Stereographic Projection
Consider the unit sphere S in R3 given by
S = {(x1, x2, x3) : x12, x22, x32 = 1}.
Let N = (0, 0, 1) which is called north pole on S.
We identify ℂ with
{(x1, x2, 0) : x1, x2 ∈ ℝ}
So that ℂ cuts along the equator.
For each z ∈ ℂ, consider the straight line
in ℝ3 through z and N. The line intersects
S at exactly one point P ≠ N.
If |z| > 1, then P is in the northern hemisphere of S.
If |z| < 1, then P is in the southern hemisphere of S.
If z=0 , then P is actually the South Pole(0,0 ,−1)
If|z|=1, then z=P , ie, z=P lies along the equator
As|z|→ ∞, P approaches to N .
Recall first that the symmetric equation of line L in R3 (use x , y , z coordinate) passing through the
points P0=( x 0 , y 0 , z 0) and P1=( x 1 , y 1 , z 1) is given by (using P0)
x−x 0 y − y 0 z−z 0
= = ,
x1− x0 y 1− y 0 z 1−z 0
that is, for some t ∈ R , the parametric equation of the line passing through P0 and P1 is as follows:
x=x 0 + ( x 1−x 0 ) t , y= y 0 + ( y 1 − y 0 ) t , z=z 0+ ( z 1−z 0 ) t
More precisely,
L=¿
Suppose that z=x +iy and P=(x 1 , x 2 , x 3) be the corresponding point on S at which the line through
z and N intersects S. The line through P0=(x 0 , y 0 , z 0) and N=(0,0,1) in R3 (use x 1 , x 2 , x 3
coordinate) is given by
{ x 0−x 0 t , y 0− y 0 t , z 0−z 0 t :t ∈ R } .
Taking( x 0 , y 0 , z 0 )=( x , y , 0), we have
{( (1−t ) x , ( 1−t ) y ,t ) : t ∈ R } .
Hence, for some t ∈ R
x 1=( 1−t ) x , x 2=( 1−t ) y ∧x3 =t .
But P=x 1 , x 2 , x 3 is on S and so ( 1−t )2 x 2 + ( 1−t )2 y 2 +t 2=1
Now,
( 1−t )2 x 2 + ( 1−t )2 y 2 +t 2=1
( 1−t )2 ( x 2+ y 2)+t 2=1
( 1−2t +t2 )|z|2 +t 2−1=0
(1+| z|2) t 2−2|z|2 t+|z|2−1=0
By quadratic formula,
2
−B ± √ ❑
t=
❑
2
−(−2|z| )± √❑
t=
❑
2
2|z| ± √ ❑
t=
❑
2
2|z| ± √ ❑
t=
❑
2
2|z| ±2
t=
2 ( 1+|z| )
2
2
|z| ± 1
t= 2
1+|z|
2
|z| ± 1
Hence, t= 2 since Z ≠ N and t ≠ 1.
1+|z|
Solving for x 1 , x 2 , x 3, we have
( )
2
|z| ± 1 2x 2 ℜ( x) z + z
x 1=( 1−t ) x = 1− 2 x= 2 = 2 = 2 ,
|z| +1 |z| +1 |z| +1 |z| +1
( )
2
|z| ± 1 2y 2∈(z) −i(z−z )
x 2=( i−t ) y = i− 2 y= 2 = 2 = 2
,
|z| +1 |z| +1 |z| + 1 |z| +1
2
|z| ± 1
x 3=t= 2
1+|z|
( )
2
z + z −i(z− z) |z| ± 1
So, P= 2
, 2
, 2
|z| +1 |z| + 1 1+|z|
Thus,
2
x1 +i x 2 2z 1+|z|
= × =z
1−x3 1+|z|2 2
x 1+i x 2
Therefore, if we start with P=x 1 , x 2 , x 3 ∈ S, we have z= ∈ C∞.
1−x 3
Define the mapping φ : S →C ∞ by
x1 x2
φ ( x ¿ ¿ 1 , x 2 , x 3)={ +i ∞ ( x ¿ ¿ 1 , x 2 , x 3 )≠ N ( x ¿ ¿ 1 , x 2 , x 3 )=N ¿ ¿¿
1−x3 1−x 3
This mapping φ is a one-to-one correspondence between S and C ∞ .
The sphere S is called the Riemann sphere and this 1-1 correspondence is called the stereographic
projection.