Communication Systems I
Part 3 :
Amplitude Modulation
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 1
Introduction
• Communication systems conveys information
through communication channel by shifting
baseband signal to a suitable frequency band.
• Modulation is a process for shifting frequency
range by a carrier signal.
• In amplitude modulation, the amplitude of the
sinusoidal carrier wave is varied according to the
baseband signal.
g (t ) a (t ) cos(2 f c t (t ))
Amplitude Modulation Phase Modulation
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 2
Modulation Formats
(t )
t
or
t
(t ) ( )d
0
AM
E(t ) eˆ A(t ) cos(0t 0 )
PM
E(t ) eˆ A0 cos(0t (t ))
FM
E(t ) eˆ A0 cos( (t )t 0 )
3
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng
Amplitude Modulation
m(t)
• Sinusoidal carrier wave c(t) 0 for carrier ka
suppressed
c(t ) Ac cos(2 f ct ) ka m(t)
c(t) 1
• Amplitude-modulation wave s(t)
s(t)
s (t ) Ac [1 ka m(t )]cos(2 f ct )
– Ac denote carrier amplitude, in unit: volt
– fc denote carrier frequency
– m(t) denote the baseband signal carries the
message, in unit: volt
– ka is a constant called the amplitude sensitivity, in
(volt)-1 unit
– This absolute maximum value of kam(t) multiplied by
100 is referred to as percentage modulation.
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 4
Amplitude Modulation – Requirement 1
• Baseband signal m(t )
• AM wave for ka m(t ) 1 for all t, ka m(t ) 1
– Envelope is positive.
• If ka m(t ) 1 at some time t ka m(t ) 1
– Over-modulation
– Phase reversed as 1 + kam(t)
crosses 0.
– Envelope distortion
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 5
Amplitude Modulation – Requirement 2
• Suppose m(t) is band-limited to the interval
W f W and fc >> W, where W denotes
message bandwidth.
• Fourier transform of AM wave s(t) is
s (t ) Ac [1 ka m(t )]cos(2 f c t ) Ac 1 ka m(t ) 12 e j 2 fct e j 2 fct
Ac 12 e j 2 fct e j 2 fct Ac ka m(t ) 12 e j 2 fct e j 2 fct
thus Ac k A
S( f ) ( f f c ) ( f f c ) a c M ( f f c ) M ( f fc )
2 2
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 6
Amplitude Modulation
Ac k A
S( f ) ( f f c ) ( f f c ) a c M ( f fc ) M ( f fc )
2 2
• Note:
– the message of m(t) for negative frequencies extending
from –W to 0 becomes visible for positive (measurable)
frequencies.
– for positive frequencies, signals above carrier fc is
referred as upper sideband (USB), whereas the
symmetric portion is lower sideband (LSB).
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 7
Amplitude Modulation
• Note:
– for negative frequencies, the upper sideband refers
the signals below –fc, and the lower sideband is
defined by the portion above –fc .
– for positive frequencies, the highest frequency
component is fc + W, and the lowest one is fc – W. The
difference is defined as transmission bandwidth, BT,
for the AM signal. Thus BT = 2W.
Complex
Conjugate
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 8
Example 3.1 Single-Tone Modulation
• Considering a modulating wave m(t ) Am cos( 2f m t )
s (t ) Ac [1 cos( 2f m t )] cos( 2f c t )
• ka Am : modulation factor, or percentage modulation.
• If Amax and Amin denote the maximum and minimum
values of the
envelope:
Amax Ac (1 )
Amin Ac (1 )
Amax Amin
Amax Amin
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 9
Example 3.1 Single-Tone Modulation
s (t ) Ac [1 cos(2 f mt )]cos(2 f c t )
Ac cos(2 f c t ) 12 Ac cos[2 ( f c f m )t ] 12 Ac cos[2 ( f c f m )t ]
The corresponding F.T.:
S ( f ) 12 Ac [ ( f f c ) ( f f c )]
14 Ac [ ( f f c f m ) ( f f c f m )]
14 Ac [ ( f f c f m ) ( f f c f m )]
Assume the load resistance is 1:
Carrier power = 12 Ac
2
USB power = 18 Ac
2 2
LSB power = 18 2 Ac2
Total Sideband Power 2
Total Power 2 2
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 10
Switching Modulator
• Assume the diode acts as an ideal switch.
