf M F sb st scom Sall
0 -0.03415 ### ### 14,302 30.36 1.15 31.50 235.86 OK.
10 -0.01485 ### ### 15,601 13.20 1.25 14.45 235.86 OK.
20 -0.00081 ### -106,906 15,574 0.72 1.25 1.96 235.86 OK.
30 0.00800 ### 1,062,138 14,258 7.11 1.14 8.25 235.86 OK.
40 0.01201 ### 1,594,028 11,758 10.67 0.94 11.61 235.86 OK.
50 0.01206 ### 1,600,642 8,237 10.72 0.66 11.38 235.86 OK.
60 0.00934 ### 1,239,627 3,908 8.30 0.31 8.61 235.86 OK.
70 0.00531 ### 704,813 -972 4.72 0.08 4.80 235.86 OK.
80 0.00162 ### 214,766 -6,120 1.44 0.49 1.93 235.86 OK.
90 0.00000 ### 0 ### 0.00 0.90 0.90 235.86 OK.
100 -0.00162 ### -214,766 6,120 1.44 0.49 1.93 235.86 OK.
110 -0.00531 ### -704,813 972 4.72 0.08 4.80 235.86 OK.
120 -0.00934 ### ### -3,908 8.30 0.31 8.61 235.86 OK.
130 -0.01206 ### ### -8,237 10.72 0.66 11.38 235.86 OK.
140 -0.01201 ### ### ### 10.67 0.94 11.61 235.86 OK.
150 -0.00800 ### ### ### 7.11 1.14 8.25 235.86 OK.
160 0.00081 ### 106,906 ### 0.72 1.25 1.96 235.86 OK.
170 0.01485 ### 1,971,926 ### 13.20 1.25 14.45 235.86 OK.
180 0.03415 ### 4,534,031 ### 30.36 1.15 31.50 235.86 OK.
BEAM STIFFENER BRACE SIZING DURING ROTATIONAL LIFTING FROM 0° TO 90°
2 .6 STRENGTH CALCULATION FOR REINFORCING ELEMENT
2 .6.1 MEMBER SIZE AND PROPERTIES
Member size : I 254x254x8.64tx72.92kg/m
Unit weight, wb = 72.92 kg/m
Depth of section, D = 253.50 mm
Width of section, B = 254.00 mm
Web thickness, t = 8.64 mm
Flange thickness, T = 14.20 mm
Cross sectional area, Ac = 9290 mm²
Radius of gyration, Ry-y = 4.35 mm
Inner depth of section, h = 225.10 mm
Section modulus, Zx-x = 895000 mm³
Unbraced length of member, L = 2892 mm
2 .6.2 MATERIAL AND MECHANICAL PROPERTIES
Material : A 36
Specified minimum yield stress, Sy = 248.04 N/mm²
Specified minimum tensile stress, St = 399.62 N/mm²
Modulus of elasticity, E = 202142 N/mm²
2 .6.3 ALLOWABLE STRESSES
Tailing or Pivoted lifting ? ( Tailing / Pivoted ) : Tailing
Allowable tensile stress, Ft ( = (4/3) x 0.6Sy ) = 198.43 N/mm²
Allowable bending stress, Fb ( = (4/3) x 0.67Sy ) = 221.58 N/mm²
2 .6.4 STRESSES AND COMBINED STRESSES
Height of hole centre of tailing lug to base, hL = 200 mm
q Wth sct Wtv M sb U Judgement
(°) (N) (N/mm²) (N) (Nmm) (N/mm²) (-)
Tensile Case
0.0 89860 9.67 0 0 0.00 0.0487 OK.
5.0 88772 9.56 7767 2E+06 1.74 0.0560 OK.
### 87021 9.37 15344 3E+06 3.43 0.0627 OK.
### 84620 9.11 22674 5E+06 5.07 0.0688 OK.
### 81588 8.78 29695 6E+06 6.64 0.0742 OK.
### 77948 8.39 36348 7E+06 8.12 0.0789 OK.
### 73731 7.94 42568 9E+06 9.51 0.0829 OK.
### 68969 7.42 48292 1E+07 10.79 0.0861 OK.
### 63701 6.86 53451 1E+07 11.94 0.0885 OK.
### 57970 6.24 57970 1E+07 12.95 0.0899 OK.
### 51826 5.58 61764 1E+07 13.80 0.0904 OK.
### 45322 4.88 64727 1E+07 14.46 0.0899 OK.
### 38519 4.15 66717 1E+07 14.91 0.0882 OK.
### 31488 3.39 67526 1E+07 15.09 0.0852 OK.
### 24315 2.62 66804 1E+07 14.93 0.0806 OK.
### 17119 1.84 63887 1E+07 14.28 0.0737 OK.
### 10100 1.09 57280 1E+07 12.80 0.0632 OK.
### 3732 0.40 42662 9E+06 9.53 0.0450 OK.
### 0 0.00 0 1E-08 0.00 0.0000 OK.