2013 Dekamin
2013 Dekamin
Commercial chitosan – without any post-modification with active Bronsted or Lewis acid centers – was
found to be a highly efficient renewable and recoverable bio-polymer catalyst for the rapid and con-
Received 27th November 2012,
venient synthesis of α-amino nitriles or imines from aromatic aldehydes and amines under mild reaction
Downloaded by Duke University on 27 February 2013
Introduction
In recent years, development of new processes that minimize
pollution in chemical synthesis has received considerable
attention due to growing environmental concerns. In this
respect, heterogeneous catalysis has emerged as a useful tool
to reduce waste production with regard to simplicity of the pro-
cesses, lower contamination of the products with the active cata-
lytic species, avoiding the use of toxic solvents, separation and Scheme 1 Chemical structure of chitosan (1a) and chitin (1b).
recycling of the catalysts, and potential to apply continuous
flow versus batch configuration on technical scales.1,2 For this
purpose, metallic species or other catalytic active centers have cosmetics, water treatment, membranes, fuel cells, hydrogels,
been often immobilized on inorganic materials such as SiO2, adhesives, and surface conditioners. Indeed, chitosan as a
Al2O3, ZrO2, TiO2 or MgF2, synthetic organic polymers or their linear polyamine is the most important derivative of chitin,
hybrid materials.1–5 Further development of this strategy has the second most abundant natural polymer in the world after
resulted in exploring nano-ordered heterogeneous catalysts.6–8 celloluse. Chitin itself is a byproduct of the fishery industry
On the other hand, biopolymers such as starch,9 cellulose,10 (Scheme 1).12
chitosan2 or wool11 have been used as a support in hetero- The presence of free NH2 groups in chitosan and its insolu-
geneous catalytic systems very recently. However, extensive pro- bility in most organic compounds and pure water explains the
gress in designing more sustainable chemical processes takes greater potential of chitosan than chitin for use in different
place if biopolymers themselves without any post-modification areas of the chemical industry including heterogeneous cata-
can be used as heterogeneous catalysts. In this context, chito- lysis. Since chitosan has both hydroxyl and amino groups, it can
san can play a major role as a natural, biodegradable, and bio- be modified chemically into many forms and can participate
compatible polymer. Literature survey shows that a wide range in different types of chemical reactions as a suitable support
of applications have been reported for chitosan in different for different catalytic species.2,13 Furthermore, the use of small
fields such as medicine, drug delivery, food packaging, natural or synthetic organic molecules, namely organocata-
lysis, has provided attractive alternatives to the more traditional
metal-catalyzed variants and in many cases has obviated the
Pharmaceutical and Biologically-Active Compounds Research Laboratory, need for prior activation of the reaction components in sepa-
Department of Chemistry, Iran University of Science and Technology, rate steps, especially for asymmetric transformations in recent
Tehran 16846-13114, Iran. E-mail: mdekamin@iust.ac.ir
† Electronic supplementary information (ESI) available: Experimental details, IR
years.14 Hence, chitosan, as a natural poly-glucosamine, can
and 1H NMR spectral data for some of the prepared imines. See DOI: be explored without any post-modification, as a mild bifunc-
10.1039/c3gc36901c tional heterogeneous catalyst in organic synthesis. In this
This journal is © The Royal Society of Chemistry 2013 Green Chem., 2013, 15, 811–820 | 811
View Article Online
812 | Green Chem., 2013, 15, 811–820 This journal is © The Royal Society of Chemistry 2013
View Article Online
Table 1 Screening of chitosan (1a) loading for the three-component Strecker group of chitosan (1a) by the trimethylsilyl (TMS) group,31g as
reaction of 4-chlorobenzaldehyde (2a) and aniline (3a) with TMSCNa a byproduct of the Strecker reaction promoted with TMSCN.
These observations were confirmed by the appearance of
characteristic sharp peaks of Si–O–C and Si–CH3 vibrations at
1157–1018, 850–827 and 752 cm−1 in the FT IR spectrum of
the recycled catalysts after the first to third runs (see ESI†).41
On the other hand, the high hygroscopic property of chitosan
Amount of or its protected derivatives has been documented.42 Therefore,
Entry chitosan (1a)/mg Solvent Time/min Yieldb/%
a part of the catalytic activity of 1a can be interpreted based on
1 — EtOH 24 h Trace its affinity toward water as another byproduct of the Strecker
2 12 EtOH 20 91 reaction. Both physical adsorption and chemical absorption
3 6 EtOH 45 76
4 4 EtOH 60 64 may be responsible for this property (Scheme 3).