• v1 (t ) c(t ) m(t ) Ac cos(2 f c t ) m(t )
– where m(t ) Ac
v1 (t ), c(t ) 0
• v2 (t )
0, c(t ) 0
v1 (t )
Transfer Function of
An ideal switch
v2 (t )
gT0 (t )
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 11
Switching Modulator
• Assume gT0 (t ) is a periodic pulse train of duty
cycle equal to one-half and period T0 1 / f c .
Thus v2 (t ) [ Ac cos(2 f ct ) m(t )]gT (t ) 0
• Representing gT0 (t ) by its Fourier series
1 2 (1) n 1
gT0 (t ) cos[2 f c t (2n 1)]
2 n 1 2n 1
Note: for period: T0, the Fourier series of g(t) is
2n t 2n t 1 T0 2
g (t ) a0 an cos bn sin where 0a T
0
g (t ) dt
n 1 T0 T0 T 0 2
2n t
2 T0 2
na
T
T0 g (t )cos
T
dt
0 2 0
bn 2 T 2 g (t )sin 2n t dt
T0
T0 0 2 T0
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 12
Switching Modulator
v2 (t ) [ Ac cos(2 f ct ) m(t )]gT0 (t )
1 2 ( 1) n 1
Ac cos(2 f ct ) m(t ) cos[2 f ct (2n 1)]
2 n 1 2n 1
1 2 2 1 21
Ac cos(2 f ct ) m(t ) cos(2 f ct ) cos 2 (3 f c )t cos 2 (5 f c )t L
2 3 5
1 A 2 Desired AM signal
m(t ) c m(t ) cos(2 f ct )
2 2
2 1 1
m(t ) cos 2 (3 f c )t cos 2 (5 f c )t L Images
3 5
c cos(2 f ct ) cos(2 f ct ) cos 2 (3 f c )t cos 2 (5 f c )t L Delta Func.
2A 1 1
3 5
V2 ( f )
-W W
-5fc -4fc -3fc -2fc -fc 0 fc 2fc 3fc 4fc 5fc
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 13
Switching Modulator
m(t)
• v2 (t ) consists of two components
ka
– Desired AM signal Selected by a BPF ka m(t)
A 4 1
v2 (t ) c 1 m(t ) cos(2 f c t ) at f c
2 Ac s(t)
s (t ) Ac [1 ka m(t )]cos(2 fct ) c(t)
4
• amplitude sensitivity ka
Ac
– Unwanted components
• Delta functions at 0, 2 fc , 4 fc , L
• Images at 0, 3 fc , 5 fc , L
V2 ( f )
-W W
-5fc -4fc -3fc -2fc -fc 0 fc 2fc 3fc 4fc 5fc
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 14
Envelope Detector (Demodulation)
• To demodulate an AM signal, what we need to do is to
detect the slow-varying envelope.
• Assume the diode is ideal with forward resistance rf
• We need to fast charge C and then input
slowly discharged, so
1 1 1
(rf Rs )C and Rl C
fC fC W
1 1
(rf Rs ) Rl
fC C WC
output
An RC
filter
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 15
Virtues, Limitations, Modifications
of Amplitude Modulation
• Virtues of amplitude modulation
– Signal is easily generated and reversed
– Modulation: switching modulator or a square law modulator
– Demodulation: envelope detector or square-law detector
• Limitations of amplitude modulation
– AM is wasteful of power and bandwidth.
• Modification of amplitude modulation
– Double sideband-suppressed carrier (DSB-SC)
modulation Save power
– Vestigial sideband (VSB) modulation
– Single sideband (SSB) modulation Save BW
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 16
Double Sideband-Suppressed Carrier
Modulation (DSB-SC)
• DSB-SC consists of the product of the message
signal m(t) and the carrier wave c(t):
s (t ) c(t )m(t ) Ac cos(2 f ct )m(t )
m(t ) M ( f ) where W f W
• Fourier transform of s(t) is obtained
as 1
S( f ) Ac [ M ( f f c ) M ( f f c )]
2
Note: no delta
functions at fc ! Envelope detector
cannot be applied!
