O'Level Physics: Electromagnetic Effects
O'Level Physics: Electromagnetic Effects
O’ LEVEL
O / A L EVEL P HYSI C S
PHYSICS
Electromagnetic Effects
4.5
ST UD E N T N A M E
PHYSICS WITH
MOIZ DAWO ODI
O'Levels
Simulation https://phet.colorado.edu/sims/html/faradays-
Link law/latest/faradays-law_en.html
4.5.2 e A.C Generator
N S
4.5.3 Magnetic Effect of a Current
4.5.4 Forces on a Current-Carrying Conductor
4.5.5 e D.C. Motor
N S
N S
4.5.6 e Transformer
Match the following
P 1 Past Papers
01 The diagram shows three pairs of parallel wires with the currents in the directions shown.
X Y Z
For each pair of wires, what are the forces between the wires?
X Y Z
03 The electromotive force (e.m.f.) induced in a conductor moving at right-angles to a magnetic field
does not depend upon
magnet coil
N S
Which point on the graph shows when the coil is in a vertical position?
A
voltage
output D
B
0
0 time
C
[MJ2011/P11/Q35]
iron armature
pivot
bell
A falls rings
B falls stops ringing
C moves up rings
D moves up stops ringing [ON2011/P11/Q25]
06 Two parallel wires carry currents in the same direction.
Which diagram shows the magnetic field around each wire and the direction of the force on each
wire?
A B
currents currents
magnetic magnetic
fields fields
forces forces
C D
currents currents
magnetic magnetic
fields fields
forces forces
[ON2011/P11/Q34]
S cylindrical
magnet coil
X Y Z
metal reason
When a magnet is allowed to fall towards the coil, the galvanometer pointer gives a momentary
deflection to the right of the zero position.
What happens to the galvanometer pointer as the magnet falls away from the coil?
A B
key
current into
plane of paper
C D
current out of
plane of paper
[MJ2012/P11/Q26]
N D B S
C
[MJ2012/P11/Q33]
12 A simple d.c. motor consists of a coil that rotates between the poles of a permanent magnet. The
turning effect is increased by winding the coil on a metal cylinder.
Which metals are used to make the magnet and the cylinder?
magnet cylinder
A iron copper
B iron steel
C steel copper
D steel iron [MJ2012/P11/Q34]
13 A current is produced when a wire is moved between two magnets as shown.
ammeter A
N S
movement
of wire
A a battery
B a generator
C a motor
D an electromagnet [MJ2012/P11/Q35]
current current
out of page into page
Which diagram shows the magnetic field pattern around the wires?
A B
C D
[MJ2012/P12/Q26]
16 The diagram shows a beam of electrons entering a magnetic field. The direction of the field is into
the page.
magnetic field
be am of electrons into page
N S
A It moves downwards.
B It moves upwards.
C It rotates anticlockwise.
D It rotates clockwise.
18 A bar magnet is pushed into one end of a long coil connected to a sensitive meter.
bar magnet coil
[MJ2012/P12/Q34]
sensitive meter
Which of the following affects the magnitude of the deflection of the meter?
voltage voltage
0 0
0 time 0 time
C D
voltage voltage
0 0
0 time 0 time
[MJ2012/P12/Q36]
20 A vertical wire passes at right angles through a piece of card. There is a large current in the wire
in the direction shown.
direction of
current in wire
card
plotting
compass
Which diagram shows the direction in which the needle of the plotting compass points?
A B C D
[ON2012/P11/Q26]
21 Each of the diagrams shows a cross-section through two parallel, current-carrying conductors.
Which diagram shows the shape of the magnetic field pattern and the directions of the forces on
the two conductors?
key
A conductor carrying current into page
conductor carrying current out of page
D
[ON2012/P11/Q33]
22 The diagram shows a simple d.c. motor.
A a coil
B a magnet
C a slip ring
D a split-ring commutator [ON2012/P11/Q34]
23 The diagram shows the N-pole of a magnet moving into, and out of, a coil of wire.
N X coil of wire
magnet
This movement produces a current in the coil of wire. The current produces a magnetic pole at X.
Which pole is produced at X when the magnet is moved in and when it is moved out?