5 12 — 2 98 Encouraged by these results, the optimized conditions were
Published on 16 January 2013 on http://pubs.rsc.org | doi:10.1039/C3GC36901C
c
The recycled catalyst 1a after the first run was used. d The recycled the optimized reaction conditions. The reaction time for the
catalyst 1a after the second run was used. e The recycled catalyst 1a Strecker reaction catalyzed by chitosan (1a) is generally shorter
after the third run was used.
compared to previous methodologies that require a Bronsted
or Lewis acid center in the structure of their catalysts.8,27–30
reaction in EtOH (Table 1, entries 5–6). Therefore, 6 mg of chito- Interestingly, solid products 4a–l precipitated out of the reac-
san per 1 mmol of 2a was used as optimized catalyst loading tion mixture. On the other hand, the catalyst is not soluble in
under solvent-free conditions in the next experiments for water and boiling EtOH. Therefore, it was simply separated
investigating the reusability of the catalyst in the model reac- from the desired products during their recrystallization from
tion (Table 1, entries 7–9). The catalytic efficiency of 1a showed EtOH or usual work-up.8 However, an interesting feature was
a gradual decrease after the second run when it was recycled. observed for the Strecker reaction catalyzed by chitosan (1a) in
This might be attributed to gradual silylation of the hydroxyl complete contrast to the heterogeneous or homogeneous
Scheme 3 Preferable mechanism for the Strecker reaction of carbonyl compounds (2) and amines (3) with TMSCN or formation of imines 5 catalyzed by chitosan 1a.
This journal is © The Royal Society of Chemistry 2013 Green Chem., 2013, 15, 811–820 | 813
View Article Online
Table 2 Three-component Strecker reaction of different aldehydes 2 and amines 3 with TMSCN catalysed by chitosan (1a) under optimized conditionsa
15 Furfural 2g p-Toluidine 3b 8h — — —
814 | Green Chem., 2013, 15, 811–820 This journal is © The Royal Society of Chemistry 2013
View Article Online
Table 2 (Contd.)
16 Thiophen-2-carbaldehyde 2h p-Toluidine 3b 7h — — —
17 4-Fluorobenzaldehyde 2l Aniline 3a 8h — — —
18 PhCH2CH2CHO 2m Aniline 3a 9h — — —
Published on 16 January 2013 on http://pubs.rsc.org | doi:10.1039/C3GC36901C
19 Octanal 2n Aniline 3a 8h — — —
a b
Reaction conditions: 1 mmol aldehyde, 1 mmol amine, 1.2 eq. TMSCN, 6 mg chitosan, solvent-free conditions, r.t. Isolated yields. c The
Downloaded by Duke University on 27 February 2013
catalytic systems developed by us8 or other research activate both imine and TMSCN to produce α-amino nitriles 4
groups.27–30 Indeed, the nature of substituents on the aromatic through hydrogen bonding and expanding of the d-orbital of
ring of the aldehyde does not determine the overall trend of the silicon atom in TMSCN (intermediate IV), respectively. In a
the reactivity. As shown in Table 2, the reaction was completed similar pathway, TMSCN can be activated by the water mole-
smoothly to afford those α-amino nitriles 4 which are solid cules produced as imine formation byproduct (intermediate
(entries 1–12). It is noteworthy that only α-amino nitrile 4e V). It should be noted that formation of imines 5 from alde-
which is an oil at r.t. was prepared under the optimized reac- hydes 2 and amines 3 and subsequent addition of the cyanide
tion conditions (Table 2, entry 13). Furthermore, the imine anion from complexes IV or V to afford the corresponding
intermediate 5d was observed in the reaction of (E)-cinnam- α-amino nitriles 4 is faster than direct cyanation of carbonyl
aldehyde (2k) and aniline with TMSCN (entry 14). Also, 3-phenyl compounds.14b,31a–f
propanal (2m) and octanal (2n), which on reaction with To show the efficiency of the chitosan biopolymer for the
aniline and TMSCN give oily products, were not involved in Strecker reaction, Table 3 compares some of the obtained
the reaction (entries 18–19). On the other hand, altering the results in this study with those methodologies which have
amine component to benzyl amine (3c) did not afford the cor- been reported using heterogeneous catalysts containing active
responding desired products 4 in all the studied cases using Lewis or Bronsted acid centers.7,8,10,28,30 It is obvious that a
aldehydes 2a, 2d and 2e. Benzyl amine usually produces oily superior methodology in terms of the use of a renewable bio-
products in the Strecker reaction.8,26b This feature might be polymeric catalyst without any post-modification, catalyst
attributed to the strength of hydrogen bonding in the α-amino loading and a short reaction time in most cases has been
nitriles 4 or its corresponding imine 5 (Scheme 3) to interact developed.
with the hydroxyl and amine groups in the chitosan structure,
and symmetry effects in their solid lattice.