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 17
Ring Modulator
outer diodes on
outer diodes off
Multiplier
180 Phase change
• The outer diodes are switched on
and the inner diodes are switched off
rf : small, rb
• The outer diodes are switched off
and the inner diodes are switched on
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 18
Ring Modulator
• The square-wave carrier c(t):
4 (1) n1
c(t ) cos[2 (2n 1) f ct ]
n1 2n 1
• The ring modulator output
s (t ) c(t )m(t )
4 (1) n1
cos[2 (2n 1) f ct ]m(t )
n1 2n 1
BPF
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 19
Coherent Detector
• Coherent/Synchronous detection: Multiplying the
received signal s(t) by a locally generated sinusoidal wave:
v(t ) Ac cos(2 f ct ) s (t ) where s (t ) m(t ) Ac cos(2 f c t )
Ac Ac cos(2 f ct )cos(2 f ct )m(t )
1 1 LPF
Ac Ac cos m(t ) Ac Ac cos(4 f ct )m(t )
2 2
1
v0 (t ) Ac Ac cos m(t )
2
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 20
Coherent Detector
1
v0 (t ) Ac Ac cos m(t )
2
• The amplitude of this demodulated signal is
1
maximum when v0 (t ) Ac Acm(t )
2
and it is minimum (zero) when :
1 2
v0 (t ) Ac Ac cos m(t ) 0
2 2
• Typically, the phase of the received signal s(t) is
randomly distributed. To maintain the maximum
detected signal, we need a phase-locked loop
(PLL) circuit to lock and synchronize the phase
of local oscillator to the received signal, that is
.
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 21
Costas Receiver
Using a negative
Feedback loop to
Form a PLL! I 12 Ac (cos )m(t ) 1
1
Q 2 Ac (sin )m(t ) tan
Q
tan 1
I
Quadrature
phase shift
• Best when Q/I = 0.
• If slightly deviated
from 0, i.e. is small,
Q
tan
I
• is applied to control
the phase of VCO.
• I – channel: in-phase coherent detector.
• Q – channel: quadrature-phase coherent detector.
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 22
Quadrature Carrier/Amplitude Multiplexing
• QAM applies two independent signals, m1(t) and m2(t), on two
carrier waves of the same frequency but differing in phase by
-90 degrees, which is expressed as:
s (t ) Ac m1 (t ) cos(2 f c t ) Ac m2 (t ) sin(2 f c t ) Re[ s (t ) Ac e j 2 fct ]
s (t ) m1 (t ) jm2 (t )
Note:
These two independent
signals, m1(t) and m2(t),
Tx: occupy the same channel
bandwidth, thus it’s a
bandwidth-conservation
scheme. higher
spectral efficiency!
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 23
Quadrature Carrier/Amplitude Multiplexing
A
• To maintain synchronization,
we use the Costas receiver.
– Assume frequency and
phase are locked already:
At point A:
s (t ) 2 cos(2 f c t )
Ac m1 (t ) cos(2 f c t ) Ac m2 (t ) sin(2 f c t ) 2 cos(2 f c t ) B
Ac m1 (t ) cos(2 f c t ) 2 cos(2 f c t ) Ac m2 (t ) sin(2 f c t ) 2 cos(2 f c t )
Ac m1 (t ) Ac m1 (t ) cos(4 f c t ) Ac m2 (t ) sin(4 f c t )
At point B:
s (t ) 2sin(2 f c t ) Ac m1 (t ) cos(2 f c t ) Ac m2 (t ) sin(2 f c t ) 2sin(2 f c t )
Ac m1 (t ) cos(2 f c t ) 2sin(2 f c t ) Ac m2 (t ) sin(2 f c t ) 2sin(2 f c t )
Ac m1 (t ) sin(4 f c t ) Ac m2 (t ) cos(4 f c t ) Ac m2 (t )
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 24
Single-Sideband (SSB) Modulation
• For DSB signals, the same information is carried
in the USB and LSB if m(t) is real. waste
bandwidth!
• SSB generation:
1. Generate a DSB signal m(t) with energy gap 2fa
centered near the origin.