A N N
B N S
C S N
D S S [ON2012/P11/Q35]
24 A simple a.c. generator produces an alternating e.m.f. as shown.
1.0
e.m.f. / V 0
0 1.0 2.0 time / s
_ 1.0
1.0
A e.m.f. / V 0
0 1.0 2.0 time / s
_ 1.0
2.0
1.0
B e.m.f. / V 0
0 1.0 2.0 time / s
_ 1.0
_ 2.0
1.0
C e.m.f. / V 0
0 1.0 2.0 time / s
_ 1.0
2.0
1.0
D e.m.f. / V 0
0 1.0 2.0 time / s
_ 1.0
_ 2.0
[ON2012/P11/Q36]
A a capacitor
B an electric field
C a magnetic field
D a transformer [ON2012/P11/Q37]
26 Two parallel wires carry currents in opposite directions. Three plotting compasses are placed in
the positions shown.
[ON2012/P12/Q33]
The currents in both wires are reversed. How many compass needles change direction?
(Ignore the effect of the Earth’s magnetic field.)
A 0 B 1 C 2 D 3
number of turns
current in coil / A iron core
in coil
A 6 100 no
B 10 200 no
C 6 100 yes
D 10 200 yes [ON2012/P12/Q34]
28 A magnet is moved towards a coil of insulated wire. A voltmeter connected across the coil shows
a positive reading.
A moving the magnet away from the coil at the same speed
B moving the magnet away from the coil at a slower speed
C moving the magnet towards the coil at a faster speed
[ON2012/P12/Q35]
D moving the magnet towards the coil at a slower speed
29 A wire hangs between the poles of a magnet.
When there is a current in the wire, in which direction does the wire move?
current
in wire
N
C
B
D
A S
[MJ2013/P11/Q34]
D [MJ2013/P11/Q35]
When a bar magnet moves towards the open end of the box, the needle of the ammeter deflects
to the right. When the bar magnet stops, the needle returns to zero.
A a coil alone
B a coil connected in series with a cell
C a light-dependent resistor (LDR) alone
D an LDR in series with a cell [MJ2013/P11/Q36]
32 The diagram shows the shape of the magnetic field lines near a current-carrying conductor.
conductor
P
Q
Which row correctly states the direction of the field lines and compares the strengths of the field
at points P and Q?
A clockwise P
B clockwise Q
C anticlockwise P
D anticlockwise Q [ON2013/P11/Q25]
250 V 12 V
0.10 A 2.0 A
N S
material reason
+1
output
A p.d. / V 0
0 0.05 0.10 time / s
–1
+1
output
B p.d. / V 0
0 0.05 0.10 time / s
–1
+2
output
p.d. / V
+1
C 0
0 0.05 0.10 time / s
–1
–2
+2
output
p.d. / V
+1
D 0
0 0.05 0.10 time / s
–1
–2
[ON2013/P11/Q33]
37 The diagram shows a wire placed between two magnetic poles of equal strength.
A current passes through the wire in the direction shown. The current causes a downward force
on the wire.
wire
direction
of force
direction
of current
S N
A
N S
B
N N
C
S S
D
[ON2013/P12/Q32]
38 The graph shows the output of an a.c. generator. The coil in the generator rotates 20 times in one
second.
+1
output
p.d. / V 0
0 0.05 0.10 time / s
–1
+1
output
A p.d. / V 0
0 0.05 0.10 time / s
–1
+1
output
B p.d. / V 0
0 0.05 0.10 time / s
–1
+2
output
p.d. / V
+1
C 0
0 0.05 0.10 time / s
–1
–2
+2
output
p.d. / V
+1
D 0
0 0.05 0.10 time / s
–1
–2 [ON2013/P12/Q33]
39 A beam of alpha-particles enters the magnetic field between the poles of a magnet.
alpha-particles
40 As a magnet is moved into the coil of wire as shown, there is a small reading on the sensitive
ammeter.
N S
What is the power dissipated in the resistor and the current in the primary coil?
power / W current / A
A 120 0.20
B 120 5.0
C 480 0.80
D 480 1.3 [MJ2014/P11/Q36]
42 Which device uses the force experienced by a current in a magnetic field when in normal use?
A cathode-ray oscilloscope
B electrostatic precipitator
C loudspeaker
D transformer [MJ2014/P12/Q34]
43 As a magnet is moved into the coil of wire as shown, there is a small reading on the sensitive
ammeter.
N S
A aluminium
12 V d.c.
B copper power supply coil of wire
C soft iron
D steel
[ON2014/P11/Q27]
A
C magnetic
field
D [ON2014/P11/Q30]
current
N S
d.c. supply
A to change the current direction in the coil as the coil passes the horizontal position
B to change the current direction in the coil as the coil passes the vertical position
C to change the current direction in the d.c. supply as the coil passes the horizontal position
D to change the current direction in the d.c. supply as the coil passes the vertical position
[ON2014/P11/Q31]
47 Which graph shows the voltage output of an a.c. generator when the coil makes one complete
revolution?