According to the obtained results and our previous studies Synthesis of imines (5) catalyzed by chitosan (1a)
on the Strecker reaction,8 cyanosilylation of carbonyl com- Since imines 5 are known as the Strecker reaction intermedi-
pounds with TMSCN, and protection of the hydroxyl group in ates,8 after our observation of the reaction of cinnamaldehyde,
alcohols and phenols with hexamethyldisilazane (HMDS),14b,31 aniline and TMSCN (Table 2, entry 14) which afforded the cor-
a plausible mechanism for the Strecker reaction catalyzed by responding imine, we decided to investigate the imine for-
chitosan (1a) is shown in Scheme 3. The free hydroxyl and mation from carbonyl compounds 2 and amines 3 in the
amino groups distributed on the surface of chitosan in high presence of chitosan (1a) under similar conditions. The results
concentrations activate the carbonyl group of the aldehydes (2) of this part of our studies on the synthesis of imines 5 are
through hydrogen bonding for nucleophilic attack of amines summarized in Table 4. In contrast to the Strecker reaction in
(3) to produce the corresponding imine 5. Furthermore, both which on addition of TMSCN the reaction mixture liquefies
physical adsorption and chemical absorption of the produced completely at room temperature, the reaction did not go to
water can be considered as a driving force for promoting the completion when at least one of the reaction components was
imine formation in its equilibrium with the carbonyl com- a solid. Therefore, a minimum amount of EtOH was added to
pound (2) and amine (3) or even intermediate II. In the next the reaction mixture to dissolve the produced melts and to
step, the hydroxyl groups on the surface of chitosan can facilitate their stirring.
This journal is © The Royal Society of Chemistry 2013 Green Chem., 2013, 15, 811–820 | 815
View Article Online
Table 3 Comparison of the catalytic efficiency of chitosan with other heterogeneous catalysts for the synthesis of α-amino nitriles 4a and 4da
1 Chitosan a
— 6 3 95 This work
2 Chitosanb — 6 10 95 This work
3 Cellulose sulfuric acidb CH3CN 100 45 94 28d
4 XSAb CH3CN 100 65 97 10
5 Sn-montmorillonitea — 10 6 90 28a
6 Sn-montmorilloniteb — 10 6 96 28a
7 MCM-41-SO3Ha EtOH 96% 5 30 98 8a
8 MCM-41-SO3Hb EtOH 96% 5 70 97 8a
9 PEG-OSO3Ha H2O 180 10 92 30
10 PEG-OSO3Hb H2O 180 10 91 30
11 B-MCM-41a EtOH 96% 50 90 98 8b
12 B-MCM-41b EtOH 96% 50 2h 96 8b
Ga-TUDa —
Published on 16 January 2013 on http://pubs.rsc.org | doi:10.1039/C3GC36901C
13 20 30 92 7
14 Ga-TUDb — 20 30 95 7
15 PVP-SO2 a CH2Cl2 100 6h 89 4
16 PVP-SO2 b CH2Cl2 100 — 86 4
a b
4-Chlorobenzaldehyde (1 mmol), aniline (1 mmol) and TMSCN (1.2 eq.) were used at r.t. Benzaldehyde (1 mmol), aniline (1 mmol) and
TMSCN (1.2 mmol) were used at r.t.
Downloaded by Duke University on 27 February 2013
Table 4 Preparation of different imines 5 by the reaction of corresponding aldehydes 2 and amines 3 catalysed by chitosan (1a)a
Entry Aldehyde (2) Amine (3) Products Time/min Yieldb/% Mp/°C MpRef
816 | Green Chem., 2013, 15, 811–820 This journal is © The Royal Society of Chemistry 2013
View Article Online
Table 4 (Contd.)
Entry Aldehyde (2) Amine (3) Products Time/min Yieldb/% Mp/°C MpRef
a
Reaction conditions: 1 mmol aldehyde, 1 mmol amine and 6 mg chitosan in EtOH (0.5 mL) at r.t. b Isolated yields.
