0% found this document useful (0 votes)
186 views5 pages

De-Lecture 9 by Engineer Marcos

1) Separable Method: Separate the variables and integrate both sides to get the general solution y=cx. 2) Homogeneous Method: Make the equation homogeneous by letting z=y/x and solve the resulting linear equation to get the general solution y=cx. 3) Exact Method: Check if the equation is exact and if so, integrate to find the general solution y=cx.

Uploaded by

melenyo tuquero
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
0% found this document useful (0 votes)
186 views5 pages

De-Lecture 9 by Engineer Marcos

1) Separable Method: Separate the variables and integrate both sides to get the general solution y=cx. 2) Homogeneous Method: Make the equation homogeneous by letting z=y/x and solve the resulting linear equation to get the general solution y=cx. 3) Exact Method: Check if the equation is exact and if so, integrate to find the general solution y=cx.

Uploaded by

melenyo tuquero
Copyright
© © All Rights Reserved
We take content rights seriously. If you suspect this is your content, claim it here.
Available Formats
Download as DOCX, PDF, TXT or read online on Scribd
You are on page 1/ 5

BERNOULLI’S EQUATION

Given y ' + Px ( y )=Q( x ) y n →Equation (a)

If n = 1, The variables are separable

If n 1, Equation (a) may be written in the form

−n
y
+ Py 1−n=Q
dx

Let z = y1−n

dz=(1−n) y−n dy

−n dz
¿ y dy=
( 1−n )

dz
Therefore , + P ( z )=Q
( 1−n ) dx

multiplying the Equation by (1 – n), the Equation becomes,

dz
+ ( 1−n ) P ( z ) dx=( 1−n ) Q
dx

or,dz + ( 1−n ) P ( z ) dx=( 1−n ) Qdx ; which is a Linear Equation in Standard Form.

SAMPLE PROBLEMS:

[Example 1]

Find the PS (when x=2, y=1)


(𝐲𝟒- 𝟐𝐱𝐲)𝐝𝐱 + 𝟑𝐱𝟐𝐝𝐲 = 𝟎

SOLUTION:
1
(𝐲𝟒- 𝟐𝐱𝐲)𝐝𝐱 + 𝟑𝐱𝟐𝐝𝐲 = 𝟎] dx
3 x2
4
dy ( y −2 xy ) −4
+ =0 ¿ y
dx 3x
2

−4 dy 1 2 y−3
y + 2− =0
dx 3 x 3x

−4 dy 2 y −3 −1
y − = 2
dx 3 x 3x

Let z = y−3

−4
dz=−3 y dy

dz
y− 4 dy=
−3

dz 2z 1
− = 2 ¿−3
−3 dx 3 x 3 x
dz 2 z 1
+ = → linear differential equation
dx x 2

∫ 2 dx
x 2
z=e =x

2 x2 =∫
( ) 1 2
x
2
x dx+C

−3
but z= y
2
x
= x+C → General solution
y3

When x=2; y=1

22
=2+C
13

4 = 2+C

C=2

Substitute C in the general solution


2
x
= x+2
y3
2 3
x = y ( x +2 ) D.E

[Example 2]

y ( 6 y 2−x−1 ) dx +2 xdy=0

SOLUTION:

1
y(6𝐲𝟐 − 𝐱 − 𝟏)𝐝𝐱 + 𝟐𝐱𝐝𝐲 = 𝟎]
2 xdx

dy 6 y 2 y ( x +1 )
+ − =0 ¿ y−3
dx 2 x 2x

−3 dy −2 ( x+ 1 ) −6
y −y =
dx 2x 2x

let z= y−2

−3
dz=−2 y dy

dz −3
= y dy
−z

dz z ( x +1 ) 6
− = ¿−2
−2 dx 2x 2x
dz z ( x+1) 6
+ =
dx x x

using this formula ; y e∫ =∫ Q e∫


Pdx Pdx
dx +C

∫ (x+x1)dx ∫ dx +∫ dxx
ℷ=e =e

¿ e x+ ¿ ( x )=e x Inx

xz e x =∫ ( 6x ) x e dx +C x

xz e =6 ∫ e dx +C
x x

−2
but z= y

[ xe x
y2
=6 e
x
+C
y2
ex ]
2 2 −x
x=6 y +C y e

x= y ( C e +6 )
2 −x
D.E

[Example 3]

dy
= y ( y +3 x )
3 2 2
2x
dx

SOLUTION:

[ 2x
3 dy
dx
= y ( y +3 x )
2 2 1
2x
3 ]
dy
= y ¿¿
dx

[ ]
2 2
dy y 3x −3
= 3+ 3 y
dx 2 x 2 x
2 −2
−3 dy 3 x y 1
y − 3
= 3
dx 2x 2x
−2
let z= y
−3
dz=−2 y dy

dz
= y−3 dy
−2
[ dz 3z 1
− = 3 −2
−2 dz 2 x 2 x ]
dz 3 z 1
+ = →linear differential equation
dx x x 3
dx
3∫
ℷ=e x
=x 3

x z=∫
3
( x1 ) x dx+C
3
3

3
x z=−x+C
3
x
=−x+C
y2

x 3=−xy 2 +C y 2
3 2
x = y ( C−x ) D.E.

[Example 4]

Find the PS (when x=1, y=1)


(𝟐𝐲𝟑- 𝐱𝟑)𝐝𝐱 + 𝟑𝐱𝐲𝟐𝐝𝐲 = 𝟎

SOLUTION:
¿

( dy ( 2 y −x )
)
3 3
2
+ =0 y
dx 3 xy 2

3 2
2 dy 2 y x '
y + = → bernoull i sequation
dx 3 x 3
3
let z= y
2
dz=3 y dy
dz 2
= y dy
3

[ dz 2 z x 2
+ = 3
3 dx 3 x 3 ]
dz 2 z 2
+ =x → linear differential equation
dx x

dz
2∫
x 2
ℷ=e =x

x z=∫ ( x ¿¿ 2) ( x ) dx +C ¿
2 2

x z=∫ x dx +C
2 4

5
2 x
x z= +C
5
[ 2 x5
x y = +C 5
5
3
]
2 3 5
5 x y =x +5 C → general solution

substitute the value of x∧ y

2
5 (1) ¿
5=1+ 5C
4=5 C
4
C=
5

Substitute the C

5 x 2 y 3=x 5 +5 ( 45 )
2 3 5
5 x y =x +4 D.E.

Assign:

Solve problem no. 27 in three methods pp. 77

You might also like