A B
voltage voltage
0 0
0 time 0 time
C D
voltage voltage
0 0
0 time 0 time
[ON2014/P11/Q32]
N S
d.c. supply
A to change the current direction in the coil as the coil passes the horizontal position
B to change the current direction in the coil as the coil passes the vertical position
C to change the current direction in the d.c. supply as the coil passes the horizontal position
D to change the current direction in the d.c. supply as the coil passes the vertical position
[ON2014/P12/Q32]
50 A student moves a magnet into a coil of wire as shown in the diagram. The coil of wire is
connected to a sensitive ammeter.
coil
S N
magnet
ammeter
Which trace appears on the screen when the speed of rotation of the coil is doubled but the
settings on the c.r.o. are unaltered?
A B C D
[ON2014/P12/Q34]
K L M
When the current in the solenoid is increased, where is there an increase in the magnetic field
strength?
A K, L and M
B K and L only
C M and L only
[MJ2015/P11/Q27]
D M only
53 A magnet is placed near to a solenoid that is connected to a sensitive centre-zero ammeter.
solenoid
magnet
A
sensitive ammeter
The magnet is pushed towards the solenoid. It accelerates, then moves at constant speed, then
decelerates and stops inside the solenoid.
32 P and Q represent two, parallel, straight wires carrying currents into the plane of the paper. P and
Q exert a force on each other.
Q
P D B
[ON2015/P11/Q32]
C
33 The diagram shows a simple d.c. motor.
A a coil
B a commutator
C a magnet
D a slip ring [ON2015/P11/Q33]
35 Electric power cables transmit electrical energy over large distances using high-voltage,
alternating current.
What are the advantages of using a high voltage and of using an alternating current?
A high current is produced in the cable the resistance of the cable is reduced
B high current is produced in the cable the voltage can be changed using a transformer
C less energy is wasted in the cable the resistance of the cable is reduced
D less energy is wasted in the cable the voltage can be changed using a transformer
[ON2015/P11/Q35]
31 The diagram shows the magnetic field around wire X which carries a current into the paper.
The arrows on the field lines show the direction of the force on
A a N-pole.
B a S-pole.
C a small negative charge.
D a small positive charge. [ON2015/P12/Q31]
32 P and Q represent two, parallel, straight wires carrying currents into the plane of the paper. P and
Q exert a force on each other.
Q
P D B
[ON2015/P12/Q32]
C
P 1 Mark Scheme
P 2 Past Papers
01 (a) A wire carrying a current in a magnetic field experiences a force due to the current.
On Fig. 1.1, insert the words current, field and force in the boxes to show the relative
directions of the current, the magnetic field and the force.
Fig. 1.1
[3]
[MJ2011/P21/Q8]
02 Fig. 2.1 shows a rotating magnet in an alternating current generator that is used to power a lamp.
magnet
soft iron
N S
coil
lamp
Fig. 2.1
(a) (i) State how an alternating current differs from a direct current.
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... [1]
(ii) Explain, in detail, how alternating current is produced by the apparatus shown in
Fig. 2.1.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... [4]
(iii) State two ways in which the current in the lamp may be increased.
1. ........................................................................................................................................
2. ........................................................................................................................................
[2]
(b) The generators at a power station produce a voltage of 25 000 V. This voltage is stepped up
to 400 000 V by a transformer for long-distance transmission on overhead power lines. The
voltage is later stepped down to 240 V.
(i) State and explain why the voltage is stepped up for long-distance transmission.
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... [2]
(ii) Calculate the ratio of the number of turns in the primary coil of the step-up transformer to
the number of turns in its secondary coil.
(iii) State one advantage and one disadvantage of using thicker wire in the overhead power
lines.
advantage: .........................................................................................................................
...........................................................................................................................................
disadvantage: ....................................................................................................................
...........................................................................................................................................
[2]
(iv) An electric drill of power 1000 W is used in a country where the mains voltage is 240 V.
State and explain the most appropriate fuse to use with this drill.
You should select a fuse from the following values: 1 A, 3 A, 4 A, 13 A.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... [3]
[MJ2011/P21/Q9]
03 When a car is moving, its electrical equipment is powered by an a.c. generator.
(a) The coil of the a.c. generator is rotated by the car engine.