This journal is © The Royal Society of Chemistry 2013 Green Chem., 2013, 15, 811–820 | 817
View Article Online
using authentic samples,8 the reaction mixture was recrystal- 5 (a) A. Kirschning, H. Monenschein and R. Wittenberg,
lized from EtOH 96% (5 mL) to afford pure desired α-amino Angew. Chem., Int. Ed., 2001, 40, 650–679; (b) E. Kemnitz,
nitriles 4. S. Wuttke and S. M. Coman, Eur. J. Inorg. Chem., 2011,
4773–4794.
General procedure for the synthesis of imines 5 catalysed by 6 (a) A. Corma, Chem. Rev., 1997, 97, 2373–2419; (b) D. T. On,
chitosan (1a) D. Desplantier-Giscard, C. Danumah and S. Kaliaguine,
A mixture of aldehyde 2 (1 mmol), amine 3 (1 mmol) and 6 mg Appl. Catal., A, 2003, 253, 545–602; (c) A. Taguchi and
chitosan was dissolved in 0.5 mL of EtOH 96%. The obtained F. Schuch, Microporous Mesoporous Mater., 2005, 77, 1–45;
mixture was stirred at room temperature for the times indi- (d) A. Corma and D. Kumar, Stud. Surf. Sci. Catal., 1998,
cated in Table 4. After completion of the reaction, as indicated 117, 201–222; (e) A. Molnar and R. Bulcsu, Curr. Org.
by precipitation of solid products from the liquid reaction Chem., 2006, 10, 1697–1726.
mixture and by TLC experiments using authentic samples,8 7 (a) B. Karmakar, A. Sinhamahapatra, A. Panda, J. Banerji
the crude product was recrystallized from EtOH 96% (5 mL) to and B. Chowdhury, Appl. Catal., A, 2011, 392, 111–117;
Published on 16 January 2013 on http://pubs.rsc.org | doi:10.1039/C3GC36901C
afford pure desired imines 5. (b) K. Iwanami, H. Seo, J. C. Choi, T. Sakakura and
H. Yasuda, Tetrahedron, 2010, 66, 1898–1901; (c) B. Karimi
and A. Safari, J. Organomet. Chem., 2008, 693, 2967–2970.
Conclusion 8 (a) M. G. Dekamin and Z. Mokhtari, Tetrahedron, 2012, 68,
922–930; (b) M. G. Dekamin, J. Mokhtari and Z. Karimi, Sci.
Downloaded by Duke University on 27 February 2013
In summary, a new, simple, efficient and environmentally Iran. Trans. C: Chem. Chem. Eng., 2011, 18, 1356–1364;
benign method for the synthesis of α-amino nitriles and (c) M. R. Naimi-Jamal, E. Ali and M. G. Dekamin, Sci. Iran.
imines by the use of renewable and heterogeneous chitosan Trans. C: Chem. Chem. Eng., 2013, DOI: 10.1016/j.
biopolymer without any post-modification has been described. scient.2013.02.007.
Low catalyst loading, clean reaction profiles, the use of a one- 9 V. Budarin, J. H. Clark, F. E. I. Deswarte, J. J. E. Hardy,
pot and multi-component procedure for the synthesis of A. J. Hunt and F. M. Kerton, Chem. Commun., 2005,
α-amino nitriles, reusability of the catalyst and operational 2903–2905.
simplicity are the important features of this methodology. 10 A. Shaabani and A. Maleki, Appl. Catal., A, 2007, 331, 149–
151.
11 S. Wu, H. Ma, X. Jia, Y. Zhong and Z. Lei, Tetrahedron,
Acknowledgements 2011, 67, 250–256.
We are grateful for financial support from The Research 12 (a) G. A. Dee, O. Rhode and R. Wachter, Cosmet. Toiletories,
Council of Iran University of Science and Technology (IUST), 2001, 116, 39–44; (b) K. R. Reddy, K. Rajgopal,
Iran (Grant No. 160/1085). C. U. Maheswari and M. L. Kantam, New J. Chem., 2006, 30,
1549–1552.