2. Up-convert the DSB signal to a carrier frequency.
3. Use an ideal SSB filter to select the desired sideband.
1 2
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 25
Single-Sideband (SSB) Modulation
3 stopband passband 4 Transmitted signal
• The ideal SSB filter:
– Spectrum of SSB signal containing the upper sideband.
• In particular, the filter must only satisfy the following
requirement :
– The desired sideband lies inside the passband of the filter.
– The unwanted sideband lies inside the stopband of the
filter.
– The transition of the filter should be 2 f a .
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 26
Single-Sideband (SSB) Modulation
• The analysis of a SSB signal uses a technique known
1
as the Hilbert transform. H ( f ) j sgn( f ) h(t )
t
• The synchronization information
can be obtained by one of two
methods:
– Transmitting a low power pilot carrier
in addition to the selected sideband.
– Using highly stable oscillators in both the
transmitter and receiver for generating the
carrier frequency.
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 27
Vestigial-Sideband (VSB) Modulation
• If signals do not have an energy gap at the origin,
due to the finite roll-off of the SSB filter, the SSB
transmission leads to VSB transmission. S ( f )
Baseband M(f ) U( f ) filter VSB vestige
signal
28
-W W - fc fc - fc fc
• Amplitude response of VSB filter:
– H(f) denotes the transfer function of the filter
– M(f) is the Fourier transform of the baseband signal m(t)
– U(f) is the Fourier transform of u(t): up-converted signal
A
S ( f ) U ( f ) H ( f ) c M ( f fc ) M ( f fc ) H ( f )
2
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 28
Vestigial-Sideband (VSB) Modulation
• We need to determine the restrictions of H(f), especially
the “vestige,” so that we still can recover m(t) from s(t).
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 29
Vestigial-Sideband (VSB) DeModulation
• Coherent detection
Ac
v(t ) Ac cos(2 f c t ) s (t ) V( f ) S ( f f c ) S ( f fc )
2
A
S ( f ) c M ( f f c ) M ( f fc ) H ( f )
2
V ( f ) Ac Ac M ( f ) H ( f f c ) H ( f f c )
4 LPF
Ac Ac
M ( f 2 f c ) H ( f f c ) M ( f 2 f c ) H ( f fc )
4
Vo ( f ) Ac Ac M ( f ) H ( f fc ) H ( f fc )
4
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 30
Vestigial-Sideband (VSB) DeModulation
H( f ) H ( f fc ) H ( f fc )
M(f ) H ( fc )
31
- fc 0 fc - fc 0 fc 2fc -2fc -fc 0 fc
A A
Vo ( f ) c c M ( f ) H ( f f c ) H ( f f c )
4
• To obtain a distortionless m(t), Vo(f) should be a scaled
version of M(f). [H(f – fc) + H(f + fc)] is independent of f.
H ( f fc ) H ( f fc ) 2 H ( fc )
where H(fc) is the value of H(f) at f = fc. H ( f fc ) H ( f fc )
M(f )
• Let
H ( f f c ) H ( f f c ) 1, W f W
1 Ac Ac
H ( fc )
2
vo (t )
4
m(t ) -2fc -fc 0 fc 2fc
-W W
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 31
Vestigial-Sideband (VSB) DeModulation
• The cut-off portion of the frequency response around the
carrier frequency fc is odd symmetry. That is inside the
transition interval, f c f v f f c f v , the sum of the
values of H ( f ) at any two frequencies equally
displaced above and below fc is unity.
If f c f1 f c f 2 , then H ( f1 ) H ( f 2 ) 1
For f > fc + W,
H(f) can be arbitrary
H ( f2 ) specified.
Required
H ( f1 )
H ( f1 ) H ( f 2 ) 1
f1 f2
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 32
Frequency Translation
• SSB modulation is a form of frequency translation,
which is also referred to as frequency changing,
mixing, or heterodyning.
Mixer
s '(t ) s1 (t ) Al cos(2 fl t ) m(t ) cos(2 f1t ) Al cos(2 fl t )
1
Al m(t ) cos(2 ( f1 fl )t ) cos(2 ( f1 fl )t )
2
carrier frequency carrier frequency
translated upward translated downward
(Up-conversion) (Down-conversion)
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 33
Frequency-Division Multiplexing (FDM)
NTHU EE364000 Communication Systems I Y.H. Huang & K.M. Feng 34