(i) On the axes in Fig. 3.1, sketch a graph of the output voltage of the coil against time for
two rotations of the coil of the generator.
output
voltage
0
0 time
[1]
Fig. 3.1
(ii) The speed of the car increases and so does the speed of rotation of the coil.
change 1 ............................................................................................................................
...........................................................................................................................................
change 2 ............................................................................................................................
...........................................................................................................................................
[2]
[ON2011/P21/Q6]
04 Fig. 4.1 shows part of an electric bell.
S
iron
bar
iron
core N
Fig. 4.1
A switch and a cell are in series with a length of wire coiled around an iron core.
The switch is closed and the current in the wire produces a south pole S and a north pole N at
the ends of the core, as shown in Fig. 4.1. Magnetic poles are also produced in a small iron bar,
placed near to the ends of the core.
(a) (i) On Fig. 4.1, mark with an N the position of the north pole produced in the iron bar and
mark with an S the position of the south pole produced in the iron bar. [1]
(ii) State and explain what happens to the iron bar once it is magnetised.
...........................................................................................................................................
.......................................................................................................................................[2]
(b) The switch is opened and there is no current in the wire. State what happens to the magnetic
poles in the iron bar.
...................................................................................................................................................
...............................................................................................................................................[1]
[ON2011/P22/Q5]
05 Fig. 5.1 shows two coils of insulated wire wound on an iron ring. Coil A is connected to a battery
and a switch. The switch is open. Coil B is connected to a sensitive centre-zero voltmeter.
open
switch
centre-zero
voltmeter
coil B
Fig. 5.1
(ii) draw the magnetic field lines produced in the iron ring. [3]
(b) As the switch is closed, the voltmeter deflects to the right and then returns to zero.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(ii) The switch is opened. State and explain what happens to the deflection on the voltmeter.
...........................................................................................................................................
...........................................................................................................................................
.......................................................................................................................................[2]
(iii) Without changing coil A, state two changes to the apparatus that cause a greater
deflection of the voltmeter.
1. ........................................................................................................................................
2. ........................................................................................................................................
[2]
[MJ2012/P22/Q9]
06 (a) Fig. 6.1 shows a solenoid made from wire wound around a plastic cylinder.
plastic
cylinder
+ –
Fig. 6.1
On Fig. 6.1, draw the pattern of the magnetic field lines inside and outside the cylinder.
[2]
(b) Fig. 6.2 shows a beam of beta-particles, in a vacuum, passing into a magnetic field.
Fig. 6.2
(i) On Fig. 6.2, draw an arrow to show the direction of the conventional current. [1]
(ii) A solenoid is used to produce the magnetic field that lies within the shaded region
of Fig. 6.2. The direction of the field is out of the page.
1. On Fig. 6.2, draw the path followed by one of the beta-particles in the shaded
region. [2]
2. The direction of the current in the solenoid is reversed. State what happens to
the path of the beta-particle.
...........................................................................................................................
...................................................................................................................... [1]
[ON2012/P21/Q7]
07 Fig. 7.1 shows a simple transformer.
core
alternating
current
supply
Fig. 7.1
...................................................................................................................................... [1]
(b) Explain how an alternating current in the primary coil causes the lamp to light.
..........................................................................................................................................
..........................................................................................................................................
..........................................................................................................................................
..........................................................................................................................................
..........................................................................................................................................
...................................................................................................................................... [3]
(c) Transformers are used to produce high voltages for the transmission of electrical power
over long distances.
..........................................................................................................................................
..........................................................................................................................................
...................................................................................................................................... [1]
[MJ2013/P21/Q8]
08 Fig. 8.1 shows a view, from above, of two wires X and Y. These wires carry equal currents
vertically downwards through a piece of card.
card
wire X
wire Y
A B
magnetic
field line
Fig. 8.1
(a) On Fig. 8.1, draw the complete magnetic field line due to the current in wire X that
passes through point A.
Mark the direction of this field line. [2]
(b) Point B is midway between the two wires. Explain why the magnetic field at B is zero.
..........................................................................................................................................
..................................................................................................................................... [1]
............................................................................................................................. [1]
..................................................................................................................................
............................................................................................................................. [1]
[MJ2013/P22/Q7]
9 EITHER
Fig. 9.1 shows a simple a.c. generator. The coil is turning and an e.m.f. is induced in the coil.
Fig. 9.1
(a) The generator contains a permanent magnet. State the name of a metal used in a
permanent magnet.
..................................................................................................................................... [1]
(b) At the instant shown in Fig. 9.1, the induced e.m.f. is a maximum.