13 (a) D. Klemm, F. Kramer, S. Moritz, T. Lindström,
Notes and references M. Ankerfors, D. Gray and A. Dorris, Angew. Chem., Int. Ed.,
2011, 50, 5438–5466; (b) H. Honarkar and M. Barikani,
1 (a) J. H. Clark and C. N. Rhodes, Clean Synthesis Using Monatsh. Chem., 2009, 140, 1403–1420; (c) K. Landfester,
Porous Inorganic Solid Catalysts and Supported Reagents, Angew. Chem., Int. Ed., 2009, 48, 4488–4507.
Royal Society of Chemistry, Cambridge, UK, 2000; 14 (a) J. T. Mohr, M. R. Krout and B. M. Stoltz, Nature, 2008,
(b) J. M. Thomas and W. J. Thomas, Principles and Practice 455, 323–332; (b) M. G. Dekamin, Z. Karimi and
of Heterogeneous Catalysis, VCH, Weinheim, 1997; M. Farahmand, Catal. Sci. Technol., 2012, 2, 1375–1381;
(c) K. Wilson and J. H. Clark, Pure Appl. Chem., 2000, 72, (c) E. Guibal, Prog. Polym. Sci., 2005, 30, 71–109;
1313–1320. (d) S. Y. Park, K. S. Marsh and J. W. Rhim, J. Food Sci.,
2 M. Chtchigrovsky, A. Primo, P. Gonzalez, K. Molvinger, 2002, 67, 194–197; (e) B. List, R. A. Lerner and C. F. Barbas,
M. Robitzer, F. Quignard and F. Taran, Angew. Chem., Int. J. Am. Chem. Soc., 2000, 122, 2395–2396.
Ed., 2009, 48, 5916–5920, and references cited therein. 15 E. Guibal, Prog. Polym. Sci., 2005, 30, 71–109.
3 (a) G. Zhu, C. Wang, Y. Zhang, N. Guo, Y. Zhao, R. Wang, 16 B. Ganem, Acc. Chem. Res., 2009, 42, 463–472.
S. Qiu, Y. Wei and R. H. Baughman, Chem.–Eur. J., 2004, 17 Y. M. Shafran, V. S. Bakulev and V. S. Mokrushin, Russ.
10, 4750–4754; (b) Q. F. Zhang, T. C. H. Lam, X. Y. Yi, Chem. Rev., 1989, 58, 148–162.
E. Y. Y. Chan, W. Y. Wong, H. H. Y. Sung, I. D. Williams 18 M. B. Smith and J. March, March’s Advanced Organic Chem-
and W. H. Leung, Chem.–Eur. J., 2005, 11, 101–111; istry, John Wiley, New York, 5th edn, 2001, ch. 16, p. 1240.
(c) J. H. Clark, M. G. Dekamin and F. M. Moghaddam, 19 S. K. De and R. A. Gibbs, Tetrahedron Lett., 2004, 45, 7407–
Green Chem., 2002, 4, 366–368. 7408.
4 G. A. Olah, T. Mathew, C. Panja, K. Smith and 20 (a) Y. Mikami, K. Takahashi, K. Yazawa, T. Arai,
G. K. S. Prakash, Catal. Lett., 2007, 114, 1–7, and references M. Namikoshi, S. Iwasaki and S. Okuda, J. Biol. Chem.,
cited therein. 1985, 260, 344–348; (b) R. O. Duthaler, Tetrahedron, 1994,
818 | Green Chem., 2013, 15, 811–820 This journal is © The Royal Society of Chemistry 2013
View Article Online
50, 1539–1650; (c) E. J. Martinez and E. J. Corey, Org. Lett., Synth. Commun., 2005, 35, 961–966; (m) S. K. De, Synth.
1999, 1, 75–77; (d) A. G. Myers and D. W. Kung, Org. Lett., Commun., 2005, 35, 653–656; (n) M. M. Heravi,
2000, 2, 3019–3022. M. Ebrahimzadeh, H. A. Oskooie and B. Baghernejad,
21 (a) E. J. Martinez, T. Owa, S. L. Schreiber and E. J. Corey, Chin. J. Chem., 2010, 28, 480–482; (o) C. S. Reddy and
Proc. Natl. Acad. Sci. U. S. A., 1999, 96, 3496–3501; M. Raghu, Indian J. Chem., Sect. B: Org. Chem. Incl. Med.
(b) C. R. Razafindrabe, S. Aubry, B. Bourdon, Chem., 2008, 47, 1572–1577.