..................................................................................................................................
..................................................................................................................................
..................................................................................................................................
............................................................................................................................. [2]
(ii) State the position of the coil where there is no induced e.m.f.
..................................................................................................................................
............................................................................................................................. [1]
[MJ2013/P22/Q8]
10 Fig. 10.1 shows a coil of wire connected by flexible leads to a switch and a battery.
Fig. 10.1
The coil is placed between the poles of a permanent magnet and is free to turn about the axis.
When the switch is closed, forces due to the current act on the sides of the coil. The coil starts to
turn.
(a) On Fig. 10.1, draw arrows to show the directions of the forces. [2]
(b) The coil stops when it is vertical. Explain why the turning effect of the forces is zero at this
position.
...................................................................................................................................................
.............................................................................................................................................. [1]
(c) In order for the coil to rotate continuously, a split-ring commutator is connected between the
battery and the coil.
Explain how the split-ring commutator enables the coil to rotate continuously. Include a
diagram in your answer.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
.............................................................................................................................................. [4]
[MJ2014/P21/Q6]
11 A straight length of copper wire lies horizontally between the poles of a U-shaped magnet. Fig.
11.1 shows the two ends of the wire connected to a very sensitive, centre-zero ammeter.
copper wire
N S
Fig. 11.1
The copper wire is moved upwards slowly between the two magnetic poles. The needle on the
ammeter deflects to the right.
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
(b) The wire is moved downwards very quickly between the two magnetic poles.
...................................................................................................................................................
...............................................................................................................................................[1]
(c) State what happens to the needle on the ammeter when the copper wire is moved horizontally
between the two poles.
...................................................................................................................................................
...............................................................................................................................................[1]
[ON2014/P21/Q7]
12 Fig. 12.1 shows the structure of a simple alternating current (a.c.) generator.
output
terminals
Fig. 12.1
(b) The a.c. generator is operating and the arrows on Fig. 12.1 show the direction of rotation.
Explain why there is an electromotive force (e.m.f.) between the two output terminals.
...................................................................................................................................................
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[3]
[ON2014/P22/Q8]
13 A simple apparatus used to demonstrate electromagnetic induction is shown in Fig. 13.1.
support
spring
S
movement magnet
N
coil LED
Fig. 13.1
The coil is connected to two light-emitting diodes (LEDs). The magnet moves into and out of the
coil.
(a) Explain why there is an induced e.m.f. in the coil when the magnet moves.
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
(b) Explain why one LED lights up when the magnet moves into the coil and the other LED lights
up when the magnet moves out of the coil.
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[2]
(c) The LEDs are brighter when the magnet moves faster.
Explain why.
...................................................................................................................................................
...................................................................................................................................................
...............................................................................................................................................[1]
[MJ2015/P21/Q7]
14 Fig. 14.1 shows a simple a.c. generator.
rotation
of coil
coil
N S
output voltage
Fig. 14.1
(a) The coil rotates and an alternating electromotive force (e.m.f.) is induced in the coil.
Fig. 14.2 shows how the alternating e.m.f. varies with time as the coil rotates.
+
e.m.f.
0
time
Fig. 14.2
Explain
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... [2]
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... [1]
(b) Changes are made to the a.c. generator, one at a time:
Complete the table in Fig. 14.3 to show what happens to the maximum value of the e.m.f.
and to the frequency of the alternating e.m.f.
stronger magnets
Fig. 14.3
[3]
[MJ2015/P22/Q6]
15 (a) Fig. 15.1 shows a solenoid (long coil) X connected in series with a battery, a switch S and a
variable resistor (rheostat).
Fig. 15.1
The switch S is closed and there is a magnetic field due to the current in the solenoid.
(i) On Fig. 15.1, draw the pattern of the magnetic field in, above and below the solenoid.
[3]
1. The resistance of the variable resistor is gradually decreased and the pointer of the
sensitive ammeter deflects slightly to one side.
.....................................................................................................................................
.....................................................................................................................................
.....................................................................................................................................
.....................................................................................................................................
.....................................................................................................................................
.....................................................................................................................................
................................................................................................................................ [3]
2. The switch S is now opened.
Describe and explain what happens to the deflection on the ammeter as the switch is
opened.
.....................................................................................................................................
.....................................................................................................................................
.....................................................................................................................................
.....................................................................................................................................
.....................................................................................................................................
.....................................................................................................................................
................................................................................................................................ [3]
(b) Fig. 15.2 shows a transformer that consists of two coils wound on an iron core. The transformer
is connected to an electricity transmission cable.
iron core
Fig. 15.2
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... [2]
[ON2015/P21/Q10]
16 Thin wire, covered in plastic insulation, is used to make a solenoid (long coil). The solenoid is
connected to a sensitive ammeter. Fig. 16.1 shows the N-pole of a steel magnet placed next to the
solenoid.
X Y
steel magnet
N
solenoid
Fig. 16.1
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... [1]
1. aluminium,
............................................................................................................................... [1]
2. iron.
............................................................................................................................... [1]
(b) In one experiment, the magnet in Fig. 16.1 is moved to the left and passes into the solenoid.
The N-pole of the magnet travels from Y to X at a constant speed. As it moves, the ammeter
shows a small current.
(i) Explain why there is a current in the solenoid when the magnet is moving.
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...........................................................................................................................................
...................................................................................................................................... [3]
[ON2015/P22/Q10]
P 2 Mark Scheme
(ii)
mention of magnetic field/flux B1
(magnetic) field lines // flux cuts coil // flux changes in coil B1
induction of voltage/current B1
something relevant reverses (e.g. field/flux cuts in one direction then the
other // N pole approaches then leaves // N pole approaches and S pole
approaches)
and link to a.c. B1
(iii) two of: thicker wires; more turns of coil; stronger magnet; faster rotation;
lower resistance (of lamp) B2
(iii) reduces resistance // less power loss // costs less to run // more current //
more power B1
increases weight // more support needed // more wind resistance // more ice
forms // costs more to install B1
(iv) 13 A B1
(I =) P/V // 4.2 A // 4.17 etc A B1
must choose higher value to avoid fuse blowing // other fuses melt B1 [15]
(ii)
at least 1 line axially through coil A
OR line above and below end of coil A B1
flux/field decreases/collapses/reduces
OR iron loses magnetism
OR change in field is in opposite direction
OR to oppose flux/field change B1
7 (a) (at least) two parallel horizontal lines within the cylinder B1
(at least) two correctly shaped lines outside the cylinder B1
(c) less power/energy/heat loss (allow no power loss/to prevent power loss) or
more efficient or thinner wire can be used (ign. cheaper) B1 [5]
(b) fields (due to X and Y) cancel or X and Y fields equal and opposite B1
(ii) current (in wire Y) and (magnetic) field (caused by other wire) B1 [5]
or two (magnetic) fields interact
(b) (i) mention of cutting (lines of) magnetic field / change in (magnetic) flux M1
(ii) vertical/upright B1
or turned through 90°
or normal to (magnetic) field
Page 3 Mark Scheme Syllabus Paper
GCE O LEVEL – May/June 2014 5054 21
6 (a) arrows on long sides in opposite vertical directions [B1]
downwards on right and upwards on left or correct rotation shown [B1]
(b) no (horizontal) distance between forces or forces through axle / pivot / axis [B1]
(c) two halves of split ring clear and clearly connected to each end of coil [B1]
contacts / brushes labelled or described and connected to battery [B1]
each side of split ring touches other terminal / brush or current reverses in coil
or changes terminals of connection to battery [B1]
forces reverse on sides of coil or forces always in same direction on side
nearest a pole [B1]
[7]
(ii) (one side of) coil cuts one way and then the other B1
or (side) moves one way and then the other / returns
or flux increases and then decreases
(b) increase in emf for both stronger magnets and more turns B1
no change / same frequency for both stronger magnets and more turns B1
increase and increase for turn the coil faster B1
10 (a) (i) at least two straight parallel lines inside the coil B1
at least two (complete) lines one above the coil and one below the coil B1
third line in middle and evenly spaced and two closed loops B1
(any crossings max. 2 / 3)
10 (a) (i) no free electrons (in plastic) or all electrons are bound / structural B1
(ii) (aluminium) is not magnet(ic) or cannot be magnetised B1
(iron) is a temporary / soft magnetic material or is not a permanent magnet B1 [3]
(b) (i) magnetic field / flux (mentioned) B1
(magnetic) field lines cut wire / solenoid / circuit or changing magnetic
field / flux B1
voltage/e.m.f. induced B1
(ii) (V = )IR or 0.045 × 1.2 or 0.000045 × 1.2 C1
5.4 × 10–5 V or 0.054 mV A1
(Q = )It or 0.045 × 0.14 or 0.000045 × 0.14 C1
6.3 × 10–6 C or 0.0063 mC A1 [7]