M. Andriantsiferana, S. P. Rostaing and M. Lemaire, Tetra- 28 (a) J. Wang, Y. Masui and M. Onaka, Eur. J. Org. Chem.,
hedron, 2000, 66, 9061–9066. 2010, 1763–1771; (b) F. Rajabi, S. Ghiassian and
22 (a) K. L. Rinehart, T. G. Holt, N. L. Fregeau, P. A. Keifer, M. R. Saidi, Green Chem., 2010, 12, 1349–1352; (c) F. Rajabi,
G. R. Wilson, T. J. Perun, J. R. Sakai, A. G. Thompson, S. Nourian, S. Ghiassian, A. M. Balu, M. R. Saidi,
J. G. Stroh and L. S. Shield, J. Nat. Prod., 1990, 53, 771–792; J. C. Serrano-Ruiz and R. Luque, Green Chem., 2011, 13,
(b) K. L. Rinehart, T. G. Holt, N. L. Fregeau, J. G. Stroh, 3282–3289; (d) Z. Derikvand and F. Derikvand,
P. A. Keifer, F. Sun, L. H. Li and D. G. Martin, J. Org. Chem., Chin. J. Catal., 2011, 32, 532–535; (e) A. Shaabani,
Published on 16 January 2013 on http://pubs.rsc.org | doi:10.1039/C3GC36901C
1990, 55, 4512–4515; (c) E. J. Corey, D. Y. Gin and A. Maleki, M. R. Soudi and H. Mofakham, Catal. Commun.,
R. S. Kania, J. Am. Chem. Soc., 1996, 118, 9202–9203. 2009, 10, 945–949.
23 A. Strecker, Ann. Chem. Pharm., 1850, 75, 27–45. 29 S. M. Baghbanian, M. Farhang and R. Baharfar, Chin.
24 D. Enders and J. P. Shilvock, Chem. Soc. Rev., 2000, 29, 359– Chem. Lett., 2011, 22, 555–558.
373. 30 M. Shekouhy, Catal. Sci. Technol., 2012, 2, 1010–1020.
Downloaded by Duke University on 27 February 2013
25 (a) S. Kobayashi and H. Ishitani, Chem. Rev., 1999, 99, 31 (a) M. G. Dekamin, S. Sagheb-Asl and M. R. Naimi-Jamal,
1069–1094; (b) P. Vachal and E. N. Jacobsen, J. Am. Chem. Tetrahedron Lett., 2009, 50, 4063–4066; (b) M. G. Dekamin,
Soc., 2002, 124, 10012–10014. S. Javanshir, M. R. Naimi-Jamal, R. Hekmatshoar and
26 (a) S. J. Zuend, M. P. Coughlin, M. P. Lalonde and J. Mokhtari, J. Mol. Catal. A: Chem., 2008, 283, 29–32;
E. N. Jacobsen, Nature, 2009, 461, 968–470; (b) L. Zheng, (c) M. G. Dekamin and Z. Karimi, J. Organomet. Chem.,
M. Yuanhong, X. Jun, S. Jinghong and C. Hongfang, Tetra- 2009, 694, 1789–1794; (d) M. G. Dekamin, R. Alizadeh and
hedron Lett., 2010, 51, 3922–3926; (c) S. Shah and B. Singh, M. R. Naimi-Jamal, Appl. Organomet. Chem., 2010, 24, 229–
Tetrahedron Lett., 2012, 53, 151–156; (d) S. Nakamura, 235; (e) M. G. Dekamin, J. Mokhtari and M. R. Naimi-
N. Sato, M. Sugimoto and T. Toru, Tetrahedron: Asymmetry, Jamal, Catal. Commun., 2009, 10, 582–585;
2004, 15, 1513–1516; (e) S. Harusawa, Y. Hamada and (f) M. G. Dekamin, M. Farahmand, S. Javanshir and
T. Shioiri, Tetrahedron Lett., 1979, 20, 4663–4666; M. R. Naimi-Jamal, Catal. Commun., 2008, 9, 1352–1355;
(f) S. Sipos and I. Jablonkai, Tetrahedron Lett., 2009, 50, (g) M. G. Dekamin, N. Yazdaninia, J. Mokhtari and
1844–1846; (g) B. A. B. Prasad, A. Bisai and V. K. Singh, M. R. Naimi-Jamal, J. Iran. Chem. Soc., 2011, 8, 537–544.
Tetrahedron Lett., 2004, 45, 9565–9567; (h) G. Brahmachari 32 (a) C. G. Saxena and S. V. Shrivastava, J. Indian Chem. Soc.,
and B. Banerjee, Asian J. Org. Chem., 2012, 1, 251–258; 1987, 68, 685–686; (b) M. A. S. Aslam, S. U. Mahmood,
(i) L. X. Cheng, J. J. Tang, H. Luo, X. L. Jin, F. Dai, J. Yang, M. Shahid, A. Saeed and J. Iqbal, Eur. J. Med. Chem., 2011,
Y. P. Qian, X. Z. Li and B. Zhou, Bioorg. Med. Chem. Lett., 46, 5473–5479; (c) Z. Guo, R. Xing, S. Liu, Y. Huahua,
2010, 20, 2417–2420; ( j) J. J. Eisch and T. Dluzniewski, P. Wang, C. Li and P. C. Li, Bioorg. Med. Chem. Lett., 2005,
J. Org. Chem., 1989, 54, 1269–1274. 15, 4600–4603; (d) P. Phatak, V. S. Jolly and K. P. Sharma,
27 (a) N. U. H. Khan, S. Agrawal, R. I. Kureshy, S. H. R. Abdi, Orient. J. Chem., 2000, 16, 493–494; (e) G. C. Ferreira,
S. Singh, E. Suresh and R. V. Jasra, Tetrahedron Lett., 2008, P. J. Neame and H. A. Dailey, Protein Sci., 1993, 2, 1959–1965.
49, 640–644; (b) Z. L. Shen, S. J. Ji and T. P. Loh, Tetra- 33 (a) A. Nishinaga, T. Yamada, H. Fujisawa and K. Ishizaki,
hedron, 2008, 64, 8159–8163; (c) A. Majhi, S. S. Kim and J. Mol. Catal. A: Chem., 1998, 48, 249–264;
S. T. Kadam, Tetrahedron, 2008, 64, 5509–5514; (b) H. Chakraborty, N. Paul and M. N. Rahman, Transition
(d) S. Abhimanyu, A. S. Paraskar and A. Sudalai, Tetra- Met. Chem., 1994, 19, 524–526; (c) Y. D. Zhao, D. W. Pang,
hedron Lett., 2006, 47, 5759–5762; (e) L. Royer, S. K. De and Z. Zong, J. K. Cheng, Z. F. Luo, C. J. Feng, H. Y. Shen and
R. A. Gibbs, Tetrahedron Lett., 2005, 46, 4595–4597; X. C. Zhung, Huaxue Xuebao, 1998, 56, 178–183;
(f) S. K. De and R. A. Gibbs, Tetrahedron Lett., 2004, 45, (d) S. Kumar, D. N. Dhar and P. N. Saxena, J. Sci. Ind. Res.,
7407–7408; (g) M. Narasimhulu, T. S. Reddy, K. C. Mahesh, 1994, 68, 181–187.
S. M. Reddy, A. V. Reddy and Y. Venkateswarlu, J. Mol. 34 A. F. M. Iqbal, J. Org. Chem., 1972, 37, 2791–2793.
Catal. A: Chem., 2007, 264, 288–292; (h) S. K. De, J. Mol. 35 F. J. Weiberth and S. S. Hall, J. Org. Chem., 1987, 52, 3901–
Catal. A: Chem., 2005, 225, 169–171; (i) G. K. S. Prakash, 3904.
T. Mathew, C. Panja, S. Alconcel, H. Vaghoo, C. Do and 36 K. C. Nicolaou, C. J. N. Mathison and T. Montagnon,
G. A. Olah, Proc. Natl. Acad. Sci. U. S. A., 2007, 104, 3703– Angew. Chem., Int. Ed., 2003, 42, 4077–4082.
3706; ( j) D. Kumar, A. Saini and S. S. Jagir, Rasayan 37 (a) H. Sun, F. Z. Su, J. Ni, Y. Cao, H. Y. He and K. N. Fan,
J. Chem., 2008, 1, 639–647; (k) M. A. Pasha, Angew. Chem., Int. Ed., 2009, 48, 4390–4393; (b) K. Serk,
A. Nanjundaswamy and V. P. Jayashankara, Synth. S. Kim, S. Park, W. Bosco, R. K. Chidrala and J. Park, J. Org.
Commun., 2007, 37, 4371–4380; (l) S. K. De and R. A. Gibbs, Chem., 2009, 74, 2877–2879.
This journal is © The Royal Society of Chemistry 2013 Green Chem., 2013, 15, 811–820 | 819
View Article Online
38 J. Barluenga, F. Aznar and C. Valdés, Angew. Chem., Int. Ed., R. Pitombo and B. Polakiewicz, Braz. Arch. Biol. Technol.,
2004, 116, 347–349. 2006, 49, 665–668.
39 (a) A. K. Chakraborti, S. Bhagat and S. Rudrawar, Tetra- 43 K. A. T. E. Saitou, Bull. Chem. Soc. Jpn., 1969, 42, 2693–2694.
hedron Lett., 2004, 45, 7641–7644; (b) J. H. Billman and 44 J. S. Bennett, K. L. Charles, M. R. Miner, C. F. Heuberger,
K. M. Tai, J. Org. Chem., 1958, 23, 535–539; E. J. Spina, M. F. Bartels and T. Foreman, Green Chem.,
(c) B. P. Branchaud, J. Org. Chem., 1983, 48, 3531–3538; 2009, 11, 166–168.
(d) R. S. Varma, R. Dahiya and S. Kumar, Tetrahedron Lett., 45 Y. M. S. A. Al-Kahraman, H. M. F. Madkour, D. Ali and
1997, 38, 2039–2042; (e) G. Liu, D. A. Cogan, T. D. Owens, M. Yasinzai, Molecules, 2010, 15, 660–671.
T. P. Tang and J. A. Ellman, J. Org. Chem., 1999, 64, 1278– 46 Z. Galewski, Mol. Cryst. Liq. Cryst., 1990, 191, 211–218.
1284; (f) R. Dalpozzo, A. D. Nino, M. Nardi, B. Russo and 47 M. Á. Vázquez, M. Landa, L. Reyes, R. Miranda, J. Tamariz
A. Procopio, Synthesis, 2006, 1127–1132. and F. Delgado, Synth. Commun., 2004, 34, 2705–2718.
40 (a) J. R. Wang, Y. Fu, B. B. Zhang, X. Cui, L. Liu and 48 R. A. Champa, Mol. Cryst. Liq. Cryst., 1973, 19, 233–247.
Q. X. Guo, Tetrahedron Lett., 2006, 47, 8293–8297; 49 A. S. Hirwe, R. L. Metcalf and I. P. Kapoor, J. Agric. Food
Published on 16 January 2013 on http://pubs.rsc.org | doi:10.1039/C3GC36901C
(b) J. S. M. Samec and J. E. Bäckvall, Chem.–Eur. J., 2002, 8, Chem., 1972, 20, 818–824.
2955–2961; (c) Y. Zheng, K. Ma, H. Li, J. Li, J. He, X. Sun, 50 K. Tanaka and R. Shiraishi, Green Chem., 2000, 2, 272–273.
R. Li and J. Ma, Catal. Lett., 2009, 128, 465–474; 51 I. Kraicheva, A. Bogomilova, I. Tsacheva, G. Momekov and
(d) L. Ravishankar, S. A. Patwe, N. Gosarani and A. Roy, K. Troev, Eur. J. Med. Chem., 2009, 44, 3363–3367.
Synth. Commun., 2010, 40, 3177–3180. 52 J. Schmeyers, F. Toda, J. Boy and G. Kaupp, J. Chem. Soc.,
Downloaded by Duke University on 27 February 2013
41 E. Pretsch, P. Bühlmann and C. Affolter, Structure Determi- Perkin Trans. 2, 1998, 989–993.
nation of Organic Compounds: Tables of Spectral Data, 53 H. R. Snyder and J. R. Demuth, J. Am. Chem. Soc., 1956, 78,
Springer, Berlin, 3rd edn, 2000, p. 304. 1981–1984.
42 (a) K. Kurita, T. Kojima, Y. Nishiyama and M. Shimojoh, 54 C. G. Overberger, N. P. Marullo and R. G. Hiskey, J. Am.
Macromolecules, 2000, 33, 4711–4716; (b) M. Lavertu, Z. Xia, Chem. Soc., 1961, 83, 1374–1378.
A. N. Serreqi, M. Berrada, A. Rodrigues, D. Wang, 55 S. Inoue, Chem. Pharm. Bull., 1967, 15, 1540–1556.
M. D. Buschmann and A. Gupta, J. Pharm. Biomed. Anal., 56 V. Madan and L. B. Clapp, J. Am. Chem. Soc., 1969, 91,
2003, 32, 1149–1158; (c) K. D. Mello, L. Bernusso, 6078–6083.
820 | Green Chem., 2013, 15, 811–820 This journal is © The Royal Society of Chemistry 2013